Utilization Bounds for EDF Scheduling on
Real-Time Multiprocessor Systems

J.M. Lépez, J.L.. Diaz and D.F. Garcia
Departamento de Informdtica, Universidad de Oviedo, Gijon 33204, Spain

Abstract. The utilization bound for Earliest Deadline First scheduling is extended
from uniprocessors to homogeneous multiprocessor systems with partitioning strate-
gies. First results are provided for a basic task model, which includes periodic and
independent tasks with deadlines equal to periods. Since the multiprocessor utiliza-
tion bounds depend on the allocation algorithm, different allocation algorithms have
been considered, ranging from simple heuristics to optimal allocation algorithms.

As multiprocessor utilization bounds for EDF scheduling depend strongly on
task sizes, all these bounds have been obtained as a function of a parameter which
takes task sizes into account.

Theoretically, the utilization bounds for multiprocessor EDF scheduling can be
considered a partial solution to the bin-packing problem, which is known to be
NP-complete.

The basic task model is extended to include resource sharing, release jitter, dead-
lines less than periods, aperiodic tasks, non-preemptive sections, context switches
and mode changes.

Keywords: multiprocessor scheduling, partitioning, bin-packing problem, Earliest
Deadline First scheduling, multiprocessor utilization bounds

1. Introduction

Real-time systems theory supplies many results about uniprocessors
but few about multiprocessors. One of the outstanding results about
uniprocessors is the optimality of Earliest Deadline First (EDF) schedul-
ing for any kind of tasks (Dertouzos, 1974). Unfortunately, EDF schedul-
ing is not optimal on multiprocessor systems (Dertouzos and Mok,
1989).

A new issue arises on multiprocessor scheduling; that is which pro-
cessor executes each task at a given time. There are two major strategies
to deal with this problem: partitioning strategies, and global strate-
gies (Oh and Son, 1995). In a partitioning strategy, once a task is
allocated to a processor, it is executed exclusively on that processor.
In a global strategy, any instance of a task can be executed on any
processor, or even be preempted and moved to a different processor
before it is completed.

Theoretically, global strategies provide in general higher schedulabil-
ity than partitioning strategies. However, partitioning strategies have

% © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

2003_rts.tex; 23/09/2003; 10:02; p.1

2

several advantages over global strategies. Firstly, the scheduling over-
head associated with a partitioning strategy is lower than the overhead
associated with a global strategy. Secondly, partitioning strategies allow
us to apply well-known uniprocessor scheduling algorithms to each pro-
cessor. Furthermore, Earliest Deadline First (EDF) scheduling, which
is an optimal uniprocessor scheduling algorithm, perform poorly when
extended to global multiprocessor scheduling. The utilization bound
associated with global EDF multiprocessor scheduling is not higher
than one for any number of processors (Dall and Liu, 1978).

In this paper we follow the partitioning strategy, and assume that
all the tasks allocated to a processor are preemptively scheduled using
EDF, as this is the optimal scheduling algorithm for uniprocessors.
Once the scheduler has been chosen, the only degree of freedom is the
allocation algorithm.

The problem of allocating a set of tasks to a set of processors is
analogous to the bin-packing problem. In this case, the tasks are the
objects to pack, of size equal to their utilization factors. The bins are
processors with a capacity of one for EDF scheduling (Liu and Layland,
1973). The bin-packing problem is known to be NP-hard in the strong
sense (Garey and Johnson, 1979). Thus, searching for optimal allo-
cation algorithms is not practical. Several allocation algorithms have
been proposed (Oh and Son, 1995; Garey and Johnson, 1979; Burchard
et al., 1995; Dall and Liu, 1978; Séez et al., 1998).

Two different approaches are followed in the literature to estab-
lish the schedulability associated with a given allocation algorithm:
simulation approaches and theoretical approaches.

In the simulation approach, task sets are randomly generated. Next,
the average number of processors required to allocate task sets of given
total utilization is obtained. Uniprocessor exact tests (Sdez et al., 1998),
or uniprocessor sufficient tests (Lauzac et al., 1998) are commonly
used to decide whether a given group of tasks fits into one processor.
Nevertheless, simulation results should be considered carefully, since
randomly generated task sets may not be representative of those that
appear in practice.

The traditional theoretical approach focuses on the calculation of
the metric (Nga/Nopr), for pairs uniprocessor scheduling algorithm-
allocation algorithm (Oh and Son, 1995; Dall and Liu, 1978; Garey and
Johnson, 1979; Burchard et al., 1995; Davari and Dhall, 1986a; Davari
and Dhall, 1986b). This metric gives the relationship between the num-
ber of processors required to schedule a task set using a given allocation
algorithm, AA, and the number of processors required using the optimal
allocation algorithm,OPT. This metric is useful in order to compare

2003_rts.tex; 23/09/2003; 10:02; p.2

3

different allocation algorithms, but not to perform a schedulability
test (Lépez et al., 2003).

A new theoretical approach consists of calculating the utilization
bounds associated with scheduling algorithm-allocation algorithm pairs,
analogous to those known for uniprocessors. This approach has several
interesting features:

— Firstly, it allows us to carry out fast schedulability tests.

— Secondly, it allows us to quantify the influence of certain parame-
ters, such as the number of processors, on schedulability.

The major disadvantage of this approach is the sufficient but not nec-
essary character of the associated schedulability tests. This approach
was followed by Oh and Baker (1998) and Lépez et al. (2003) for
multiprocessor RM scheduling.

Our work provides utilization bounds for multiprocessor EDF schedul-
ing and deals with:

— Complex task models, including periodic and aperiodic tasks, re-
lease jitter, arbitrary deadlines, resource sharing and mode changes.

— Arbitrary allocation algorithms, ranging from optimal allocation
algorithms to simple heuristics.

— Task sizes: by taking into account task sizes, the utilization bounds
can be greatly incremented.

The rest of the paper is organized as follows. Section 2 defines the
basic system model dealt with. Section 3 provides limits on the utiliza-
tion bounds for arbitrary allocation algorithms under the basic system
model. The utilization bounds for the basic system model and different
allocation algorithms are provided in Section 4. Section 5 analyzes the
expressions of the utilization bounds. Section 6 extends the basic sys-
tem model, generalizing the task model, and calculates new utilization
bounds for the extensions. Finally, Section 7 presents our conclusions
and future work.

2. Basic system model
The task set consists of m independent and periodic tasks {71,..., 7},
of computation times {Cy,...,C,,}, periods {T},...,T,,}, and hard

deadlines equal to the task periods. The utilization factor u; of any
task 7;, defined as u; = C;/T;, is assumed to be 0 < u; < a < 1, where

2003_rts.tex; 23/09/2003; 10:02; p.3

4

« is the maximum reachable utilization factor among all tasks. Thus, «
is a parameter of the task set which takes the “task sizes” into account.
The total utilization of the task set, denoted by U, is the sum of the
utilization factors of the tasks that compose it.

Tasks are allocated to an array of n identical processors { Py, ..., P, },
and are executed independently of each other. Once a task is allocated
to a processor, it is executed only on that processor. Within each pro-
cessor, tasks are scheduled preemptively using EDF. The allocation is
carried out using Reasonable Allocation algorithms (RA). A reasonable
allocation algorithm is one which fails to allocate a task only when there
is no processor in the system which can hold the task.

The uniprocessor utilization bound for EDF scheduling of periodic
and independent tasks of periods equal to deadlines is 1.0 (Liu and
Layland, 1973). This means that any subset of the tasks is schedulable
on one processor if and only if U < 1. Thus, a task of utilization factor
u; fits into processor Pj, which already has m; tasks allocated to it
with total utilization Uj, if the (m; + 1) tasks are schedulable, i.e, if
1—-[@ Z Ug.

Using the schedulability condition U < 1, a reasonable allocation
algorithm is one which fails to allocate a task of utilization factor u; to
a multiprocessor made up of n processors, only when the task does not
fit into any processor, i.e,

1-U; <u; forj=1,....n (1)

Examples of reasonable allocation algorithms are First Fit (FF), Best
Fit (BF) and the optimal allocation algorithm (OPT).

Within the Reasonable Allocation (RA) algorithms we define a class,
termed Reasonable Allocation Decreasing (RAD), made up of all the
reasonable allocation algorithms fulfilling the following conditions:

— Tasks are ordered by decreasing utilization factors before making
the allocation, i.e, ug > uo > -+ > up,.

— Tasks are allocated sequentially, that is, task 7 is allocated first,
next task 7o, and so on until task 7,,.

3. Limits on the utilization bounds

The multiprocessor utilization bound associated with any reasonable
allocation algorithm, RA, and multiprocessor EDF scheduling is de-
noted by UEPTRA = Any task set of total utilization U < UEPF-RA g
schedulable using RA allocation and EDF scheduling on all processors,

2003_rts.tex; 23/09/2003; 10:02; p.4

5

while a task set of total utilization U > UEPTRA may or may not be
schedulable. The multiprocessor utilization bound UEPF-RA depends
on the allocation algorithm, RA. Therefore, UEPF-RA ig in the interval
[Lepr, Hepr|, defined as follows:

.7 EDF-RA
Lgpr = min Usge

EDF-RA
Hgpr = max Uge

The calculation of this interval gives the worst and best utilization
bounds we can expect from all the reasonable allocation algorithms.

Before calculating the expressions of Lypr and Hgpr, it is necessary
to introduce the parameter §. § is the maximum number of tasks of
utilization factor o which fit into one processor under EDF scheduling.
(G can be expressed as a function of «

8 =1[1/a

Any multiprocessor made up of n processors can allocate at least Gn
tasks of arbitrary utilization factors (less than or equal to «). Thus, any
task set fulfilling m < fn is trivially schedulable using EDF scheduling
together with any reasonable allocation algorithm.

Figure 1 depicts (8 as a function of «, showing also the sufficient
schedulability condition m < (n. For example, if « is in the interval
(1/3,1/2] then B = 2. In this case, the task set is schedulable if it has
2n tasks or less.

Henceforth, we will assume m > (n, as otherwise there would be no
point in obtaining the utilization bounds.

Theorem 1 will provide a lower limit on the utilization bound as-
sociated with any reasonable allocation algorithm and multiprocessor
EDF scheduling. Section 4.1 will present the utilization bound for
one reasonable allocation algorithm, the Worst Fit (WF) heuristic,
which coincides with the previous lower limit. Therefore, Lgpr and
the utilization bound for WF allocation coincide.

Theorem 2 will provide an upper limit on the utilization bound
associated with any allocation algorithm, reasonable or not, and multi-
processor EDF scheduling. Section 4.2 will present the utilization bound
associated with some reasonable allocation algorithms, the heuristics in
the class RAD, which coincides with the previous upper limit. There-
fore, Hgpr and the utilization bound for the class RAD coincide. Fur-
thermore, since the upper limit given by Theorem 2 applies to any
allocation algorithm, reasonable or not, Hgpg is the maximum utiliza-
tion bound among all the allocation algorithms.

2003_rts.tex; 23/09/2003; 10:02; p.5

Schedulability condition
m < n

Figure 1. Representation of the function ((a), and the associated schedulability
condition.

THEOREM 1. Let RA be any reasonable allocation algorithm. If m >
0On then
UEPF-RA >y — (0 — 1)«

Proof. Let {71,...,7n} be a set of m tasks which does not fit into
the multiprocessor. There are tasks in the set which are allocated to
processors, and tasks which are not. Let us change the indexes in the
set, so that the tasks which were not allocated have the last indexes in
the set. Let 7 be the first task in the set (after the change of indexes),
which was not allocated to any processor. Since the allocation algorithm
is reasonable, from (1) we get

Uj >1—uy forj=1,...,n (2)

where Uj is the total utilization of the tasks previously allocated to
processor P; and wuy is the utilization factor of task 7. The total

2003_rts.tex; 23/09/2003; 10:02; p.6

utilization of the whole set, U, fulfills

From (2) we get
ZU]' > Z(l — uk) = ’I’L(l — uk)
j=1 j=1

Substituting this inequality into (3)
U>n(l—ug) +up=n—(n—1)u

From the system definition, all the utilization factors are less than or
equal to a, so up < a and

U>n—(n—-1)a

Any task set which does not fit into the multiprocessor fulfills the
previous expression. Consequently, any task set of total utilization less
than or equal to n — (n — 1)« fits into the multiprocessor, and

UEDFRA >y — (n — 1)a

O

We have found a lower limit on the utilization bound for any reason-
able allocation algorithm. Section 4.1 will present the utilization bound
for a reasonable allocation algorithm, which coincides with this lower
limit. Therefore, Lgpr(n,a) =n — (n — 1)a.

Now we obtain an upper limit on the utilization bound for any
allocation algorithm, reasonable or not.

THEOREM 2. Let AA be an arbitrary allocation algorithm. If m > (Gn

then
[7EDF-AA pn+1
wce

T B+1
Proof. We will prove that a set of m tasks {71,..., 7} exists, with
utilization factors 0 < u; < « for all ¢ = 1,...,m, and total utilization

U= pn+1)/(B+1)+e¢ with ¢ — 0T, which does not fit into n
processors using any allocation algorithm and EDF scheduling on each
processor. The proof will be divided into three parts:

1. The task set is presented.

2003_rts.tex; 23/09/2003; 10:02; p.7

8

2. The utilization factors of the task set are proved to be valid, that
is, 0 < u; < o

3. The claim that the task set does not fit into the multiprocessor is
proved.

Part 1. The set of m tasks is composed of two subsets: a first subset
with (m — On — 1) tasks, and a second subset with (Gn + 1) tasks.

All the tasks of the first subset have the same utilization factor of
value

uizi fori=1,...,(m—pBn—1)
m

All the tasks of the second subset have the same utilization factor

of value)
ui:m—i—% for i = (m —pn),...,m
It is simple to check that the task set is made up of m tasks of total
utilization (Bn+1)/(8+ 1) + €.
Part 2. It is also necessary to prove that the utilization factors of
both subsets are valid, i.e, 0 < u; < « for all i = 1,...,m. On one
hand, making ¢ low enough,

0<ui:£<a fori=1,...,(m—pn—-1)
m

On the other hand, by definition of 3, (G+1) tasks of utilization factor
a do not fit into one processor, i.e, (54 1)a > 1. Making € low enough,

a>ﬁ—|—%:ui for i =(m —pn),...,m

Part 3. There are (fn + 1) tasks in the second subset. Hence, at
least one processor of the n available should allocate (5 + 1) or more of
these tasks. However, no processor can allocate (3+ 1) or more tasks of
the second subset, since (4 1) of these tasks have a utilization higher
than one in total.

We conclude that the proposed task set of total utilization (Gn +
1)/(B + 1) + € does not fit into n processors when e — 07, so the
utilization bound UEPF-AA must be less than or equal to (6n+1)/(5+
1).

Remark: the tasks of the first subset are necessary in the proof only
to fulfill the restriction of having m tasks. O

We have found an upper limit on the utilization bound for any
allocation algorithm, reasonable or not. Section 4.2 will present the

2003_rts.tex; 23/09/2003; 10:02; p.8

9

utilization bound for some reasonable algorithms, which coincides with
this upper limit. Therefore, Hgpp(n,a) = (6n+1)/(5 + 1).

4. Utilization bounds for reasonable allocation algorithms

The utilization bound for multiprocessor EDF scheduling depends on
the allocation algorithm. In this article, we focus on reasonable allo-
cation algorithms, avoiding impractical allocation algorithms, which
would only complicate the mathematical description of the problem.

Below, we present the utilization bounds for EDF multiprocessor
scheduling, considering independent and periodic tasks of deadlines
equal to periods, and the following allocation algorithms:

— Worst Fit (WF).

— Reasonable allocation Decreasing (RAD). It includes First Fit De-
creasing (FFD), Best Fit Decreasing (BFD), Worst Fit Decreasing
(WFD), etc.

— First Fit (FF) and Best Fit (BF).

— Otbher allocation algorithms, including optimal allocation algorithms,
First Fit Increasing (FFI), Best Fit Increasing (BFI), and Worst
Fit Increasing (WFI).

4.1. WORST FIT ALLOCATION

The heuristic Worst Fit (WF) allocates tasks sequentially, i.e, one task
after another. Each task is allocated to the processor in which it fits
the worst. In other words, it is allocated to the processor P; with the
highest free capacity, i.e, highest (1 — Uj), among those with enough
capacity to hold the task.

THEOREM 3. If m > (n then
UEPEWE(p o) =n — (n — 1)a

Proof. Firstly, we will prove the existence of a set of m tasks, {71,...,7m},
of utilization factors less than or equal to «, and total utilization

n—(n-1a+e

with € — 07, which does not fit into the processors using the allocation
algorithm WEF. The proof will be divided into three parts:

2003_rts.tex; 23/09/2003; 10:02; p.9

10

1. The task set is presented.

2. The utilization factors of the task set are proved to be valid, that
is, 0 < u; < o

3. The claim that the task set does not fit into the multiprocessor is
proved.

Part 1. The set of m tasks is built as follows, strictly in the order
indicated. A first subset made up of (m — fn — 1) tasks of utilization
factor

€
YT om — Bn — 1)

A second subset made up of fn tasks of utilization factor

fori=1,....m—pn—1

11—« €
=5 Y om,
Finally, the last task has a utilization factor w,, = «.
It can be proved that the task set is made up of m tasks, of total
utilization n — (n — 1)a.
Part 2. It is necessary to prove that the utilization factors of all the

fori=(m—pn),...,(m—1)

tasks are valid, i.e, 0 < u; < a for i = 1,...,m. Since ¢ — 07, it is
enough to prove that a > (1 — «a)/f.
B is calculated from the expression f = [1/«a], as indicated in
Section 3. Therefore, it follows that
1 1-— 1-—
6>——1= @ , and a<a
a

Part 3. Next, we will prove that the task set does not fit into the
multiprocessor using WF allocation.

The tasks of the first subset fit into the multiprocessor. They are
equitatively allocated between all the processors, which means the dif-
ference in the number of tasks between any pair of processors is not
greater than one.

The (n tasks of the second subset also fit into the multiprocessor.
They are equitatively divided into the n processors, i.e, each proces-
sor receives (3 of these tasks. Thus, the total utilization of the tasks
allocated to any processor is higher than (1 — «) and the last task, of
utilization factor o, does not fit into any processor. Hence, UEPF-WEF <
n—(n—1)a.

Taking into account the lower limit on the utilization bound for any

reasonable allocation algorithm, given by Theorem 1, which includes
WE, it follows that

UEPEWE o) =n — (n — 1)a

2003_rts.tex; 23/09/2003; 10:02; p.10

11

4.2. REASONABLE ALLOCATION DECREASING

The algorithms belonging to the class Reasonable Allocation Decreas-
ing (RAD) order the tasks by decreasing utilization factors before
carrying out the allocation (see Section 2). Examples of RAD algo-
rithms are First Fit Decreasing (FFD), Best Fit Decreasing (BFD)
and Worst Fit Decreasing (WFD).

All these algorithms share a common utilization bound, as will be
proved in Theorem 4. In addition, this common utilization bound co-
incides with the upper limit given by Theorem 2. Thus, not even the
optimal allocation algorithm can provide a higher utilization bound
than that of the allocation algorithms in the RAD class.

THEOREM 4. If m > fn then

_ pn+1
B+l

Proof. The proof for the case n = 1 is trivial. UEPF-RAD (5 — 1 o) =
1, so it coincides with the utilization bound for the uniprocessor case,
which is independent of the “task sizes”. We will assume n > 1 in the
rest of the proof.

Let {71,...,7m} be a set of m tasks which does not fit into the
multiprocessor. Let 74 be the first task in the set which does not fit into
the multiprocessor. Since RAD allocation algorithms are reasonable,
from (1) we get

UL 0,0

Uj >1—uy forj=1,...,n (4)

where Uj is the total utilization of the tasks allocated to processor P;
and uy, is the utilization factor of task 7. The total utilization of the

first k& tasks fulfills i
n
Zui:ZUj—i-uk (5)
i=1 j=1
From equation (4) we get
n n
ZUj > Z(l — uk) = n(l — uk)
j=1 j=1

Substituting this expression into equation (5)

k

Zui>n(1—uk)+uk:n—(n—1)uk (6)
i=1

2003_rts.tex; 23/09/2003; 10:02; p.11

12

Tasks are ordered by decreasing utilization factors before carrying out
the allocation, so
u < =1 "1

=Tk
Substituting this inequality into (6)

k E o
Zui>n—(n—1)ﬂ
1=1 k

Finding Zle u;, it follows that

' T k-1
=1

The total utilization of the first k tasks is less than or equal to the total
utilization of the whole task set. Thus,

U= u; > Uy > ——— 7
2 E L ¢
i=1 i=1
Parameter k is restricted to fn < k < m. If gn > k, then the first
k tasks would fit into the multiprocessor, which would contradict the
hypothesis stating that task 75 does not fit into the multiprocessor. In
addition, m is the number of tasks of the set, so k& < m. Next, we will
calculate the minimum value of
kn

Function f(k,n) fulfills

af(k,n) n(n—1)
= f 1
ok (k+n—1)2>0 or n >

Therefore, f(k,n) is increasing in the interval fn < k < m and its
absolute minimum corresponds to k = (8n + 1). Substituting & for
(Bn + 1) into (7)

On+1

>

B+1
Therefore, a necessary condition to be fulfilled by the total utilization
of any task set which does not fit into the n processors is

On+1
B+1

U >

2003_rts.tex; 23/09/2003; 10:02; p.12

13

In other words, any task set of total utilization less than or equal to

On+1
B+1

fits into n processors and

[7EDE-RAD -, 141
wcC - /3 + 1
RAD algorithms are reasonable allocation algorithms, so applying The-
orem 2
[JEDF-RAD _ pn+1
wcC — /3 + 1
Therefore, we finally conclude

_ pn+1

UEDERAD
wceC (n? a) /3 + 1

4.3. FiIrsT FI1T AND BEST FIT

The heuristic First Fit (FF) allocates tasks sequentially, i.e, one task
after another. Each task is allocated to the first processor it fits into.
Processors are visited in the order Py, ..., P,.

The heuristic Best Fit (BF) also allocates tasks sequentially. Each
task is allocated to the processor into which it fits the best. In other
words, it is allocated to the processor P; with the lowest free capacity,
i.e, lowest (1—Uj), among those with enough capacity to hold the task.

The utilization bounds for FF and BF allocation are the same, of
value

On+1

B+1
In addition, the proof is almost identical for both heuristics, so we will
only prove the multiprocessor utilization bound for FF allocation.

Next, we present the strategy in the proof of the multiprocessor
utilization bound for FF allocation.

DB (0,00 = U™ (0,

1. Lemma 1 is proved. This lemma is necessary in order to prove
Theorem 5.

2. Theorem 5 proves an expression which relates the utilization for m
tasks and n processors, with the utilization bound for (m —) tasks
and (n — 1) processors. This allows us to prove Theorem 6, going
from the case n = 1 (uniprocessor case) to a general multiprocessor
case with an arbitrary n.

2003_rts.tex; 23/09/2003; 10:02; p.13

14

3. From the result of Step 2 and the utilization bound for EDF schedul-
ing on uniprocessors, Theorem 6 obtains the utilization bound for
FF allocation.

The proof of Theorem 5 requires Lemma 1, which is proved below.
It relates the utilization bounds for the same number of processors, but
different number of tasks.

LEMMA 1. Let UEPFFF(m n, a) be the multiprocessor utilization bound
for EDF scheduling and FF allocation on n processors of sets of m tasks
with utilization factors less than or equal to a. It follows that

UchF‘FF(q,n,oz)szCDF'FF(m,n,a) forqg<m

Proof. Let us consider a task set made up of ¢ tasks which does not
fit into the multiprocessor. If we add (m — ¢) tasks of utilization factors
e — 0T at the end of this task set, nor does the resulting task set fit
into n processors. Therefore, the utilization bound for g tasks and n
processors can not be lower than the utilization bound for m tasks and
T Processors. O

Next, we prove an expression which relates the utilization bound
of multiprocessors with n and (n — 1) processors. This will allow us
to obtain a lower limit on the multiprocessor utilization bound, going
from the case n = 1 (uniprocessor case) to a general multiprocessor
case with an arbitrary n.

THEOREM 5. If m > (Bn then

UEPFFE (o) > o + UEPEEE (1 _ 30— 1,0)
B+1
Proof. We will prove that any set of m tasks {71,...,7,}, with
utilization factors 0 < u; < « for all ¢ = 1,...,m, and total utilization
less than or equal to
b + UEPFIY (1 _ 3 —1,0)
/3 + 1 wcC

fits into n processors using EDF scheduling on each processor and FF
allocation.
There are two possible cases:

Case 1: The first (m — [3) tasks have utilization factors less than or
equal to UEPY T (m — 3 n — 1, a), that is, Z;i_lﬁ u; < UEPF-FF(m —
B,n — 1,«). In this case, the whole set of m tasks always fits into n
processors, because the first (m — [3) tasks fit into the first (n — 1)

2003_rts.tex; 23/09/2003; 10:02; p.14

15

EDF-FF
Use (m—08,n—-1,a) A
Uk,1
1 .. Tk—1 Tk Tk+1 .o Tm_ﬁ .o Tm
Ul Uk—1 U, Uk+1 Um—p U,
k—1 m
i=1 i=k
m—
PR
i=1

Figure 2. General situation of case 2 of Theorem 5.

processors (since its utilization is below the bound), and the remaining
0 tasks fit into the last processor, since the definition of 8 implies that
at least 3 tasks always fit into one processor.

Case 2: The first (m — () tasks have a total utilization greater than
UEDFEY (4 — 3/n—1,), that is, ZZ}B u; > UEPF Y (i 3 n—1,a).
In this case, we will prove that the whole set of m tasks still fits into n
processors if the total utilization is equal to UEPT-FF (m—p n—1,a)+A,
provided A < 3/(6 + 1).

A task 7, must exist, whose u; added to the previous utilizations
u;, causes the bound UVI;J(PF‘FF(m — fB,n — 1,a) to be exceeded. This
situation is depicted in Figure 2, which is a graphical representation of
the utilization factors of each task and the relationships between several
quantities and summations used throughout this proof. The value of k
is obtained as the integer which fulfills:

k

k—1
Zui < UEPEFF(Gn 3 n—1,0) < Zuz
i=1 i=1

Note that k£ < m — 3, because if £k > m — 8 we would be dealing with
Case 1.

Let us show that the first (k — 1) tasks fit into the first (n — 1)
processors. The total utilization of the first (k — 1) tasks fulfills

k—1
> s < UEPFFT (5.0~ 1,0)
=1

2003_rts.tex; 23/09/2003; 10:02; p.15

16
Applying Lemma 1 with (m — 3) > (k — 1), we get
UEPFTE (1 3n —1,a) < UEPFFF(k —1,n — 1,0)

and thus
k—1

Z u; < UEPFFE (L _1n—1,0)
i=1
Therefore, the first (k — 1) tasks fit into the first (n — 1) processors. We
have only to prove that the remaining (m — k+ 1) tasks fit into the last
Processor.
The worst situation in terms of schedulability appears when all the
tasks 7 in {7y,..., 7} fulfill u; > uy 1, where

k—1
Uk 1 = UEPYYE (0 B n—1,0) —Zui
i=1

as shown in Figure 2. Note that if there is a task 7; in {7%,..., 7}
with u; < w1, we can always allocate this task to the first (n — 1)
processors (since the addition of this new task does not cause the total
utilization to exceed the bound), and the situation is analogous to the
current one, with k£ one unit greater. This reasoning can be repeated
until no task 7; with u; < g exists among the last (m — k + 1) tasks.

In order to prove that the last (m — k + 1) tasks fit into the last
processor we have to prove that the total utilization of these tasks is
not greater than one, that is,

m
1=k

Figure 2 shows that
m
Z Ui = Ug,1 + A (9)
i=k
As already stated, all the utilization factors u; in this summation are
greater than wuy 1, so

(m—k+Dugy <ugyg+A

< ugy + % by the definition of A
and we can find wuy, ;.
p
S 1
UL S T h) 1o

2003_rts.tex; 23/09/2003; 10:02; p.16

17

Substituting the value of uj; from (10) into (9) we obtain

i=k

B+ 1)(m —k)
p p
<(B+1)(m—k‘)+(ﬂ—|—1) by def. of A
(m—k+1)f
(B+1)(m — k)
_14+1/(m—k)
- 1+1/8

We know that k < m — 3 in case 2, so m — k > 3. Therefore,

m
Zui <1
i=k

This equation shows that the last (m — k 4+ 1) tasks meet the EDF
uniprocessor schedulability condition, so they fit into the last processor.

We have proved that any task set with m tasks and a total utilization

UVIE(PF'FF(m —Bn—1a)+A<

g

[JEDF-FF (. 1
wceC (m /B’n ?a) + ﬁ‘{_l

fits into n processors. Therefore, the utilization bound UEPYFF (m n, a),
must be greater than or equal to UEPYYF (m — 3 n—1,0)+6/(8+1),

and the theorem is proved. O

Theorem 5 is also valid for BF allocation. Nevertheless, proving
the statement “the worst situation in terms of schedulability appears
when all the tasks 7; in {7,..., 7} fulfill u; > ug1”, requires some
elaboration for BF allocation and is not shown for the sake of brevity.

The utilization bound for FF allocation is obtained in Theorem 6.

THEOREM 6. If m > (n then

EDF-FF pn+1
= 11

Proof. First, we obtain a lower limit on the utilization bound for a set
of m tasks on a multiprocessor with n processors, using FF allocation.

2003_rts.tex; 23/09/2003; 10:02; p.17

18

Theorem 5 relates the utilization bound of sets of m tasks on mul-
tiprocessors of n processors, with utilization bound of sets of (m — [3)
tasks on multiprocessors with (n — 1) processors.

Uy (mon,0) =

p EDF-FF (12)
m—i—UWC (m—ﬁ,n—l,a)

Theorem 5 also relates the utilization bound of sets of (m — [3) tasks

on multiprocessors of (n — 1) processors, with the utilization bound of

sets of (m — 2/3) tasks on multiprocessors of (n — 2) processors.

UEPFFE (1 — Bon — 1,a) >

13
#%+a%”ﬂm—mm—z@ 13)
Substituting (13) into (12) we get
2

This procedure can be repeated, until finally relating the utilization
bound of sets of m tasks on multiprocessors of n processors, with the
utilization bound of sets of (m — (n — 1)) tasks on a uniprocessor.

e GO

(n—1)p
B+1

The utilization bound for (m — (n — 1)) tasks and one processor is
one, which does not depend on the values of m or a.

UVIE(PF'FF(m —(n—-1p,1,a) =1 (15)

FURDPF ()8 1,a)

Substituting (15) into (14), we obtain a lower limit on the utilization
bound of m tasks on n processors.

UEDFTF (1, n,) > 211
B+1
Theorem 2 proved that
1
UEDF-RA (1,) < T
B+1
and FF is a reasonable allocation algorithm. Hence,
+1
{JEDF-FF _ pn
wceC (m7 n’ a) ﬁ + 1

2003_rts.tex; 23/09/2003; 10:02; p.18

19

From this expression we observe that UEPT-FF does not depend on the
number of tasks, m, so our final conclusion is that

+1
[7EDF-FF _ [7EDF-FF _ pn
wcC wC (n’ a) B _|_ 1

4.4. OTHER ALLOCATION ALGORITHMS

In this section we consider optimal allocation algorithms and the heuris-
tics First Fit Increasing (FFI), Best Fit Increasing (BFI) and Worst Fit
Increasing (WFTI).

An optimal allocation algorithm (OPT) is one able to allocate any
task set whenever a feasible allocation exists.

The heuristics FFI, BFI and WFI are variants of the heuristics FF,
BF and WF respectively. They order the tasks by increasing utilization
factors before carrying out the allocation. Therefore, the task with the
lowest utilization factor (the lowest “size”) is allocated first.

The utilization bound for an optimal allocation algorithm coincides
with Hgpr, so it also coincides with the utilization bound for FF, BF
and RAD allocation. Therefore,

1
L

The utilization bound for WFT allocation coincides with that of WF
allocation. The task set defined in Theorem 3, in Section 4.1, was made
up of tasks ordered by increasing utilization factors and the task set
was proved not to fit into the multiprocessor using WF allocation.
Therefore,

UEPE-WEL(, o) = UEPEWE(5 o) =n — (n — 1)«

Let us calculate now the utilization bound for FFI allocation. For
any task set that can not be allocated using FFT allocation, there is an-
other task set with the same total utilization that can not be allocated
using FF allocation. This last task set can be obtained by ordering the
tasks of the first task set by increasing utilization factors. Therefore,
the utilization bound for FF allocation can not be higher than the
utilization bound for FFI allocation, i.e, UEPF-FFL > yEDF-FE Qi co
the utilization bound for FF allocation coincides with the maximum
utilization bound, Hgpp, it follows that

_ pn+1

EDF-FFI EDF-FF
Uwc (nv a) - Uwc (n7 a) B+l

2003_rts.tex; 23/09/2003; 10:02; p.19

20

Applying a similar reasoning for BFI allocation,

_ pn+1

P 0,0) = UEPFPF () = L

5. Analysis of the theoretical results

All the utilization bounds for multiprocessor EDF scheduling presented
in the previous section fall into two categories:

— The utilization bounds for WF and WFI coincide with the mini-
mum utilization bound, given by

Lgpr(n,a) =n—(n—1Da=n(l—a) +«
— The utilization bounds for FF, BF, FFI, BFI and the class RAD
coincide with the maximum utilization bound, given by

On+1
B+1

Hgpr(n, o) =

Therefore, we will analyze only the expressions of Lgpr and Hgpr.

Figure 3 depicts the function Lgpr(n, «) as a function of the number
of processors, for different values of a. Although n is an integer, it
is represented as a continuous function with the aim of improving its
visualization. The representation is normalized by dividing Lrpr by the
number of processors, in order to show the average degree of utilization
of the processors.

Lgpr(l,a) = 1, which corresponds to the bound for uniprocessor
EDF scheduling. Every time we add a new processor to the system, the
utilization bound is increased by (1 — «).

For high values of «, the utilization bound Lgpg is too small to
be practical. It is close to 1.0, so Lgpr/n nears 0, for any number of
processors. However, as a nears 0, the utilization bound Lypr becomes
close to n, so Lgpr/n nears 1.0. In this case, the multiprocessor behaves
approximately like a uniprocessor n times faster.

Figure 4 depicts the function Hgpr(n, @) as a function of the number
of processors for different values of a. Although n is an integer, it is
again represented as a continuous function to improve its visualization.
The representation is normalized by dividing Hgpg by the number of
processors. Each curve in Figure 4 corresponds to a different value of
G, and therefore to different values of a.

2003_rts.tex; 23/09/2003; 10:02; p.20

Legpr(n,a)

Figure 8. Plot of Lepr(n,).

Hgpr(n,o)

Figure 4. Plot of Hepr(n, a).

21

1 a0
0.75 — a=0.25
0.5 — a=0.5
0.95 — a=0.75

a=1
0 | | | | |
1 5 10 15 20 25
Number of processors (n)
1 a0
0.09 <« <0.10
0.75 — 0.25 <a<0.33
0.33 < a <0.50
0.5 0.50 < o < 1.00
0.25 —
0 T T 1
1 10 15 20 25

Number of processors (n)

2003_rts.tex; 23/09/2003;

10:02; p.21

22

Hgpr(1l,«) = 1, which corresponds to the bound for uniprocessor
EDF scheduling. Every time we add a new processor to the system, the
utilization bound is increased by /(5 + 1).

For o > 0.5, the utilization bound Hgpr is equal to 0.5(n + 1). As
a nears 0, the utilization bound Hgpr becomes close to n and Hgpr/n
close to 1.0. In this case, the multiprocessor behaves approximately like
a uniprocessor n times faster.

For example, the utilization bound associated with multiprocessor
EDF scheduling and FF allocation in a multiprocessor made up of two
processors is 1.5, i.e, 0.75 per processor. If the tasks have utilization
factors less than or equal to 0.25, then 3 = 4. In this case, the utilization
bound for FF allocation takes the value 1.8, i.e, 0.9 per processor, close
to the ideal 1.0 per processor.

Finally, it should be pointed out that the performance of any alloca-
tion algorithm is not defined only by its utilization bound. Utilization
bounds consider only the worst-case. For example, any optimal allo-
cation algorithm has the same EDF multiprocessor utilization bound
as FFD allocation. However, optimal allocation algorithms are able to
allocate task sets which can not be allocated using FFD allocation.

6. Task model extensions

All the results concerning multiprocessor utilization bounds provided in
Section 4 were obtained using a basic task model, made up of periodic
and independent tasks of deadlines equal to periods.

The objective of this section is to provide utilization bounds for
more complex task sets. In some cases, the utilization bounds will be
tight and in other pessimistic.

Each of the following subsections introduces a different extension
with regard to the basic task model. In any case, the results of all the
subsections may be merged to cover simultaneously all the extensions.

6.1. ARBITRARY DEADLINES

The multiprocessor utilization bounds for EDF scheduling provided
in Section 4 are valid even when some deadlines are higher than the
periods. The multiprocessor EDF utilization bounds depend on the
uniprocessor EDF utilization bounds, which are 1.0 for deadlines equal
to periods and for deadlines higher than the periods.

Let us consider the case of deadlines less than the periods. Assuming
that D; = AT; for all the tasks, with A < 1, the new utilization bound

2003_rts.tex; 23/09/2003; 10:02; p.22

23

for EDF uniprocessor scheduling becomes
[JEDF _ A

Any task set I' with utilization factors {ui,...,u,} and deadlines
{ATy,...,AT,,} fits into the multiprocessor, if and only if, the task set
I with utilization factors {u1 /A, ..., u,,/A} and deadlines {17, ..., T, }
fits into the multiprocessor. The proof is simple: the capacity of the
processor for the task set I' is 1, i.e, (1/A) times higher than the
capacity for task set I', but the utilization factors of I are also (1/A)
times greater than those of I'.

The multiprocessor utilization bound coincides with the total uti-
lization of the worst-case task set (minus an €), the worst-case task set
being the one with the lowest utilization among those which do not fit
into the multiprocessor. Therefore, the worst-case task set for A < 1
can be obtained by multiplying the utilization factors of the worst-
case task set for A = 1 by the term A. Thus, the utilization bounds
for A < 1 are obtained by multiplying the utilization bounds of the
previous sections by A.

To sum up, the utilization bounds for the case A < 1 can be obtained
following these steps:

1. Transform the original task set, I', with A < 1, into a new task set,
I/, with A = 1, by multiplying the utilization factors and deadlines
by (1/A). Therefore, it follows that o/ = a/A, where o/ is the
maximum reachable utilization factor of IV, and ' = |[1/d/| =
|A/a|. Note that if 3 is zero, IV may have tasks with utilization
factors greater than 1, and the task set is not schedulable.

2. Calculate the multiprocessor utilization bounds using 3’ instead of

3.

3. Multiply the utilization bound obtained for IV by A to obtain the
utilization bound for the original task set, I'.

For example, the multiprocessor utilization bound for FF allocation
and A = 0.5 becomes 0.5(6'n+1)/(8" + 1), with 3’ = 0.5/«

The condition D; = AT; is not common in practice. However, the
multiprocessor utilization bounds assuming this condition give us in-
sight into the schedulability variations against deadlines.

The same technique could be applied to any uniprocessor schedul-
ing algorithm providing a fixed uniprocessor utilization bound. For
example, a pessimistic (but close to the tight) utilization bound for
uniprocessor RM scheduling is In 2. Therefore, a pessimistic (but close
to the tight) multiprocessor utilization bound for RM scheduling and
FF allocation is In2(8'n+1)/(3' + 1), with 5/ = [In2/«].

2003_rts.tex; 23/09/2003; 10:02; p.23

24

6.2. RELEASE JITTER

The basic task model assume that the interarrival times of periodic
tasks are strictly constant, equal to the periods. However, it is common
to find some delay in the release times of the tasks called jitter (Tindell
and Clark, 1994). Jitter is a source of unpredictability, which should
be bounded in some way. Frequently, a maximum jitter J; is associated
to each task 7;. Therefore, if a job of a periodic task 7; is theoretically
released at time)\; ;, in practice the release time may be any instant in
[)\m’, Aij + Jil.

The jitter effect on the EDF uniprocessor bound can be taken into
account in a simple way if we admit some pessimism. If we artifi-
cially increase the computation time of all the tasks by their jitters,
the schedulability of the resulting task set (without jitter) implies the
schedulability of the original task set (with jitter). The proof is not
included for the sake of brevity.

Therefore, the multiprocessor utilization bounds for EDF scheduling
of periodic tasks without jitter are totally valid for task sets with jitter,
increasing the computation times of the tasks by their jitters.

Obviously this produces some pessimism, acceptable for low values
of jitter.

6.3. CONTEXT SWITCHES

The cost of context switches should be accounted for in any realistic
schedulability analysis. In the worst case, each time a job is released or
completed, a context switch may occur. Therefore, the cost of context
switches can be easily included in the analysis by adding the compu-
tational cost of performing two context switches to the computation
time of all the tasks. Since the computational cost of context switches
is usually much lower than the computation times of the tasks, the
pessimism introduced into the analysis is usually tolerable.

Therefore, multiprocessor utilization bounds are valid by simply
increasing the computation times of the tasks by twice the cost of a
context switch.

6.4. APERIODIC TASKS

Aperiodic tasks are characterized by soft deadlines and unpredictable
interarrival times. The objectives of systems running periodic and ape-
riodic tasks together is to reduce the average response time of aperiodic
tasks without jeopardizing the schedulability of periodic tasks.

2003_rts.tex; 23/09/2003; 10:02; p.24

25

In order to meet these objectives, aperiodic tasks are scheduled using
aperiodic servers (Buttazzo, 1997; Bernat and Burns, 1999). Depending
on the aperiodic server, the interference with periodic tasks is different.

Those aperiodic servers that interfere on periodic tasks strictly like
an equivalent periodic task, allow us to apply the utilization bounds
provided in Section 4. We need only substitute the aperiodic servers by
their equivalent periodic tasks and ignore the aperiodic tasks. Examples
of these servers can be found in Buttazzo (1997).

Sporadic tasks are a special case of aperiodic tasks with interarrival
times bounded by a minimum value, and they are usually characterized
by hard deadlines. In the worst case, any sporadic task behaves like a
periodic task of period equal to its minimum interarrival time. Thus,
assuming some pessimism, the multiprocessor utilization bounds for
task sets including sporadic tasks are identical to those provided for
periodic task sets.

6.5. SHARED RESOURCES

The basic task model assumes independent tasks. However, tasks be-
come dependent when they communicate through shared resources, like
shared memory areas.

Access to shared resources is controlled by protocols that avoid data
inconsistencies and limit the blocking time. One of these protocols for
uniprocessors is the Stack Resource Protocol (SRP). Assuming some
pessimism, the uniprocessor schedulability of a task set using EDF and
this protocol can be tested by increasing the total utilization by the
term max,, (B;/T;), where B; is the maximum blocking time of task
7; (Baker, 1991).

S i+ max(By/Ty) < 1 (16)

We will assume that all the processors use EDF scheduling and the
SRP protocol to access any shared resource. All the tasks linked each
other by shared resources make what we call a macrotask. In order
to clarify the concepts of dependency and macrotask, we will refer to
Figure 5. Tasks 71, 75 and 73 share a resource. In addition, task 74 shares
another resource with 73. These four tasks are dependent (directly or
indirectly) and make macrotask ;. Task 75 makes macrotask ~y,. Tasks
76 and 77 share a resource and make macrotask 3. Note that all the
macrotasks are independent.

The utilization bounds for tasks, obtained in Section 4, can be ap-
plied to macrotasks. A set of m dependent tasks {7;} is transformed
into a set of m independent macrotasks {7} of utilization factors iy,

2003_rts.tex; 23/09/2003; 10:02; p.25

26

Figure 5. Concepts of dependency and macrotask.

given by equation (17).
Uy = Z uz—l—meax()T;) (17)

Ti€Vk

B! is the maximum blocking time of 7; assuming that all the tasks in
the system were allocated to the same processor. If B; is the maximum
blocking time of 7; considering only the tasks allocated to the same
processor as 7;, it follows B; < B{. This is because adding more tasks
increases the number of possible blockings.

We have transformed a set of dependent tasks into a set of inde-
pendent macrotasks. The schedulability of the macrotask set on the
multiprocessor implies the schedulability of the task set on the multi-
processor. Next we present a proof of this claim.

THEOREM 7. If a macrotask set {y} can be allocated to a multipro-
cessor using a given allocation algorithm, the task set {7;}, from which
the macrotask set was derived, can also be allocated using the same
allocation algorithm.

Proof. If a macrotask set is schedulable, the m macrotasks of utiliza-
tion factors {d1,..., %0} can be allocated to the multiprocessor. Let
us consider any processor P; in the multiprocessor, which receives 1
macrotasks. It follows that kazj 1 U < 1. Therefore, from equation (17)
we get

Z Z U + maX(Bl/T;) <1
k=1Ti€Yk T €Yk
The previous equation is equlvalent to
m;

Z u; + Hleax(Bg/Ti) <1 (18)
TiEPj k=1 =Tk

2003_rts.tex; 23/09/2003; 10:02; p.26

27

Table I. Example of dependent task set.

ERERERE RIS

| i |0.1|042|042|041|0.4|041|0.2|

| BIT:

0.05 | 0.03 | 0.02 | 0 | 0 | 0.1 | 0.03 |

Since B} > B;, it follows that

max(B;/T;) > max(B;/T) (19)
In addition,
]
B;/T;) > B!//T; 9
k:1¥2§i(z/ J —-iﬁ%%(z/ Z) (O)

Thus, from equations (18), (19) and (20), we finally conclude

E u; + max(B;/T;) <1
TiEPj
T¢€Pj

i.e, equation (16) is fulfilled and the set of tasks making up the macro-
tasks allocated to processor P; fits into P;. O

For example, let us consider the set of periodic and dependent tasks
of Figure 5, which are defined by the parameters of Table I.

We want to know if the task set is schedulable on a multiprocessor
made up of two processors using EDF scheduling and FF allocation.

There are three macrotasks, of utilization factors w1, us and us.

41 =0.1+0.2+0.2+4 0.1 + max{0.05,0.03,0.02} = 0.65
to = 0.4 + max{0} =04
i3 = 0.1 + 0.2 + max{0.1,0.03} = 0.4

Parameter o is set at 0.65, the maximum of 4y, giving 3 = |1/0.65] =
1. The multiprocessor utilization bound is

UEDEFF 5y Bn+1
wcC) ﬁ_"_ 1

Therefore, the task set is schedulable.

The reader should note that the concept of macrotasks allow us
to deal with task that share resources, although it introduces some
pessimism.

= 1.5 > (0.65 + 0.4 + 0.4)

2003_rts.tex; 23/09/2003; 10:02; p.27

28
6.6. NON-PREEMPTIVE SECTIONS

The system model presented in Section 2 assumes preemption. This
means, if one job of high priority is released while a low priority task
is executing, a context switch happens, moving the low priority job to
the pending queue and executing the high priority job.

Nevertheless, there are situations in which it is necessary to execute
a set of instructions atomically, i.e, without any kind of interruption.
The set of instructions executed atomically is called a non-preemptive
section. The atomic execution can be accomplished by disabling in-
terrupts at the beginning of the non-preemptive section and enabling
interrupts at the end. A non-preemptive section can be part of the
computation of a job and invalidate the previous analysis, since the
response times of the tasks may be higher than expected.

Let us focus on non-preemptive sections included in the computation
of a low priority job, i.e, with a late absolute deadline under EDF.
If the low priority job is executing within its non-preemptive section
and a high priority job is released, the high priority job will suffer
blocking. In the worst case, the blocking will be equal to the length
of the non-preemptive section. The situation is analogous to that of
blocking while accessing protected shared resources. However, there is
a basic difference: any job can be blocked at one non-preemptive section
at most, and no protocol is necessary to enforce this property.

The multiprocessor utilization bounds provided in Section 6.5 can
be applied to the case of non-preemptive sections by increasing the
blocking time B] of each task 7; by the longest non-preemptive section
of all the tasks except 7;. Note that non-preemptive sections in 7; are
not considered, because a task can not block itself.

This approach is pessimistic due to many factors, e.g., in the calcu-
lation of the maximum blocking coming from non-preemptive sections
we are assuming that all the tasks are allocated to the same processor.
However, if non-preemptive sections are short, as in general they should
be, the pessimism introduced in the analysis is tolerable.

6.7. MODE CHANGES

There are situations in which the environment of a real-time system
progresses through well defined states, each state requiring a different
task set. This scenario is called mode changes in the literature (Pedro
and Burns, 1998).

Any mode change divide the timeline into three parts:

— A steady part before the mode change occurs.

— A transient part during the mode change.

2003_rts.tex; 23/09/2003; 10:02; p.28

29

MODE 1 MODE 2
i1 Ty Rem. 7, 74 5t 7
Add T7,7T8
T3 T4 Ts5 —b T3 T4 T5
T6 T8
T1, T2, T3, T4, T5, T6 T1, T3, T4y T5, T7, T8
Rem. 77, 713
Add T6
MODE 3 MODE 1
T Te 1 T6
Add T2
T3 T4 T5 —b T3 T4 T5
T2
T1, T3, T4, T5, Te T1, T2, T3, T4, T, T6

Figure 6. Example of mode changes on multiprocessors.

— A steady part after the mode change.

Independently of the tasks involved in the mode change: old mode
completed, old mode aborted, wholly new, unchanged new tasks or
changed new tasks (Pedro and Burns, 1998); the steady parts before
and after any mode change can be described by a process of removing
and adding tasks. Every time a task is removed it leaves space in one
processor. Every time a new task is added to the system, it should be
allocated to one processor. The rest of the tasks can not migrate to
other processors, since it would require stopping and restarting them
again. Therefore, allocation algorithms such as FFD, which imply task
ordering, can not be applied to dynamic situations such as changes.
Quite the opposite, allocation algorithms such as FF, which do not
require task ordering, can be applied to mode changes.

Figure 6 shows an example of three mode changes on a multiproces-
sor using EDF scheduling and FF allocation. Each task is represented
by a box of width equal to its utilization factor. Free space in each
processor is represented by a shaded area. The reader should observe
that the system starts at Mode 1 with one allocation and ends up at
the same mode with the same tasks, but allocated differently.

2003_rts.tex; 23/09/2003; 10:02; p.29

30

On one hand, independently of the reasonable allocation algorithm
we use, the multiprocessor utilization bound can not be higher than
Lgpr. The process of task removing during a mode change can draw
the system to the worst situation, presented in the proof of Theorem 3
for WF allocation. For example, let us consider a multiprocessor made
up of two identical processors with EDF scheduling. Let us consider an
initial mode defined by four tasks {71, 72, 73,74} of utilization factors
{e,(1—¢€),¢, (1—e)}. These tasks are allocated using FF allocation. Each
processor allocates one task of utilization factor ¢ and another task of
utilization factor (1 — €). Let us assume a mode change consisting of
removing the tasks of utilization factor (1 — €) and adding a new task
of utilization factor (1 — 0.5¢). This last task can not be allocated to
any processor in the new mode. The situation coincides with the worst
situation for WF allocation. The total utilization of the task set in the
new mode is (1 + 1.5¢) which is below the utilization bound 1.5 for FF
allocation on two processors, but not below the utilization bound 1.0
for WF allocation on two processors.

On the other hand, independently of the reasonable allocation al-
gorithm we use, the multiprocessor utilization bound can not be lower
than Lgpr, since the task allocation at any mode could be generated
using a reasonable allocation algorithm.

Therefore, we conclude that the multiprocessor utilization bound
for any reasonable allocation algorithm under mode changes coincides
with Lgpr(n,a) =n — (n — 1)a.

This utilization bound provides a global schedulability condition in-
dependent of the task allocation. If we tried to apply local schedulability
conditions in each processor, such as those based on response times, we
would have to analyze the schedulability for each processor for all the
possible allocations in each mode. For example, Figure 6 shows two
different task allocations for Mode 1. After a second repetition of the
cycle Mode 1—Mode 2—Mode 3—Mode 1, the task allocation for the
final Mode 1 may be different. Since the number of possible allocations
for the same mode may be huge, local schedulability conditions are not
applicable.

Note that the utilization bound for mode changes is only valid in
the steady states, i.e, at times far enough from the instant of the mode
change. Overloads are possible close to the mode change instant (Pedro
and Burns, 1998), so the steady state utilization bound Lgpr can not
be applied. In addition, if there is no restriction on the utilization factor
of the tasks, then a = 1 and the utilization bound is 1.0, too low to be
useful in practice.

2003_rts.tex; 23/09/2003; 10:02; p.30

31

7. Conclusions and future work

The uniprocessor utilization bound for EDF scheduling on uniproces-
sors has been extended to multiprocessors under a partitioning strategy
and arbitrary (reasonable) allocation algorithms. The bound depends
on the number of processors and the “task sizes”, limited by «, but
does not depend on the number of tasks. For the case of tasks with
low utilization factors, the utilization bound is greatly raised, asymp-
totically reaching the ideal value n, when all the utilization factors are
close to zero (a =~ 0).

In general, the calculation of utilization bounds is a problem of im-
portance real-time systems theory. Utilization bounds allow us not only
to perform fast schedulability tests, but also to perform a schedulability
analysis. That is, utilization bounds allow us to establish the influence
of different parameters such as the number of tasks, task size, etc, on the
schedulability of the system by considering the worst-case. Utilization
bounds indicate how far the system is from the ideal situation, in which
the total utilization equals the number of processors in the system.
Furthermore, multiprocessor utilization bounds allow us to perform
global schedulability tests for the whole multiprocessor. This is useful
in complex scenarios, like mode changes.

We have proved that the multiprocessor utilization bound for any
(reasonable) allocation algorithm is in the interval

[1/a]n+1
|1/a) +1

When all the utilization factors near zero, @ =~ 0, and the EDF
multiprocessor utilization bound for any allocation algorithm is n.

The multiprocessor utilization bound for First Fit, First Fit Increas-
ing, Best Fit, Best Fit Increasing and optimal allocation algorithms co-
incide with the maximum. Furthermore, all the (reasonable) allocation
algorithms that order the tasks by decreasing utilization factors before
carrying out the allocation, have a multiprocessor utilization bound
equal to the maximum. This is the case of the allocation algorithms
First Fit Decreasing, Best Fit Decreasing and Worst Fit Decreasing.

The utilization bound for Worst Fit and Worst Fit Increasing allo-
cation coincides with the minimum. When there is no restriction on the
utilization factors of the tasks, then o = 1 and this minimum becomes
1.0 for any number of processors.

All multiprocessor utilization bounds for the basic task model were
extended to deal with complex tasks, including aperiodic tasks, arbi-
trary deadlines, release jitter, mode changes, context switches, non-
preemptive sections and blocking in shared resources.

n—(n—1)a,

2003_rts.tex; 23/09/2003; 10:02; p.31

32

Future work will address the extension of the utilization bounds to
distributed real-time systems through the use of jitter. One of the prob-
lems is the pessimism of the jitter extension provided in Section 6.2,
which is useful for low values of jitter, but too pessimistic for high
values of jitter. In addition, an integral analysis of the communica-
tions network and processors is necessary (Tindell et al., 1994), which
may require obtaining two interrelated utilization bounds, one for the
communications network and another for the processors.

2003_rts.tex; 23/09/2003; 10:02; p.32

33
References

Baker, T.: 1991, ‘Stack-Based scheduling of Real-Time Processes’. Real-Time
Systems 3(1), 301-324.

Bernat, G. and A. Burns: 1999, ‘New Results on Fixed Priority Aperiodic Servers’.
In: Proceedings of the Real-Time Systems Symposium.

Burchard, A., J. Liebeherr, Y. Oh, and S. Son: 1995, ‘New Strategies for Assigning
Real-Time Tasks to Multiprocessor Systems’. IEEE Transactions on Computers
44(12).

Buttazzo, G.: 1997, Hard Real-Time Computing Systems. Predictable Scheduling
Algorithms and Applications, Chapt. 7. Boston/Dordrecht/London: Kluwer
Academic Publishers.

Dall, S. and C. Liu: 1978, ‘On a Real-Time Scheduling Problem’. Operations
Research 6(1), 127-140.

Davari, S. and S. Dhall: 1986a, ‘On a Periodic Real-Time Task Allocation problem’.
In: Annual international Conference on Systems Sciences. pp. 133-141.

Davari, S. and S. Dhall: 1986b, ‘An on Line Algorithm for Real Time Tasks Al-
location’. In: Proceedings of the IEEE Real-Time Systems Symposium. pp.
194-200.

Dertouzos, M. L.: 1974, ‘Control Robotics: The procedural Control of Physical
Processes’. Proceedings of IFIP Congress pp. 807-813.

Dertouzos, M. L. and A. K. Mok: 1989, ‘Multiprocessor On-Line Scheduling of Hard-
Real-Time Tasks’. Transactions on Software Engineering 15(12), 1497-1506.
Garey, M. and D. Johnson: 1979, Computers and Intractability. New York: W.H.

Freman.

Lauzac, S., R. Melhem, and D. Mossé: 1998, ‘An Efficient RMS Admission Con-
trol and its Application to Multiprocessor Scheduling’. In: Proceedings of the
International Parallel Processing Symposium. pp. 511-518.

Liu, C. and J. Layland: 1973, ‘Scheduling Algorithms for Multiprogramming in a
Hard-Real-time Environment’. Journal of the ACM 20(1), 46-61.

Loépez, J., J. Diaz, M. Garcia, and D. Garcia: 2003, ‘Utilization Bounds for
Multiprocessor Rate-Monotonic Scheduling’. Real-Time Systems 24(1), 5-28.
Oh, D. and T. Baker: 1998, ‘Utilization Bounds for N-Processor Rate Monotone
Scheduling with Static Processor Assignment’. Real-Time Systems 15(2), 183—

193.

Oh, Y. and S. Son: 1995, ‘Allocating Fixed-Priority Periodic Tasks on Multiprocessor
Systems’. Real-Time Systems 9(3), 207-239.

Pedro, P. and A. Burns: 1998, ‘Schedulability Changes for Mode Changes in Flexible
Real-Time Systems’. In: Proceedings of the Furomicro Workshop on Real Time
Systems. pp. 172-179.

Séez, S., J. Vila, and A. Crespo: 1998, ‘Using Exact Feasibility Tests for Allocating
Real-Time Tasks in Multiprocessor Systems’. Proceedings of the 10th Euromicro
Workshop on Real-Time Systems pp. 53—60.

Tindell, K., A. Burns, and A. Wellings: 1994, ‘An extendible Approach for Analyzing
Fixed Priority Hard Real-Time Tasks’. Real-Time Systems 6(2), 133-151.

Tindell, K. and J. Clark: 1994, ‘Holistic Schedulability Analysis for Distributed Hard
Real-Time Systems’. Microprocessing and Microprogramming 40, 117-134.

2003_rts.tex; 23/09/2003; 10:02; p.33

