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Utilization and Fairness in Spectrum Assignment
for Opportunistic Spectrum Access

Chunyi Peng, Haitao Zheng, Ben Y. Zhao

Abstract— The Open Spectrum approach to spectrum access
can achieve near-optimal utilization by allowing devices to sense
and utilize available spectrum opportunistically. However, a
naive distributed spectrum assignment can lead to significant
interference between devices. In this paper, we define a general
framework that defines the spectrum access problem for several
definitions of overall system utility. By reducing the allocation
problem to a variant of the graph coloring problem, we show
that the global optimization problem is NP-hard, and provide
a general approximation methodology through vertex labeling.
We examine both a centralized strategy, where a central server
calculates an allocation assignment based on global knowledge,
and a distributed approach, where devices collaborate to ne-
gotiate local channel assignments towards global optimization.
Our experimental results show that our allocation algorithms
can dramatically reduce interference and improve throughput (as
much as 12-fold). Further simulations show that our distributed
algorithms generate allocation assignments similar in quality
to our centralized algorithms using global knowledge, while
incurring substantially less computational complexity in the
process.

Index Terms— Spectrum Management, Open Spectrum, User
Collaboration, Resource Allocation.

I. INTRODUCTION

Wireless devices are becoming ubiquitous, placing increas-
ing stress on the fixed radio spectrum available to all access
technologies. To eliminate interference between different wire-
less technologies, current policies allocate a fixed spectrum
slice to each technology. This static assignment prevents
devices from efficiently utilizing allocated spectrum, resulting
in spectrum holes (no targeted devices in local area) and very
poor utilization (6%) in other geographic areas [14]. Studies
have shown that reuse of such “wasted” spectrum can provide
an order of magnitude improvement in system capacity.

These results further motivate the Open Spectrum [2], [6],
[12], [18], [25], [28] approach to spectrum access. Enabled
by software defined radio (SDR) technology [5], [15], [23],
Open Spectrum allows unlicensed (secondary) users to share
spectrum with legacy (primary) spectrum users, thereby “creat-
ing” new capacity and commercial value from existing spec-
trum ranges. Based on agreements and constraints imposed
by primary users, secondary users opportunistically utilize
unused licensed spectrum on a non-interfering or leasing basis.
Open spectrum system designs must also deal with spectrum
heterogeneity, where spectrum available to secondary devices
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Beijing China. H. Zheng and B. Y. Zhao are with U. C. Santa Barbara,
Santa Barbara, CA, USA. Contact authors at pengchunyi@tsinghua.edu.cn,
htzheng@cs.ucsb.edu and ravenben@cs.ucsb.edu.

fluctuates with both location and time due to movement and
traffic variations of primary users. A user seizing spectrum
without coordinating with others can cause harmful interfer-
ence with its surrounding neighbors, thus reducing available
spectrum.

While maximizing spectrum utilization is the primary goal
of open spectrum systems, a good allocation scheme also
needs to provide fairness across devices. To the best of our
knowledge, the question of how best to address these two
goals in the context of spectrum allocation for open spectrum
systems has not been previously addressed. In this paper,
we describe our work in defining a general framework for
spectrum allocation in open spectrum systems, and present
centralized and distributed approaches to optimizing spectrum
allocation for utilization and fairness. The key contributions
of this paper are four-fold:

1) Spectrum Allocation Framework and Utility. We de-
scribe a graph-theoretic model that describes efficient
and fair access in open spectrum systems. We also
define three policy-driven utility functions that combine
efficient spectrum utilization and fairness.

2) Reduction to Graph Coloring and Lower-bound Proof.
We show how the optimal spectrum allocation problem
can be reduced to a variant of the graph coloring
problem, proving that it is NP-hard. We also prove a
lower bound on the maximal utilization problem where
fairness is not considered.

3) Centralized and Distributed Approximation. We describe
a vertex labeling mechanism which we use to build both
centralized and distributed approximation algorithms.

4) Simulation of Efficiency and Complexity. We use ex-
tensive simulations to quantify the impact of these
spectrum allocation algorithms on network access, while
comparing the distributed and centralized approaches in
efficiency and complexity.

The rest of the paper is organized as follows. We begin in
Section II by describing the context of open spectrum systems
and its associated challenges. Next in Section III, we provide
a mathematical modelling of open spectrum access, define
three key utility functions and describe a reduction of the
allocation problem to graph coloring. Then in Section IV,
we describe a set of centralized and distributed approximation
algorithms to optimize our utility functions. We describe our
simulation results in Section V, and derive a theoretical lower
bound for maximal spectrum utilization in Section VI. Finally,
we summarize related works in Section VII, and conclude in
Section VIII.
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II. ACCESS IN OPEN SPECTRUM SYSTEMS

We begin by describing the spectrum allocation problem in
the context of Open Spectrum systems. Open spectrum systems
allow unlicensed devices (who we refer to as secondary
users) to make use of spectrum unused by legacy spectrum
devices (primary users), thereby “creating” new capacity and
commercial value from existing spectrum. Secondary users
utilize licensed bands on a non-interfering or leasing basis
based on agreements and constraints imposed by primary
users. They can detect predefined spectrum signatures or
footprints of primary users automatically, through operator-
initiated broadcasts, or by accessing a central database. A
recent example of this approach is the FCC’s recent report
on the feasibility of allowing unlicensed devices to operate in
TV broadcast spectrum ranges at locations and times when it
is under-utilized. Secondary users can detect the presence of
a sound carrier in NTSC (analog) TV systems or a pilot tone
in ATSC (digital) TV systems, and operate without interfering
with TV broadcasts (primary users in this case). While the goal
is to maximize utilization, secondary users must not interfere
with the normal operation of primary users.

In open spectrum systems, primary users’ mobility and
traffic variations result in the fact that the available spectrum
observed by secondary devices fluctuates with both loca-
tion and time. We call this property spectrum heterogeneity.
In addition, the interference constraint and the reward (i.e.
throughput, connectivity) obtained on each spectrum band
could be different due to non-uniformly partitioned spectrum
bands, differences in power constraints and associated tech-
nology. Spectrum heterogeneity also results from variations
in device radio capabilities. For example, a new radio device
might have integrated Ultra Wide Band (UWB) and IEEE
802.11a/b/g interfaces while an older device only supports
802.11a. In general, spectrum heterogeneity refers to variations
in spectrum availability, interference constraints and rewards
on each spectrum band.

The key to efficient utilization of open spectrum is to
find an appropriate distribution of channels among secondary
users while minimizing interference. When two simultaneous
transmissions overlap in spectrum and physical location, both
can fail 1. Hence, a user seizing spectrum without coordinating
with others can cause harmful interference with its neighbors
and degrade overall spectrum usage. For a simple example,
consider a ring of nodes around a center node. If the center
node uses its entire available spectrum, its will interfere with
and disrupt all transmissions coming from its neighbors. In
contrast, network controlled spectrum access can optimize
network-wide spectrum utilization by forcing secondary users
to behave in a collaborative fashion. Specifically, the network
needs to define and enforce a set of rules to encourage utiliza-
tion and minimize interference. Finally, spectrum allocation
should be fair to ensure that each device gets a certain amount
of spectrum under normal conditions, i.e. avoid starvation.

In this paper, we consider the case where the collection

1While multi-packet reception and other interference cancellation algo-
rithms can minimize the impact of interference, in this paper we assume
for simplicity that interference causes both transmissions to fail.
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Fig. 1. Spectrum availability changing with the presence of primary
users. (a) Topology (b) availability of channel/color A; (c) availability
of channel/color B.

of available spectrum ranges forms a spectrum pool, divided
into non-overlapping orthogonal channels 2. Secondary users
select communication channels and adjust transmit power
accordingly to avoid interfering with primary users. Each
secondary user keeps a list of available channels that it
can use without interfering with neighboring primary users.
The spectrum access problem becomes a channel allocation
problem.

A. Example Scenario

In this section, we illustrate the concept of spectrum hetero-
geneity in open spectrum systems with a sample scenario. We
also demonstrate how the presence of a primary user impacts
not only which channels are available to nearby secondary
users, but also the power used on available channels, and the
resulting range and throughput on those channels.

Figure 1 illustrates an example deployment where inactive
broadcast (TV) spectrum is utilized to provide wireless con-
nections to a residential community. The broadcast spectrum
is divided into two channels (marked by A and B). In this
example, broadcast stations (x) are primary users and wireless
access points (I, II and III) are secondary users. Each primary
user x occupies one channel m which is associated with
a protection area with radius dP (x, m). Any radiation from
secondary users falling into it would interfere with the primary
user. Each secondary user n can adjust its interference range 3

dS(n, m) by tuning its transmit power on channel m to avoid
interfering with primary users. We assume that a secondary
user n can use the same channel m as a nearby primary user x
only if dS(n, m) ≤ Dist(n, x)−dP (x, m), where Dist(n, x)
is the distance between n and x. In general, interference

2Channel division can follow the format of TDMA, FDMA, CDMA or a
combination of them.

3For our purposes, interference range is the same as the transmission range.
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range dS is bounded by the minimum and maximum transmit
power, i.e. [dmin, dmax]. Note that in this paper we assume
that each secondary user (wireless access point) can use
technologies like Orthogonal Frequency Division Multiplexing
Access (OFDMA) to utilize multiple channels to provide
connections for devices within its coverage area.

In our example in Figure 1.a, primary user x uses channel A.
Its protection area is shown as a dotted circle around x. Each
secondary user adjust its dS on channel A to avoid interfering
with x. Secondary user II is within the protection range of
x, and therefore cannot use channel A. If II was outside of
x range, but its dS < dmin, it still cannot use channel A.
Figure 1.b shows the case when no primary users are present
on channel B.

For each secondary user, tuning its transmission power to
adjust dS directly impacts its range or coverage. For example,
the coverage area of a wireless access point is proportional
to d2

S . Increasing the range with a larger dS value also
increases the probability of interfering with a neighboring
secondary user. For each channel, if two secondary users’
interference areas overlap, then they conflict and cannot use
the channel simultaneously. In this paper, we assume that
secondary users use a fixed power control scheme to adjust
their transmit power to the maximum permissible level to avoid
interfering with primary users. Thus we see how the presence
of primary users on a channel can impact secondary users’
channel availability and transmission power, which in turn
defines its coverage, throughput and interference condition
with neighboring secondary users. This is the full impact of
spectrum heterogeneity. Note that the secondary user can be
a wireless access point or a transmission link in an ad hoc
network. Note that there is no power control among secondary
users, and interference mitigation is done through conflict
free spectrum allocation. The interaction of power control and
spectrum allocation will be investigated in a future study.

Finally, in order to adjust its dS correctly to avoid inter-
ference with primary users, secondary users need to detect if
and how much its transmission range overlaps with that of a
primary user. Detecting this dynamically is a challenging open
problem, since a secondary user can only listen for carrier
signals inside the primary user’s transmission range. Here
we assume secondary users can use out-of-band mechanisms
to get the location and power of primary users, and use
that to calculate its ideal dS . Similarly, secondary users can
use similar mechanisms to get the location and power of
neighboring secondary users, and use it to determine whether
it will interfere with neighboring transmissions.

III. OPTIMIZED ALLOCATION FOR A FIXED TOPOLOGY

The two key goals of a spectrum allocation algorithm in
open spectrum systems are spectrum utilization and fairness.
Specific combinations of these two goals form different utility
functions that can be customized for each type of network
application. In this section, we define a theoretical model to
represent the general allocation problem, and describe three
utility functions that trade off spectrum utilization and fairness.
We then show a reduction from the optimal allocation problem
to a variant of a graph-coloring problem.

A. Allocation Model and Utility Functions

In our model, we assume that environmental conditions such
as user location, available spectrum are static during the time
it takes to perform spectrum assignment. This corresponds to
a slow varying spectrum environment where users quickly
adapt to environmental changes by re-performing network-
wide spectrum allocation. Therefore, we focus on a model
for a fixed topology.

We assume a network of N secondary users indexed from
0 to N − 1 competing for M spectrum channels indexed 0 to
M − 1. Each secondary user can be a transmission link or a
broadcast access point. The channel availability and rewards
for each secondary user can be calculated based on the location
and channel usage of nearby primary users. We define the key
components of our model as follows:

Channel availability: L = {ln,m|ln,m ∈ {0, 1}}N×M is a
N by M binary matrix representing the channel availability:
ln,m = 1 if and only if channel m is available at user n. Using
the example in Section II, if dS(n, m) < dmin then ln,m = 0,
otherwise ln,m = 1.

Channel reward: B = {bn,m}N×M , a N by M matrix
representing the channel reward: bn,m represents the maximum
bandwidth / throughput that can be acquired (assuming no
interference from neighbors) by user n using channel m. Using
the example in Section II, the reward can be the coverage of
a secondary user using a channel:

bn,m = dS(n, m)2, dmin ≤ dS(n, m) ≤ dmax, (1)

or the capacity using a channel (assuming the signal to noise
ratio (SNR) is a function of dS(n, m) ):

bn,m = log(1 + f(dS(n, m)), dmin ≤ dS(n, m) ≤ dmax.
(2)

Obviously, bn,m = 0 if ln,m = 0.

Interference constraint: Let C = {cn,k,m|cn,k,m ∈
{0, 1}}N×N×M , a N by N by M matrix, represents the
interference constraints among secondary users. If cn,k,m = 1,
users n and k would interfere with each other if they use
channel m simultaneously. The constraint depends on channel
availability, i.e., cn,k,m ≤ ln,m × lk,m and cn,n,m = 1− ln,m.
In this paper, we use a binary geometry model where two users
conflict if they are located within certain distance of each other.
In particular, cn,k,m = 1 if Dist(n, k) ≤ dS(n, m)+dS(k, m).
Again, this constraint is channel specific: two users might be
constrained on one channel but not another. A detailed pseudo
code for generating channel availability, channel award and
interference constraint is shown in Appendix I.

This model provides an approximation to the effects of
interference in real wireless systems. It captures the way
interference is manifested in wireless environments without
delving into complex detection and decoding algorithms and
protocols. We are currently investigating the impact of non-
binary interference metric on the proposed approach.

Conflict Free Channel Assignment: A = {an,m|an,m ∈
{0, 1}, an,m ≤ ln,m}N×M is a N by M binary matrix that
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represents the assignment: an,m = 1 if channel m is assigned
to user n. A conflict free assignment needs to satisfy all the
interference constraints defined by C, that is,

an,m + ak,m ≤ 1, if cn,k,m = 1, ∀ n, k < N, m < M. (3)

Let Λ(L, C)N,M denote the set of conflict free spectrum
assignments for a given set of N users and M spectrum bands
and constraints C.

Radio Interface Limit: Cmax represents the maximum number
of channels that can be assigned to a secondary user. The
assignment at each user n needs to satisfy

∑M−1
m=0 an,m ≤

Cmax.

User Reward: � = {βn =
∑M−1

m=0 an,m · bn,m}N×1 represents
the reward vector that each user gets for a given channel
assignment.

Network Utilization: The channel allocation is to maximize
network utilization U(�).

Given the model above, we can define the spectrum assignment
problem by the following optimization function:

A∗ = argmax
A∈Λ(L,C)N,M

U(�). (4)

We can obtain utility functions for specific application
types using sophisticated subjective surveys. An alternative
is to design utility functions based on traffic patterns and
fairness inside the network. We consider and address utility in
terms of single-hop flows, since they are the simplest format
in wireless transmissions.

• Max-Sum-Reward: This maximizes the total spectrum
utilization in the system regardless of fairness. The opti-
mization problem is expressed as:

Usum =
N−1∑
n=0

βn =
N−1∑
n=0

M−1∑
m=0

an,m · bn,m. (5)

• Max-Min-Reward: This maximizes the spectrum utiliza-
tion at the bottleneck user, or the user with the least
allotted spectrum. The optimization problem is expressed
as:

Umin = min
0≤n<N

βn = min
0≤n<N

M−1∑
m=0

an,m · bn,m. (6)

Roughly, Max-Min-Reward driven allocation gives the
most poorly treated user (i.e. the user who receives the
lowest reward) the largest possible share, while not wast-
ing any network resources. This is the simplest notion of
fairness.

• Max-Proportional-Fair: Consistent with prior work [9],
[13], [16], [22], we consider and address fairness for
single-hop flows. the corresponding fairness-driven utility

B
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III
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II

(A, B)(B)
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B B

Fig. 2. An example CSGC graph for Figure 1

optimization problem is expressed as:

Ufair =
N−1∑
n=0

log(βn)

=
N−1∑
n=0

log(
M−1∑
m=0

an,m · bn,m). (7)

The essence of proportional fair is that if for any other
feasible assignment A′ and the associated β

′
n, the aggre-

gate of proportional changes in user reward is zero or
negative: i.e.

N−1∑
n=0

β
′
n − βn

βn

≤ 0.

To make it comparable to Umin and Usum, we modify
the fairness utility to

Ufair =

(
N−1∏
n=0

βn

) 1
N

=

(
N−1∏
n=0

M−1∑
m=0

an,m · bn,m

) 1
N

. (8)

Note that under the same assignment, 1
N Usum ≥ Ufair ≥

Umin.

B. Color-Sensitive Graph Coloring

Our approach to solving this complex optimization problem
is to reduce it to a variant of the graph coloring problem by
mapping spectrum channels into colors, and assigning them
to users (vertices in a graph). Past work has demonstrated
the effectiveness of using conflict graphs to model interfer-
ence [10], [19], [28]. Our work extends the model to a multi-
color conflict graph by taking in to account the impact of
primary users on secondary users’ interference condition.

We define a bidirectional graph G = (V, L, E), where V is
a set of vertices denoting the users that share the spectrum,
L is the available spectrum or the color list at each vertex,
defined in section III-A, and E is a set of undirected edges
between vertices representing interference between any two
vertices. For any two vertices u,v ∈ V , a m-colored edge
exists between u and v if cu,v,m = 1. The set of edges depend
on the interference constraint C (see section III-A), which is
determined by the spectrum usage of nearby primary users and
the transmit power of user u and v on channel m.

The spectrum allocation problem is equivalent to coloring
each vertex using a number of colors from its color list to
maximize system utility. The coloring scheme is constrained
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by that if a m colored edge exists between any two vertices,
they cannot simultaneously use color m. This is a variant
of the traditional graph coloring problem. In the traditional
problem, graphs are colorless, colors have the same reward,
and two connected vertices only have one colorless edge; in
our problem, vertices can be connected via multiple colored
edges. We call this problem color-sensitive graph coloring
(CSGC).

Figure 2 illustrates the reduced CSGC graph that corre-
sponds to the network from Figure 1. Channel A is available
to secondary user I and III, so that in the corresponding
CSGC, vertex I and III have A on their color list. Since the
transmission areas of I and III on channel A overlap, they can
conflict on channel A, and there is a color A edge between
I and III. Channel B is available for three users and they all
conflict with each other. Hence, B is on each vertex’s color
list and a color B edge exists between any two vertices. Thus
we can use a conflict graph G to model the network setup
of each deployment of primary and secondary users, reducing
spectrum allocation to a graph coloring problem. We note that
CSGC only optimizes color assignment for a fixed topology. If
the topology changes (e.g. due to user movement), the graph
coloring algorithm needs to be repeated.

IV. SPECTRUM ALLOCATION ALGORITHMS

The optimal coloring problem is known to be NP-hard [7].
In this section, we apply existing graph coloring solutions to
present heuristic based approaches that produce good approx-
imations for our problem.

A. Approximation via Labeling

In [19], the author proposes progressive minimum neighbor
first (PMNF) as a sequential heuristic solution to graph col-
oring for generalized channel assignment. He shows that the
worst case performance of PMNF significantly outperforms
other heuristic approaches. The algorithm assigns each vertex
a unique label, colors the vertex with the highest label with
the lowest indexed color without violating the constraints. The
algorithm removes the colored vertex and associated edges
from the graph, and repeats until all the vertices are colored.
In PMNF, the objective is to minimize the total colors required
to color each vertex, hence the basic idea of the algorithm is to
color the “most difficult” vertices first. This way the vertices
are labelled proportional to the size of their neighborhood.

We apply a similar approach to our problem, we need to
consider conflict constraints in addition to different color lists
and color rewards at each vertex. The colors are assigned
iteratively, as shown in Figure 3. A vertex is ”saturated” if
its channel assignment has reached Cmax. In each stage, the
algorithm labels all the non-saturated vertices with a non-
empty color list according to some policy-defined labeling
rule. We define each labeling rules later in this section. The
algorithm picks the vertex with the highest valued label and
assigns the color associated with the label to the vertex. The
algorithm then deletes the color from the vertex’s color list,
and also from the color lists of the constrained neighbors.
It also deletes all the edges from the colored vertex in the

Labeling
For each vertex n in G

Select color(n), calculate label(n)

Coloring
Find n*=argmax label(n) 

Assign color(n*) to vertex n*

Updating Topology

Remove color(n*) from vetex n*’s color list
Remove color(n*) from the color list of any 
neighbor who has a color(n*) edge with 
vertex n*, delete the associated color(n*) 
edges 
Delete vertices with empty color list and the 
associated edges
Delete saturated vertices and the associated 
edges
For each standalone vertex (without any 
edge), assign colors with the largest reward 
until it saturates, and delete the vertex

G empty?
No

Yes

END

Fig. 3. Flow Chart of Coloring

color graph, so the interference constraint of a vertex keeps
on changing as other vertices are processed, and the labels
of the colored vertex and its neighbor vertices are modified
according to the new graph. The algorithm enters the next
stage until every vertex’s color list becomes empty or every
vertex saturates.

Note that our graph coloring problem wants to maximize
utility while the conventional graph coloring problem [24],
[19] wants to minimize the number of colors used. While the
labeling rule in our approach is different from PMNF, the
intuition is similar. We choose to color the “most valuable”
vertices first, i.e. the vertices that contribute to the system
utility the most. In particular, it can be shown that when
Cmax = M , the problem of maximizing sum reward is equiv-
alent to a combination of maximum weighted independent
set (WIS) problem on each color. In [21], the authors show
that a greedy approach is a tight 1

�(G) -approximation of WIS,
where � (G) is the maximum degree of the graph. The authors
propose an iterative approach to repeatedly select the vertex
u from the graph G with maximal b(u)

dG(u)+1 , where b(u) is the
bandwidth and dG(u) is the degree of u in G. The algorithm
then deletes u and its associated edges from the graph G. Here

b(u)
dG(u)+1 approximates the contribution of u to sum reward in
its local neighborhood.
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B. Centralized vs. Distributed Network Architectures

The algorithm we describe above assumes a central alloca-
tion server with knowledge about all users in the system. In
this section, we discuss the challenges facing the centralized
version of the algorithm, and describe a distributed version of
the algorithm.

a) Centralized Architecture: In a centralized architec-
ture, a central spectrum server makes decisions on channel
assignment. The server collects location, power, spectrum and
interference information from both primary and secondary
users, and runs the assignment algorithm to distribute channels
among secondary users. It then broadcasts the assignments on
a predefined channel. Secondary users listen to the broadcast
and communicate using their assigned channels.

While a central server can optimize across network-wide
information, there are two serious limitations to this approach.
First, this scheme requires a communication path between the
spectrum server and all secondary users, i.e. all users need
interference-free access to a pre-assigned dedicated control
channel, possibly in a licensed band. In addition, as networks
grow in density, a pre-defined control channel will limit the
bandwidth available for control messages. Second, the server
processing complexity will scale at least polynomially with the
number of devices. Any central spectrum server will quickly
become a computational bottleneck.

b) Distributed Architecture: As an alternative to the
central spectrum server, secondary users can use a distributed
algorithm to determine its own spectrum assignment. It must
use only locally available information. Gathering and dissem-
inating information to a large neighborhood not only incurs
high delay, but also limits the scalability of the network.

The distributed algorithm works as follows. Each secondary
user detects the presence of primary users to determine its
own channel availability and transmission constraints. It then
coordinates with nearby neighbors to determine channel as-
signments in an iterative fashion. In each iteration, each user
labels itself according to one of the policy-driven labeling
rules described in Section IV-C, and broadcasts the label
to its neighborhood4. After collecting all the labels from
its neighbors, the secondary user with the maximum label
within its neighborhood selects the associated channel and
broadcasts its selection. The neighbors who conflict with this
user on this channel remove the channel from their respective
available lists. After collecting assignment information from
surrounding neighbors, each secondary user updates its list
of available channels and recalculates its label. The process
is repeated until each user’s available channel list is empty
or users are satisfied. Through these iterative broadcasts,
this algorithm allows cooperation beyond a node’s immediate
neighbors, producing effects similar to global optimization
through cooperative local actions distributed throughout the
system.

TABLE I

SUMMARY OF LABELING RULES

Utility \ Rule Type Collaborative Non-collaborative

Max Sum Reward CSUM NSUM
Max Min Reward CMIN NMIN
Max Prop. Fair CFAIR NFAIR

C. Labeling Rules

We have described both centralized and distributed alloca-
tion algorithms based on iteratively coloring nodes using label
values. In this section, we define a number of labeling rules
that correspond to each of the utility functions described in
Section III-A for both centralized and distributed algorithms.
For distributed algorithms, we use collaborative rules that con-
sider the impact of interference on neighbors when labeling.
Table IV-C summarizes how the proposed rules correspond to
utility functions and centralized or distributed approaches.

For each vertex n, its m color-specific degree, Dn,m, is the
number of conflict edges it shares with its neighbors for color
m. This is the number of neighbors who cannot simultaneously
use m with n, i.e.:

Dn,m =
N−1∑

k=0,k �=n

c(n, k, m) · ln,m · lk,m. (9)

Dn,m is a good measure of the impact to neighbors when a
color is assigned to a vertex. Now we describe the relevant
labeling values organized by the utility function they optimize
for.

Max Sum Reward:
Collaborative-Max-Sum-Reward (CSUM): This rule aims to

maximize the sum reward defined in (5). When a vertex n is
assigned with a color m, its contribution to the sum reward in
a local neighborhood can be computed as bn,m/(Dn,m + 1)
since some of its neighbors cannot use this color. We propose
to label the vertex n according to

labeln = max
m∈�n

bn,m/(Dn,m + 1),

colorn = arg max
m∈�n

bn,m/(Dn,m + 1) (10)

where �n represents the color list available at vertex n at
this assignment stage. This rule considers the tradeoff between
spectrum utilization (in terms of selecting the color with the
largest reward) and interference to neighbors (in terms of
degree). This rule is collaborative, since it takes into account
the impact to neighbors.

Non-collaborative-Max-Sum-Reward (NSUM): This rule
aims to improve the sum of reward without considering the
impact of interference to neighbors. The vertex with the
maximum reward will be colored, i.e. a vertex n is labeled
with

labeln = max
m∈�n

bn,m,

colorn = arg max
m∈�n

bn,m. (11)

4This requires a coordination scheme so that secondary users can commu-
nicate with each other without interfering primary users. A detailed study on
this subject can be found in [26].
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When colors are homogeneous, this corresponds to a ran-
dom labeling. Compared to CSUM, this rule is relatively
selfish. It is non-collaborative, since each vertex only considers
its own reward and ignores impact on the overall system.

Max Min Reward:
Collaborative-Max-Min-Reward (CMIN): This rule tries to

distribute colors uniformly among vertices to improve the
minimum reward that a vertex can get, while considering
interference to neighbors. This rule tries to solve Max-Min
optimization as defined in (6). In each stage, a vertex n is
labeled according to

labeln = −
N−1∑
m=0

an,m · bn,m,

colorn = arg max
m∈�n

bn,m/(Dn,m + 1). (12)

where an,m represents the reward obtained at n before this
assignment stage. Note that unlike CSUM and NSUM , the
label depends on the reward obtained in previous stages. In
each stage, the vertex with the minimum accumulated reward
will be colored with the color that maximizes utilization while
considering interference. If two vertices have the same label,
then the vertex with larger maxm∈�n bn,m/(Dn,m + 1) value
gets a higher label.

Non-collaborative-Max-Min-Reward (NMIN): This rule is
a non-collaborative version of CMIN where the impact of
interference is not considered in the vertex labeling and
coloring, i.e.

labeln = −
N−1∑
m=0

an,m · bn,m,

colorn = arg max
m∈�n

bn,m. (13)

In each stage, the vertex with the minimum accumulated
reward will be colored with the color that has the largest
reward. If two vertices have the same label, then the vertex
with larger maxm∈ln bn,m is assigned with a higher label.

Max Proportional Fair:
Collaborative-Max-Proportional-Fair (CFAIR): This rule

aims to achieve a specific fairness among vertices, correspond-
ing to (8). It is well known that proportional fair scheduling
assigns resource to the user with the highest rn/R̂n, where
rn represents the reward generated by using a time slot and
R̂n is the average reward that the user n has received in the
past [17], [3]. The concept of proportional fair scheduling is
applied to this problem by viewing colors as time slots. In
each stage, each vertex n is labeled according to

labeln =
maxm∈�n bn,m/(Dn,m + 1)∑M−1

m=0 an,m · bn,m

,

colorn = arg max
m∈�n

bn,m/(Dn,m + 1). (14)

where labeln represents the ratio of the maximum
interference-weighted reward from using a color and the accu-
mulated reward in past stages. This rule is in general different
from the traditional proportional fair rule as it captures the

difference in the impact of interference generated by a color
assignment.

Non-collaborative-Max-Proportional-Fair (NFAIR): This is
a non-collaborative version of the CFAIR rule. Each vertex n
is labeled according to

labeln =
maxm∈�n bn,m∑M−1
m=0 an,m · bn,m

,

colorn = arg max
m∈�n

bn,m. (15)

When all the channels have uniformed bandwidth, i.e. bn,m =
1, this rule becomes NMIN rule.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we conduct experimental simulations to
quantify the performance of open spectrum systems, and
validate the proposed spectrum allocation algorithms. We
start by examining the appropriateness of the labeling rules
designed for different utility functions. We then compare the
performance of collaborative and non-collaborative approaches
to a baseline approach, and study the impact of system settings
on utility performance. We also compare the performance of
centralized and distributed implementations and their respec-
tive associated complexity.

We conduct our simulations under the assumption of a
noiseless, immobile radio network. We randomly place a num-
ber of primary and secondary users in a given area (10x10).
Each primary user randomly selects one channel to utilize
from a pool of channels (e.g. 10 channels). For simplicity,
we assume that primary users have uniform protection ranges,
i.e. DP = const. Given the location and channel selection
of primary users, each secondary user n adjusts its transmit
power (and hence interference range) on each channel m, i.e.
dS(n, m) to avoid interference with primary users. Channel
availability, reward and interference constraints are derived
according to section III. By default, we assume that there
are 10 channels, 20 primary users and 10 secondary users.
We set Cmax = 10, DP = 2, dmin = 1 and dmax = 4.
Each deployment of primary and secondary users produces a
topology and a colored conflict graph. We study the statistical
performance of spectrum allocation in terms of the average
system utility over 500 deployments.

We modify the definition of two utility functions to facilitate
the simulations. We use mean reward instead of sum reward
in the following simulations, i.e.:

Umean =
1
N

N−1∑
n=0

βn, (16)

so that all three utilities are within the same scale. In addition,
the fairness based utility defined in (8) becomes 0 if there
exists a secondary user without any channels assigned, i.e. a
starved user. For a better illustration of the performance at
non-starved users, we modify (8) into:

U =

(
N−1∏
n=0

(βn + 1e − 4)

) 1
N

. (17)
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by assuming a baseline reward of 1e−4 at each secondary user.
Overall, the results are indexed Mean Reward, Min Reward
and Fairness respectively.

A. Labeling Rules and Utilities

We start by examining the relationship between the pro-
posed rules and the utility functions. For this purpose, we use
the centralized implementation and the default setting defined
above. Figure 4 illustrates the system utilities corresponding to
each of the 40 topologies chosen randomly. The results confirm
that each proposed collaborative rule outperforms others in
optimizing the respective targeted utility function. From their
definitions, we see that the CFAIR rule is a combination of
CSUM and CMIN rules. Hence, CFAIR’s performance is in
between that of CSUM and CMIN in both Mean Reward and
Min Reward. In terms of Min Reward and Fairness, CMIN
and CFAIR have similar performance while CSUM performs
poorly. This is because both utilities are critically limited by
the “poor” users. Those users are located in crowded areas
and near primary users, and hence have many edges and
small color list in the corresponding conflict graph. CMIN
and CFAIR rules grant priority to these users by taking into
account the accumulated reward in the labeling metric. As the
priority is mainly determined by the accumulated reward, these
two rules perform similarly. The same conclusion applies to
non-collaborative rules, and we omit those results because of
space constraints.

B. Collaborative vs. Non-collaborative Rules

In this section, we compare the performance of collaborative
and non-collaborative rules. We also introduce a baseline ran-
dom labeling approach which assigns a random label between
0 and 1 and selects a color randomly from the color list.
For easy notation, we will use CA, NCA, and RAND to
represent collaborative, non-collaborative and random rules. It
is well-known that the performance of graph coloring depends
heavily on the topology of the conflict graph. Hence, only
through comprehensive evaluations under different network
settings can we thoroughly understand the problem. Next,
we present simulation results evaluating the impact of four
system parameters: the number of primary users, the number
of secondary users, the maximum transmission power dmax

of secondary users and the number of channels.
1) Impact of the Number of Primary Users: We start by

quantifying the performance of labeling rules under different
configurations of primary user deployment. Note that the
configuration of primary users determines channel availability,
reward and interference constraints seen by secondary users. In
the simulated system, increasing the number of primary users
or increasing the protection range dP would both expand the
primary protection area, and force affected secondary users
to reduce their power and thus dS . The impact is two-fold.
First, the number of available channels, and channel reward at
secondary users are reduced, degrading spectrum utilization.
Second, the interference among secondary users decreases,
improving the possibility of spectrum reuse by multiple sec-
ondary users. The final impact on system utility depends on the

tradeoff between the two, which in turn depends on the settings
of channel reward and interference constraints. Figure 5 shows
that in the current setting, increasing the number of primary
users would degrade all three utilities. Similar trends can be
obtained by increasing dP , and those results are omitted due
to space constraints.

Compared to CA and NCA, RAND rule performs poorly
in term of all three utilities. This is because both CA and
NCA rules take into account certain property of spectrum
heterogeneity by approximating the contribution of a channel
assignment to system utility. Overall, results in Figure 5 shows
that CA and NCA rules outperform RAND rule by 30−50% in
terms of Mean Reward, 2 − 14-fold in terms of Min Reward
and 2 − 4-fold in terms of Fairness. Improvements in both
Mean Reward and Fairness are much more significant since
they depend heavily on the “poor” user’s performance. Using
random labeling, a “poor” user’s available channels diminish
quickly due to its small available channel list and large number
of interference constraints. This limits the system utility.

Compared to NCA rules, CA rules not only consider the
reward obtained for each individual user, but also the conse-
quence of interference and its impact on overall system utility.
The label provides a more accurate characterization of the
user’s contribution to system utility. Figure 5 shows that CA
leads to an improvement of 5−30% in Mean Reward, 15−80%
in Min Reward and 15 − 40% in Fairness.

2) Impact of the Number of Secondary Users: Next, we
examine the performance of different rules under different
configurations of secondary user deployment. We start by vary-
ing the number of secondary users in the area, i.e. user den-
sity. Increasing density clearly creates additional interference
constraints, thus increasing the vertex degree in the conflict
graph. Hence, Figure 6 shows that all three utilities degrade
as the number of secondary users increases. In addition, the
performance difference among CA, NCA and RAND rules is
similar to that in Figure 5.

3) Impact of the Number of Channels: We now exam-
ine how system utility scales with the number of channels.
Figure 7 quantifies the performance of different rules as the
number of channels changes. We see that in general all three
utilities scale linearly with the number of channels (at least
when the number of channels exceeds 10). We also observe
that the scale depends on the number of secondary users.

4) The Impact of dmax: We then study the impact of
varying the value of dmax. Raising dmax allows secondary
users to transmit at higher dS , which leads to improved
spectrum utilization for secondary users who are distant from
primary users. However, since there is no power control
among secondary users 5, this also leads to additional interfer-
ence constraints and reduced possibility of spectrum sharing.
Hence, there exists a tradeoff between improving spectrum
utilization and degrading spectrum sharing. Figure 8 illustrates

5Secondary users can adjust their transmission power and thus dS ac-
cordingly to avoid interference among themselves. This is the conventional
power control problem. In this paper, we assume that secondary users only
use power control to avoid interfering primary users. Research on combining
power control and spectrum allocation to further improve system utility will
be included in another study.
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Fig. 4. System Utilities under different labeling rules for various topologies.
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TABLE II

COMPARISON TO GLOBAL OPTIMUM - RANDOM TOPOLOGIES

Relative Difference (%) Sum Reward Min Reward Fairness

CA 0.08 35 20
NCA 0.25 44 28

RAND 15 76 65
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Fig. 11. Fixed topology (a) Ring (b) Star

the system utilities where dmax varies from 2 to 8. We see
that system utilities are quite sensitive to variations in dmax.
In particular, Mean Reward increases with dmax, and Min
Reward and Fairness reach the maximum for dmax = 3 and 4
and converge after dmax exceeds 5. Hence, we should adjust
dmax to optimize system utility, or equivalently, invoke power
control to adjust dmax at each secondary user.

Note that the above results are obtained by assuming that
bn,m = DS(n, m)2. We also examine the impact of dmax

where bn,m is computed differently. Figure 9 illustrates the
system utilities where the channel reward is defined by bn,m =
log(1 + DS(n, m)2). In this case, the gain from improving
spectrum utilization becomes less significant. In this case, CA
rules that consider interference to neighbors in labeling are
less sensitive to variations in dmax comparing to NCA and
RAND. Figure 10 illustrates the utility performance where
dmax = dmin and bn,m = d2

max. This represents the case
where users transmit at a fixed power, hence get homogeneous
reward by using each channel. Note that even without reward
heterogeneity, CA rules perform significantly better than NCA
and RAND rules. Results show that the system performance
is sensitive to dmax, and a proper setting of dmax is essential
for good system performance. We also observe that Mean
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Fig. 12. Comparison to the optimal solution using 18 node ring topology

Reward in general reaches its maximum value at a higher
dmax compared to the other utilities. This can be explained
as follows. Increasing dmax could help “rich” users who are
located in a sparse area, but degrade the performance of
“poor” users who are within close distance with each other.
As Mean Reward depends heavily on “rich” users, the impact
of increasing dmax remains positive until these “rich” users
become “poor” users as dmax increases.

C. Comparing to the Optimal Solution

We now compare the system utility derived from the pro-
posed heuristic based approaches to the optimal value. We
use exhaustive search to find the channel assignment that
maximizes each system utility. Given the complexity of the
exhaustive search scales exponentially with the number of
nodes, we use simple topologies (see Fig. 11) with limited
number of nodes and channels. Topo I and II are two extreme
topologies: a star topology with one vertex interferes with the
rest and a ring topology with uniformed interference condi-
tion. Fig 13 and 12 summarize the results for 18 node ring
topology and 10 node star topology, assuming 3 channels with
throughput 1, 0.81 and 0.64, respectively. There is randomness
in the graph coloring assignment (if two vertices have the same
label, the algorithm randomly picks one vertex). Hence, results
are represented as mean with 90% confidence interval. We
observe that the proposed collaborative rule based approaches
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Fig. 9. Spectrum allocation performance with varying maximal transmission ranges for secondary users where bn,m = log(1 + DS(n, m)2).
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Fig. 13. Comparison to the optimal solution using 10 node star topology

achieve similar performance compared to the global optimal.
For star topology, the performance under fairness utility is
slightly worse.

We also consider a set of small random topologies assuming
5 secondary users, 10 primary users and 5 channels. The
topologies are formed by randomly deploying primary and
secondary users following the procedure in Appendix I. We
set DP = 2, dmin = 1 and dmax = 4. For a clear illustration,
we introduce another performance metric:Relative difference.

This measures the difference of system utility provided by the
proposed graph coloring approach and the global optimum. If
the utility obtained through graph coloring using a particular
rule x is T (n) and the global optimum is Topt, the relative
difference is 1−T (n)/Topt. When Topt = 0, the relative differ-
ence is 0. Table V-B.4 summarizes the Relative difference for
different system utilities averaged over 100 random topologies.
Similar to the above, CA and NCA refer to the collaborative
and non-collaborative rules under different system utilities. We
see that there is still visible difference between the proposed
approach and the global optimum, particularly for min reward
and fairness. Overall, CA provides the best approximation
compared to NCA and RAND.

D. Centralized vs. Distributed Implementation

In this section, we compare the performance of central-
ized and distributed implementations. Figure 14 compares the
performance of collaborative rules as the number of chan-
nels varies. We also include a distributed implementation of
“RAND” rule. We observe that the centralized and distributed
implementations of collaborative rules perform similarly and
significantly outperform the distributed implementation of
RAND rule. There is a visible difference between two im-
plementations in terms of Min Reward. This is because Min
Reward represents the worst user performance in the sys-
tem and thus requires system-wide optimization. Centralized
implementation is designed to maximize the performance
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Fig. 14. Spectrum allocation performance using centralized and distributed algorithms.
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regarding the number of secondary users

of the “poorest” user within the network, while distributed
implementation aims to maximize the performance of the
“poorest” user in local neighborhood.

We also examine the complexity of two implementations.
The major difference between two implementations is that
during each coloring stage, centralized implementation selects
one user while distributed implementation selects multiple
users. Hence the number of labeling/coloring stage required
for distributed implementations is much less than that of
centralized implementation. Figure 15 compares the number

of labeling stages in both implementations. We see that dis-
tributed implementation cuts the number of stages by almost
half. For centralized implementation, the number of stages
equals to

∑N−1
n=0

∑M−1
m=0 an,m. Hence, the number of stages

required for Mean Reward is much higher than that of Min
Reward and Fairness. As expected, the number of stages scales
linearly with both the number of channels and the number of
secondary users.

VI. THEORETICAL LOWER BOUND

When Cmax = M , seeking channel assignment to maximize
sum reward is equivalent to finding the maximum weighted
independent set problem. The work in [21] shows that a
greedy approach that selects to color the vertex with maxi-
mum bn

(Dn+1) outputs an independent set of weight at least∑
n∈V

bn

(Dn+1) . In this section, we conduct theoretical analysis
on the lower bound of sum reward using the CSum rule and
a centralized implementation, under the Cmax constraint.

For each vertex n, we sort the channel list by the CSum
label bn,m/(Dn,m + 1) in decreasing order. Define π(n, K)
as the collection of up to K highest labeled channels at n.
Define coloring bound

GB(K) =
N−1∑
n=0

∑
m∈π(n, K)

bn,m

Dn,m + 1
. (18)

In particular, if K = M , π(n, K) = {0, ..., M − 1}, and

GB(M) =
N−1∑
n=0

M−1∑
m=0

bn,m

Dn,m + 1
(19)

and if K = 1, i.e. every user can only use one channel,
π(n, Cmax) = arg max0≤m≤M−1 bn,m/(Dn,m + 1), and

GB(1) =
N−1∑
n=0

max
0≤m≤M−1

bn,m

Dn,m + 1
(20)

Let

S(Cmax) �
N−1∑
n=0

M−1∑
m=0

an,m · bn,m, (21)

represent the sum reward obtained using the CSum labeling
rule, which depends on the choice of Cmax. Since ∀n,∑M−1

m=0 an,m ≤ Cmax.
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Theorem 1: Using centralized implementation and CSum
rules, the sum reward is bounded.

S(Cmax) ≥ GB(Cmax). (22)

Theorem 1 expands the lower bounds derived in [21] regard-
ing weighted independent set problem (WIS) into the proposed
color-sensitive graph coloring problem with the constraint
Cmax. When Cmax = M , the problem can be reduced into
finding the maximum WIS on each color graph. A color m
graph is derived from graph G by removing color m from
all the color lists, and removing color m edges. The proof is
straightforward following the work in [21]. For general choice
of Cmax, we need to jointly consider the color assignment for
all the color graphs, and the results in [21] are not directly
applicable. The detailed proof is shown in the Appendix II

Corollary 1: The same lower bounds can be obtained using
distributed implementations.

Distributed and centralized implementations differ in terms
of the choice of vertex to be colored in each stage. In
distributed implementations, more than one vertex can be
colored in each stage, but each chosen vertex is associated with
the highest labeling in its neighborhood. Hence, the selected
user’s contribution to the sum throughput can still compensate
for the throughput loss at its conflicting neighbors. A detailed
proof is included in Appendix III. The derived lower bounds
are shown in Figure 5 to 14.

Theorem 2: Using centralized implementation and CSum
rules, the performance ratio of the proposed approach to the
optimal solution ρ = infG

SG(Cmax)
αG(Cmax) , where SG(Cmax) is the

sum reward obtained using the CSum labeling rule on graph G
and αG(Cmax) is the optimal sum reward. When Cmax = M ,
the performance ratio is bounded by

1
minm maxn Dn,m

≥ ρ ≥ 1
maxm maxn Dn,m

. (23)

The proof is straightforward following the results in [21].

VII. RELATED WORK

Extensive research exists on the general problem of channel
allocation. Both analytical framework and practical strategies
have been proposed. Analytical frameworks in [16], [9] ad-
dress fairness for single-hop flows, and derive an estimate of
the rate at each flow to achieve Max-Min fairness. However,
there is no guarantee that a feasible scheme exists to achieve
the rate.

Practical strategies have been proposed for sharing a single
channel. Contention based schemes invoke a random access
protocol like ALOHA and CSMA, where users contend in time
to share a common channel [13], [9], [16]. While this scheme
provides fairness and utilization on a single channel system
probabilistically, its application to a multi-channel system
requires each user to know how many and which channel(s) to
access. Another approach, conflict free time slot scheduling,
provides guaranteed channel usage by reserving time slots
for each flow. Solutions in [20], [1], [19] assign exactly one
time slot to each flow. This approach can be used in multi-
channel systems if each user uses only one channel. Another

solution [22] allows users to use multiple slots/channels to
achieve Max-Min-fair, but does not consider interference from
neighbor transmissions.

Multi-channel assignment strategies were developed mostly
for cellular networks. The work in [11] provides solutions to
assign frequency bands among base stations to minimize call
blocking probability for voice traffic. There is no notion of
fairness as the traffic determines the number of channels each
base station should use. Distributed channel assignment for
OFDM based systems has been studied in [8] but only for
fully-connected network, where all the flows interfere with
each other.

While most existing approaches allocate channels according
to a fixed user demand, i.e. call requests or one channel per
user, our goal is to optimize spectrum utilization across the
entire network while taking fairness into account. In addition,
we consider the issue of spectrum heterogeneity, where users
perceive different channel availability and different channel
interference constraints as a function of time and their location.
For Sum Reward based utility, and unlimited channel access
i.e. Cmax = M , the optimization is exactly a Weighted
Independent Set (WIS) problem [21]. However, we generalize
the optimization to Cmax ≤ M and derive the theoretical lower
bound. We consider a general multi-hop network topology,
while most work on OFDM based channel allocation are based
on fully-connected single hop wireless networks.

VIII. CONCLUSION AND ON-GOING WORK

In this paper, we define a general model and utility functions
for optimizing utilization and fairness in spectrum allocation
for open spectrum systems. By reducing the optimal allocation
to one of Color-Sensitive Graph Coloring (CSGC), we show
that it is an NP-hard problem. While taking into account
spectrum heterogeneity, we describe a set of approximation
algorithms for both centralized and distributed approaches to
spectrum allocation. Our experimental results show that not
only can our algorithms drastically improve network perfor-
mance by reducing interference, but our distributed algorithm
provides benefits comparable to the centralized approach while
drastically reducing computation complexity.

While we propose several computationally efficient dis-
tributed allocation algorithms in this paper, we assumed a
static network environment and focused on optimizing a
snapshot of the network. If we consider a dynamic network,
network-wide spectrum allocation becomes a more complex
problem. The algorithm needs to recompute allocations as
the topology changes. We develop an adaptive approach that
adapts to topology variations through local optimizations [4].
To reduce communication overhead, we develop a rule based
spectrum management scheme where users observe local in-
terference patterns and act independently according to preset
spectrum rules [27]. We are also examining the impact of
changing spectrum availability and bandwidth distributions on
our algorithms.
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APPENDIX I
PSEUDO CODE FOR MODELING NETWORK CONFLICT

GRAPH

Deploy K primary users: each primary user k (1 ≤ k ≤ K)
locates in xk , and uses channel yk.
Deploy N secondary users: each secondary user n (1 ≤
n ≤ N ) locates in φn.
for n = 1 to N do

DSE(n, m) = min(dmax, mink=1..K,yk=m{DIST (φn, xk)−
DPR})
if DSE(n, m) > dmin then

Bn,m = DSE(n, m)2, ln,m = 1
else

Bn,m = ln,m = 0
end if

end for
for n = 1 to N − 1 do

for i = n + 1 to N do
for m = 1 to M do

if DSE(n, m) + DSE(i, m) ≥ DIST (φn, φi) then
c(n, i, m) = c(i, n, m) = 1

else
c(n, i, m) = c(i, n, m) = 0

end if
end for

end for
end for

APPENDIX II
PROOF OF Theorem 1

In this section, we provide the proof of Theorem 1. We start
with the following denotations.

• S(i) = {(ni, mi)}: The chosen vertex and the associate
color, i.e. vertex-color pair at the ith coloring stage;

• A(i)
n = {(n, m)|(n, m) ∈ S(k), k ≤ i}: The list of color

assignment at vertex n before the ith stage.
• l

(i)
n,m: The availability of m after the ith coloring stage.

( After each assignment, a set of colors are removed (or
disabled) from some vertices.)

• F (i) = {(n, m)|l(i)n,m = 1}:The set of available vertex-
color pairs after ith stage.

• u
(i)
n,m: An indicator of the disabled vertex-color pair due

to the ith coloring, i.e. u
(i)
n,m = 1 only if l

(i−1)
n,m = 1 and

l
(i)
n,m = 0.

• U (i) = {(n, m)|u(i)
n,m = 1}: The set of disabled vertex-

color pair due to ith coloring.
• D

(i)
n,m: Vertex n’s degree on color m after ith coloring, i.e.

D
(i)
n,m =

∑N−1
k=0,k �=n c(n, k, m) · l(i)n,m · l(i)k,m. Let Dn,m =

D0
n,m.

• N
(i)
m (n) = {k|cn,k,m=1, l

(i)
k,m = 1, k < N, k �= n}:

The set of m colored neighborhood of vertex n after ith
coloring. D

(i)
n,m = |N i

m(n)|.
• M(K): The set of K preferred vertex-color pairs in the

system i.e.

M(K) = {(n, m)|m ∈ π(n, K), n < N}. (24)

The following lemmas will be used in the proof.

Lemma 1:
F (i), U (i) and S(i) are related by

F (i−1) = F (i) ∪ U (i) ∪ S(i),

F (i) ∩ U (i) = F (i) ∩ S(i) = U (i) ∩ S(i) = ∅
F (0) =

(
∪
i
U (i)

)
∪
(
∪
i

S(i)
)

. (25)

The proof is trivial and thus omitted.

Lemma 2:

D(i)
n,m ≤ D(j)

n,m ≤ D(0)
n,m, ∀ i ≥ j ≥ 0. (26)

Proof: Since l
(i)
n,m ≤ l

(i−1)
n,m , then it is obvious that the

vertex degree D
(i)
n,m is a non-increasing function of i.

Lemma 3:
Using CSum rule based coloring scheme, the color assignment
at ith coloring stage is (ni, mi), and

(ni, mi) = argmax
(n,m)∈F(i−1)

bn,m

D
(i−1)
n,m + 1

. (27)

It satisfies,

∀i > 0, ∀(n, m) ∈ F (i−1)

bni,mi

(D(i−1)
ni,mi + 1)

≥ bn,m

(D(i−1)
n,m + 1)

≥ bn,m

(D(0)
n,m + 1)

. (28)

Proof: The proof is trivial by combining (25),(26) and
(27).

To prove Theorem 1, we start by analyzing M(K). Since
M(K) ⊆ F (0), we can divide it into two groups, i.e.

M(K) =
(
∪
i
U (i)∩M(K)

)
︸ ︷︷ ︸

joint with disabled vertex-color pair

∪
(
∪
i
S(i)∩M(K)

)
︸ ︷︷ ︸

joint with selected vertex-color pair

.

(29)
The first group represents the vertex-color pair in M(K)

which is selected at each coloring stage, and the second group
represents the vertex-color pair in M(K) that is discarded at
each coloring stage (in topology updating). Next, we analyze
the vertex-color pairs of two groups separately.

For a vertex-color pair (n, m) chosen at ith coloring stage,
it is obvious that the following lemma holds.

Lemma 4:

∑
(n,m)∈M(K)∩S(i)

bn,m

D
(0)
n,m + 1

≤
∑

(n,m)∈M(K)∩S(i)

bni,mi

D
(i−1)
ni,mi + 1

(by Lemma 3)

= |M(K) ∩ S(i)| bni,mi

D
(i−1)
ni,mi + 1

= (1 − |S(i)\M(K)|) bni,mi

D
(i)
ni,mi + 1

(30)
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For a vertex-color pair (n, m) disabled at ith stage, the
following lemma holds.

Lemma 5:

∑
i

∑
(n,m)∈M(K)∩U(i)

bn,m

D
(0)
n,m + 1

≤
∑

i

bni,mi

D
(i−1)
ni,mi + 1

(D(i−1)
ni,mi

+ |S(i)\M(K)|). (31)

Proof: There are two reasons to disable a vertex-color
pair.

• At each coloring stage, after a vertex is colored, the color
will be deleted from the neighbors of the vertex to avoid
future conflict. Let

U (i)
N = ∪

n∈N
(i−1)
mi

(ni)

(n, mi)

represent the set of vertex-color pairs disabled at the ith
coloring stage to prevent future conflict. These vertices
are the neighbors of the selected vertex n i, who share a
mi colored edge with ni. Obviously the size of U (i)

N is
the number of conflicting neighbors of n i who has mi

available, i.e. |U (i)
N | = D

(i−1)
ni,mi .

• At each coloring stage, after a vertex is colored, the
assignment of the vertex might reach the maximum
constraints K = Cmax. The vertex and its color list will
be deleted. Let

U (i)
S = ∪

m �=mi,l
(i)
ni,m=1,|A(i)

ni
|=K

(ni, m)

represent the vertex-color pairs that are disabled because
vertex ni’s assignment reaches K .

Obviously

U (i) = U (i)
N ∪ U (i)

S , U (i)
N ∩ U (i)

S = ∅ (32)

For each (ni, m) ∈ M(K)∩U (i)
N , since it hasn’t been chosen

by the labeling rule, we have∑
i

∑
(n,m)∈M(K)∩UN(i)

bni,m

D
(0)
ni,m + 1

≤ |U (i)
N | bni,mj

D
(j−1)
ni,mj + 1

= D(i−1)
ni,mi

bni,mj

D
(j−1)
ni,mj + 1

. (33)

For each (ni, m) ∈ M(K) ∩ U (i)
S , since |A(i)

ni | = K , then

K = |A(i)
ni
| = |M(K) ∩ A(i)

ni
| + |A(i)

ni
\M(K)| (34)

From the definition of π(ni, K), we have

K = |π(ni, K)| = |π(ni, K) ∩ A(i)
ni
| + |π(ni, K)\A(i)

ni
|

= |M(K) ∩ A(i)
ni
| + |M(K) ∩ U (i)

S |
+
∑
j<i

|π(ni, K) ∩ U (j)
N |. (35)

Combining (34) and (35), we get

|M(K) ∩ U (i)
S |

= δ(|A(i)
ni
| = K)(|A(i)

ni
\M(K)|

−
∑
j<i

|π(ni, K) ∩ U (j)
N |)

≤ δ(|A(i)
ni
| = K)|A(i)

ni
\M(K)|. (36)

For each (ni, m) ∈ M(K) ∩ U (i)
S , since it hasn’t been

chosen by the labeling rule, the following holds:

bni,m

D
(0)
ni,m + 1

≤ bni,mj

D
(j−1)
ni,mj + 1

, ∀j ≤ i, (ni, mj) ∈ Aj
ni

≤ min
j≤i,(ni,mj)∈Aj

ni

bni,mj

D
(j−1)
ni,mj + 1

.

� ξ(ni, i). (37)

Hence, we can derive∑
i

∑
(n,m)∈M(K)∩U(i)

S

bn,m

D
(0)
n,m + 1

≤
∑

i

δ(|A(i)
ni
| = x)|M(K) ∩ U (i)

S |ξ(ni, i)

≤
∑

i

δ(|A(i)
ni
| = x)|A(i)

ni
\M(K)|ξ(ni, i)

≤
∑

i

bni,mi

D
(i−1)
ni,mi + 1

|S(i)\M(K)|. (38)

Combining lemma 4 and 5 we have

GB(K)

=
N−1∑
n=1

∑
m∈π(n,K)

bn,m

D
(0)
n,m + 1

=
∑

(n,m)∈M(K)

bn,m

D
(0)
n,m + 1

=
∑

i

⎛
⎝ ∑

(n,m)∈M(K)∩S(i)

bn,m

D
(0)
n,m + 1

⎞
⎠

+
∑

i

⎛
⎜⎝ ∑

(n,m)∈M(K)∩U(i)
N

bn,m

D
(0)
n,m + 1

⎞
⎟⎠

+
∑

i

⎛
⎜⎝ ∑

(n,m)∈M(K)∩U(i)
S

bn,m

D
(0)
n,m + 1

⎞
⎟⎠

≤
∑

i

bni,mi

D
(i−1)
ni,mi + 1

(1 − |S(i)\M(K)|)

+
∑

i

bni,mi

D
(i−1)
ni,mi + 1

(
|U (i)

N | + |S(i)\M(K)|
)

=
∑

i

(
bni,mi

D
(i−1)
ni,mi + 1

+ D(i−1)
ni,mi

· bni,mi

D
(i−1)
ni,mi + 1

)

=
∑

i

bni,mi . (39)
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This completes the proof of Theorem 1.
In the special case of x = M (x ≥ M ), that is, each vertex

can use as many colors as possible, M(K) is equal to F (0),
U (i)
S = ∅, and then (39) can be rewritten as

GB(M)

=
∑
n<N

∑
m<M

bn,m

Dn,m + 1

=
∑

i

⎛
⎝ ∑

(n,m)∈S(i)

bn,m

Dn,m + 1
+

∑
(n,m)∈U(i)

bn,m

Dn,m + 1

⎞
⎠

≤
∑

i

⎛
⎜⎝ bni,mi

D
(i−1)
ni,mi + 1

+
∑

n∈N
(i−1)
mi

(ni)

bn,mi

D
(i−1)
n,mi + 1

⎞
⎟⎠

=
∑

i

(
bni,mi

(D(i−1)
ni,mi + 1)

+ D(i−1)
ni,mi

· bni,mi

(D(i−1)
ni,mi + 1)

)

=
∑

i

bni,mi (40)

Actually, (40) obtains the generalization of Weighted Indepen-
dent Set Problem in Color-Sensitive Graph Coloring Problem
in [21].

APPENDIX III
PROOF OF Corollary 1

In a similar way, we can expand the above results to
the distributed cases, as Corollary 1. The difference between
the centralized and distributed implementations is the vertex
choice, that is, more than one vertex may be chosen at one
coloring stage in distributed implementation, and S (i) probably
consists of multi pairs, S (i) = {(ni1 , mi2), (ni2 , mi2), · · · }.
Let U (i)

(ni,mi)
represent the individually disabled pair set by

(ni, mi), obviously U (i) = ∪
(ni,mi)

U (i)
(ni,mi)

. Since multi pairs

may be chosen at one stage, their individual disabled sets may
be overlapped, therefore,∑

(n,m)∈M(K)∩U(i)

bn,m

D
(0)
n,m + 1

≤
∑

(ni,mi)∈S(i)

⎛
⎜⎝ ∑

(n,m)∈M(K)∩U(i)
(ni,mi)

bn,m

D
(0)
n,m + 1

⎞
⎟⎠ .(41)

Hence,

GB(x)

=
∑

i

⎛
⎝ ∑

(n,m)∈M(K)∩S(i)

bn,m

D
(0)
n,m + 1

⎞
⎠

+
∑

i

⎛
⎝ ∑

(n,m)∈M(K)∩U(i)

bn,m

D
(0)
n,m + 1

⎞
⎠

≤
∑

i

∑
(ni,mi)∈S(i)

∑
(n,m)∈M(K)∩(ni,mi)

bn,m

D
(0)
n,m + 1

+
∑

i

∑
(ni,mi)∈S(i)

∑
(n,m)∈M(K)∩U(i)

(ni,mi)

bn,m

D
(0)
n,m + 1

.(42)

Using similar approach as in proving (39), (42) can be
expanded as

GB(x)

≤
∑

i

∑
(ni,mi)∈S(i)

(
bni,mi

D
(i−1)
ni,mi + 1

+ D(i−1)
ni,mi

bni,mi

D
(i−1)
ni,mi + 1

)

=
∑

i

bni,mi . (43)

�
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