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Abstract Heterosis (or hybrid vigor) is a natural

phenomenon whereby hybrid offspring of genetically

diverse individuals display improved physical and

functional characteristics relative to their parents.

Heterosis has been increasingly applied in crop

production for nearly a century, with the aim of

developing more vigorous, higher yielding and better

performing cultivars. In this review we present and

compare three categories of crop heterosis utilization:

intraspecific heterosis, intersubspecific heterosis and

wide-hybridization heterosis, with particular focus on

polyploid species. Different pollination-control sys-

tems used to breed for heterosis are also comparatively

analyzed. Finally, we highlight problems involved in

heterosis research and crop improvement. We aim to

provide insight into best practices for amplifying

heterosis potential.

Keywords Crop heterosis � Heterosis �
Heterotic group �Wide hybridization �
Polyploidy � Pollination-control systems

Introduction

Heterosis is a natural phenomenon whereby hybrid

offspring from genetically diverse individuals show

increased vigor relative to their parents (Coors and

Pandey 1997; Shull 1948). Heterosis in crop species

can be visualized in terms of increases in growth rate,
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total biomass, stress resistances, seed yield, and

population fitness (Kalloo et al. 2006). Heterosis has

the following specific characteristics: firstly, heterosis

is highly variable; the degree of heterosis varies with

respect to the genetic distance of the parents, their

reproductive mode, the traits investigated (Zhou et al.

2012), the developmental stage of the plants (Grosz-

mann et al. 2013) and the environment. With respect to

environmental variation, biotic and abiotic conditions

shown to affect heterosis include soil-type, topogra-

phy, climate, solar energy, temperature and water

availability (Munaro et al. 2011; Griffing and Zsiros

1971; Langridge 1962; Blum 2013).

Secondly, heterosis is largely universal and can

increase crop yields by 15–50 % depending on crop

type. Many of the major cereal crops as well as

commercial varieties of vegetable and flower crops

are populated using hybrid seeds for increased

agricultural performance (Duvick 1999; Birchler

et al. 2003). The earliest utilization of heterosis

was in maize (Zea mays), followed by beet (Beta

vulgaris), sorghum (Sorghum bicolor), onion (Allium

cepa), eggplant (Solanum melongena), tomato (Sola-

num lycopersicum), peppers (Capsicum), rice (Oryza

sativa), cotton (Gossypium hirsutum), sunflower

(Helianthus annuus) and rapeseed (Brassica napus)

(Melchinger and Gumber 1998). In maize, yield was

increased by 15 % in hybrids relative to the superior

open-pollinated varieties. By the late twentieth

century hybrid maize accounted for 65 % of total

maize cultivation and had contributed to a quadru-

pling of annual maize production (Duvick 1999;

USDA-National Agricultural Statistics Service).

Hybrid rice is grown widely in Asian countries

including China and India, where it is the staple

cereal (Lamkey and Staub 1998). In China, hybrid

rice has a yield advantage of 20–30 % over the best

available inbred rice cultivars, facilitating a 44.1 %

increase in production (Cheng et al. 2007). Hybrid

rapeseed accounts for at least 75 % of the total

planted area in China, one of the biggest global

producers of rapeseed (Fu 2009). Wheat (Triticum

aestivum), as the most important cereal in the world,

expresses 10–25 % heterosis levels (Hoisington

et al. 1999). For grain sorghum, almost half of the

global plantings at the end of the twentieth century

used hybrid stocks, with genetic contributions

accounting for yield gains of 35–40 % in the USA

(Duvick 1999). In addition, hybrid sunflower

accounts for 11.5 million of approximately 16.5

million hectares of sunflower planted globally each

year (Miller and Fick 1997).

Thirdly, increases in heterosis level diminish over

time. On average, genetic gain for yield was gradually

increasing by 1.5–2.0 % per year at the end of last

century, albeit with a lessening of the heterotic

increase (Hoisington et al. 1999). The average yield

gain in rice went from 3.1 % per year in the 1980s to

1.4 % per year in the 1990s and then 0.8 % per year in

the 2000s. Similarly, wheat yield gains were reduced

from 2.9 % per year in the 1980s to 0.9 % in the 1990s

and only 0.4 % in the 2000s (Phillips 2010). In maize,

Duvick (1999) argued that heterosis has not contrib-

uted to crop improvement because it has been

relatively constant for decades. Some studies have

indicated that inbred lines have increased in y2009ield

1.9–3.5 times faster than hybrid lines, most likely

because breeders primarily focus on inbred lines for

enhancing quality traits, disease/pest/stress resistances

(Troyer and Wellin 2009), and shoot architecture and

flowering traits (Tollenaar and Wu 1999; Hammer

et al. ). Therefore, to maximize crop yields, breeders

may focus on increasing heterosis level, improving the

performance of inbred breeding lines, or both. Given

the potential for heterotic gains, it is important that we

understand how best to breed for heterosis. In this

review, we classify heterosis into different categories

according to the genetic distance between parents. We

propose different breeding strategies, based on these

categories and on different pollination-control sys-

tems, to facilitate selection of the optimal system for

maximizing heterotic gain.

Classification and application of crop heterosis

Three categories of heterosis have been defined based

on the genetic distance of parental lines. These are: (1)

intraspecific heterosis, resulting from crosses between

two accessions belonging to the same species, (2)

intersubspecific heterosis, resulting from crosses

between two subspecies, and (3) wide-hybridization

heterosis, resulting from crosses between two individ-

uals of a different species or genus. In certain contexts,

there is a clear positive correlation between the genetic

divergence of the parent lines and heterosis potential,

which is evidenced in subtropical maize (Reif et al.

2003), winter rapeseed (Ali et al. 1995) and wheat
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(Krystkowiak et al. 2009). In other contexts, little or

no such correlation appears to exist, including in

single-crosses of maize (Bernardo 1992), popcorn

maize (Zea mays var. everta) (Munhoz et al. 2009) and

resynthesized B. napus which is artificially created by

crossing the modern diploid Brassica species carrying

the rapeseed constituent ‘A’ and ‘C’ genomes (Girke

et al. 2012). Thus, while genetic diversity is necessary,

it is not sufficient to give rise to heterotic performance

(Kaeppler 2012). Generally speaking, however, the

genetic divergence and the probability of high levels

of heterosis gradually increase from category 1

through 3 (East 1936; Karpechenko 1927; Li and

Yuan 2010; Yuan 2006).

Intraspecific heterosis

Intraspecific heterosis is the favored choice of most

breeders because it can be manipulated easily and

results in lower breeding costs, higher breeding

efficiency and better seed-set (for seed-based crops)

compared with wide-hybridization heterosis (Fig. 1).

To avoid the low levels of heterosis associated with

crossing closely-related lines, crop breeders classify

intra-species parental materials into heterotic groups

based on molecular markers or physically testing

combining ability. Each heterotic group fixes different

alleles, which when combined with allele(s) from the

opposite heterotic pool, can result in higher vigor.

These positive interactions form the base for the

superior performance of the heterotic pattern (Schon

et al. 2010). Reciprocal crossing between these groups

allows evaluation of the hybrid to determine the

optimal combination of parents and establish a heter-

otic pattern and crossing regime (Melchinger and

Gumber 1998).

The establishment of heterotic groups and patterns

in crop species is dependent upon their evolutionary

history and genetic diversity. The earliest and most

successful establishment of heterotic groups and

patterns was in maize, such as Stiff Stalk

(SS) 9 Non-Stiff Stalk (NSS) in the US Corn Belt

and Canada (Tracy and Chandler 2006). For practical

simplicity, accessions of maize are currently classified

into one of two general heterotic groups; A or B

(Dhliwayo et al. 2009). In specific regions, breeders

may also include additional classifications. In temper-

ate Chinese maize germplasm, lines are generally

classified into four to six major heterotic groups,

which have proven useful in hybrid breeding (Lu et al.

2009). Xie et al. (2008) classified 187 commonly used

Chinese maize inbred lines into six subgroups,

including BSSS (American BSSS including the cul-

tivar ‘Reid’), PA (group A germplasm derived from

modern US hybrids in China), PB (group B germplasm

derived from modern US hybrids in China), Lan

(Lancaster Surecrop), LRC (Luda Reb Cob; a Chinese

landrace, plus its derivatives) and SPT (Si-ping-tou,

also a Chinese landrace, plus its derivatives). In

another analysis, 288 Chinese inbred lines were

subdivided into four subgroups: Lancaster, Reid,

SPT and P (introduced from Pioneer hybrids) (Wang

et al. 2008). Using high-throughput SNP genotyping,

Wu et al. (2013b) also divided 367 maize inbred lines

into two main groups: (1) introduced germplasm and

(2) local germplasm, with five subgroups including

Reid, Lancaster, P group, Tang Sipingtou (TSPT), and

Tem-tropic I group. These studies show high consis-

tency in the classification of maize heterotic groups.

Rapeseed has been divided into three heterotic

groups: Asian rapeseed (including rapeseed from

China and Japan), European winter-type rapeseed,

and Canadian and European spring-type rapeseed.

Hybrids obtained from crossing between Asian and

European varieties exhibit stronger heterosis than

hybrids obtained from crosses within the Asian or

European groups (Charcosset et al. 1991; Qian et al.

2009). Crosses between spring rapeseed and Chinese

semi-winter lines show great potential to increase seed

yield (Qian et al. 2007). The cross of resynthesized B.

napus to European winter oilseed rape also creates

higher heterosis (Girke et al. 2012). In all, 86 oilseed

rape cultivars have been divided into four distinct

groups: I (mainly consisting of exotic cultivars), II

(mainly composed of Chinese cultivars), III (mixed

cultivars from China and Europe) and IV (mainly

comprising exotic and newly synthesized yellow

seeded lines) (Younas et al. 2012).

In rice, four heterotic patterns within two heterotic

groups were identified in tropical hybrid rice from the

International Rice Research Institute (IRRI) according

to SSR markers and field trials (Xie et al. 2014).

Heterotic groups of many additional crops have been

classified, including Brazilian popcorn (Miranda et al.

2008), rye (Fischer et al. 2010b) and wheat (Fischer

et al. 2010a; Zhang et al. 2011).

Future research into heterotic patterns and groups is

suggested herein to have three major objectives: (1) to
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enrich the germplasm pool such that new heterotic

groups and patterns can be detected and added to

classical groups to meet breeding requirements; (2) to

develop a simple, more efficient method of identifying

heterotic groups and patterns with the help of molec-

ular breeding tools; (3) to define the genetic interac-

tions and molecular mechanisms involved in heterotic

patterns.

Intersubspecific heterosis

Intersubspecific hybrids display 8–15 % more heter-

otic potential than intraspecific hybrids in rice (Li and

Yuan 2010; Peng et al. 2008). Rice has three

subspecies: indica, japonica and javanica. Superior

heterosis between indica and japonica has been

observed in China and elsewhere, with 30–50 %

higher heterotic gains than that provided by interva-

rietal crosses (Yuan 2006). The indica and japonica

subspecies of cultivated rice are genetically distant

and each has excellent agronomic traits. The first

generation (F1) hybrid between indica and japonica

rice exhibits later maturity, more luxuriance, larger

spikes, more grains, higher tillering ability, a better

root system, stronger stems, resistance to lodging,

stronger regeneration, and higher biomass, than its

parents (Gu 2010; Wei et al. 2013).

Despite the enhanced heterosis of many traits in

intersubspecific crosses, it should also be noted that if

the parents of intraspecific hybrids have higher

adaptability or more favorable genes, intraspecific

hybrids may surpass the heterotic potential of inter-

subspecific hybrids. Furthermore, discordance

between parental genomes can lead to poor trait

performance, for example with respect to seed setting

and seed production, as a result of impaired pairing

between homologous chromosomes during meiosis

(Li and Yuan 2010) (Fig. 1). Low and unstable seed

setting and poor grain plumpness in the

indica 9 japonica F1 has limited the practical appli-

cation of these hybrids (Lapitan et al. 2009; Zhu and

Liao 1990). Though hybrid sterility is a major form of

postzygotic reproductive isolation, it has been possible

to find wide-compatibility genotypes that produce

highly fertile hybrids when crossed to both indica and

japonica. As such it is now possible to enhance

indica 9 japonica hybrid fertility by manipulating a

few allelic interactions at a small number of wide-

compatibility loci (Chen et al. 2011; Ikehashi and

Araki 1986).

The molecular basis for hybrid sterility is a

beginning to be unraveled. The S5 locus of rice is a

major locus controlling indica-japonica hybrid steril-

ity and encodes an aspartic protease involved in

embryo-sac fertility. A large deletion in the N-termi-

nus of the predicted S5 protein generates a wide

compatibility gene variant, S5-n, resulting in the

subcellular mislocalization of the presumably non-

functional protein (Chen et al. 2008; Ouyang et al.

2009). The manipulation of wide-compatibility genes

during hybrid rice breeding in China has resulted in

normal seed setting rates in indica 9 japonica hybrids

(Wei et al. 2013). Now hybrids of indica and japonica

exhibit strong vegetative vigor with a normal rate of

seed setting and grain plumpness (Luan et al. 2007;

Ouyang et al. 2010). As such, more cultivars have been

released and applied in breeding using javanica, or an

intermediate type, as one parental line (Cheng et al.

2007; Zhong et al. 2005).

The indica-japonica hybrid system of rice may act

as a model for intersubspecific hybridization heterosis

of other crops. Future investigations should attempt to

uncover additional genes involved in hybrid sterility,

clarify the underlying molecular mechanisms and

Fig. 1 Classification and

characteristics of heterosis

utilization
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utilize these findings to develop more inter-subspecific

hybrids to increase productivity (Ouyang et al. 2009).

Heterosis from wide hybridization

Wide hybridization is defined as a cross between two

individuals of at least species-level divergence.

Examples include Brassica oleracea (cabbage/cauli-

flower) 9 B. rapa (Chinese cabbage), B. olera-

cea 9 Raphanus sativus (radish), Zea mays

(maize) 9 Oryza sativa (rice) and Secale spp. (e.g.

rye) 9 Triticum spp. (e.g. wheat). With respect to

wide hybridization, as long as geographical and

reproductive isolation exists between species, strong

hybrid vigor is observed, but similarly to intersub-

specific crosses, poor seed setting and genetic insta-

bility often occur.

Wide hybridization in vegetable crops is aimed

directly at increasing vegetative growth, or biomass.

For example, interspecific hybrids between B. napus

and the less cultivated B. campestris display a mid-

parent heterosis (MPH; difference between the hybrid

and mean of the parents) of 35.6 % for biomass and

72.4 % for branch number (Wang et al. 2003). In

another study, hybrids between B. napus and B.

campestris or B. rapa showed approximately 34 %

MPH for biomass production (Liu et al. 2002). Strong

hybrid vigor was also achieved between the cultivated

tetraploid cotton species Gossypium hirsutum and

Gossypium barbadense (Basbag and Gencer 2007),

which has been applied to cotton breeding in Xinjiang

province, China.

One breeding strategy that utilizes wide hybridiza-

tion involves finding methods to introgress an alien

species’ DNA into a genotype of another species to

produce a novel, fertile accession with a normal

chromosome number. Subsequent hybridization

between this introgressed accession and natural

accessions of the same species often give rise to

stronger heterosis. For example, a hybrid between

natural B. napus (amphidiploid genome AACC) and

re-synthesized B. napus that carries genomic compo-

nents from B. rapa (diploid AA) and B. carinata

(amphidiploid BBCC) can exhibit stronger heterosis

than an intraspecific natural B. napus hybrid (Qian

et al. 2005). Resynthesized allotetraploid B. napus

derived from a cross between B. oleracea (CC

genome) and B. rapa was recently evaluated as a

diverse B. napus germplasm for hybrid breeding

(Girke et al. 2012). While these resynthesized lines

are not competitive with current elite cultivars for

yield traits, hybrids between these lines exhibited

heterosis for yield and seed oil content (Girke et al.

2012). However, genomic instability and unsustain-

able phenotypic variation may impede the application

of this type of heterosis.

Triticale, a polyploid hybrid of both rye (Secale

spp.) and wheat (Triticum spp.), exhibits heterosis for

grain yield in the range of 20 % above the MPH

(Oettler et al. 2001). Triticale is widely planted

globally, with 15 million tons produced from 29

countries in 2009 (FAO Statistics Division 2010,

http://faostat3.fao.org/). However, this hybrid also

displays shrunken grains, late maturity and lodging in

fertile soil. Furthermore, the stable reproduction of

such tetraploid hybrids can be difficult due to meoitic

abnormalities.

Overall, the gradual increase in genetic distance

between parents, from intervarietal to intersubspecific

crosses to wide-hybridization, enhances heterosis

potential yet remains confounded by decreased seed

setting and decreased genetic and phenotypic stability.

Specifics of heterosis in polyploid species

Heterosis in polyploids can be more complex than in

diploids and requires specific considerations and

applications (Washburn and Birchler 2013). Polyp-

loids are classified into autopolyploids, containing

multiple chromosome sets derived from the same

species, and allopolyploids, comprising chromosome

sets derived from different species. Progressive heter-

osis refers to a specific phenomenon in polyploid

plants whereby the magnitude of heterosis is maxi-

mized by the diverse genomes in the polyploids.

Progressive heterosis is not observed for every trait in

polyploid species, suggesting that traits manifesting

progressive heterosis are independently controlled and

thus can only be exploited trait-specifically.

Heterosis in autopolyploids

In contrast to their diploid ancestral species, autopo-

lyploids have been shown to have increased cell size

and concentration of secondary metabolites (Lavania

et al. 2012), higher seed germination (Hoya et al. 2007),

higher genetic diversity (Wu et al. 2013a) and
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developmental differences (including slower growth

rate, later flowering, reduced tassel branches, decreased

stature and fertility) (Abel and Becker 2007; Yao et al.

2011). Variation of these traits may be exploited in

breeding programs by making use of autopolyploid F1

hybrids derived from either crossing autoployploids or

the hybridization of two diploid progenitors followed

by chromosome doubling. Such autopolyploid F1

hybrids can combine the advantages of intra-species

crosses with the manifestation of heterosis.

At present, however, autopolyploid F1 hybrids

often exhibit genome instabilities, regulatory incom-

patibilities, complex pairing patterns, polysomic

inheritance, abnormal chromosome segregation and

aneuploidy (Carvalho et al. 2010; Wei and Zhang

2010), hindering the application of seed-reproduced

F1 hybrid autopolyploids. Nonetheless, autopolyploid

F1 hybrids may be utilized in vegetatively propagated

crops, such as sugarcane (Saccharum spp.) (Grivet

et al. 1996), autotetraploid cultivated alfalfa (Medi-

cago sativa) (Havananda et al. 2011) and potato

(Solanum tuberosum) (Pendinen et al. 2012). Further-

more, the genome stability of autopolyploid F1 hybrids

can be genetically manipulated, with ability to select

for autopolyploid lines with higher fertility. In the

model species Arabidopsis thaliana, neo-tetraploid

lines display great stability over at least three consec-

utive generations (Yu et al. 2009b).

In autotetraploids, homozygous tetraploid lines

(AAAA, BBBB, CCCC and DDDD) are mutually

crossed to generate single cross hybrids (AABB and

CCDD), which are reciprocally crossed to give rise to a

double cross hybrid (ABCD). This combination of the

four different parental genomes exhibits greater heter-

osis than single cross hybrids (Groose et al. 1989;

Levings et al. 1967; Mok and Peloquin 1975; Riddle

and Birchler 2008). This progressive heterosis in

autotetraploids has been observed for heterosis of

forage yield and seed number per flower in alfalfa

(Medicago sativa) (Groose et al. 1989; Bingham et al.

1994), tuber yield in potato (Solanum tuberosum) (Mok

and Peloquin 1975) and the time to silk emergence,

flowering time, plant height, and ear length in maize

(Randolph 1942; Levings et al. 1967; Chase 1980;

Sockness and Dudley 1989; Riddle and Birchler 2008).

In rice, autotetraploid hybrids between the two subspe-

cies indica and japonica can be obtained using

tetraploidized parent lines followed by intensive selec-

tion, generating higher heterosis (Tu et al. 2007).T
a

b
le

1
co

n
ti

n
u

ed

A
rt

ifi
ci

al

em
as

cu
la

ti
o

n

R
es

id
u

al
h

et
er

o
si

s

o
f

F
2

C
y

to
p

la
sm

ic
m

al
e

st
er

il
it

y

E
n

v
ir

o
n

m
en

t-

d
ep

en
d

en
t

m
al

e

st
er

il
it

y

N
u

cl
ea

r-
en

co
d

ed

m
al

e
st

er
il

it
y

C
h

em
ic

al

em
as

cu
la

ti
o

n

T
ra

n
sg

en
ic

te
ch

n
o

lo
g

y

S
el

f-

in
co

m
p

at
ib

il
it

y

(S
I)

R
el

ev
an

t
re

se
ar

ch
to

p
ic

s

O
p

ti
m

al
p

la
n

ti
n

g

p
at

te
rn

fo
r

m
ec

h
an

iz
at

io
n

M
ec

h
an

is
m

o
f

in
b

re
ed

in
g

re
p

re
ss

io
n

C
lo

n
in

g
an

d

ch
ar

ac
te

ri
zi

n
g

st
er

il
it

y
g

en
es

;

m
ec

h
an

is
m

o
f

st
er

il
it

y

re
st

o
ra

ti
o

n

C
lo

n
in

g
an

d

ch
ar

ac
te

ri
zi

n
g

st
er

il
it

y
g

en
es

;

m
ec

h
an

is
m

o
f

st
er

il
it

y
tr

an
si

ti
o

n

C
lo

n
in

g
an

d

ch
ar

ac
te

ri
zi

n
g

st
er

il
it

y
g

en
es

B
io

ch
em

is
tr

y
o

f

re
ag

en
t

ac
ti

v
it

y
,

b
as

is
o

f
g

en
o

ty
p

e

an
d

en
v

ir
o

n
m

en
t

se
n

si
ti

v
it

y

T
ra

n
sg

en
ic

te
ch

n
o

lo
g

ie
s

an
d

ef
fi

ci
en

cy
,

tr
ai

t

an
d

st
er

il
it

y
g

en
e

an
al

y
si

s

M
ec

h
an

is
m

an
d

g
en

et
ic

s
o

f
se

lf
-

in
co

m
p

at
ib

il
it

y

(1
)

N
o

n
-g

en
et

ic
sy

st
em

s,
in

cl
u

d
in

g
ar

ti
fi

ci
al

ca
st

ra
ti

o
n

(S
m

it
h

et
al

.
2

0
0

4
)

an
d

ch
em

ic
al

h
y

b
ri

d
is

in
g

ag
en

ts
(C

H
A

)
(T

u
an

d
B

an
g

a
1

9
9

8
;

G
u

an
et

al
.

2
0

1
2

);
(2

)
b

io
lo

g
ic

al

p
o

ll
in

at
io

n
co

n
tr

o
l

te
ch

n
o

lo
g

ie
s,

in
cl

u
d

in
g

;
th

e
u

ti
li

za
ti

o
n

o
f

F
2

re
si

d
u

al
h

et
er

o
si

s
[e

.g
.
in

ri
ce

(A
la

m
et

al
.
2

0
0

4
)

an
d

u
p

la
n

d
co

tt
o

n
(Y

u
an

et
al

.
2

0
0

1
)]

,
cy

to
p

la
sm

ic
-e

n
co

d
ed

m
al

e

st
er

il
it

y
(C

M
S

)
[e

.g
.

S
-,

C
-

o
r

T
-s

y
st

em
in

m
ai

ze
(V

an
ce

to
v

ic
et

al
.

2
0

1
0

);
P

o
li

m
a-

,
S

h
an

2
A

-
an

d
O

g
u

ra
-C

M
S

sy
st

em
s

in
ra

p
es

ee
d

(F
u

1
9

9
5

);
w

il
d

ab
o

rt
iv

e
(W

A
)-

,
B

T
-

an
d

H
o

n
g

li
an

(H
L

)
C

M
S

sy
st

em
s

in
ri

ce
(Y

u
an

1
9

9
4

)]
,

n
u

cl
ea

r-
en

co
d

ed
m

al
e

st
er

il
it

y
(N

M
S

)
(K

au
l

1
9

8
8

),
se

lf
-i

n
co

m
p

at
ib

il
it

y
(S

I)
[e

.g
.

B
.

n
a

p
u

s,
B

.
o

le
ra

ce
a

an
d

B
.

ra
p

a
(T

o
ch

ig
i

et
al

.
2

0
1

1
;

R
ah

m
an

2
0

0
5

)]
,

en
v

ir
o

n
m

en
t-

se
n

si
ti

v
e

g
en

et
ic

m
al

e
st

er
il

it
y

[i
n

p
ar

ti
cu

la
r

te
m

p
er

at
u

re
-

an
d

p
h

o
to

p
er

io
d

-s
en

si
ti

v
e,

o
r

b
o

th
(K

au
l

1
9

8
8
;

Y
u

an
1

9
9

7
)]

,
an

d
en

g
in

ee
re

d

p
o

ll
in

at
io

n
co

n
tr

o
l

sy
st

em
s.

E
n

g
in

ee
re

d
sy

st
em

s
in

cl
u

d
e;

en
g

in
ee

re
d

C
M

S
sy

st
em

s
(C

h
as

e
an

d
G

ab
ay

-L
au

g
h

n
an

2
0

0
4

;
H

o
rn

2
0

0
6

;
S

ch
n

ab
le

an
d

W
is

e
1

9
9

8
),

en
g

in
ee

re
d

n
u

cl
ea

r-

en
co

d
ed

p
o

ll
in

at
io

n
co

n
tr

o
l

sy
st

em
s,

in
d

u
ci

b
le

p
o

ll
in

at
io

n
co

n
tr

o
l

sy
st

em
s,

an
d

p
o

ll
in

at
io

n
co

n
tr

o
l

b
y

m
et

ab
o

li
c

en
g

in
ee

ri
n

g
(K

em
p

e
an

d
G

il
s

2
0

1
1

;
E

n
g

el
k

e
et

al
.

2
0

1
1

)

168 Euphytica (2014) 197:161–173

123



Overall, continued researches into autopolyploids

will enhance the application of their F1 hybrids in

seed-reproduced crops. In the future, the aim is to

obtain autopolyploid lines (or hybrids) with good

fertility to further develop their potential.

Heterosis in allopolyploids

In contrast to autopolyploids, allopolyploid species are

obtained by interspecific hybridization, which can

generate interspecific heterosis and exhibit relatively

higher genome stability. Allopolyploidization also

enables heterosis fixation due to the ability to select

lines with normal chromosome numbers during selfing.

One of the first reports of progressive heterosis was

demonstrated in the crossing of the different allote-

traploids Nicotiana tabacum (AABB) and N. rustica

(CCDD), resulting in an ABCD hybrid with increased

heterosis relative to intragenus crosses (AABB or

CCDD) (East 1936). Therefore, accumulation of four

different alleles at each locus resulted in greater

heterosis (East 1936). One hypothesis is that the

accumulation of diverse alleles in the F1 may lead to

multiple allelic interactions that facilitate adaptability

towards complex and variable environments. This

may hold true in higher-ploidy and higher-diversity

genome species, such as in hexaploid wheat (Briggle

1963) and octoploid triticale, which is derived from

the cross of wheat and rye (Secale cereale) and

combines four sets of diverse genomes (Goral et al.

2005). This research further demonstrates the potential

of progressive heterosis to maximize the heterosis

level of polyploids.

Heterosis utilization and pollination-control

systems

New, superior cross combinations should have simple,

low-cost, high yielding and stable seed production

techniques. In order to control hybrid production in

many species, floral castration methods are required,

which can be classified into: (1) non-genetic castra-

tion, or, (2) biological pollination control technolo-

gies. Non-genetic castration includes artificial

castration and the use of chemical hybridising agents

(CHA) such as tribenuron-methyl (a sulphonylurea

herbicide) (Yu et al. 2006) and amidosulfuron (Yu

et al. 2009a), both of which have been used to induce

male sterility in rapeseed. Biological pollination

control systems make use of cytoplasmic-encoded

male sterility (CMS) (involving a cytoplasmic genetic

male sterile line, a maintainer line and a restorer line),

nuclear-encoded male sterility (NMS), self-incompat-

ibility (SI), environment-sensitive genetic male steril-

ity, and F2 residual heterosis. F2 residual heterosis

occurs when the yield of the F2 generation in some

hybrids is still likely to be higher than the control

(Lamkey and Edwards 1999). Genetic and metabolic

engineering of such pollination control systems can

also be applied, which may involve manipulation of

CMS, nuclear-encoded pollination control genes and

inducible pollination control genes (Kempe and Gils

2011; Engelke et al. 2011). The characteristics,

advantages, disadvantages and research trends of

different pollination control systems in crops are

summarized in Table 1.

The selection of pollination control technology is

dependent on the species involved. A good pollination

control system takes into consideration species-spe-

cific propagation methods, ploidy, flower size, flow-

ering habits, manpower requirements, economic cost,

mating type (hermaphrodite or dioecism), the presence

or absence of genetic sterility (NMS, CMS and SI), the

fertility and restoration ability of restorer lines,

transformability, the degree of inbreeding depression

(reduced vigor or yield due to inbreeding) and the

sensitivity towards chemical hybridising agents. Gen-

erally, CMS is the preferred choice for pollination

control and is considered first if the sterility and

fertility genes are found in related species, since it

occurs naturally and has higher seed quality control.

NMS also widely occurs in nature and is the second

most popular pollination control system, as breeders

can more easily obtain superior combinations. Envi-

ronment-conditioned CMS and NMS are also widely

applied, however, as the name implies, the seed

production and growth of environment-conditioned

CMS or NMS lines are limited by the regional or

seasonal environment. Environment-conditioned

CMS and NMS thus also have a higher danger of

generating sterile lines in F1 hybrids than other types

of pollination control systems.

Chemical hybridising agents are not restricted to

particular species and do not require the laborious

practise of transferring sterility and fertility genes from

one species/line to another species/line, making it a

promising alternative. Furthermore, these can enable
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breeders to develop hybrids with higher heterosis level

in a shorter time. Genetic engineering for pollination

control also shows promise, particularly in new

species, providing that these are amenable to genetic

transformation and the regulation of genetically-mod-

ified crops can be accepted. Pollination control by

artificial emasculation is mechanically intensive and

difficult to apply in regions where the expense or

limited availability of manpower is prohibitive.

Problems and future directions in hybrid breeding

Some problems remain in hybrid breeding. Firstly, not

every hybrid combination exhibits strong heterosis.

This can occur when few heterotic loci, or low genetic

diversity, exist in parent lines, emphasizing the need to

select diverse lines enriched with heterotic loci.

Additionally, negative heterotic loci may occur simul-

taneously in the F1 generation and must be removed in

subsequent generations without compromising the

degree of positive heterosis. Furthermore, as dis-

cussed, although the degree of heterosis tends to

increase with increasing genetic diversity of the

parents, this also increases the likelihood of meiosis

abnormalities, such as poor chromosome pairing.

Indeed, aberrant chromosomal rearrangements and

transposon activations have been detected following

wide hybridization (Chen and Ni 2006; Nicolas et al.

2007). Hence, the divergence and stability of both

parental and F1 genomes influence seed yield and the

stable inheritance of agronomic traits.

In light of the current problems in our capacity to

utilize heterotic potential, there remains a need to: (1)

identify and manipulate additional wide-compatibility

genes to support stable genome compatibility between

distant species; (2) identify and functionally charac-

terize positive heterotic loci; (3) pyramid wide-

compatibility genes and positive heterotic loci into a

common genetic background; (4) deepen our under-

standing of the mechanisms involved in genomic

structural instability in the F1, and (5) develop high

efficient pollination control technologies on a species-

specific basis.
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