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Abstract. In this paper, we present a novel approach to the congestion
control and resource allocation problem of elastic and real-time traffic
in telecommunication networks. With the concept of utility functions,
where each source uses a utility function to evaluate the benefit from
achieving a transmission rate, we interpret the resource allocation prob-
lem as a global optimization problem. The solution to this problem is
characterized by a new fairness criterion, utility proportional fairness. We
argue that it is an application level performance measure, i.e. the utility
that should be shared fairly among users. As a result of our analysis,
we obtain congestion control laws at links and sources that are globally
stable and provide a utility proportional fair resource allocation in equi-
librium. We show that a utility proportional fair resource allocation also
ensures utility max-min fairness for all users sharing a single path in the
network. As a special case of our framework, we incorporate utility max-
min fairness for the entire network. To implement our approach, neither
per-flow state at the routers nor explicit feedback beside ECN (Explicit
Congestion Notification) from the routers to the end-systems is required.

1 Introduction

In this paper, we present a network architecture that considers an application-
layer performance measure, called utility, in the context of bandwidth alloca-
tion schemes. In the last years, there have been several papers [1–7] that inter-
preted congestion control of communication networks as a distributed algorithm
at sources and links in order to solve a global optimization problem. Even though
considerable progress has been made in this direction, the existing work focuses
on elastic traffic, such as file transfer (FTP, HTTP) or electronic mail (SMTP).
In [8], elastic applications are characterized by their ability to adapt the sending
rates in presence of congestion and to tolerate packet delays and losses rather
gracefully. From a user perspective, common to all elastic applications is the re-
quest to transfer data in a short time. To model these characteristics, we resort
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Fig. 1. Utilities for elastic traffic and adaptive real-time traffic.

to the concept of utility functions. Following [8] and [2], traffic that leads to an
increasing, strictly concave (decreasing marginal improvement) utility function
is called elastic traffic. We call such a utility function bandwidth utility since
the utility function evaluates the benefit from achieving a certain transmission
rate. The proposed source and link algorithms are designed to maximize the ag-
gregate bandwidth utility (sum over all bandwidth utilities) subject to capacity
constraints at the links. Kelly introduced in [2] the so called bandwidth propor-
tional fair allocation, where bandwidth utilities are logarithmic. The algorithms
at the links are based on Lagrange multiplier methods coming from optimization
theory, so the concavity assumption seems to be essential. As shown in [8], some
applications, especially real-time applications have non-concave bandwidth util-
ity functions. A voice-over-IP flow, for instance, receives no bandwidth utility, if
the rate is below the minimum encoding rate. Its bandwidth utility is at max-
imum, if the rate is above its maximum encoding rate. Hence, its bandwidth
utility can be approximated by a step function. According to Shenker [8], the
bandwidth utility of adaptive real-time applications can be modeled as an S-
shaped utility function (a convex part at low rates followed by a concave part
at higher rates) as shown in Figure 1. The paradigm of the work dealing with
bandwidth utility functions of elastic applications in the context of congestion
control is to maximize the bandwidth utilization of the network (bandwidth sys-
tem optimum) under specific bandwidth fairness aspects (bandwidth max-min,
bandwidth proportional fair).

The central part of this work is to turn the focus on fairness of user-received
utility of different applications including non-elastic applications with non-
concave bandwidth utility functions. A user running an application does not
care about any fair bandwidth shares, as long as his application performs satis-
factory. Hence, we argue that it is an application performance measure, i.e. the
utility that should be shared fairly among users. To motivate this new paradigm,
we refer to the concept of utility max-min fairness introduced by Cao and Zegura
in [9]. Let us consider a network consisting of a single link of capacity one shared
by two users. One user transfers data according to an elastic application with
strictly increasing and concave bandwidth utility U1(·). The other user trans-
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Fig. 2. Utility max-min and bandwidth max-min fairness.

fers real-time video data with a non-concave bandwidth utility function U2(·).
Figure 2 shows, how different bandwidth allocations affect the received utility.
If the bandwidth is shared equally, what is referred to as max-min bandwidth
allocation in this example, user 1 receives a much larger utility than user 2.
Conversely, user 2 would not be satisfied since he does not receive the minimum
video encoding bandwidth. If we want to share utility equally, instead of band-
width, we would like to have a resource allocation, where the received utilities
are equal or utility max-min fair, i.e. U1(x1) = U2(x2) = u∗.

In [9], Cao and Zegura present a link algorithm that achieves a utility max-
min fair bandwidth allocation, where for each link the utility functions of all
flows sharing that link is maintained. In [10], Cho and Song present a utility
max-min architecture, where each link communicates a supported utility value
to sources using that link. Then sources adapt their sending rates according to
the minimum of these utility values.

In this paper, we extend the utility max-min architecture and propose a
new fairness criterion, utility proportional fairness, which includes the utility
max-min fair resource allocation as a special case. A utility proportional fair
bandwidth allocation is characterized by the solution of an associated optimiza-
tion problem. The benefit a user s gains when sending at rate xs is evaluated by
a new second order utility Fs(xs) and the objective is to maximize aggregate sec-
ond order utility subject to capacity constraints. The second order utilities are
assumed to be strictly concave, whereas the bandwidth utilities can be chosen
arbitrarily. We only assume that the bandwidth utilities are monotonic increas-
ing in a given interval. This is a natural assumption since any application will
profit from receiving more bandwidth in a certain bandwidth interval. We em-
phasize, that our distributed algorithm does not need any per-flow information
at the links. The feedback from links to sources does not include overhead, such
as explicit utility values as done in [10]. It merely relies on the communication
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of Lagrange multipliers, called shadow prices, from the links to the sources. This
can be achieved by an Active Queue Management (AQM) scheme, such as Ran-
dom Early Marking (REM) [6] using Explicit Congestion Notification (ECN)
[11].

The rest of the paper is organized as follows. In the next section, we describe
our model, the second order utility optimization problem and its dual based on
ideas of [1, 2, 5]. Given a specific bandwidth utility, we describe a constructive
method to find the second order utility function Fs(·) that leads to a utility
proportional fair resource allocation. In Section 3, we present a static primal
algorithm at the sources and a dynamic dual algorithm at the links solving the
global optimization problem and its dual. We further present a global stability
result for the dual algorithm based on Lyapunov functions along the lines of
[12]. In Section 4, we define a new fairness criterion, utility proportional fairness,
and show that our algorithms achieve utility max-min fairness in equilibrium for
users sharing a single path in the network. We further incorporate utility max-
min fairness for the entire network as a special case of our framework. Finally,
we conclude in Section 5 with remarks on open issues.

2 Analytical Model

Considerable progress has recently been made in bringing analytical models into
congestion control and resource allocation problems [1–5]. Key to these works has
been to explicitly model the congestion measure that is communicated implicitly
or explicitly back to the sources by the routers. It is assumed that each link
maintains a variable, called price, and the sources have information about the
aggregate price of links in their path.

In this section, we describe a fluid-flow model, similar to that in [1, 2, 5]. We
interpret an equilibrium point as the unique solution of an associated optimiza-
tion problem. The resulting resource allocation is aimed to provide a fair share
of an application layer performance measure, i.e. the utility to users. In contrast
to [1–7, 12] we do not pose any restrictions on the bandwidth utility functions,
except for monotonicity.

2.1 Model

We model a packet switched network by a set of nodes (router) connected by a
set L of unidirectional links (output ports) with finite capacities c = (cl, l ∈ L).
The set of links are shared by a set S of sources indexed by s. A source s
represents an end-to-end connection and its route involves a subset L(s) ⊂ L of
links. Equivalently, each link is used by a subset S(l) ⊂ S of sources. The sets
L(s) or S(l) define a routing matrix

Rls =

{
1 if l ∈ L(s),
0 else.
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A transmission rate xs in packets per second is associated with each source s. We
assume, that the rates xs, s ∈ S lie in the interval Xs = [0, xmax

s ], where xmax
s is

the maximum sending rate of source s. This upper bound may differ substantially
for different applications. A subset of sources Sr ⊂ S transferring real-time data,
for instance, may have a maximum encoding rate xmax

s , s ∈ Sr, which can be
much lower than the upper bound xmax

s , s ∈ S \Sr of elastic applications, which
are greedy for any available bandwidth in the network. Thus, sending rates of
elastic applications are constrained by bottleneck links in the network.

Definition 1. A rate vector x = (xs, s ∈ S) is said to be feasible if it satisfies
the conditions:

xs ∈ Xs ∀s ∈ S and Rx ≤ c.

With each link l, a scalar positive congestion-measure pl, called price, is associ-
ated. Let

yl =
∑
s∈S

Rlsxs

be the aggregate transmission rate of link l, i.e. the sum over all rates using that
link, and let

qs =
∑
l∈L

Rlspl

be the end-to-end congestion measure of source s. Note that taking the sum of
congestion measures of a used path is essential to maintain the interpretation of
pl as dual variables [1]. Source s can observe its own rate xs and the end-to-end
congestion measure qs of its path. Link l can observe its local congestion measure
pl and the aggregate transmission rate yl. When the transmission rate of user s
is xs, user s receives a benefit measured by the bandwidth utility Us(xs), which
is a scalar function and has the following form:

Us : Xs → Ys

xs �→ Us(xs),

where Ys = [Us(0), Us(xmax
s )] = [umin

s , umax
s ], Us(0) = umin

s , Us(xmax
s ) = umax

s .

Assumption 1. The bandwidth utility functions Us(·) are continuous, differen-
tiable, and strictly increasing, i.e. U ′

s(xs) > 0 for all xs ∈ Xs, s ∈ S.

This assumption ensures the existence of the inverse function U−1
s (·) over the

range [umin
s , umax

s ]. Before we present a constructive method to generate sec-
ond order utility functions, we briefly restate the overall paradigm. An optimal
operation point or equilibrium should result in almost equal utility values for
different applications. The exact definition of the proposed resource allocation,
i.e. utility proportional fair resource allocation, will be given below. If we want
to follow this paradigm, we must translate a given congestion level of a path,
represented by qs, into an appropriate utility value the network can offer to
source s. We model this utility value, the available utility, as the transformation
of the congestion measure qs by a transformation function fs(qs). This function
is assumed to be strictly decreasing.



66 Tobias Harks

Assumption 2. The transformation function fs(·) describing the available util-
ity of a path used by sender s is assumed to be a continuous, differentiable, and
strictly decreasing function of the aggregate congestion measure qs, i.e. f ′

s(qs) < 0
for all qs ≥ 0 and s ∈ S.

This assumption is reasonable, since the more congested a path is, the smaller
will be the available utility of an application. The main idea is, that each user
s should send at data rates xs in order to match its own bandwidth utility with
the available utility of its path. This leads to the following equation:

Us(xs) = [fs(qs)]
umax

s

umin
s

, s ∈ S, (1)

where [w]ba := min{max{w, a}, b} =




w, if a ≤ w ≤ b

a, if w < a

b, if w > b.
Note that the utility a source can receive is bounded by the minimum and

maximum utility values umin
s and umax

s . Hence, the source rates xs are adjusted
according to the available utility fs(qs) of their used path as follows:

xs = U−1
s ([fs(qs)]

umax
s

umin
s

), s ∈ S. (2)

A source s ∈ S reacts to the congestion measure qs in the following manner: if
the congestion measure qs is below a threshold qs < qmin

s := f−1
s (umax

s ), then
the source transmits data at maximum rate xmax

s := U−1
s (umax

s ); if qs is above
a threshold qs > qmax

s := f−1
s (umin

s ), the source sends at minimum rate xmin
s :=

U−1
s (umin

s ); if qs is in between these two thresholds qs ∈ Qs := [qmin
s , qmax

s ], the
sending rate is adapted according to xs = U−1

s (fs(qs)).

Lemma 1. The function Gs(qs) = U−1
s ([fs(qs)]

umax
s

umin
s

) is positive, differentiable,
and strictly monotone decreasing, i.e. G′

s(qs) < 0 on the range qs ∈ Qs, and its
inverse G−1

s (·) is well defined on Xs.

Proof. Since Us(·) is defined on Xs, U−1
s (·) is always nonnegative. Since fs(·)

is differentiable over Qs, and U−1
s (·) is differentiable over Ys, the composition

Gs(qs) = U−1
s (fs(qs)) is differentiable over Qs. We compute the derivative us-

ing the chain rule: G′
s(qs) = U−1′

s (fs(qs))f ′
s(qs). The derivative of the inverse

U−1
s (fs(qs)) can be computed as

U−1′
s (fs(qs)) =

1
U ′

s(U
−1
s (fs(qs)))

> 0.

With the inequality f ′
s(·) < 0, we get G′

s(qs) < 0, qs ∈ Qs. Hence, Gs(qs) is
strictly monotone decreasing in Qs, so its inverse G−1

s (xs) exists on Xs. 	


2.2 Equilibrium Structure and Second Order Utility Optimization

In this section we study the above model at equilibrium, i.e. we assume, that
rates and prices are at fixed equilibrium values x∗, y∗, p∗, q∗. From the above
model, we immediately have the relationships:

y∗ = Rx∗, q∗ = Rp∗.
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In equilibrium, the sending rates xs ∈ Xs, s ∈ S satisfy:

x∗
s = U−1

s ([fs(q∗s)]u
max
s

umin
s

) = Gs(q∗s ). (3)

Since qs represents the congestion in the path L(s), the sending rates will be
decreasing at higher qs, and increasing at lower qs. Now we consider the inverse
G−1

s (xs) of the above function on the interval Xs, and construct the second order
utility Fs(xs) as the integral of G−1

s (xs). Hence, Fs(·) has the following form and
property:

Fs(xs) =
∫

G−1
s (xs)dxs with F ′

s(xs) = G−1
s (xs). (4)

Lemma 2. The second order utility Fs(·) is a positive, continuous, strictly in-
creasing, and strictly concave function of xs ∈ Xs.

Proof. This follows directly from Lemma 1 and the relation

F ′′
s (xs) = G−1′

s (xs) =
1

G′
s(qs)

< 0. 	


The construction of Fs(·) leads to the following property:

Lemma 3. The equilibrium rate (3) is the unique solution of the optimization
problem:

max
xs∈Xs

Fs(xs) − qsxs. (5)

Proof. The first order necessary optimality condition to problem (5) is:

F ′
s(xs) = qs

⇔ G−1
s (xs) = qs

⇔ xs = U−1
s ([fs(qs)]

umax
s

umin
s

)

Due to the strict concavity of F (·) on Xs, the second order sufficient condition
is also satisfied completing the proof. 	

The above optimization problem can be interpreted as follows. Fs(xs) is the
second order utility a source receives, when sending at rate xs, and qsxs is the
price per unit flow the network would charge. The solution to (5) is the maxi-
mization of individual utility profit at fixed cost qs and exactly corresponds to
the proposed source law (2). Now we turn to the overall system utility optimiza-
tion problem. The aggregate prices qs ensure that individual optimality does
not collide with social optimality. An appropriate choice of prices pl, l ∈ L must
guarantee that the solutions of (5) also solve the system utility optimization
problem:

max
x≥0

∑
s∈S

Fs(xs) (6)

s.t. Rx ≤ c. (7)
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This problem is a convex program, similar to the convex programs in [1, 5, 7], for
which a unique optimal rate vector exist. For solving this problem directly global
knowledge about actions of all sources is required, since the rates are coupled
through the shared links. This problem can be solved by considering its dual [7].

3 Dual Problem and Global Stability

In accordance with the approach in [1], we introduce the Lagrangian and consider
prices pl, l ∈ L as Lagrange multipliers for (6),(7). Let

L(x, p) =
∑
s∈S

Fs(xs) −
∑
l∈L

pl(yl − cl) =
∑
s∈S

Fs(xs) − qsxs +
∑
l∈L

plcl

be the Lagrangian of (6) and (7). The dual problem can be formulated as:

min
pl≥0

∑
s∈S

Vs(qs) +
∑
l∈L

plcl, (8)

where
Vs(xs) = max

xs≥0
Fs(xs) − qsxs, xs ∈ Xs. (9)

Due to the strict concavity of the objective and the linear constraints, at optimal
prices p∗, the corresponding optimal x∗ solving (9) is exactly the unique solution
of the primal problem (6),(7). Note that (5) has the same structure as (9), so
we only need to assure that the prices qs given in (5) correspond to Lagrange
multipliers qs given in (9).

As shown in [7], a straightforward method to guarantee that equilibrium
prices are Lagrange multipliers is the gradient projection method applied to the
dual problem (8):

d

dt
pl(t) =

{
γl(pl(t))(yl(t) − cl) if pl(t) > 0
γl(pl(t))[yl(t) − cl]+ if pl(t) = 0,

(10)

where [z] = max{0, z} and γl(pl) > 0 is a nondecreasing continuous function.
This algorithm can be implemented in a distributed environment. The informa-
tion needed at the links is the link bandwidth cl and the aggregate transmission
rate yl(t), both of which are available. In equilibrium, the prices satisfy the com-
plementary slackness condition, i.e. pl(t) are zero for non-saturated links and
non-zero for bottleneck links. We conclude this section with a global conver-
gence result of the dual algorithm (8) combined with the static source law (5)
using Lyapunov techniques along the lines of [12]. It is only assumed that the
routing matrix R is nonsingular. This guarantees that for any given qs ∈ S there
exists a unique vector (pl, l ∈ Ls) such that qs =

∑
l∈Ls

pl.

Theorem 1. Assume the routing matrix R is nonsingular. Then the dual algo-
rithm (10) starting from any initial state converges asymptotically to the unique
solution of (6) and (7).

The proof of this theorem can be found in [13]. For further analysis of the speed
of convergence, we refer to [1].
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4 Utility Proportional Fairness

Kelly et al. [2] introduced the concept of proportional fairness. They consider
elastic flows with corresponding strictly concave logarithmic bandwidth utility
functions. A proportional fair rate vector (xs, s ∈ S) is defined such that for
any other feasible rate vector (ys, s ∈ S) the aggregate of proportional change is
non-positive: ∑

s∈S

ys − xs

xs

≤ 0.

This definition is motivated by the assumption that all users have the same
logarithmic bandwidth utility function Us(xs) = log(xs). By this assumption, a
first order necessary and sufficient optimality condition for the system bandwidth
optimization problem

max
xs≥0

∑
xs≥0

Us(xs) s.t. Rx ≤ 0

is ∑
s∈S

∂Us

∂xs
(xs)(ys − xs) =

∑
s∈S

ys − xs

xs

≤ 0.

This condition is known as the variational inequality and it corresponds to the
definition of proportional fairness.

Before we come to our new fairness definition, we restate the concept of utility
max-min fairness. It is simply the translation of the well known bandwidth max-
min fairness applied to utility values.

Definition 2. A set of rates (xs, s ∈ S) is said to be utility max-min fair, if
it is feasible, and for any other feasible set of rates (ys, s ∈ S), the following
condition hold: if Us(ys) > Us(xs) for some s ∈ S, then there exists k ∈ S such
that Uk(yk) < Uk(xk) and Uk(xk) ≤ Us(xs).

Suppose we have a utility max-min fair rate allocation. Then, a user cannot
increase its utility, without decreasing the utility of another user, which receives
already a smaller utility. We further apply the above definition to a utility allo-
cation of a single path.

Definition 3. Consider a single path in the network denoted by a set of adjacent
links (l ∈ Lp). Assume a set of users SLp ⊂ S share this path, i.e. L(s) = Lp

for s ∈ SLp . Then, the set of rates xs, s ∈ S is said to be path utility max-min
fair if the rate allocation on such a path is utility max-min fair.

Now we come to our proposed new fairness criterion, based on the second order
utility optimization framework.

Definition 4. Assume, all second order utilities Fs(·) are of the form (4). A
rate vector (xs, s ∈ S) is called utility proportional fair if for any other feasible
rate vector (ys, s ∈ S) the following optimality condition is satisfied:
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∑
s∈S

∂Fs

∂xs
(xs)(ys − xs) =

∑
s∈S

G−1
s (xs)(ys − xs)

=
∑
s∈S

f−1
s (Us(xs))(ys − xs) ≤ 0

(11)

The above definition ensures, that any proportional utility fair rate vector will
solve the utility optimization problem (6), (7). If we further assume, all users
have the same transformation function f(·) = fs(·), s ∈ S, then we have the
following properties of a utility proportional fair rate allocation, which are proven
in Appendix A.

Theorem 2. Suppose all users have a common transformation function f(·)
and all second order utility functions are defined by (4). Let the rate vector
(xs ∈ Xs, s ∈ S) be proportional utility fair, i.e. the unique solution of (6).
Then the following properties hold:

(i) The rate vector (xs ∈ Xs, s ∈ S) is path utility max-min fair.
(ii) If qs1 ∈ Qs1 , qs2 ∈ Qs2 and qs1 ≤ qs2 for sources s1, s2, then

Us1(xs1
) ≥ Us2(xs2

).
(iii) If source s1 uses a subset of links that s2 uses, i.e. L(s1) ⊆ L(s2), and

Us1(xs1
) < umax

s1
, then Us1(xs1

) ≥ Us2(xs2
).

It is a well-known property of the concept of proportional fairness that flows
traversing several links on a route receive a lower share of available resources than
flows traversing a part of this route provided all utilities are equal. The rationale
behind this is that these flows use more resources, hence short connections should
be favored to increase system utility. Transferring this idea to utility proportional
fairness, we get a similar result. Flows traversing several links receive less utility
compared to shorter flows, provided a common transformation function is used.
If this feature is undesirable, since the path a flow takes is chosen by the routing
protocol and beyond the reach of the single user, the second order utilities can
be modified to compensate this effect. We show that an appropriate choice of the
transformation functions fs(·) will assure a utility max-min bandwidth allocation
in equilibrium.

Theorem 3. Suppose all users have the same parameter dependent transforma-
tion function fs(qs, κ) = q

− 1
κ

s , s ∈ S, κ > 0. The second order utilities Fs(xs, κ),
s ∈ S are defined by (4). Let the sequence of rate vectors x(κ) = (xs(κ) ∈ Xs, s ∈
S) be utility proportional fair. Then x(κ) approaches the utility max-min fair rate
allocation as κ → ∞.

The proof of this theorem can be found in Appendix B.

5 Conclusion

We have obtained decentralized congestion control laws at links and sources,
which are globally stable and provide a utility proportional fair resource alloca-
tion in equilibrium. This new fairness criterion ensures that bandwidth utility
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values of users (applications), rather than bit rates, are proportional fair in equi-
librium. We further showed that a utility proportional fair resource allocation
also ensures utility max-min fairness for all users sharing a single path in the
network. As a special case of our model, we incorporate utility max-min fair-
ness for all users sharing the network. To the best of our knowledge, this is the
first paper dealing with resource allocation problems in the context of global
optimization, that includes non-concave bandwidth utility functions.

We are currently working on ns-2 (Network Simulator) implementations of
the described algorithms. First simulation results are promising. An open issue
and challenge is to design the feedback control interval for real-time applications.
There is clearly a tradeoff between the two conflicting goals: stability (delay) and
minimal packet overhead (i.e. multicast) in the network. Nevertheless, we believe
that this framework has a great potential in providing real-time services for a
growing number of multimedia applications in future networks.

References

1. S. H. Low and D. E. Lapsley: Optimization Flow Control I. IEEE/ACM Trans.
on Networking 7 (1999) 861–874

2. F. P. Kelly, A. K. Maulloo and D. K. H. Tan: Rate Control in Communication
Networks: Shadow Prices, Proportional Fairness, and Stability. Journal of the
Operational Research Society 49 (1998) 237–52

3. R. J. Gibbens and F. P. Kelly: Resource pricing and the evolution of congestion
control. Automatica (1999) 1969–1985

4. S. H. Low: A duality model of TCP flow controls. In: Proceedings of ITC Specialist
Seminar on IP Traffic Measurement, Modeling and Management. (2000)

5. S. H. Low, F. Paganini, J. Doyle: Internet Congestion Control. IEEE Control
Systems Magazine 22 (2002)

6. S. Athuraliya, V. H. Li, S. H. Low and Q. Yin: REM: Active Queue Management.
IEEE Network 15 (2001) 48–53

7. S. H. Low, F. Paganini, J. C. Doyle: Scalable laws for stable network congestion
control. In: Proceedings of Conference of Decision and Control. (2001)

8. S. Shenker: Fundamental Design Issues for the Future Internet. IEEE JSAC 13
(1995) 1176–88

9. Z. Cao, E. W. Zegura: Utility max-min: An application-oriented bandwidth allo-
cation scheme. In: Proceedings of IEEE INFOCOM‘99. (1999) 793–801

10. J. Cho, S. Chong: Utility Max-Min Flow Control Using Slope-Restricted Utility
Functions. Available at http://netsys.kaist.ac.kr/Publications (2004)

11. S. Floyd: TCP and Explicit Congestion Notification. ACM Comp. Commun.
Review 24 (1994) 10–23

12. F. Paganini: A global stability result in network flow control. Systems and Control
Letters 46 (2002) 165–172

13. T. Harks: Utility Proportional Fair Resource Allocation - An Optimization Ori-
ented Approach. Technical Report ZR-04-32, Konrad-Zuse-Zentrum für Informa-
tionstechnik Berlin (ZIB) (2004)



72 Tobias Harks

Appendix A

Proof of Theorem 2:

To (i): if sources s ∈ SLp share the same path, they receive the same aggregate
congestion feedback in equilibrium qp = qs, s ∈ SLp . Two cases are of interest.

(a) Suppose for all sources the following inequality holds: f(qp) < umax
s , s ∈

SLp . Hence, all sources adapt their sending rates according to the available utility
f(qp) = Us(xs). This corresponds to the trivial case of path utility max-min
fairness, since all sources receive equal utility.

(b) Suppose a set s ∈ Q ⊂ SLp receives utility Us(xs) = umax
s < f(qp). We prove

the theorem by contradiction. Assume the utility proportional fair rate vector
(xs, s ∈ S) is not path utility max-min fair with respect to the path Lp. By
definition, there exists a feasible rate vector ys, s ∈ S with

Uj(yj) > Uj(xj) for j ∈ SLp \ Q (12)

such that for all k ∈ SLp \ (Q ∪ {j}) with Uk(xk) ≤ Uj(xj) the inequality

Uk(yk) ≥ Uk(xk) (13)

holds. In other words, we can increase the utility of a single source rate Uj(xj)
to Uj(yj) by increasing the rate xj to yj without decreasing utilities Uk(yk), k ∈
SLp \ (Q ∪ {j}) which are already smaller. We represent the rate increase of
source j by yj = xj + ξj , where ξj > 0 will be chosen later on. Here again, we
have to consider two cases:

(b1) Suppose, there exists a sufficiently small ξj > 0 that we do not have to
decrease any source rate of the set {yk, k ∈ SLp\(Q∪{j})} to maintain feasibility.
Hence, we can increase the system utility while maintaining feasibility. This
clearly contradicts the proportional fairness property of x.

(b2) Suppose, we have to decrease a set of utilities (Uk(yk), k ∈ K), which
are higher then Uj(xj), i.e. Uk(yk) < Uk(xk) with Uk(yk) > Uj(xj), k ∈ K ⊂
SLp \ (Q ∪ {j}). This correspond to decreasing the set of rates yk = xk − ξk,
k ∈ K with

∑
k∈K ξk ≤ ξj . Due to the strict concavity of the objective functions

of (6), we get the following inequalities:

F ′
j(xj) = f−1(Uj(xj)) > f−1(Uk(yk)) = F ′

k(yk), k ∈ K ⊂ SLp \ (Q ∪ {j}).

Due to the continuity of F ′
s(·), s ∈ S, we can choose ξj with yj = xj + ξj such

that

F ′
j(xj + υjξj) > F ′

k(yk) for all k ∈ K ⊂ SLp \ (Q ∪ {j}) and υj ∈ (0, 1).
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Comparing the aggregate second order utilities of the rate vectors x and y using
the mean value theorem, we get:∑

s∈S

Fs(xs) −
∑
s∈S

Fs(ys) =
∑
k∈K

(Fk(xk) − Fk(yk)) + Fj(xj) − Fj(yj)

=
∑
k∈K

(Fk(yk + ξk) − Fk(yk)) + Fj(xj) − Fj(xj + ξj)

=
∑
k∈K

(Fk(yk) + F ′
k(yk + υkξk)ξk − Fk(yk))

+Fj(xj) − (Fj(xj) + F ′
j(xj + υjξj)ξj

=
∑
k∈K

F ′
k(yk + υkξk)ξk − F ′

j(xj + υjξj)ξj

≤
∑
k∈K

ξk max
k∈K

(F ′
k(yk + υkξk)) − F ′

j(xj + υjξj)ξj

≤ ξj(max
k∈K

(F ′
k(yk + υkξk)) − F ′

j(xj + υjξj))

< 0, υj ∈ (0, 1), υk ∈ (0, 1), k ∈ K.

The last inequality shows that x is not the optimal solution to (6). Thus, x
cannot be utility proportional fair. This contradicts the assumption and proves
that x is path utility max-min fair.

To (ii):Assume qs1 ∈ Qs1 , qs2 ∈ Qs2 and qs1 ≤ qs2 for sources s1, s2. Applying
(1) to given qs1 , qs2 , we have f(qs1) = Us1(xs1

) ≥ f(qs2) = Us2(xs2
) because of

the monotonicity of f(·).
To (iii): From L(s1) ⊆ L(s2) it follows, that qs1 ≤ qs2 . Since the available utility
f(·) is monotone decreasing in qs and the bandwidth utility Us1(xs1

) < umax
s1

of
user s1 is not bounded by its maximum value, it follows, that f(qs1) = Us1(xs1

) ≥
[f(qs2)]

umax
s2

umin
s2

= Us2(xs2
). 	


Appendix B

Proof of Theorem 3:

Since all elements of the sequence x(κ) solve (6) subject to (7), the sequence is
bounded. Hence, we find a subsequence x(κp), p ∈ N

+, such that limκp→∞ = x.
We show, that this limit point x is utility max-min fair. The uniqueness of the
utility max-min fair rate vector x will ensure that every limit point of x(κ) is
equal x. This proves the convergence of x(κ) to x.

Since all users s ∈ S use the same transformation function fs(qs) = q
− 1

κ
s ,

s ∈ S, the second order utility and its derivative applied to the rate vector xs(κ)
have the following form:

Fs(xs(κ)) =
∫

Us(xs(κ))−κdxs(κ) with
∂Fs

∂xs(κ)
= Us(xs(κ))−κ, s ∈ S.
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We assume that the limit point x = (xs ∈ Xs, s ∈ S) is not utility max-min
fair. Then we can increase the bandwidth utility of a user j while decreasing
the utilities of other users k ∈ K ⊂ S \ {j} which are larger than Uj(xj). More
formal, it exists a rate vector y = (ys ∈ Xs, s ∈ S) and an index j ∈ S with
Uj(yj) > Uj(xj), j ∈ S and Uk(yk) < Uk(xk) with Uk(yk) > Uj(xj) for a
subset k ∈ K ⊂ S \ {j}. We choose κ0 so large that for all elements of the
subsequence x(κp) with κp > κ0 the inequalities Uj(yj) > Uj(xj(κp), j ∈ S, and
Uk(yk) < Uk(xk(κp)) with Uk(yk) > Uj(xj(κp)) for a subset k ∈ K ⊂ S \ {j}
hold. With the inequality Uj(xj(κp)) < Uk(xk(κp)), k ∈ K, we can choose
κ1 > κ0 large enough such that

Uj(xj(κp))−κp > C · Uk(xk(κp))−κp , (14)

for all k ∈ K, κp > κ1, and C > 0 an arbitrary constant. Hence, there exists a
κ1 large enough that the following inequality holds:

Uj(xj(κp))−κp >
∑
k∈K

(xk(κp) − yk)︸ ︷︷ ︸
>0

max
k∈K

Uk(xk(κp))−κp , κp > κ1. (15)

We evaluate the variational inequality (11) given in the definition of utility pro-
portion fairness for the candidate rate vector (ys ∈ Xs, s ∈ S) and κp > κ1.

∑
s∈S

∂Fs

∂xs(κp)
(xs(κp))(ys − xs(κp)) =

∑
s∈S

Us(xs(κp))−κp(ys − xs(κp))

= Uj(xj(κp))−κp(yj − xj(κp)) +
∑
k∈K

Uk(xk(κp))−κp(yk − xk(κp))

> Uj(xj(κp))−κp(yj − xj(κp)) − max
k∈K

Uk(xk(κp))−κp

∑
k∈K

(xk(κp) − yk)

> 0, using (15).

Hence, the variational inequality is not valid contradicting the utility propor-
tional fairness property of x(κp). 	
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