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IMPORTANCE Exenatide, a glucagon-like peptide 1 agonist used in type 2 diabetes,
was recently found to have beneficial effects on motor function in a randomized,
placebo-controlled trial in Parkinson disease (PD). Accumulating evidence suggests that
impaired brain insulin and protein kinase B (Akt) signaling play a role in PD pathogenesis;
however, exploring the extent to which drugs engage with putative mechnisms in vivo
remains a challenge.

OBJECTIVE To assess whether participants in the Exenatide-PD trial have augmented activity
in brain insulin and Akt signaling pathways.

DESIGN, SETTING, AND PARTICIPANTS Serum samples were collected from 60 participants in
the single-center Exenatide-PD trial (June 18, 2014, to June 16, 2016), which compared
patients with moderate PD randomized to 2 mg of exenatide once weekly or placebo for
48 weeks followed by a 12-week washout period. Serum extracellular vesicles, including
exosomes, were extracted, precipitated, and enriched for neuronal source by anti–L1 cell
adhesion molecule antibody absorption, and proteins of interest were evaluated using
electrochemiluminescence assays. Statistical analysis was performed from May 1, 2017,
to August 31, 2017.

MAIN OUTCOMES AND MEASURES The main outcome was augmented brain insulin signaling
that manifested as a change in tyrosine phosphorylated insulin receptor substrate 1 within
neuronal extracellular vesicles at the end of 48 weeks of exenatide treatment. Additional
outcome measures were changes in other insulin receptor substrate proteins and effects on
protein expression in the Akt and mitogen-activated protein kinase pathways.

RESULTS Sixty patients (mean [SD] age, 59.9 [8.4] years; 43 [72%] male) participated in the
study: 31 in the exenatide group and 29 in the placebo group (data from 1 patient in the
exenatide group were excluded). Patients treated with exenatide had augmented tyrosine
phosphorylation of insulin receptor substrate 1 at 48 weeks (0.27 absorbance units [AU];
95% CI, 0.09-0.44 AU; P = .003) and 60 weeks (0.23 AU; 95% CI, 0.05-0.41 AU; P = .01)
compared with patients receiving placebo. Exenatide-treated patients had elevated
expression of downstream substrates, including total Akt (0.35 U/mL; 95% CI, 0.16-0.53
U/mL; P < .001) and phosphorylated mechanistic target of rapamycin (mTOR) (0.22 AU;
95% CI, 0.04-0.40 AU; P = .02). Improvements in Movement Disorders Society Unified
Parkinson’s Disease Rating Scale part 3 off-medication scores were associated with levels
of total mTOR (F4,50 = 5.343, P = .001) and phosphorylated mTOR (F4,50 = 4.384, P = .04).

CONCLUSIONS AND RELEVANCE The results of this study are consistent with target
engagement of brain insulin, Akt, and mTOR signaling pathways by exenatide and provide a
mechanistic context for the clinical findings of the Exenatide-PD trial. This study suggests the
potential of using exosome-based biomarkers as objective measures of target engagement in
clinical trials using drugs that target neuronal pathways.
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P revious work1 has explored the use of extracellular
vesicles (EVs) harvested from peripheral blood and
enriched for neuronal origin to measure neuropatho-

logical changes in vivo over time. Extracellular vesicles (in-
cluding exosomes) are nanosized membranous particles
secreted by virtually all cells, including neurons,2 that circu-
late in blood and contain variable cellular cargo representa-
tive of their origin, which can be significantly altered
depending on the physiologic state of the parent cell.3 Extra-
cellular vesicles can cross the blood-brain barrier; thus, EVs
of neuronal origin can be selectively isolated by targeting
neuronal antigens, such as the neuronal cell adhesion mol-
ecule and the L1 cell adhesion molecule (L1CAM), embedded
in the vesicle membrane. Several studies4-6 have used
neuronal-derived EVs isolated by L1CAM immunocapture to
quantify levels of pathogenic proteins contained within
them and have found that they can successfully distinguish
between disease states and healthy controls in Alzheimer
disease and Parkinson disease (PD). The potential utility of
this technique in revealing target engagement and mecha-
nism of action of central nervous sysrem drugs in clinical
trials is increasingly being recognized.

A variety of novel targets for neuroprotection have been
identified and are actively being pursued in clinical trials for
neurodegenerative diseases. Among these targets, the iden-
tification of metabolic dysfunction in PD is of major interest7,8;
evidence from epidemiologic studies and animal-toxin
models of PD suggest that impaired insulin signaling may play
a role in the pathogenesis.9-20 In the brain, insulin modulates
neuronal cell survival via 2 downstream pathways: the phos-
phoinositide 3-kinase–protein kinase B (Akt) and mitogen-
activated protein kinase (MAPK) pathways (Figure 1). Dimin-
ished insulin signaling reduces the activity of Akt, modulating
the activity of numerous kinases, including mechanistic
target of rapamycin (mTOR), glycogen synthase kinase 3β
(GSK-3β), and forkhead box protein O1, which regulate pro-
cesses involved in PD pathogenesis,21 such as α-synuclein
degradation,22,23 mitochondrial biogenesis, and modulation
of inflammatory and oxidative stress pathways.24

Insulin signaling relies on the stability of insulin receptor
substrate 1 (IRS-1), which acts as the first node in the cascade,
and its activity is regulated through a number of serine and ty-
rosine phosphorylation sites.25 Although tyrosine IRS-1 phos-
phorylations are needed for insulin-evoked responses, serine
phosphorylations primarily deactivate IRS-1 and attenuate in-
sulin signaling.26-29 Prior studies in postmortem tissue from
patients with PD,30,31 Alzheimer disease,27-29 and multiple sys-
tem atrophy15 have identified elevated IRS-1 phosphoryla-
tion at serine positions 616 (IRS-1 p-S616) and 312 (IRS-1 p-S312)
as being associated with attenuated insulin signaling, support-
ing their use as biomarkers of neuronal insulin resistance. Of
importance, the reversal and restoration of insulin signaling
by exogenous insulin or insulin-sensitizing agents led to im-
proved cell survival and functional improvements.32-34

Although alternative markers of insulin resistance are
available through neuroimaging and cerebrospinal fluid
studies, measuring brain insulin-signaling markers in
peripheral blood represents a rational, easily accessible, and

practical method for assessing time-dependent changes.
Previous studies used plasma neuronal-derived EVs to
demonstrate decreased tyrosine phosphorylated IRS-1 (IRS-1
p-Tyr) and increased levels of IRS-1 phosphorylated at
serine 312 (IRS-1 p-S312)35 in patients with Alzheimer dis-
ease, closely mimicking the pattern observed in autopsy,36

and have found that therapeutic interventions that target
insulin signaling can significantly alter these IRS-1
phosphorylations.37 Taken together, these findings suggest
that IRS-1 and downstream signaling mediators in neuronal-
derived EVs could be used as biomarkers of brain insulin
resistance in neurodegenerative diseases.

Glucagon-like peptide 1 (GLP-1) agonists are used for
type 2 diabetes treatment and activate similar pathways to
insulin to improve glucose homeostasis.38 The GLP-1 signal-
ing pathways also indirectly promote and restore neuronal
insulin signaling,39,40 reducing serine IRS-1 phosphorylation
and monomeric α-synuclein load, preserving dopaminergic
neurons, and attenuating cell death in rodent models of
multiple systems atrophy and Alzheimer disease.32,41

A proposed mechanism of action of GLP-1 agonists in
neurons is also shown in Figure 1.

Exenatide, the first synthetic GLP-1 agonist, was recently
studied for potential disease-modifying effects in a random-
ized, placebo-controlled clinical trial in patients with moder-
ate PD, finding positive effects on motor severity (measured
after overnight dopaminergic medication withdrawal) that
were sustained 12 weeks beyond the period of exenatide
exposure.42 Given its positive clinical effects in the trial and
preclinical data suggesting modulation of insulin signaling as
its main mechanism of action, our a priori hypothesis was that
exenatide-treated compared with placebo-treated partici-
pants would show changes in IRS-1 p-Tyr signaling proteins in
neuronal-enriched EVs, suggesting activation of brain insulin
signaling pathways. Our analysis used patient serum samples
to identify changes in insulin signaling biomarkers in neuronal-
enriched EVs during multiple time points.

Key Points
Question How might neuronal-derived exosomes be used to
explore the molecular mechanisms by which an experimental
intervention exerts clinical effects on motor function?

Findings In this seconday analysis of a randomized clinical trial,
serum samples from 60 participants in the Exenatide-PD trial were
used to isolate neuronal-derived exosomes to evaluate levels of the
brain insulin-signaling proteins and downstream effectors protein
kinase B (Akt) and mechanistic target of rapamycin. After 48 and
60 weeks of subcutaneous drug administration, patients with
Parkinson disease treated with exenatide had greater activation of
brain insulin signaling proteins and downstream effectors compared
with baseline and patients in the placebo group.

Meaning These results are suggestive of target engagement
of brain insulin, protein kinase B, and mechanistic target of
rapamycin signaling pathways by exenatide and provide a
mechanistic context for the clinical findings of the trial; these
techniques could have widespread application across a large
number of trials in central nervous system diseases.
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Methods

Patients and Study Design
The Exenatide-PD trial (a randomized, double-blind, placebo-
controlled, single center, 60-week trial of exenatide once
weekly for the treatment of moderate-severity PD43)
(NCT01971242) was performed from June 18, 2014, to June 16,
2016, to assess the effects of exenatide on disease progression
for 60 weeks.42 The trial enrolled 60 men and women between
25 and 75 years of age with idiopathic PD44 who were receiving
dopaminergic treatment. Patients were randomized to self-
inject either 2 mg of exenatide (n = 31) or placebo (n = 29) once
weekly for 48 weeks, followed by drug withdrawal and a final
visit 12 weeks later. At each visit, patients were assessed using
the Movement Disorders Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) and provided blood samples after
an overnight withdrawal from PD medication. The study was
coordinated by the University College London Comprehensive
Clinical Trials Unit, London, United Kingdom. Patients
consented to future analysis of all samples collected during the
trial as part of the original trial consent process. This trial was
approved by the Brent National Health Service Research Ethics

Committee, London, United Kingdom. All patients provided
written informed consent, and all data were deidentified.

Outcomes
On the basis of previous literature,35,36,39,41 our a priori
hypothesis was that exenatide treatment would activate in-
sulin signaling pathways detectable as a change in IRS-1 p-Tyr
at the end of 48 weeks of treatment with exenatide. Addi-
tional exploratory outcomes were (1) differences between
exenatide and placebo in other related IRS-1 signaling pro-
teins and (2) downstream effectors of the Akt and MAPK path-
ways—the 2 pathways primarily involved in GLP-1 and insu-
lin signaling. We further hypothesized that these changes
would be associated with the positive motor effects seen in the
clinical trial. Because of the limited amount of serum samples
available, we were able to assess only a limited candidate group
of biomarkers and selected Akt, extracellular signal-related
kinase (Erk), total p38 (t-p38) MAPK, phospho p38 MAPK,
c-Jun N-terminal kinase (JNK), GSK-3β, and mTOR.

Serum Sample Collection
Whole blood samples were collected in accordance with pre-
processing guidelines for EV-based biomarker analysis.45,46

Figure 1. Proposed Scheme for the Neuroprotective Effects of Glucagon-Like Peptide 1 (GLP-1) in Neurons
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GRB2, growth factor receptor-bound protein 2; GSK-3β, glycogen synthase 3β;
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Samples from baseline, week 24, week 48, and week 60
were analyzed.

Isolation of EVs and Enrichment for Neuronal Origin
Investigators at the National Institute on Aging who performed
EV isolation and protein quantifications were masked to exena-
tide and placebo treatment allocation. A detailed description
of the methods and evidence for neuronal enrichment has been
previously published.47 A 2-step method of particle precipita-
tion to increase EV concentration was followed by immune cap-
ture for neuronal surface antigen L1CAM to selectively isolate
extracellular vesicles enriched for neuronal origin.1,48

Quantification of EV Insulin Signaling Proteins
Extracellular vesicles in suspension were lysed with the addition
of 260 μL of Mammalian Protein Extraction Reagent (M-PER;
Thermo Scientific). Proteins in the lysate were quantified by elec-
trochemiluminescence using the Mesoscale Discovery platform
and kits, including IRS-1 p-Tyr (catalog No. N45CA-1), IRS-1 p-S616
and IRS-1 p-S312 (catalog No. K150HLD-2), and total (t-) and phos-
phorylated(p-)formsofAkt(catalogNo.K15177D-2),mTOR(cata-
log No. K15170D-2), GSK-3β (catalog No. K15109D-2), p38 MAPK,
Erk1/2, and JNK (catalog No. K15157D-2). The IRS-1 p-Tyr, IRS-1
p-S312, and IRS-1 p-S616 assays had the same capture but differ-
ent detection antibodies (for p-S616 monoclonal antibody cell
signaling 2386s was used).

All assays were conducted in duplicate, and the mean coef-
ficients of variance were less than 10%. In all total protein assays,
recombinant protein supplied by the manufacturer was used to
calculate a standard curve and convert the electrochemilumines-
cence signal into concentrations. For phosphoproteins, the elec-
trochemiluminescence signal was used for the analysis. All elec-
trochemiluminescence values for total proteins were above the
lowest limit of quantification and within the linear range of the
curve. All samples from repeated visits of a given patient were in-
cludedonthesameplatetoavoidwithin-subjectvariabilitycaused
by plate to plate variability. Plate to plate variability was assessed
using an internal standard (EVs from a control patient; between-
plate coefficients of variance were <10%).

Statistical Analysis
Analyses were performed using SPSS statistical software, ver-
sion 21.0 (IBM Corp). Biomarker values were natural log trans-
formed to avoid skewness. To assess the effect of exenatide
on a given biomarker, a linear mixed-effects model was used,
with treatment groups (exenatide vs placebo), time, baseline
biomarker, and EV concentration as fixed effects and partici-
pant identification treated as a random effect. The inclusion
of EV concentration (determined by NanoSight) as a covari-
ate enabled normalization for differential EV yield in differ-
ent samples, as done previously.37

To assess whether changes in biomarker levels were
associated with the effect of treatment on disease progres-
sion, multiple linear regression of change in MDS-UPDRS
Part 3 off-medication scores was fitted with change in bio-
marker levels, treatment group, EV concentration, and the
interaction of biomarker change and treatment group as
independent variables. Changes in MDS-UPDRS part 3 scores
were defined as differences from baseline to 48 or 60 weeks.
P < .05 was considered to be statistically significant.
Statistical analysis was performed from May 1, 2017, to
August 31, 2017.

Results
Patient Characteristics
Sixty patients (mean [SD] age, 59.9 [8.4] years; 43 [72%] male)
participated in the study: 31 in the exenatide group and 29 in the
placebo group. Data from 1 patient were excluded from the analy-
sis because of extreme outlying values despite log transforma-
tion (eFigure 1 in the Supplement). Patient demographics and
baseline characteristics were generally similar between the 2
groups (eTable 1 in the Supplement), although exenatide-treated
participants were slightly older, had higher baseline MDS-UPDRS
Part 3 scores, and had slightly lower levodopa equivalent dose
than placebo-assigned participants. Comparison of biomarkers
(log transformed) at baseline were similar between the 2 groups
(Figure 2).

Figure 2. Baseline Biomarker Profile in the Exenatide and Placebo Groups
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Association of Exenatide With Biomarker Changes
Exenatide-treated patients had an early and sustained
increase in IRS-1 p-Tyr compared with placebo-assigned
participants, resulting in a significant adjusted between-
group difference at 24 weeks (0.22 absorbance unit [AU];
95% CI, 0.04-0.39; P = .02), 48 weeks (0.27 AU; 95% CI,
0.09-0.44; P = .003), and 60 weeks (0.23 AU; 95% CI, 0.05-
0.41; P = .01) (Figure 3A).

By 48 weeks, there was also an (unexpected) increase in
IRS-1 p-S616 of 0.096 AU (95% CI, −0.16 to 0.36) in the exena-
tide group compared with a decrease in the placebo group of
−0.12 AU (95% CI, −0.37 to 0.15), resulting in a significant ad-
justed between-group difference of 0.22 AU (95% CI, 0.03-
0.43; P = .047) (Figure 3B). A similar increase in IRS-1 p-S312
in the exenatide group at 48 weeks was observed, although the
adjusted difference between the 2 groups (0.26 AU; 95% CI,
−0.03 to 0.54; P = .07) did not reach significance (Figure 3C).
These differences disappeared at 60 weeks.

We observed significant increases in t-Akt, p-Akt S473, and
p-mTOR S2448 at 48 weeks in the exenatide group compared
with the placebo group, resulting in adjusted between-group
differences of 0.35 U/mL (95% CI, 0.16-0.53 U/mL; P < .001)
for t-Akt, 0.18 U/mL (95% CI, 0.04-0.31 U/mL; P = .008) for
p-Akt S473, and 0.22 AU (95% CI, 0.04-0.40 AU; P = .02) for
p-mTOR (Figure 4A, B, and D); p-Akt S473 was still signifi-
cantly elevated in the exenatide group at 60 weeks (ie, 12 weeks
after drug cessation; 0.15 AU; 95% CI, 0.01-0.28 AU; P = .03).
No significant increases in t-mTOR (0.17 AU; 95% CI, −0.02 to
0.36; P = .09), t-GSK-3β (0.05 AU; 95% CI, −0.03 to 0.13 AU;
P = .18), and p-GSK-3β S9 (0.08 AU; 95% CI, −0.04 to 0.19 AU;
P = .20) were found at 48 weeks (Figure 4C, E, and F). There
were no significant changes in t- and p-p38 MAPK, Erk1/2, and
JNK between the 2 groups at any time points (Figure 5).

Association of Biomarkers With Clinical Scores
Consistent with the hypothesis that motor advantages seen
with exenatide may relate (at least in part) to activation of the
insulin, Akt, and mTOR cascades, we found that at 48 weeks
changes in the levels of certain EV biomarkers significantly

determined change in MDS-UPDRS Part 3 scores. These bio-
markers were IRS-1 p-S616 (F4,46 = 7.181, P < .001), t-mTOR
(F4,50 = 5.343, P = .001), and p-mTOR S2448 (F4,50 = 4.384,
P = .04). Changes in biomarker levels and change in MDS-
UPDRS Part 3 scores at 48 and 60 weeks are presented in the
eTable 2 in the Supplement.

There were also corresponding significant interaction terms
for group × change in biomarker for IRS-1 p-S616 (β = −11.15;
95% CI, −19.43 to −2.86; P = .009), t-mTOR (β = −9.22; 95% CI,
−16.23 to −2.20; P = .01), and p-mTOR S2448 (β = −7.83; 95%
CI, −15.62 to −0.04; P = .049). This finding indicates that at 48
weeks exenatide-related improvements in MDS-UPDRS Part 3
scores in the exenatide-treated group were significantly asso-
ciated with changes in these biomarkers (eFigures 2 and 3 in
the Supplement). There was no significant association
between MDS-UPDRS part 3 scores and the levels of the other
biomarkers tested.

In the clinical trial, clinical advantages in motor scores
persisted at 60 weeks (ie, 12 weeks after drug cessation). At 60
weeks, the regression models assessing the associations be-
tween changes in EV biomarkers and change in MDS-UPDRS
Part 3 scores were statistically significant for t-mTOR
(F4,47 = 4.924, P = .002), with a corresponding significant in-
teraction term for t-mTOR (β = −10.05; 95% CI, −17.95 to −2.16;
P = .01). Although this finding was nonsignificant, changes in
p-Akt S473 were potentially associated with changes in mo-
tor scores (F4,50 = 2.191, P = .08; interaction term β = −10.46;
P = .047) (eFigures 4 and 5 in the Supplement). There was no
significant association between MDS-UPDRS Part 3 scores and
t-Akt, t- and p-GSK-3β, p38 MAPK, Erk 1/2, or JNK and no
significant group × change in biomarker interactions.

Discussion
The current study demonstrates the potential use of EVs har-
vested from peripheral blood samples and enriched for neu-
ronal origin as a source of biomarkers to gauge molecular
responses to therapeutic interventions in clinical trials for

Figure 3. Association of Exenatide With Phosphorylation of Insulin Receptor Signaling Substrate 1 (IRS-1) Proteins
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neurologic disorders.1,37 Our results suggest that exenatide treat-
ment may be associated with augmented brain insulin signal-
ing pathways, as evidenced by tyrosine phosphorylation of IRS-1
and activated downstream Akt and mTOR signaling. Further-
more, in view of the significant interaction effects, we also
found that the beneficial motor advantages seen at 48 and
60 weeks in the exenatide group may be (at least partially)
explicable by concomitant activation of mTOR signaling.
Although there are some inconsistencies in the association
between the clinical improvements and some of the upstream
biomarker changes, these findings provide further support to
our a priori hypothesis relating to one of the potential
mechanisms through which treatment with exenatide
may confer clinical benefits in PD. They also provide further
support for the association between insulin resistance
and PD pathogenesis.

Although GLP-1 receptor stimulation can directly acti-
vate Akt,38 our findings that the observed exenatide-
associated changes in IRS-1 were accompanied by changes in
Akt and mTOR suggest that modulation of insulin signaling at

multiple levels may better account for the observed effects.
Although exenatide was associated with increased IRS-1 p-Tyr
in neurons as we hypothesized, we also found that exenatide
was associated with increased IRS-1 p-S616 and IRS-1 p-S312,
particularly between 24 and 48 weeks, possibly because of
negative feedback via sustained mTORC1 activation (see
eResults in the Supplement for detailed discussion).

We found the changes in IRS-1 p-Tyr were also associated
with increased t-Akt and p-Akt S473, and an association was
observed between persistent motor benefits at 60 weeks and
elevation of p-Akt S473. Our results are consistent with pre-
vious suggestions that pharmacologic upregulation of the Akt
pathway may underlie the neuroprotective effects of many
putative disease-modifying strategies49,50 and mediates
exenatide-induced effects on cellular proliferation and
differentiation,51 neurotrophism,52 and inhibition of
inflammation53 and apoptosis.54,55 As a master regulator of
cellular function, Akt signaling maintains a critical balance
between proapoptotic and antiapoptotic pathways and has
been identified as a major contributor to neurodegeneration

Figure 4. Association of Exenatide With Downstream Targets of Insulin Receptor Signaling Substrate 1 (IRS-1)
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in PD,24,56 influencing α-synuclein aggregation.57 A previous
study58 found that activated forms of Akt are greatly reduced
in substantia nigra dopaminergic neurons from patients with
PD. Thus, restoration of normal functioning of the Akt path-
way is one plausible mechanism to explain the clinical effects
of exenatide.

Our findings are also in keeping with previous studies59-65

that support a neuroprotective role for mTOR in PD; mTOR
(composed of 2 complexes: mTORC1, primarily phosphory-
lated on S2448, and mTORC2, phosphorylated predomi-
nantly on S248166) is a downstream target of Akt, and our
results demonstrated that exenatide-treated patients had
increased t-mTOR and p-mTOR S2448, whereas changes in
t-mTOR were associated with beneficial clinical effects. Acti-
vation of Akt and mTOR signaling in dopaminergic neurons
promotes regrowth of axons after nigrostriatal degeneration59

and prevents neuronal loss in toxin models of PD,60 whereas
several toxin-based models of PD report that suppression of
mTOR signaling induces oxidative stress.61-63 Despite others
reporting that inhibition of mTOR (with rapamycin or its

derivatives) is neuroprotective in models of PD64,65 (perhaps
reflecting the differing roles of individual complexes), it may
be that it is the loss of the regulation of mTOR activity that can
have negative effects on neuronal physiologic mechanisms, and
thus it may be that upstream restoration of mTOR signaling60

may be therapeutically beneficial in PD.
We did not find any significant association between

exenatide and the MAPK pathway. Although some
studies67,68 have found that stimulation of MAPK signaling is
involved in mediating the neuroprotective effects of exena-
tide, others have found that exenatide treatment does not
affect phosphorylation of MAPK signaling kinases69,70 and
that MAPK signaling is not necessary for the effects of
exenatide on cell survival.54,71,72 Our data suggest that the
MAPK pathway is less likely to be involved in any beneficial
effects of exenatide in PD.

Although the data from this study support the notion that
exenatide-associated effects on the insulin and Akt signaling
pathway in neurons were associated with clinical benefit,
whether these changes are ultimately associated with

Figure 5. Association of Exenatide With the MAPK/ERK Pathway and Downstream Effectors
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modification of disease pathologic mechanisms is still uncer-
tain. Insulin resistance is associated with decreased expres-
sion of surface dopamine transporters in the striatum73,74 and
reduced dopamine turnover75; therefore, reversing this could
lead to better dopaminergic transmission (and, therefore, a
functional benefit). Conversely, reversal and restoration of
dysfunctional neuronal insulin signaling in cultured cells and
animals using GLP-1 agonists have been associated with re-
duction in cell death, aggregation of toxic oligomers, and
inflammation, suggesting a disease-modifying effect that
may also be reflected by functional improvements.32,33,41,76

Another possibility is that the clinical improvement and bio-
marker changes were produced in parallel through indepen-
dent mechanisms of action of exenatide: GLP-1 stimulation
is known to increase intracellular cyclic adenosine
monophosphate,77 which can inhibit serine phosphorylation
of IRS-1 (thereby producing biomarker changes), and upregu-
lates the expression and activity of tyrosine hydroxylase,78 the
rate-limiting enzyme in the synthesis of dopamine (thereby
producing a clinical symptomatic effect). We deem this pos-
sibility as less likely given the associations between clinical and
biomarker changes as well as the persistence of biomarker
changes after the washout.

Beyond these effects on insulin signaling, a further
potential mechanism of action of exenatide that was not
captured by the methods used in this study may relate to an
anti-inflammatory effect of GLP-1 receptor stimulation on
microglial cells and consequent reduction of conversion of
astrocytes to the neurotoxic A1 subtype.79 The methods for
isolating EVs enriched for astrocytic origin have been
recently reported,80,81 which raises the possibility of explor-
ing mechanisms that involve astrocytes in future studies.
Studies isolating EVs of different central nervous system
cells of origin may be able to determine the relative magni-
tude of effects of exenatide on insulin signaling in neurons
vs actions that involve microglia and astrocytes. Further-
more, although we excluded patients with concurrent diabe-
tes from this study (based on hemoglobin A1c levels),
patients with PD and peripheral insulin resistance may still
have been included and the clinical improvement may be
partially attributable to exenatide restoring peripheral insu-
lin sensitivity. Central and peripheral insulin resistance are

interrelated, but dissociable, and insulin-signaling mol-
ecules in different subpopulations of EVs may be used to dis-
entangle their relative contributions in drug effects in future
clinical trials.82

Limitations
Our approach to EV isolation has some limitations. It is widely
recognized that no technique is perfect for EV isolation and re-
moval of soluble content; however, combining 2 techniques
(ie, particle precipitation and immune capture, as done here)
is preferable to each one alone.45 Moreover, selectively isolat-
ing neuronal-derived EVs relies on immunoprecipitation using
antibodies against L1CAM, a cell surface marker highly (but not
exclusively) expressed on neurons that has been accepted as
a neuronal marker. Given that the insulin signaling, Akt, and
mTOR pathways are not specific to neurons and the residual
contamination of some nonneuronal EVs, it is not possible to
assert that the effects of exenatide on EV biomarkers is solely
attributable to neurons. Amelioration of insulin resistance in
nonneuronal tissues may thus be a contributory factor to the
reported results. Although this issue is of no concern when as-
saying proteins that are only neuronally expressed, further
work to optimize the isolation of EVs of pure neuronal origin
will further assist future assessments of drug actions in which
both central and peripheral mechanisms may theoretically
contribute to clinical effects.

Conclusions
We present, to our knowledge, the first biomarker evidence that
peripherally administered exenatide may engage and normal-
ize brain insulin signaling in association with activation of Akt
and mTOR cascades in PD. Furthermore, exenatide-related
changes in EV biomarkers were significantly associated with
clinical improvements and could potentially be further used
to assess target engagement and treatment response for this
class and other classes of drugs. The use of neuronal origin–
enriched EVs obtained from peripheral sources provides a
simple, practical method for elucidating target engagement
that should be further investigated in prospective clinical trials
of putative disease-modifying interventions.
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