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Abstract 

A recent debate in the literature of Qualitative Comparative Analysis (QCA) concerns the potentials and pitfalls of the 

multi-value variant (mvQCA) in comparison with the more established crisp-set QCA (csQCA) and fuzzy-set QCA 

(fsQCA) variants. So far, the mvQCA methodology has been implemented either algebraically or via specific software 

tools such as TOSMANA. The main goal of this paper is to enhance the mvQCA methodology through the utilization of 

several varieties of Karnaugh maps including (a) the Conventional Karnaugh Map (CKM), (b) the Multi-Valued 

Karnaugh Map (MVKM), and (c) the Variable-Entered Karnaugh Map (VEKM). The paper offers a tutorial exposition 

of each of these maps in terms of two recently-published problems concerning the legal provision (introduction) and 

implementation of party bans in sub-Saharan Africa. Results obtained via various map techniques agree exactly among 

themselves, and are generally more compact than those obtained earlier via elementary algebraic manipulations, or even 

via software tools. We show, by way of example, that coding multi-valued variables by binary ones has a harmful primary 

effect of increasing the input domain. This effect is partially counterbalanced by a (contrarily to common belief) 

beneficial secondary effect of introducing genuine don’t-care configurations. We also address the issue of unresolved 

contradictory configurations, and propose two strategies to cope with them. The maps used tackle seven binary variables 

(or their equivalent), a number beyond the typical map limit of six variables. They are used to produce not only the 

minimal sum of a Boolean function but the complete sum as well. Though this paper is basically intended as a contribution 

to mvQCA methodology, it is also of significant utility in any field that demands the use of the Karnaugh map. It serves 

as a unification/exposition of three fundamental variants of the map, and has a definite pedagogical advantage for the 

wide spectrum of map users. 

 

Keywords- Multi-value qualitative comparative analysis, Conventional Karnaugh map, Multi-valued Karnaugh map, 

Variable-entered Karnaugh map, Prime implicants, Minimal sum, Complete sum. 

 

 

1. Introduction 
The method of Qualitative Comparative Analysis (QCA), introduced by Ragin et al. (1984) and 

Ragin (1987), is now the leading method for detecting non-random systematic patterns and causal 

paths concerning social, political, economic, managerial and engineering phenomena (Jordan et al., 

2011; Kan et al., 2016). This method has branched into several threads and variants. Most 

prominent among these variants is the initial variant, viz., the crisp-set QCA (csQCA), as well as 

the fuzzy-set QCA (fsQCA) and the multi-value QCA (mvQCA). The two variants of csQCA and 

fsQCA seem to be more established than the mvQCA variant. Recently, Vink and van Vliet (2009) 

have raised certain criticisms against mvQCA, which sparked a heated debate (Thiem, 2013; Vink 

and van Vliet, 2013) about the potentials and pitfalls of mvQCA. We join this debate in support 

and defense of mvQCA, showing not only that many of the criticisms against it are not justified, 

but also that some of the arguments in its favor can be enhanced. We argue that the current 

methodologies (Rohlfing, 2012) used for implementing mvQCA, including Boolean-algebraic 

techniques and existing computer codes lack visibility, insight and possibly exactness or optimality. 

To remedy this situation, we suggest the implementation of mvQCA via the Karnaugh-map 
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methodology (Lee, 1978; Muroga, 1979; Fletcher, 1980; Hill and Peterson, 1993; Rushdi, 1997; 

Roth and Kinney, 2014). Note that the variable-handling capability of the Karnaugh map (albeit 

modest) suffices for problems typically encountered in mvQCA (Marx et al., 2014). Moreover, the 

Karnaugh map provides the visual insight necessary for writing and verifying better future 

software. We propose the use of three Karnaugh map variants, namely, (a) the Conventional 

Karnaugh Map (CKM), (b) the Multi-Valued Karnaugh Map (MVKP), and (c) the Variable-

Entered Karnaugh Map. We offer a tutorial exposition of each map variant, discuss some side issues 

including logical remainders and contradictions, and demonstrate the exact equivalence of the three 

map variants. We demonstrate our map variants in terms of two problems recently handled by 

Hartmann and Kemmerzell (2010) via Boolean-algebraic techniques and the TOSMANA code 

(Cronqvist, 2006). These two problems concern the legal provision and implementation of party 

bans in sub-Saharan Africa. We employ the data provided by Hartmann and Kemmerzell (2010), 

provide a visual interpretation, verification and occasionally correction of their results, and obtain 

results that are generally more compact than theirs. 

 

One of the important issues discussed herein is the question of expanding the input space when 

binary variables are used to encode multi-value ones. For each of the two problems considered 

herein, the input domain has three ternary or trinary (three-valued) variables and a single binary 

variable and hence possesses 3*3*3*2 = 54 configurations. When each ternary variable is coded 

by two binary variables, the input domain is expanded to have 7 binary variables and subsequently 

27 = 128 configurations. This expansion in the input domain is the primary consequence of coding 

multi-valued variables by binary variables, which can be viewed as a switching from mvQCA to 

csQCA. Once this expansion takes place, one realizes that the expansion is due to the introduction 

of unused configurations that never happen, and hence can be arbitrarily assigned don’t-care values. 

The use of don’t-cares in the extra input space is a secondary and beneficial effect, rather than a 

primary and harmful one. 

 

We stress that the act of switching from the mvQCA representation to the csQCA one seems a 

matter of taste and convenience. The increase of the input domain from 54 configurations to 128 

ones is inadvertent indeed, but its harm is diluted (rather than aggravated) by having the extra 74 

cells with don’t-care entries. The appearance of these don’t-cares is not a disadvantage (as claimed 

by Thiem (2013)) but is something to welcome as it facilitates the minimization process and 

partially compensates for or counterbalances the inconvenience caused by the larger domain size. 

 

Another issue of concern here is that of contradictions (Marx and Duşa, 2011), which were 

identified by the symbol C* in Tables 3 and 4 of Hartmann and Kemmerzell (2010). These 

contradictions should have been handled or resolved according to the standard guidelines of Rihoux 

and de Meur (2009), but instead were kept unresolved. We will retain the C* symbols in our work 

in an attempt to reproduce the results of Hartmann and Kemmerzell (2010). Moreover, we will 

consider our outcomes to be of three values {0, 1, C*} instead of just two values {0, 1}, and hence 

produce symbolic algebraic expressions that faithfully describe our current state of incomplete 

knowledge, i.e., without resolving contradictions. We do not belittle the importance of 

contradiction resolution. Nor do we suggest our faithful description as a replacement or substitute 

for it. We just offer the best we can do to handle the status quo, instead of keeping idle in 

anticipation of the (might be long-awaited for) resolution of contradictions. In summary, we note 

that when contradictions are resolved the map entries will not include C*s and will consist solely 

of 1’s and 0’s (and, of course, d’s, which are 1’s or 0’s, anyhow). However, we work herein under 

the assumption that contradictions have not yet been resolved, so that the outcome 𝑍 has three 
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values {0, 1, C*} rather than two {0, 1}. Hence, we produce formulas for 𝑍𝑙[1] (representing the 

case when 𝑍  is definitely asserted with all contradictions assumed to take the opposite value of 0, 𝑍𝑙[0]  (representing the case when 𝑍 is definitely negated with all contradictions assumed to take 

the opposite value of 1), and 𝑍[𝐶∗] (representing unresolved contradictory configurations). We 

understand that the formulas 𝑍𝑙[1] and 𝑍𝑙[0] are lower bounds on the true 𝑍[1] and 𝑍[0] (which 

can result only after resolving all contradictions), i.e. 

 𝑍𝑙[1]  ≤  𝑍[1],             (1a) 𝑍𝑙[0]  ≤  𝑍[0].             (1b) 

 

As an alternative (albeit tedious) strategy, we can distinguish contradictory configurations by 

calling them C1*, C2*, C3*, …. and so on. Then we obtain expressions for 𝑍[1] and 𝑍[0] for each 

possible combination of values for these contradictions. 

 

The organization of the rest of this paper is as follows. Section 2 describes the two party-ban 

problems and provides a pertinent list of notation. Section 3 discusses the use of the Conventional 

Karnaugh Map (CKM) in mvQCA from the perspective of the two party-ban problems. Section 4 

utilizes the Multi-Value Karnaugh Map (MVKM) to recover the results of Section 3, while Section 

5 repeats the same using the Variable-Entered Karnaugh Map (VEKM). Section 6 explores utilizing 

the VEKM variant of the map for deriving the complete sum (rather than the minimal sum) of the 

pertinent two-valued Boolean function. Section 7 concludes the paper. 

 
2. List of Notation 
The following list of notation is adapted from Tables 1 and 2 of Hartmann and Kemmerzell (2010). 

The list introduces two output variables  BI and  B2 as well as five input variables C, F, T, R, and V. 

  𝐵𝐼 The introduction (i.e. , legal provision) of party bans in sub-Saharan Africa in a time span 

1990-2007; a binary variable of two complementary values:  𝐵𝐼{0} = ‘The absence of party-ban provisions;’  𝐵𝐼{1} = ‘The presence of party-ban provisions;’ 
The variable  𝐵𝐼 is a function of the four variables 𝐶, 𝐹, 𝑇, and 𝑉. 

  𝐵2 The implementation of party bans in sub-Saharan Africa in the same time span of 1990-

2007; a binary variable of two complementary values:  𝐵2{0} = ‘The absence of implemented party bans;’  𝐵2{1} = ‘The presence of implemented party bans;’ 
The variable B2 is function of the four variables 𝐶, 𝐹, 𝑅 and 𝑉. Note that the three variables 𝐶, 𝐹 

and 𝑉 are common inputs for  𝐵𝐼 and  𝐵2, while T is an input for  𝐵𝐼 only and 𝑅 is an input for  𝐵2 

only. 

 𝐶 Colonial background or tradition; a ternary variable of three possible values: 𝐶{2}  = ‘British;’ 𝐶{1}  = ‘French;’ 𝐶{0}  = ‘Other;’ 
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𝐹 Former regime type competition; a ternary variable of three possible values: 𝐹{2}  = ‘No competition;’ 𝐹{1} = ‘Limited competition;’ 𝐹{0}  = ‘Multi-party competition;’ 
 𝑇 Mode of transitions; a ternary variable of three possible values: 𝑇{2}  = ‘Managed transition-regime breakdown;’ 𝑇{1}  = ‘Pacted transition;’ 𝑇{0} = ‘Democracy before 1990;’ 
 𝑉 Ethnic violence; a binary variable of two possible values: 𝑉{1}  = ‘Presence of ethnic violence;’ 𝑉{0}  = ‘Absence of ethnic violence;’ 
 𝑅 Regime type; a ternary variable of three possible values: 𝑅{2}  = ‘Regime is stable/authoritarian;’ 𝑅{1}  = ‘Regime is liberalizing/blocked;’ 𝑅{0}  = ‘Regime is democratic/democratizing;’ 
 

For each of the ternary variables 𝑋 (𝐶, 𝐹, 𝑇 and 𝑅 ), we use a two-bit binary coding in which 𝑋 is 

replaced by a pair of binary variables {𝑋1, 𝑋0} such that 

 𝑋{0}   = 𝑋1̅̅ ̅ 𝑋0̅̅ ̅ ,             (2a) 𝑋{1}   = 𝑋1̅̅ ̅𝑋0 = 𝑋0,             (2b) 𝑋{2}   = 𝑋1𝑋0̅̅ ̅ = 𝑋1.             (2c) 
where the case 𝑋1𝑋0 is forbidden or don’t care (d), i.e.  

 𝑋1𝑋0 = 0.             (2d) 

 

This coding is demonstrated by the double map labeling in Fig. 1. One labeling indicates that the 

three-valued 𝑋 is now apparently four-valued {0, 1, 2, d}. Another labeling indicates the domain 

where each of the binary variables 𝑋1 and 𝑋0 is asserted, i.e., equal to 1. The binary variable 𝑋1 is 

asserted (1) in the two rightmost cells of the map and negated (0) in the two leftmost cells (The 

complementary variable 𝑋1̅̅ ̅ is asserted (1) in the two leftmost cells and negated (0) in the two 

rightmost cells). Likewise, the binary variable 𝑋0 is asserted (1) in the two middle cells and negated 

(0) in the two extreme cells (The complementary variable 𝑋0̅̅ ̅ is asserted (1) in the two extreme 

cells, and negated (0) in the two middle cells). Note that a value d for 𝑋 is fictitious as it never 

happens. In fact,  𝑋 has solely three realistic values: 

 𝑋{0}: which is uniquely represented in binary terms as 𝑋1̅̅ ̅ 𝑋0̅̅ ̅,  𝑋{1}: which is represented as either 𝑋1̅̅ ̅ 𝑋0 or as 𝑋0. These two values happen to be equivalent since 

 𝑋0 = (𝑋1̅̅ ̅ ∨  𝑋1)𝑋0 = 𝑋1̅̅ ̅𝑋0  ∨  𝑋1𝑋0 = 𝑋1̅̅ ̅𝑋0 ∨ 0 = 𝑋1̅̅ ̅𝑋0.             (3a) 

 𝑋{2}: which is represented as either 𝑋1 𝑋0̅̅ ̅ or as 𝑋1. These two values happen to be equivalent since 
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𝑋1 = 𝑋1(𝑋0̅̅ ̅ ∨  𝑋0) = 𝑋1𝑋0̅̅ ̅  ∨  𝑋1𝑋0 = 𝑋1𝑋0̅̅ ̅ ∨ 0 = 𝑋1𝑋0̅̅ ̅.             (3b) 

  

 
 

Fig. 1. Double labeling for the ternary variable 𝑋, by either specifying the four values of {0, 1, 𝑑, 2} or 

identifying the domains of 𝑋1 and 𝑋0 that constitute a code of 𝑋 

 

3. Conventional Karnaugh Maps 
Fig. 2 is a 7-variable map representation of 𝐵𝐼 (introduction of party bans). It is a reproduction of 

Table 3 in Hartmann and Kemmerzell (2010), with a single binary variable 𝑉  and with three ternary 

variables 𝐶, 𝐹 and 𝑇 being replaced by pairs of binary variables {𝐶1, 𝐶0}, {𝐹1, 𝐹0} and {𝑇1, 𝑇0} 
according to the scheme of equations (2). This 7-variable map can be viewed as a map of 4 variables 𝐶1, 𝐶0, 𝐹1 and 𝐹0 with 16 cells, such that each cell is in turn a map of 3 variables 𝑇1, 𝑇0 and 𝑉. Two 

kinds of don’t cares appear in Fig. 2, those corresponding to lines missing in the original table, and 

those resulting from coding ternary variables by binary ones. In drawing loops in Fig. 2, it is 

mandatory to cover every cell entered by 1, optional to cover any cell entered by d, and prohibitive 

to cover any cell entered by 0 (including the C* cell which is assumed 0 for the time being). Once 

a 1-cell is covered, it is changed immediately to a d-cell, i.e., its coverage becomes optional rather 

than mandatory. In other words, an original 1-cell must be covered at least once and could be 

covered more than once. The 1-cell marked by the + sign as 1+, has a single neighboring 0-cell 

(again marked by the + sign as 0+). Hence, the largest loop to cover this 1-cell might cover its other 

6 neighboring cells, and hence could be of 26 = 64 cells. Such a loop is possible to construct (it 

contains only 1’s and d’s and does not contain any 0), and hence is called an essential prime 

implicant for  𝐵𝐼{1}. This loop is the single-literal loop 𝐹𝐼 in Fig. 1. It is called prime since it cannot 

be included in a larger loop, and it is called essential since it is the only prime loop to cover the cell 

marked as 1+. Note that this loop covers many other 1-cells allowing us to stop worrying about 

covering them. Likewise, the 1-cell marked as 1- has a single neighboring 0-cell marked 0-, and it 

is possible to cover it by another essential prime implicant loop, namely 𝐶0. Now, the 1-cell 𝐶1̅̅ ̅ 𝐶0̅̅ ̅𝐹1̅𝐹0𝑇1𝑇0̅̅̅𝑉 marked as 1◊ has one neighboring non-asserted cell (the C* cell), so its largest 

candidate covering loop is the 64-cell loop 𝐶1̅̅ ̅. Such a loop is impossible to construct since it 

contains some 0-cells and one must settle for a smaller loop that is at best, one half of it. The 

candidate half loops of 𝐶1̅̅ ̅ are 𝐶1̅̅ ̅ 𝐶0̅̅ ̅,𝐶1̅̅ ̅ 𝐹1̅, 𝐶1̅̅ ̅ 𝑇0̅̅̅, 𝐶1̅̅ ̅𝑉, 𝐶1̅̅ ̅𝑇1, 𝑎𝑛𝑑  𝐶1̅̅ ̅𝐹0. Out of these, each of the 

last two is possible to use as it contains no 0-cells. They stand on equal footing, since they are of 

the same size, and each of them covers a single extra yet uncovered 1-cell (the cell above the 1◊ 

cell). We arbitrarily choose the last one  𝐶1̅̅ ̅𝐹0 as a non-essential prime implicant. Finally, the 1-cell 𝐶1𝐶0̅̅ ̅𝐹1̅𝐹0𝑇1𝑇0̅̅̅�̅� marked as 1• has a single neighboring non-asserted cell (the C* cell), so its largest 

covering candidate loop is the 64-cells loop�̅�. Such a loop is not valid as it contains some 0-cells. 

Its six half loops are 𝐶0̅̅ ̅�̅�, 𝐹1̅�̅�, 𝑇0̅̅̅�̅�,  𝑇1�̅�, 𝐹0�̅�, and 𝐶1�̅�. Out of these each of the last three contains 

X

d10 2

  
Domain of X{1}

is either 𝑋1𝑋0    𝑋0

Domain of X{0} is 

exactly 𝑋1 𝑋0 Domain of X{2}

is either 𝑋1𝑋0    𝑋1
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no 0-cells and we arbitrarily choose to take the last one (𝐶1�̅�) as a non-essential prime implicant. 

Our final minimal solution is  

 𝐵𝐼𝑙{1} = 𝐶0 ∨ 𝐹1 ∨ 𝐶1̅̅ ̅𝐹0 ∨ 𝐶1�̅�.             (4a) 

 

This can be rewritten as  

 𝐵𝐼𝑙{1} =  𝐶{1}  ∨ 𝐹{2}  ∨ 𝐶{0,1}𝐹{1} ∨ 𝐶{2}𝑉{0}.             (4b) 

 

The above discussion shows that the minimal sum in (4a) or (4b) is one out of six equivalent 

minimal sums. The solution reported in Hartmann and Kemmerzell (2010) is  

 𝐵𝐼𝑙{1} =  𝐶{0,1}  ∨ 𝐹{2}  ∨ 𝑇{1,2}𝑉{0},               (5) 

 

which is obviously in error since 𝐶{0,1} covers three 0-cells in Fig. 2. In fact, these cells correspond 

to the set of countries{Botswana + Mauritius, South Africa, Zimbabwe} which Table 3 in Hartmann 

and Kemmerzell (2010) clearly assigns as input 𝐶 = 0 and an output 𝐵𝐼 = 0. In passing, we stress 

that we used the subscript 𝑙 in 𝐵𝐼𝑙{1}  to indicate that we are getting a lower bound for 𝐵𝐼{1} since 

we assume the single C* value is 0. If, instead, this value is set to 1, we obtain the following upper 

bound 𝐵𝐼𝑢{1}  of 𝐵𝐼{1}, which is a unique minimal sum consisting solely of essential prime 

implicants: 

 𝐵𝐼𝑢{1}  =  𝐶0 ∨ 𝐹1 ∨ 𝐹0 ∨ 𝐶1, = 𝐶{1,2}  ∨ 𝐹{1,2} .              (6a) 

            (6b) 
 

Fig. 3 is now constructed similarly to Fig. 2, with the exceptions that (a) it translates Table 4 rather 

than Table 3 of Hartmann and Kemmerzell (2010) and hence represents 𝐵2 (implementation of 

party bans) rather than 𝐵1, and (b) it replaces the ternary input variable 𝑇 by another 𝑅.  
 

Now we want to find 𝐵2𝑙{1} in Fig. 3 under the assumption C1* = C2* = C3* = 0. Map 

minimization yields 

 𝐵2𝑙{1} =  𝐶0̅̅ ̅ 𝑅1 ∨ 𝐶1𝑉 ∨ 𝐶1𝐹1̅ 𝑅0̅̅ ̅ ,             (7a) 
 

or equivalently 

 𝐵2𝑙{1}  =  𝐶{0,2}𝑅{2}  ∨ 𝐶{2}𝑉{1}  ∨ 𝐶{2}𝐹{0,1}𝑅{0,2}.              (7b) 
 

The expression (7a) comprises one essential prime implicant C0̅̅ ̅ R1 together with two non-essential 

prime implicants C1V and C1F1̅̅ ̅ R0̅̅̅̅ .  We have assigned special labels to the 1-cells C1̅̅ ̅ C0̅̅ ̅ F1F0̅̅ ̅R1R0̅̅̅̅ V̅, C1 C0̅̅ ̅ F1̅̅ ̅F0R1̅̅̅̅ R0V and C1 C0̅̅ ̅ F1̅̅ ̅F0̅̅ ̅ R1̅̅̅̅  R0̅̅̅̅ V̅, and their neighboring 0-cells to help 

the reader verify our findings (in a way similar to the one we did for Fig. 2). The corresponding 

solution of the Hartmann and Kemmerzell (2010), in this case is correct and almost minimal as it  

differs slightly from (7b) above (only replacing C{0,2} by C{0},  F{0,1} by F{0} and R{0,2} by R{0}, namely 
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𝐵2𝑙{1}  =  𝐶{0}𝑅{2}  ∨ 𝐶{2}𝑉{1}  ∨ 𝐶{2}𝐹{0}𝑅{0}.                (8) 

  

 
 

Fig. 2. A representation of 𝑩𝑰 (introduction of party bans) by a 7-variable CKM, a translation of Table 3 in 

Hartmann and Kemmerzell (2010), with prime implicant loops covering the asserted part 𝑩𝑰{ } of 𝑩𝑰. Here 

we assume C* = 0, and hence we obtain a lower bound 𝑩𝑰𝒍{ } of 𝑩𝑰 
 

 

 
Fig. 3. A representation of 𝑩𝟐 (implementation of party bans) by a 7-variable CKM, a translation of Table 4 

in Hartmann and Kemmerzell (2010), with prime implicant loops covering the asserted part 𝑩𝟐𝒍{ }  of 𝑩𝟐. 

Here we assume C1*= C2*= C3* = 0 

0 d d d

d d d d

d10 2

0

1

R

V
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4. Multi-Valued Karnaugh Maps 
There are many ways to handle multi-valued logic visually (Bahraini and Epstein, 1988; Ali et al., 

1996; Ghiye et al., 2014). We have chosen to do so via the multi-valued Karnaugh map that appears 

in Figs. 4-8. Fig. 4 is a 4-variable multi-valued map that seems to be almost a replica of the 7-

variable conventional map in Fig. 2, with a considerable reduction in size due to the omission of 

extraneous don’t-care combinations that were inadvertently added during the coding process. The 

loops in Fig. 4 are exactly those in Fig. 2, and hence the result (4b) for B2l{1} is reproduced directly 

(without a need for (4a) as an intermediary). 

 

Similarly, we reproduce in Fig. 5 a multi-valued version of the conventional map in Fig. 3 

representing B2 (implementation of party bans). Again, the multi-valued version is significantly 

smaller with the omission of the extraneous or fictitious don’t-care configurations. Under the 

assumption that C1* = C2* = C3* = 0, we construct loops that are identical to those in Fig. 3, 

thereby reproducing the formula for B2l in (7b), again bypassing any need for (7a). However, we 

might choose to replace the term C{2}V{1} by the term C{1,2}V{1} which corresponds to a larger 

and encompassing loop (shown dotted) in Fig. 5. Note that in Fig. 3 there is an absolutely-

eliminable all-d prime implicant loop C0V1 which is not included in (7a), and which might be used 

to account for the possibility of employing the C{1,2}V{1} variant in Fig. 5. 

 

So far, we have given multi-valued counterparts for BIl{1} and B2l{1} that we have already explored 

via conventional maps. We now continue to study other functions such as BIl{0}, B2l{0}, BIl{C∗}, 
and B2l{C∗} using the multi-valued methodology only. Fig. 6 is a multi-valued map for BI in which 

C* is assumed 1, so as to get a lower bound BIl{0} for BI{0}. As the figure indicates, this bound is 

either 

  

 

 
 

Fig. 4. A multi-valued-Karnaugh-map representation of 𝑩  (introduction of party bans), a translation of 

Table 3 in Hartmann and Kemmerzell (2010), with loops covering the prime implicants of the asserted part 𝑩 𝒍{ } of 𝑩  assuming C* = 0 
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Fig. 5. A multi-valued-Karnaugh-map representation of  𝑩𝟐  (implementation of party bans), a translation 

of Table 4 in Hartmann and Kemmerzell (2010), with loops covering the prime implicants of the asserted 

part 𝑩𝟐𝒍{ }, assuming C1* = C2* = C3* = 0 

 

 𝐵𝐼𝑙{0} = 𝐶{0}𝐹{0},             (9a) 
or 𝐵𝐼𝑙{0} = 𝐶{0}𝐹{0,1}𝑇{0,1}.             (9b) 
 

Note that a don’t care cell might be assigned asserted values while covering both 𝐵𝐼𝑙{0} and 𝐵𝐼𝑙{1}. 
Hence, 𝐵𝐼𝑙{0} and 𝐵𝐼𝑙{1} need not necessarily be disjoint (orthogonal). If we use (9a) then 𝐵𝐼𝑙  is 

not orthogonal with 𝐵𝐼𝑙{1}, but if we use (9b), then 𝐵1𝐼{0} is orthogonal with 𝐵1𝐼{1}. For 

comparison, Hartmann and Kemmerzell (2010) gave (in p.651) the answer  

 𝐵𝐼𝑙{0} = 𝐶{0}𝑇{0}  ∨ 𝐹{0,1}𝑇{0,1}.             (10) 
 

which is correct, albeit not minimal. 

Similarly, to Fig. 5 for 𝐵𝐼{1} and Fig. 6 for 𝐵𝐼{0}, we could draw a map to get a minimal formula 

for 𝐵𝐼{𝐶∗}. However, we do not want to spread contradictions to don’t care configurations. So 𝐵𝐼{𝐶∗} will just cover a single configuration, namely 

 𝐵𝐼{𝐶∗} = 𝐶{2}𝐹{1}𝑇{2}𝑉{1},              (11) 
 

in agreement with Hartmann and Kemmerzell (2010). 

The true 𝐵𝐼{0} and 𝐵𝐼{1} are exhaustive in the sense that they jointly cover all non-forbidden 

configurations, i.e., 

 𝐵𝐼{0}  ∨  𝐵𝐼{1} ∨  𝐵𝐼{𝑑} = 1.              (12) 
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Fig. 6. A multi-valued-Karnaugh-map representation of  𝑩  (introduction of party bans), a translation of 

Table 3 in Hartmann and Kemmerzell (2010) with loops covering the negated part 𝑩 𝒍{ } of 𝑩 , assuming 

C* = 1 

 

However, the lower bounds 𝐵𝐼𝑙{0} and 𝐵𝐼𝑙{1} are not exhaustive since 

 𝐵𝐼𝑙{0}  ∨  𝐵𝐼𝑙{1} ∨  𝐵𝐼𝑙{𝑑} ∨  𝐵𝐼𝑙{𝐶∗} = 1.             (13) 
 

Next, we present 𝐵2 (implementation of party ban) by the multi-valued map in Fig. 7 in which we 

assume C1* = C2* = C3* = 1, and hence obtain a minimal result for 𝐵2𝑙{0} as  

 𝐵2𝑙{0}  = 𝐶{1}𝑅{0,2}  ∨ 𝐹{0}𝑅{1,2}   ∨ 𝐶{0,2}𝐹{1,2}𝑅{0,1}𝑉{0}.             (14) 
 

The effect of our ignorance of the contradictory values C1*, C2* and C3* (together with our current 

inability to resolve these contradictions) cannot be mitigated by arbitrarily assigning specific values 

to them. However, we can overview the whole picture if we exhaust all such specific assignments. 

This is exactly what Table 1 does, since it shows formulas for 𝐵2{0} and 𝐵2{1}  for the eight 

possible combinations of C1*, C2* and C3*. Note that when we set C1*= C2* = C3* = 0, we get a 

lower bound for 𝐵2{1} and an upper bound for 𝐵2{0}, while the assignment C1*= C2* = C3* = 1 

produces an upper bound for 𝐵2{1} and a lower bound for 𝐵2{0}. For comparison, the answer given 

by Hartmann and Kemmerzell (2010) is  

 𝐵2𝑙{0} = 𝐶{0,1} 𝑅{0}  ∨ 𝐶{1}𝑅{2}   ∨ 𝐹{1,2}𝑅{0} ∨ 𝐶{0}𝑅{1}𝑉{0} ∨𝐶{2}𝑅{1}𝑉{0}.               (15) 

 

which is correct but obviously far from minimal. Now, we express 𝐵2{𝐶∗} simply by writing the 

minterms covering the three 𝐶∗𝑠, namely 

 𝐵2{𝐶∗} =  𝐶{0}𝐹{2}𝑅{1}𝑉{1}  ∨  𝐶{1}𝐹{1}𝑅{1}𝑉{0}  ∨ 𝐶{1}𝐹{2}𝑅{1}𝑉{0}.              (16) 

 

Again, we do not want to spread contradictions. So, we have not tried to cover adjacent don’t cares 
to minimize our expression. For comparison, Hartmann and Kemmerzell (2010) obtained the 

correct minimal formula. 

 𝐵2{𝐶∗} = 𝐶{1}𝑅{1}  ∨   𝐶{0}𝑅{1}𝑉{1}.               (17) 
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Fig. 7. A multi-valued-Karnaugh-map representation of  𝑩𝟐 (implementation of party bans), a translation of 

Table 3 in Hartmann and Kemmerzell (2010), with loops covering the prime implicants of the negated 

part 𝑩𝟐𝒍{ } of  𝑩𝟐, assuming C1*= C2* = C3* = 1 

 

 
C1* C2* C3*  𝐵2{1}  𝐵2{0} 
0 0 0 𝐶{0,2}𝑅{2}  ∨ 𝐶{2}𝑉{1} ∨𝐶{2}𝐹{0,1}𝑅{0,2}. 𝐶{1}  ∨ 𝐹{0}𝑅{1,2}   ∨ 𝐹{1,2}𝑅{0,1}𝑉{0} ∨ 𝐶{0,1}𝑅{0,1}. 
0 0 1 𝐶{0,2}𝑅{2}  ∨ 𝐶{2}𝑉{1} ∨𝐶{2}𝐹{0,1}𝑅{0,2} ∨ 𝐶{1}𝐹{0,2}𝑅{1}. 𝐶{1}𝑅{0,2} ∨ 𝐹{0}𝑅{1,2}  ∨ 𝐶{0,2}𝐹{1,2}𝑅{0,1}𝑉{0} ∨𝐶{0}𝑅{0,1} ∨ 𝐶{1}𝐹{0,1}. 
0 1 0 𝐶{0,2}𝑅{2}  ∨ 𝐶{2}𝑉{1} ∨𝐶{2}𝐹{0,1}𝑅{0,2} ∨ 𝐶{1}𝐹{0,1}𝑅{1}. 𝐶{1}𝑅{0,2} ∨ 𝐹{0}𝑅{1,2}  ∨ 𝐶{0,2}𝐹{1,2}𝑅{0,1}𝑉{0} ∨𝐶{0,1}𝐹{2}𝑅{0,1}. 
0 1 1 𝐶{0,2}𝑅{2}  ∨ 𝐶{2}𝑉{1} ∨𝐶{2}𝐹{0,1}𝑅{0,2} ∨ 𝐶{1}𝑅{1}. 𝐶{1}𝑅{0,2} ∨ 𝐹{0}𝑅{1,2}  ∨ 𝐶{0,2}𝐹{1,2}𝑅{0,1}𝑉{0} ∨𝐶{0}𝑅{0,1}. 
1 0 0 𝐶{0,2}𝑅{2}  ∨ 𝑉{1}  ∨ 𝐶{2}𝐹{0,1}𝑅{0,2}. 𝐶{1}  ∨ 𝐹{0}𝑅{1,2}   ∨ 𝐹{1,2}𝑅{0,1}𝑉{0}. 
1 0 1 𝐶{0,2}𝑅{2}  ∨ 𝑉{1}  ∨ 𝐶{2}𝐹{0,1}𝑅{0,2} ∨𝐶{1}𝐹{0,2}𝑅{1}. 𝐶{1}𝑅{0,2} ∨ 𝐹{0}𝑅{1,2}  ∨ 𝐶{0,2}𝐹{1,2}𝑅{0,1}𝑉{0} ∨𝐶{1}𝐹{0,1}. 
1 1 0 𝐶{0,2}𝑅{2}  ∨ 𝑉{1}  ∨ 𝐶{2}𝐹{0,1}𝑅{0,2} ∨𝐶{1}𝐹{0,1}𝑅{1}. 𝐶{1}𝑅{0,2} ∨ 𝐹{0}𝑅{1,2}  ∨ 𝐶{0,2}𝐹{1,2}𝑅{0,1}𝑉{0} ∨𝐶{1}𝐹{0,2}. 
1 1 1 𝐶{0,2}𝑅{2}  ∨ 𝑉{1}  ∨ 𝐶{2}𝐹{0,1}𝑅{0,2} ∨𝐶{1}𝑅{1}. 𝐶{1}𝑅{0,2} ∨ 𝐹{0}𝑅{1,2}  ∨ 𝐶{0,2}𝐹{1,2}𝑅{0,1}𝑉{0}  

 

Table 1. Eight possible solutions for each of   𝐵2{1} and  𝐵2{0} for the eight possible combinations of C1*, 

C2* and C3* 

 

5. Variable-Entered Karnaugh Maps 
The Variable-Entered Karnaugh Maps (VEKM) have a long history of being used as a tool for 

increasing the variable-handling capability of Karnaugh maps (Rushdi 1983; 1985; 1987), or as 

natural maps for ‘big’ Boolean algebras (Brown, 1990; Rushdi and Amashah, 2011). They have 

been known in the literature under a variety of other names such as variable-entered maps (Fletcher 

1980), K-maps within K-maps or reduced Karnaugh maps (Vingron, 2004; 2012), truth tables with 

distributed simplification (Rathore, 2014), or basic maps with eliminated variables (Rathore and 

Jain, 2014). Figs. 8 and 9 demonstrate two VEKMs for  𝐵1 and  𝐵2 which are compact versions of 

Figs. 2 and 3. Each of these VEKMs use the four variables 𝐶1, 𝐶0, 𝐹1 and 𝐹0 as map variables and 

the remaining three variables (𝑅1,𝑅0 and 𝑉) as entered variables. Fig. 10 demonstrates how a 

conventional cell in Fig. 3 (namely, the cell 𝐶1̅̅ ̅ 𝐶0̅̅ ̅𝐹1𝐹0̅̅ ̅) is compacted into the corresponding entered 

cell in Fig. 9. Using well-known techniques for VEKM processing (Rushdi, 1987; Rushdi and Al-
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Yahya, 2000; 2001a), we were able to reproduce the minimal formulas of the previous two sections. 

For example, we reproduce Fig. 8 in Fig. 11 with only the asserted and don’t-care entries being 

retained, while the negated and contradictory entries are omitted. However, since Fig. 11 is 

intended for coverage of 𝐵𝐼𝑙{1}, the 𝑑 entries in this figure are made to cover the asserted entries 

as well as the don’t-care entries of Fig. 8. A formula for  𝐵1𝑙{1} is immediately obtained as a 

disjunction of each asserted entered term ANDed with a certain “contribution” of it expressing map 

loops which cover it (Rushdi, 1987), namely 

 𝐵𝐼𝑙{1} =  𝑇1𝑇0̅ 𝑪𝒐(𝑇1𝑇0̅)  ∨  𝑇1̅𝑇0 𝑪𝒐(𝑇1̅𝑇0)  ∨  𝑇1̅𝑇0̅𝑉 ̅𝑪𝒐(𝑇1̅𝑇0̅�̅�)  ∨ 𝑇1𝑇0̅𝑉 ̅𝑪𝒐(𝑇1𝑇0̅�̅�) ∨ 𝑇1̅𝑇0𝑉 ̅𝑪𝒐(𝑇1̅𝑇0�̅�).             (18) 

 

The loops drawn in Fig. 11 suffice to explain how this “weird” formula is reduced and significantly 

simplified to take the form of Equation (4a). For example, the loop 𝐶0 is drawn as a contribution 

of the entered product 𝑇1̅𝑇0̅̅̅�̅� since this product appears (whether asserted or don’t-care) in every 

cell of the loop 𝐶0. After drawing that loop, we find that the term 1 (which is subsumed by the 

initially-considered term 𝑇1̅𝑇0̅̅̅�̅�) appears (don’t-are) within all cells of the loop. According to an 

“enlargement” rule, the loop is now considered a contribution 𝑪𝒐(1) of 1 rather than a contribution 𝑪𝒐(𝑇1̅𝑇0̅̅̅�̅�) of the original term 𝑇1̅𝑇0̅̅̅�̅� and hence we modify Equation (14) to replace 𝑇1̅𝑇0̅̅̅�̅�𝑪𝒐(𝑇1̅𝑇0̅̅̅�̅�) by (1) 𝑪𝒐(1) =  (1) 𝐶0 = 𝐶0. Note that this loop covers any other asserted term 

entered within it, since all terms subsume the term 1. Similarly, we draw the two loops 𝐹1 and 𝐶1̅̅ ̅𝐹0 

to discover that they are also contributions of 1 and hence cause (𝑇1̅𝑇0 𝑪𝒐(𝑇1̅𝑇0)  ∨𝑇1𝑇0̅̅̅ 𝑪𝒐(𝑇1𝑇0̅̅̅)) in Equation (14) to be replaced by (𝐹1 ∨ 𝐶1̅̅ ̅𝐹0). The fourth loop in Fig. 11 is the 

loop 𝐶1 which is initially intended as 𝑪𝒐(𝑇1𝑇0̅̅̅�̅�) or 𝑪𝒐(𝑇1̅𝑇0�̅�) and ultimately becomes 𝑪𝒐(�̅�), 
thereby adding 𝐶1(�̅�) to Equation (14) replacing (𝑇1𝑇0̅̅̅�̅� 𝑪𝒐(𝑇1𝑇0̅̅̅�̅�)  ∨  𝑇1̅𝑇0�̅� 𝑪𝒐(𝑇1̅𝑇0�̅�)) 
therein. 

 

6. The Complete Sum versus the Minimal Sum 
So far, we have followed the common QCA practice by using Boolean minimization to obtain the 

minimal sum of the pertinent output or effect function (Thiem and Duşa, 2013a; 2013b; Duşa and 

Thiem, 2015). This practice is definitely useful since it provides us with a minimal-sum 

characterization of the function that is as compact as possible. The minimal sum covers the asserted 

part of the function with as few as possible prime implicants. Each of these prime implicants is a 

minimally-sufficient cause of the given effect. Non-prime implicants are not included in the 

minimal sum since they are not minimally-sufficient causes albeit being sufficient ones. 
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Fig. 8. A variable-entered-Karnaugh-Map representation of B1 (party bans introduction), a compact version 

of Fig. 2 

 

 

 

 

 

 

 
 

Fig. 9. A variable-entered-Karnaugh-Map representation of B2 (party bans implementation), a compact 

version of Fig. 3 

 

 

 

 

 

 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 3, No. 1, 28–46, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.1-004 

41 

 

 

 
 

Fig. 10. Compaction of the conventional cell 𝑪 ̅̅ ̅ 𝑪 ̅̅ ̅𝑭 𝑭 ̅̅̅̅  in Fig. 3 to an entered one in Fig. 9 by drawing 

loops for each of the four entities {1, 0, C*, d}. Loops for a specific entity are possibly overlapping, but 

they must be disjoint with those of other entities 

 

 

 

 

 

 
Fig. 11. Reading the VEKM in Fig. 8 to obtain formula (4a) 

 

Unless the function considered is monotone, the minimal sum typically does not contain all prime 

implicants (Crama and Hammer, 2011). The disjunction of all prime implicants is called the 

complete sum (Muroga, 1979), and is known also as the Blake Canonical Form (Brown, 1990). 

The complete sum informs us explicitly about all minimally-sufficient causes, and hence its role 

supplements that of the minimal sum which characterizes the function but does not exhaust all 

minimally-sufficient causes. 
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In computing the complete sum all don’t-care configurations are considered asserted. There are 

many algorithmic ways to compute the complete sum (Muroga, 1979; Brown, 1990; Rushdi and 

Al-Yahya, 2001b; Rushdi et al., 2015a; 2015b).  The CKM is not particularly convenient for 

computing the complete sum (Muroga, 1979) since it is possible that some prime implicants might 

be overlooked. However, the VEKM allows an algorithm called VEKM folding for obtaining all 

prime implicants (Rushdi and Al-Yahya, 2001b). We reproduce the VEKM for 𝐵𝐼 in Fig. 8 as 

shown in Fig. 12 by omitting negated and contradictory entries, asserting all don’t-care entries and 

casting all the final entries into complete-sum form. The new VEKM in Fig. 12 is now a map for 

CS(𝐵𝐼𝑙{1}). Figs. 12-16, demonstrate a repetition of VEKM folding that ultimately produce 

CS(𝐵𝐼𝑙{1}) in Fig. 16, namely 

 

CS(𝐵𝐼𝑙{1}) =  𝐶0 ∨ 𝐹1 ∨ 𝐶1̅̅ ̅𝐹0 ∨ 𝐶1�̅� ∨  𝐶1̅̅ ̅𝑇1 ∨ 𝑇1�̅� ∨ 𝐹0�̅� ∨ 𝐶1𝑇1̅ ∨𝐹0𝑇1̅ ∨ 𝐶1𝑇0 ∨ 𝑇1𝑇0 ∨ 𝑇0�̅� ∨ 𝐹0𝑇0 ∨ 𝐶1̅̅ ̅𝐹0 ∨ 𝐹0̅̅̅𝑇1. 

            (19) 

 

Equation (19) list fifteen prime implicants for 𝐵𝐼𝑙{1}. Out of these, the first four were included in 

the minimal sum (4a), and the next three were mentioned while deriving (4a). The remaining eight 

prime implicants were not immediately evident from the CKM in Fig. 2. However, they can be 

easily verified once discovered. Take for example, the prime implicant 𝑇1�̅� = 𝑇{2}𝑉{0}. It covers 

each of the two top left cells in every interior 8-cell map of 𝑇1, 𝑇0 and 𝑉 that is within a cell of the 

exterior 16-cell map of 𝐶1, 𝐶0, 𝐹1, 𝑎𝑛𝑑 𝐹0. Furthermore, this implicant is indeed prime; it cannot 

be enlarged to 𝑇1 (because of the 𝐶∗ cell) or to �̅� (due to the 0 cells). Our verification of the 𝑇1�̅� =𝑇{2}𝑉{0}  prime implicant can even be taken back to the Table 3 of Hartmann and Kemmerzell 

(2010), where there exist seven lines with 𝑇 = 2 𝑎𝑛𝑑 𝑉 = 0, all of which assigned the output value 

of 1. The complete sums for CS(𝐵𝐼{0}), CS(𝐵2{1}) and CS(𝐵2{0}) can be obtained similarly. 

 

7. Conclusions 
We demonstrated the utility and equivalence of three versions of Karnaugh maps (CKMs, MVKMs, 

and VEKMs) in solving minimization problems of multi-value Qualitative Comparative Analysis 

(mvQCA). We have herein given a large weight to on our favorite version, namely the MVKM 

version, which is the most compact, and perhaps, easiest to understand (albeit least familiar) 

version. However, we tried to render due justice to the CKM version by showing that its 

disadvantages of increasing the input domain is (at least partially) counterbalanced by utilization 

of the don’t-cares that appear in the extra domain. We also gave a glimpse of VEKMs and stressed 

their potential utility in problems involving a larger-than-usual number of variables. We also 

addressed the issue of contradictions, and suggested ways to live with them if it is not possible to 

resolve them beforehand. Finally, we pointed out the importance of obtaining all the prime 

implicants of the pertinent Boolean function, and demonstrated the utility of the VEKM in 

achieving that purpose. 
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Fig. 12. A variable-entered Karnaugh map for the complete sum of 𝑩𝑰𝒍{ }.. Negated and contradictory are 

omitted, while don’t-care entries are asserted and disjuncted with the originally asserted entries in 

complete-sum form 

 

 

 
 

Fig. 13. The VEKM in Fig. 12 after being folded w.r.t. 𝑪  

 

 

 
 

Fig. 14. The VEKM in Fig. 13 after being folded w.r.t. 𝐹1 
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Fig. 15. The VEKM in Fig. 14 after being folded w.r.t. 𝑭 . Note that (𝑪 ∨ 𝑭 ) is common to both cells of 

the map and hence are sure to make their way to ultimate membership in CS(𝑩𝑰𝒍{ }) 
 

 

 
 

Fig. 16. Final multiplication to obtain all prime implicants of 𝑩 𝐥{ }. Note that an encircled term is 

absorbed in a subsumed term. The terms 𝑪  and 𝑭  are sure to be included in CS(𝑩𝑰𝒍{ }) and are not 

shown here 
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