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Abstract

Our current study reports the first KM optimization of a library of nitrophenylphosphate-containing
substrates for generating an inhibitor lead against the Yersinia pestis outer protein phosphatase
(YopH). A high activity substrate identified by this method (KM = 80 μM was converted from a
substrate into an inhibitor by replacement of its phosphate group with difluoromethylphosphonic
acid and by attachment of an aminooxy handle for further structural optimization by oxime-
ligation. A co-crystal structure of this aminooxy-containing platform in complex with YopH
allowed the identification of a conserved water molecule proximal to the aminooxy group that was
subsequently employed for the design of furanyl-based oxime derivatives. By this process, a
potent (IC50 = 190 nM) and non-promiscuous inhibitor was developed with good YopH selectivity
relative to a panel of phosphatases. The inhibitor showed significant inhibition of intracellular Y.

pestis replication at a non-cytotoxic concentration. The current work presents general approaches
to PTP inhibitor development that may be useful beyond YopH.
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Introduction

Maintaining proper levels of tyrosyl phosphorylation through the reversible actions of
protein tyrosine kinases (PTKs) and protein tryrosine phosphatases (PTPs) is vital for
cellular processes ranging from growth and metabolism to adhesion and differentiation.1, 2

Deregulation of PTPs can be linked to diseases, such as diabetes and cancer and
accordingly, this class of enzymes represents a new source of potential drug targets.3–6 The
Gram-negative enterobacterium Yersinia pestis (Y. pestis) has played an important role in
human history as the causative agent of plague,7 and more recently it has gained attention
due to its possible use as a biological warfare agent. For pathogenicity, Y. pestis requires the
virulence factor, Yersinia pestis outer protein H “YopH,” a highly active PTP.8 Accordingly,
potent and selective YopH inhibitors could provide a basis for new anti-plague therapeutics.
One difficulty encountered in the development of PTP inhibitors is a high incidence of
“false positives” that can arise through inhibition of enzyme function by “promiscuous”
mechanisms attributable to non-specific factors such as protein aggregation.9, 10 It is
generally believed that promiscuous inhibitors do not represent valid leads, and avoiding
promiscuous mechanisms is an important component of current drug development.11

In theory, avoiding promiscuous behavior could be achieved through the use of substrates as
templates for inhibitor design. This is because substrates must interact with their enzyme
hosts in non-promiscuous fashions in order for productive catalysis to occur. Employing
small non-peptidic arylphosphates to identify potential leads for PTP inhibitor design has
been known for some time.12–15 However, the explicit application of “substrate activity
screening” for the purpose of minimizing misleading promiscuous inhibition has only more
recently been proposed by Ellman for protease16–20 and PTP targets.21 This approach
consists of first identifying substrates that exhibit high affinity, structurally enhancing these
substrates and then converting the optimized substrates to inhibitors by replacement of their
labile phosphoryl groups with suitable non-hydrolyzable phosphoryl mimetics. Additional
structural variations can then be performed to further increase inhibitory potency.

In identifying high affinity substrates for the development of PTP inhibitors, advantage can
be taken of the hydrolytic action of a PTP on an arylphosphate, which produces both the
corresponding phenol and inorganic phosphate. Traditionally, the released inorganic
phosphate can be quantified using colorimetric assays that employ phosphomolybdate22, 23

or by secondary enzyme assays, including the use of purine nucleotide phosphorylase-
mediated phosphate-dependent conversion of 2-amino-6-mercapto-7-methylpurine
ribonucleoside to a derivative having an absorbance maximum at 360 nm.24 It is also
possible to spectrophotometrically measure the catalytically-produced phenol. A variety of
easily detected fluorescence-based substrates are known,25 however these agents would be
of little value for the purpose of substrate activity screening and phenols derived from the
more structurally-diverse arylphosphates needed for substrate activity screening would
typically exhibit very low extinction coefficients.26 An exception to this is found with
nitrophenols, which exhibit intense yellow color due to delocalization of the phenolate
anionic charge. Because of this property, para-nitrophenylphosphate (pNPP) has become a
ubiquitous substrate for monitoring the activity of phosphatases, including YopH.8

In undertaking our current study, we desired to use direct spectrophotometric monitoring of
phenol reaction products. For this purpose, we employed substrates (2) derived from either
ortho- or para-nitrophenols (1, Figure 1). These compounds allowed the simple monitoring
(absorbance at λ405 nm) of yellow color resulting from the enzyme-catalyzed phosphoryl
hydrolysis. Our utilization of nitrophenylphosphates represents the first systematic
application of this structural class for PTP substrate optimization.
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Once an inhibitor platform has been identified through a substrate activity approach,
enhancement of affinity can be undertaken by introducing additional functionality intended
to interact with sites proximal to the catalytic cavity.27–33 A distinctive feature of the
methodology in our current report is its incorporation of aminooxy functionality into the
lead inhibitor platform (3) and the use of this handle for oxime-based derivatization (4,
Figure 1). Functional group ligation by means of oxime bond formation can be considered to
be a form of “click chemistry”34 that we35–38 and others39–42 have shown can be highly
useful for the facile generation of compound libraries. In the case of PTPs, azide-alkyne
Huisgen cycloaddition click reactions have been used previously for the rapid assembly of
bidentate libraries targeting protein tyrosine phosphatase 1B (PTP1B) and : Mycobacterium

protein-tyrosine phosphatase B (mPTPB).43–45 However, a potential limitation of this type
of click chemistry is the requirement for high throughput syntheses of azide-containing
libraries of reactants.46 In contrast, oxime-based click chemistry is advantageous because it
can be conducted using commercially available aldehydes and reaction products can be
directly evaluated biologically without purification. As reported in our current paper,
nitrophenylphosphate-based substrate activity screening used in combination with oxime
ligation proved to be highly a successful approach that resulted in the development of a non-
promiscuous YopH inhibitor exhibiting a nanomolar IC50 value.

Results and Discussion

Nitrophenylphosphate Substrates

A total of 48 ortho and para - nitrophenylphosphate-containing substrates (2) were prepared
by phosphorylation (reaction with HPO3(Bn)2) of either commercially available or synthetic
nitrophenols, followed by TFA-mediated cleavage of the resulting benzyl protecting groups.
The YopH affinities of these substrates were determined using an in vitro assay that
measured substrate turnover by monitoring the yellow color arising from the reaction
product nitrophenols.8 Color interference arising from sources other than the nitrophenol
products did not prove to be problematic. Assay results for a subset of 11 selected substrates
(2a – 2k, Table 1) show that the 3-aminooxymethyl-containing substrate 2e exhibited a 3.5 -
fold decrease in its Michaelis-Menten constant (KM = 170 μM), relative to pNPP (KM = 600
μM), while p-phenyl-o-nitrophenylphosphate (2j) showed an approximate 4 - fold decrease
in its KM value (150 μM). The lowest KM value was obtained with m-phenyl-p-
nitrophenylphosphate (2k, KM = 80 μM), which showed an approximate 7.5 - fold decrease
relative to reference pNPP.

Lead Inhibitor Platform 5

When using substrates as structural models for inhibitor design, the interpretation of data
from the substrate enzyme assays can be an important factor. In the current study, KM values
were used to indicate substrate affinity. Previous comparisons of KM and kcat/KM values for
small molecule non-peptidyl aryl substrates have shown that KM values more closely reflect
IC50 and Ki values than do kcat/KM ratios.12–14, 21 Based on this consideration, substrate 2k

was selected for conversion to an inhibitor because of its low KM value.

In the conversion of a PTP substrate to an inhibitor, the choice of phosphoryl mimetic can
have a dramatic effect on the resulting inhibitory potency.21 In our current work α,α-
difluoromethylphosphonic acid47 was used as a phosphoryl replacement, since it is isosteric
with the parent phosphate group and it has been shown to be one of the highest affinity
phosphoryl replacements in PTP contexts (Scheme 1).48, 49 A further consideration deals
with the fate of the nitro-functionality, since its role as a chromophore is no longer needed.
Although an example has been reported where protein hydrogen bonding exists for the nitro
group of a YopH-bound inhibitor,50 in the current work the nitro-functionality was removed
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at this stage. The transformation of 2k to the inhibitor platform 5 was completed by
introduction of an aminooxy handle for use in preparing bidentate inhibitors (6) using
oxime-based click chemistry (Figure 2).34–42

Synthesis of Aminooxy-containing Platform 5

The synthesis of 5 began with the CuBr and zinc promoted coupling reaction of
diethyl(bromodifluoromethyl)phosphonate with 3-iodobromobenzene51 to give the
corresponding (difluoromethyl)phosphonic acid diethyl ester product 7 (Scheme 1). Suzuki
coupling of 7 with 4-hydroxymethylboronic acid to give the biphenyl product 8 was
followed by Mitsunobu reaction with N-hydroxyphthalimide and treatment of the resulting
phthalimide with hydrazine•hydrate to yield the aminooxy-containing diethylphosphonate 9
(79% yield). Finally, conversion of 9 to platform 5 was achieved through TMSBr-mediated
phosphonate deprotection (Scheme 1).52 (Insert Scheme 1)

Crystal structure of YopH in Complex with Platform 5

In order to facilitate inhibitor optimization, the X-ray co-crystal structure of 5 bound to
YopH was determined. The orientation of the phosphonodifluormethyl group of 5 within the
catalytic pocket was observed to be highly similar to that previously reported for the
phosphonodifluormethylphenylalanyl residue (F2Pmp) of the hexapeptide, Ac-Asp-Ala-Asp-
Glu-F2Pmp-Leu-amide (PDB code: 1QZ0) (Figure 3A).53 The protein backbones of the two
structures are nearly superimposable and in both structures the flexible “WPD loops”
(residues 354-356) are held in the “closed” conformation. For both structures the
phosphoryl-mimicking difluoromethylphosphonic acid group is coordinated within the
conserved (H/V)CX5R(S/T) signature motif “P loop” (residues 404-410) by six hydrogen
bonds,54–56 while the guanidine group of R409 forms two salt bridges with two phosphonic
acid oxygen atoms and indirect hydrogen bonds with residues Q357, Q450 and Q446 are
made through a conserved water residue (designated as “Wa1” for ligand 5 and “cw” in
PDB 1QZ0). The 1-phenyl ring of 5 is pivoted about the difluoromethylene carbon so that it
is offset, yet within the same plane relative to the F2Pmp aryl ring in the 1QZ0 structure.
This allows the 3-(4′-methylphenyl) moiety of 5 to interact similar to the Leu side chain of
the dipeptide unit, F2Pmp-Leu in the 1QZ0 structure (Figure 3A). The aryl rings of 5 form
extensive hydrophobic contacts with residues F229, D231, I232, A405, Q446 and I443,
similar to what is observed in the 1QZ0 structure (Figure 3A & 3B and Table 2).

Introduction of Oxime Functionality into 5

In the co-crystal structure the aminooxy amine of 5 forms hydrogen bonds with the side
chain carboxyl of D231 and a water molecule (Wa43), which also hydrogen bonds to the
D231 residue (Figure 4A). The importance of this latter water is indicated by its presence in
the absence of inhibitor (designated as “Wa87” in PBD code 1LYV), suggesting that it could
be used for inhibitor design. In silico docking studies performed using the co-crystal
structure of 5 with the inclusion of Wa4357, 58 identified furanyl-based oximes as providing
favorable interactions with the D231 residue through the intermediacy of the conserved
water (Figure 4B).

Syntheses of a series of furanyl-based oxime inhibitors was performed in DMSO by reacting
5 (24 mM) with a commercially available furanyl aldehydes and AcOH in the ratio (1 : 1 :
2). The oxime products (6), which were typically of >90% purity as shown by random
HPLC analysis, were used directly for biological evaluation. Inhibitory potencies (IC50
values) were obtained spectrophotometrically in an in vitro YopH assay using pNPP as
substrate.38
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The 3-furanyloxime (6a) showed an IC50 value of 3.69 μM, whereas the 2-furanyloxime
(6b) was approximately 3-fold more potent (IC50 = 1.20 μM) (Table 3). In modeling studies,
the furanyl oxygen in 6a was seen to be at a greater distance from the conserved Wa43 than
for 6b. Therefore 6b was modified by sequential addition of a 5-methyl group (6c, IC50 =
0.91 μM) and then by introducing a hydroxyl group onto this methyl (6d, IC50 = 0.73 μM)
and finally by oxidation of the 5-hydroxymethyl substitutent to a carboxyl group (6e, IC50 =
0.19 μM). This sequence of modifications resulted in a 6-fold improvement relative to the
parent 6b. The observed binding enhancement of 6e was consistent with in silico docking
studies that showed multiple interactions of its carboxyfuranyl oxime with the conserved
Wa43 as well as with the backbone amide proton of R230 (Figure 4C).

Examination of Specificity of 6e

The development of YopH inhibitors is less advanced than for several other phosphatases.
For example, while the literature contains numerous reports of nanomolar-affinity PTP1B
inhibitors,59 there are few examples of YopH inhibitors exhibiting affinities in the
submicromolar range.30, 60 Additionally, the development of PTP inhibitors is plagued by a
high incidence of false positives that are due to nonspecific or promiscuous mechanisms
arising from the formation of colloid protein aggregates,9, 10, 61, 62 and for some YopH
inhibitors the possible roles of promiscuous mechanisms are unclear. The nanomolar IC50
value of 6e makes it one of the more potent YopH inhibitors reported to date. In order to
determine whether promiscuous mechanisms are at work, assays were conducted in the
presence and absence of 0.01% TX-100, since it is known that promiscuous inhibition can
often be minimized by the addition of such a detergent.62 These experiments showed that
the inhibitory potency of 6e is independent of detergent concentration, providing strong
evidence that YopH inhibition by 6e does not arise through promiscuous mechanisms.

It was also of interest to examine possible YopH selectivity of 6e, since significant structural
homology exists among many phosphases. For this purpose, the inhibitory activity of 6e was
measured against a panel of phosphatases that included the classical tyrosine-specific
phosphatases PTP1B and leukocyte antigen related phosphatase (LAR),63 as well as the dual
specificity phosphatases 14 and 2264 DUSP14, DUSP22 and the Variola phosphatase VH1.
In these assays 6e showed an approximate 17-fold selectivity for YopH relative to PTP1B
and greater than 2000-fold selectivity relative to the other phosphatases examined (Table 4).

Evaluation of 6e in Biological Models

A cell-based assay was used to assess toxicity of 6e. The mouse macrophage line J774 was
cultured 40 h with 0.1–100 μM of 6e and toxicity was measured by cellular ATP content. No
toxicity for any compound was observed for 6e at concentrations below 100 μM (data not
shown). Intracellular replication of Y. pestis was assessed by a previously described human
monocyte infection model.65 Primary human monocytes were infected for 12 h with Y.

pestis, using cell culture media containing 0.1–100 μM inhibitors or control. Specific
inhibition of intracellular bacterial growth was observed with 10 μM concentrations of 6e

(Figure 5). An approximately 9-fold decrease in intracellular bacteria resulted from
treatment with 6e compared to a negative control that showed no inhibition of YopH. The
positive control gentamycin (10 μM), which targets bacterial ribosomes,66 produced nearly
complete inhibition of intracellular Y. pestis growth.

Conclusions

YopH has proven to be a difficult target for inhibitor development. While there are
numerous reports of nanomolar affinity inhibitors against other phosphatases such as
PTP1B, submicromolar affinity YopH inhibitors are very few. The current study represents
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the first utilization of a library of nitrophenylphosphate-containing substrates for the
purposes of lead identification. An attractive feature of this approach is that KM values can
be calculated directly by colorimetric methods based on the enzymatic generation of
nitrophenol chromophore-containing reaction products. The current work is also
characterized by its use of oxime-based click ligation to optimize a substrate-derived lead.
The combination of these two methodologies allowed the identification of a non-
promiscuous nanomolar affinity YopH inhibitor exhibiting good PTP selectivity that showed
significant inhibition of intracellular Y. pestis replication at a non-cytotoxic concentration.
The current work provides valuable insights into the development of YopH inhibitors that
may have broader applicability in the discovery of inhibitors directed against other
phosphatases.

Materials and Methods

General

The following reagents used for YopH enzyme assays were obtained from Sigma-Aldrich:
pNPP tablets; 30% BSA solution (protease free); 1.0 M HEPES solution (pH 7.0 – 7.6) and
dithiotreitol (DTT). Aqueous ethylenediaminetetraacetic acid, sodium salt EDTA (0.5 M,
pH 8.0) was obtained from Invitrogen and 96-well plates were purchased from Costar. All
reactions were carried out under argon unless otherwise stated. All solvents were anhydrous
and obtained from Sigma-Aldrich. Final products were purified by a high pressure liquid
chromatography (HPLC) using a Waters Prep-LC 4000 system and Phenomenex Gemini 10
μ, 110 Å C18 columns (250 × 21.20 mm 10 micron) at a flow rate of 10 mL/minute (prep.
HPLC) with a mobile phase of A = 0.1% aqueous TFA and B = 0.1% TFA in aqueous
acetonitrile. Typical gradients were from 10% B to 100% B over 40 minutes with UV
monitoring at 220 nm, 254 nm and 280 nm. The purity of final products was determined by
analytical HPLC using a Waters Prep-LC 4000 system and Phenomenex Gemini 5 μ, 110 Å
C18 columns (250 × 4.60 mm 5 micron) at a flow rate of 1 mL/minute with a mobile phase
of A = 0.1% aqueous TFA and B = 0.1% TFA in aqueous acetonitrile. All final products
were found to be ≥ 95% pure. NMR spectra were recorded using a Varian 400 MHz
spectrometer. Unit mass resolution LC-MS were obtained on synthetic intermediates and
high resolution mass spectra (HRMS) were obtained for final products (University of
California at Riverside Mass Spectral Facility). Optical densities were measured with Biotek
Synergy 2 spectrophotometer at Åabs 405 nm using a kinetic readout for determination of
KM values and absolute readout for determination of IC50 values. The PTPse domain of
YopH (residues 164-468) was expressed in Escherichia coli according to the previously
published procedure.53

Recombinant Proteins

The PTPase domain of YopH (residues 164-468) was expressed in Escherichia coli and
purified as described previously.8, 53 as were the Variola major H1 (VH1)67 and human
DUSP-14 dual specificity phosphatases.68 Human DUSP-22, PTP1B and LAR catalytic
domains were expressed and purified using generic methodology.69

Determination of YopH Michaelis-Menten Constants (KM) for Nitrophenylphosphates

Total reactions volumes of 100 μL/well of reaction volume were used in 96 well plates.
Buffer was prepared by mixing 25 mM Hepes buffer (pH 7.0 – 7.6), 50 mM NaCl, 2.5 mM
EDTA, and 5 mM dithiothreitol (DTT) with 1mM fresh DTT added right before assay run.
To each well was added 85 μL assay buffer, 0.25% BSA (5 μL) followed by 5 μL of
nitrophenylphosphate substrate in DMSO at dilutions of 1000, 500, 250, 125, 50, 25, 10 and
5 μM. To the reaction mixtures was then added 5 μL of YopH in buffer (25 μg/mL) and
hydrolysis of substrate was monitored at 30 seconds intervals over 15 minutes. Michaelis-
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Menten constants (KM values) were determined using non-linear regression with the
equation y = Vmax[x/(KM+x)]. Values for pNPP and synthetic substrates 2a – 2k are shown
in Table 1. Data curves are provided in the Supporting Information.

Determination of YopH IC50 Values

Total reactions volumes of 100 μL/well of reaction volume were used in 96 well plates.
Buffer was prepared as above. To each well was added 79 μL of assay buffer, 0.25% BSA
(5μL) followed by 5 μL of inhibitors in DMSO at dilutions of 400, 133, 44, 15, 5, 1.67, 0.56,
0.19, 0.063, 0.032 and 0 μM. To the reaction mixtures was then added 5μL of YopH in
buffer (25μg/mL) followed by 6 μL of 10 mM pNPP buffer and each plate was agitated
gently at 25° C for 15 – 20 minutes. Hydrolysis of the substrate was immediately measured.
IC50 values were determined by fitting the data with sigmoidal curve generated using the
Boltzman equation. A parallel independent assay was performed with 0.01% TritonX-100.
Inhibition constants for 6a – 6e are provided in Table 3. Data curves are provided in the
Supporting Information.

Toxicity Assay

Toxicity of 6e was assessed with the mouse macrophage line J774 (American Type Culture
Collection, Manassas, VA), cultured in Eagle’s Minimum Essential Medium supplemented
with 4 mM L-glutamine, 4500 mg/L glucose, 1500 mg/L sodium bicarbonate, and 7.5% fetal
bovine serum (GIBCO/Invitrogen, Carlsbad, CA). Cells were grown in 96 well (5x105 cells/
100 mL), polystyrene plates (opaque bottom; Corning, Lowell, MA), maintained in a 5%
CO2, humid air incubator (37°C). Inhibitor 6e was dissolved in DMSO to produce a 10 mM
stock solution, and then added to cultures by diluting in media to final concentrations of 0.1–
100 μM. A negative control was also used that shows no inhibition of YopH. Culture media
for all cells contained a final 1% DMSO, including control wells without chemical
compounds. Cell viability was assessed by ATP content 20 and 40 h after treatment, using a
commercial kit (ViaLight, Lonza, Basel, Switzerland) and a luminometer (Wallac 1420
Victor; PerkinElmer, Shelton, CT) to measure photon emission.

Intracellular Replication of Bacteria

Primary human monocyte cultures65 were used to measure intracellular replication of the
plague bacterium. The Y. pestis strain CO92 pgm–, pla–, was previously described.70

Colony-isolated bacteria were grown 12 h in heart-infusion broth (HIB; Difco Laboratories,
Detroit, MI) supplemented with 0.2% xylose and 2.5 mM CaCl2. A dilution of the culture
was grown (26° C) to mid-log phase, and the bacteria were pelleted by centrifugation (600 ×
g) before rinsing with RPMI 1640 medium. Human peripheral blood monocytes (CD14+)
were isolated as previously described65 and added (2 × 105/well) to tissue culture plates (96
well, flat bottom; Corning) in 100 μL RPMI 1640 supplemented with 5% human AB sera
(Life Technologies, Carlsbad, CA). The monocytes were incubated (1 h, 37° C) with a 1:1
ratio of Y. pestis in a 5% CO2, humid air incubator (37° C). The wells were pulsed with
gentamycin (10 μg/mL; 20 minutes) and rinsed with warm media to remove remaining
extracellular bacteria. The cells were then cultured for 12 h in a 5% CO2, humid air
incubator (37° C) in media (100 μL RPMI 1640 supplemented with 5% human AB sera)
containing 0.1–100 μM of 6e or a negative control that shows no inhibition of YopH. As a
positive control, gentamycin was added to wells containing no other inhibitors. All cultures
contained 1% DMSO by volume. The wells were then gently washed with warm medium,
followed by addition of 120 μL of sterile distilled water to lyse the cells. The cell lysates
were serially diluted (1:5) in HIB, and 200 mL of each dilution was placed into duplicate
wells of a culture plate (Honeycomb; Growth Curves USA, Piscataway, NJ) and placed in a
growth-monitoring incubator (Bioscreen; Growth Curves USA) with constant agitation (37°
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C). Bacterial growth was measured by optical density at 600 nm every 20 minutes for 16 h.
The amount of Y. pestis was quantified by comparison to a standard curve of bacteria.

X-ray Crystallography

The purified protein was pooled and concentrated by diafiltration to 17.6 mg/mL in 100 mM
sodium acetate pH 5.7, 100 mM NaCl, and 1 mM EDTA. Crystals of YopH were obtained
with condition D8 (0.1M Buffer System 2 pH 7.5, 0.12 M alcohols, 12.5 % v/v MPD, 12.5%
w/v PEG 1000, and 12.5% w/v PEG 3350) from the Molecular Dimensions (Apopka, FL)
Morpheus Screen. A 1:1 ratio of protein (17.6 mg/mL) to well solution was used for
crystallization at room temperature. Plate-like crystals grew within 3 days. To obtain the
protein-inhibitor complex, compound 5 was dissolved in DMSO and added to the
crystallization solution to obtain a final concentration of 10 mM (10% DMSO). The crystals
were added to the soaking solution and soaked for 48 h at room temperature. Crystals were
flash frozen in liquid nitrogen without the need of an additional cryoprotectant.

X-ray diffraction data for the YopH-compound 5 complex were collected at beamline 22-ID
of the SER-CAT facilities at the Argonne National Laboratory utilizing remote data
collection. Using a 1.0 Å X-ray wavelength, 180 frames of data were collected using an
exposure time of 3 seconds and oscillation angle of 1 degree. The X-ray diffraction data
were processed with HKL3000.71 Data collection and refinement statistics are outlined in
Table 5. The structure was solved by molecular replacement using the MOLREP program72

from the CCP4 suite73 and the coordinates of the previously solved YopH structure (PDB
code: 1QZ0) after removing all solvent and ligand atoms. Cross-rotation and translational
searches were performed using data up to 3.0 Å followed by rigid-body refinement with
REFMAC5.74 Iterative rounds of model rebuilding and refinement were performed with
COOT75 and REFMAC5 and the location of the inhibitor was unambiguously identified
using σA-weighted 2mFo-DFc and mFo-DFc electron density maps.76 The coordinates and
refinement restraint files were prepared using the Dundee PRODRG server.77 Water
molecules were located using COOT and refined with REFMAC5. The refinement was
monitored by setting aside 5% of the reflections for calculation of the R-free value.78 Model
validation was performed using MolProbity.79 The electron density map for YopH-bound
inhibitor 5 is included in the Supporting Information. The coordinates and structure factor
files were deposited in the Protein Data Bank with accession code 2Y2F.

In Silico Studies

Docking of inhibitors 6a and 6e onto YopH was done with ICM Chemist Pro® software57

running on a MacIntosh computer (OSX v10.5.8) using default parameters and
procedures.58 In summary, modeling started with the X-ray crystal structure of YopH in
complex with 5. The “convert PDB” command was used to convert to native ICM format,
with optimization of hydrogens. All H2O molecules were removed from the enzyme with
the exception of the catalytically-conserved water (Wa1) and a conserved water proximal to
the ligand aminooxy group (Wa43) (see Figure 4A). A 2-furanyl-based oxime group was
added to the aminooxy-amine of 5 and the resulting oxime structure (6a) was re-docked
using the “re-dock” option under the “Ligand” menu (see Figure 4B). All docking
experiments were performed using the standard “re-dock” command, which utilizes a rigid
receptor protocol. The docked 6a was then modified by addition of a carboxyl group to the
furanyl 5-position and the resulting structure (6e) was re-docked as described above (see
Figure 4C).

General Procedure for the Synthesis of Nitrophenylphosphate Substrates (2a – 2k)

To a solution of ortho- or para-nitrophenol (1.0 mmol) in CH2Cl2 (5 mL) was added CCl4
(5.0 mmol) at −15° C and the reaction mixture was stirred at −15° C (5 – 10 minutes). To

Bahta et al. Page 8

J Med Chem. Author manuscript; available in PMC 2012 April 28.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



the mixture was added NN, -diisopropylethylamine (DIEA) (2.0 mmol) and NN, -
dimethylaminopyridine (DMAP) (0.1 mmol), then dibenzyl phosphite was added dropwise
at −15° C and the mixture was stirred at −15° C (1.5 h). The reaction was quenched by
stirring with 0.5 M aqueous KH2PO4 (20 mL) at room temperature (5 minutes). The aqueous
phase was extracted with EtOAc, and the combined organic extract was dried (MgSO4) and
taken to dryness under reduced pressure. The resulting residue was stirred with a solution
TFA : CH2Cl2 (1 : 1; 5 mL) for 2 – 3 h, volatiles were removed by evaporation and crude
products were subjected to HPLC purification to provide final products in yields of 75% –
100%.

4-(Tert-butyl)-2-nitrophenyl Dihydrogen Phosphate (2a)

1H NMR (400 MHz, CD3OD): δ 7.86 (d, J = 2.0 Hz, 1H), 7.67 (dd, J = 2.4 Hz, J = 8.8 Hz,
1H), 7.44 (d, J = 8.8 Hz, 1H), 1.31 (s, 9H). 13C NMR (400 MHz, CD3OD): δ 149.99 (1C),
143.19 (1C), 143.04 (1C), 132.27 (1C), 123.66 (1C), 123.06 (1C), 35.69 (1C), 31.49 (3C).
HRMS-ESI (m/z): [M − H]− calcd for C10H14NO6P, 274.0486; found, 274.0490.

3-(Tert-butyl)-4-nitrophenyl Dihydrogen Phosphate (2b)

1H NMR (400 MHz, CD3OD): δ 7.42–7.46 (m, 2H), 7.18 (m, 1H), 1.39 (s, 9H). 13C NMR
(400 MHz, CD3OD): δ 154.17 (1C), 149.26 (1C), 144.82 (1C), 126.89 (1C), 121.66 (1C),
119.79 (1C), 35.28 (1C), 29.36 (3C). HRMS-ESI (m/z): [M − H]− calcd for C10H14NO6P,
274.0486; found, 274.0490.

4-((Aminooxy)methyl)-2-nitrophenyl Dihydrogen Phosphate (2c)

1H NMR (400 MHz, D2O): δ 8.09 (d, J = 2.2 Hz, 1H), 7.78 (dd, J = 2.4 Hz, J = 8.8 Hz, 1H),
7.59 (d, J = 8.8 Hz, 1H), 5.09 (s, 2H). HRMS-ESI (m/z): [M − H]− calcd for C7H8N2O7P,
263.0075; found, 263.0077.

3-((Aminooxy)methyl)-4-nitrophenyl Dihydrogen Phosphate (2d)

1H NMR (400 MHz, D2O): δ 8.27 (d, J = 9.2 Hz, 1H), 7.53 (s, 1H), 7.40 (d, J = 9.2 Hz, 1H),
5.41 (s, 2H). HRMS-ESI (m/z): [M − H]− calcd for C7H8N2O7P, 263.0075; found,
263.0067.

(3-(((ethylideneamino)oxy)methyl)-4-nitrophenyl Dihydrogen Phosphate (2e)

1H NMR (400 MHz, CD3OD): δ 8.16 (d, J = 9.2 Hz, 1H), 7.36 (m, 1H), 7.27 (m, 1H), 6.98
(q, J = 5.6 Hz, 1H), 5.40 (s, 2H), 1.88 (d, J = 5.6 Hz, 3H). HRMS-ESI (m/z): [M + H]+ calcd
for C9H12N2O7P, 291.0377; found, 291.0374.

2-Methyl-4-nitrophenyl Dihydrogen Phosphate (2f)

1H NMR (400 MHz, CD3OD): δ 8.06 (m, J = 4.0 Hz, 1H), 8.00 (dd, J = 4.0 Hz, J = 8.0 Hz,
1H), 7.42 (d, J = 8.0 Hz, 1H), 2.34 (s, 3H). 13C NMR (400 MHz, CD3OD): δ 156.26 (1C),
145.43 (1C), 132.75 (1C), 127.32 (1C), 123.68 (1C), 121.33 (1C), 16.65 (1C). HRMS-ESI
(m/z): [M − H]− calcd for C7H8NO6P, 232.0016; found, 232.0011.

2-Methyl-6-nitrophenyl Dihydrogen Phosphate (2g)

1H NMR (400 MHz, CD3OD): δ 7.67 (dd, J = 1.2 Hz, J = 8.0 Hz, 1H), 7.50 (d, J = 9.5 Hz,
1H), 7.20 (td, J = 1.2 Hz, J = 8.0 Hz, 1H), 2.41 (s, 3H). 13C NMR (400 MHz, CD3OD): δ
145.15 (1C), 143.43 (1C), 136.75 (1C), 135.56 (1C), 126.02 (1C), 124.10 (1C), 17.04 (1C).
HRMS-ESI (m/z): [M + H]+ calcd for C7H8NO6P, 234.0162; found, 234.0160.
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2-Cyclohexyl-4-nitrophenyl Dihydrogen Phosphate (2h)

Spectral data 1H NMR (400 MHz, CD3OD): δ 7.68 (dd, J = 1.6 Hz, J = 8.0 Hz, 1H), 7.61
(dd, J = 1.2 Hz, J = 8.0 Hz, 1H), 7.30 (td, J = 1.2 Hz, J = 8.0 Hz, 1H), 3.09 (m, 1H), 1.75–
1.88 (m, 5H), 1.30–1.53 (m, 5H). 13C NMR (400 MHz, CD3OD): δ 155.29 (1C), 145.93
(1C), 141.78 (1C), 123.91 (1C), 123.41 (1C), 121.50 (1C), 38.59 (1C), 34.19 (2C), 27.90
(2C), 27.20 (1C). HRMS-ESI (m/z): [M + H]+ calcd for C12H16NO6P, 300.0642; found,
300.0642.

2-Cyclohexyl-6-nitrophenyl Dihydrogen Phosphate (2i)

1H NMR (400 MHz, CD3OD): δ 8.15 (m, 1H), 8.07 (dd, J = 2.8 Hz, J = 8.8 Hz, 1H), 7.52
(dd, J = 1.2 Hz, J = 8.8 Hz, 1H), 3.30 (m, 1H), 1.77–1.90 (m, 5H), 1.32–1.51 (m, 5H). 13C
NMR (400 MHz, CD3OD): δ 145.11 (1C), 144.68 (1C), 142.13 (1C), 133.31 (1C), 126.30
(1C), 123.85 (1C), 38.10 (1C), 34.77 (2C), 27.89 (2C), 27.20 (1C). HRMS-ESI (m/z): [M +
H]+ calcd for C12H16NO6P, 300.0642; found, 300.0642.

3-Nitro-[1,1′-biphenyl]-4-yl Dihydrogen Phosphate (2j)

1H NMR (400 MHz, CD3OD): δ 8.07 (dd, J = 0.8 Hz, J = 2.4 Hz, 1H), 7.85 (dd, J = 2.0 Hz,
J = 8.4 Hz, 1H), 7.58–7.60 (m, 3H), 7.41–7.45 (m, 2H), 7.35 (m, 1H). 13C NMR (400 MHz,
CD3OD): δ 155.48 (1C), 144.51 (1C), 139.62 (1C), 139.38 (1C), 130.29 (2C), 129.47 (1C),
128.01 (2C), 124.44 (1C), 124.41 (1C), 124.36 (1C). HRMS-ESI (m/z): [M + H]+ calcd for
C12H11NO6P, 296.0319; found, 296.0315.

6-Nitro-[1,1′-biphenyl]-3-yl Dihydrogen Phosphate (2k)

1H NMR (400 MHz, CD3OD): δ 7.95 (d, J = 8.8 Hz, 1H), 7.40–7.43 (m, 3H), 7.34–7.38 (m,
2H), 7.30–7.32 (m, 3H). 13C NMR (400 MHz, CD3OD): δ 155.48 (1C), 146.76 (1C), 139.79
(1C), 138.63 (1C), 129.76 (2C), 129.49 (1C), 128.90 (2C), 127.35 (1C), 129.32 (1C), 120.89
(1C). HRMS-ESI (m/z): [M + H]+ calcd for C12H11NO6P, 296.0319; found, 296.0316.

Diethyl ((3-bromophenyl)difluoromethyl)phosphonate (7)

A suspended solution of Zn-dust (1.27 g, 19.4 mmol) in 3mL DMF was purged with argon.
To this solution diethyl (bromodifluoromethyl)phosphonate (3.4 mL, 19.4 mmol) in 2mL
DMF was added dropwise by maintaining reaction temperature at 50–60°C (rxn is
exothermic). The reaction mixture was stirred at room temperature over 3 h and CuBr (2.79
g, 19.4 mmol) was added and stirred for 30 minutes at room temperature. A solution of
bromo-3-iodobenzene (2.00 g, 7.1 mmol) in 1mL DMF was added dropwise and was stirred
for over 24 h at room temperature. Water (10 mL) and ether (10 mL) were added and
mixture was passed through Celite. The layers were separated and aqueous layer was
extracted by ether, organic extract was dried over MgSO4, filtered and solvent was removed.
The crude material was purified via silica gel column chromatography (9:1 to 2:1 hexanes :
EtOAc) to give pale yellow oil product (2.3 g, 96%). 1H NMR (400 MHz, CDCl3): δ 7.71 (s,
1H), 7.58 (m, 1H), 7.52 (m, 1H), 7.29 (m, 1H), 4.19 (m, 4H), 1.29 (m, 6H). 13C NMR (400
MHz, CDCl3): δ 133.86 (1C), 129.99 (1C), 129.97 (1C), 129.85 (1C), 129.25 (1C), 129.97
(1C), 122.40 (1C), 64.92 (1C), 64.85 (1C), 16.29 (1C), 16.24 (1C). APCI-MS (m/z): Calcd.
for C11H14BrF2O3P, 342.0 and 344.0; Found, 343.0 and 345.0 [M + H]+.

Diethyl (Difluoro(4′-(hydroxymethyl)-[1,1′-biphenyl]-3-yl)methyl)phosphonate (8)

Mixture of 7 (500.0 mg, 1.46 mmol), (4-(hydroxymethyl)phenyl)boronic acid (332.0 mg,
2.19 mmol) and Pd(PPh3) (84.0 mg, 0.07 mmol) in 5 mL saturated solution of K2CO3, 2 mL
EtOH and 5 mL toluene was purged with argon and stirred at 70° C overnight. Water (20
mL) was added upon cooling. The aqueous layer was extracted by EtOAc, and organic
extract was dried over MgSO4, filtered and solvent was removed under reduced pressure.
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Crude material was purified via silica gel chromatography (1.5:1 to 1:3 hexanes : EtOAc) to
give a colorless oil product 8 as a yellow oil (308 mg, 57% yield). 1H NMR (400 MHz,
CDCl3): δ 7.83 (m, 1H), 7.79 (m, 1H), 7.58 (m, 3H), 7.52 (m, 1H), 7.43 (m, 2H), 4.71 (s,
2H), 4.21 (m, 4H), 2.42 (s, 1H), 1.31 (m, 6H). 13C NMR (400 MHz, CDCl3): δ 141.15 (1C),
140.78 (1C), 139.12 (1C), 133.11 (1C), 132.98 (1C), 129.36 (1C), 128.90 (1C), 127.40 (2C),
127.16 (2C), 124.95 (1C), 124.73 (1C), 64.90 (1C), 64.83 (1C), 16.31 (1C), 16.26 (1C). ESI
-MS (m/z): Calcd. for C18H21F2O4P, 370.11; Found, 393.20 [M + Na]+.

Diethyl ((4′-((Aminooxy)methyl)-[1,1′-biphenyl]-3-yl)difluoromethyl)phosphonate (9)

To a mixture of 8 (184.0 mg, 0.50 mmol), N-hydroxyphthalimide (98.1 mg, 0.60 mmol), and
PPh3 (170.2 mg, 0.65 mmol) in anhydrous THF (5 mL) was added diisopropyl
azodicarboxylate (DIAD) (0.13 mL, 0.65 mmol) and the mixture was stirred at room
temperature overnight. The reaction mixture was partitioned (H2O : EtOAc) and the organic
layer was dried and taken to dryness. To a solution of the resultant product (168 mg, 0.33
mmol) in CH2Cl2 (5 mL) ethanol was added 50% aqueous hydrazine•hydrate (80 μL, 1.30
mmol) and the mixture was stirred at room temperature for 4 h. The resulting precipitate was
removed by filtration and solvent was removed from the filtrate. The crude product was
purified by silica column chromatography (50% to 100% EtOAc in hexanes) to yield 9 as an
amorphous white solid (100 mg, 79% yield). 1H NMR (400 MHz, CD3OD): δ 7.81 (m, 2H),
7.59 (m, 4H), 7.46 (m, 2H), 4.73 (s, 2H), 4.20 (m, 4H), 1.30 (m, 6H). 13C NMR (400 MHz,
CD3OD): δ 141.17 (1C), 139.31 (1C), 137.26 (1C), 132.90 (1C), 132.76 (1C), 129.29 (1C),
129.27 (1C), 128.63 (2C), 128.23 (1C), 126.64 (2C), 124.63 (1C), 124.24 (1C), 76.98 (1C),
65.14 (1C), 65.07 (1C), 15.27 (1C), 15.21 (1C). APCI -MS (m/z): Calcd. for
C18H22F2NO4P, 385.13; Found, 386.10 [M + H]+.

((4′-((Aminooxy)methyl)-[1,1′-biphenyl]-3-yl)difluoromethyl)phosphonic Acid (5)

To a solution of 9 (100 mg, 0.26 mmol) in anhydrous CH2Cl2 (5 mL) under argon was
added trimethylsilylbromide (0.13 mL, 0.93 mmol) and the mixture was stirred at room
temperature for 3 h. Solvent was removed and HPLC purification was performed as
described in the General Synthetic methods (retention time = 15.6 minutes) to provide 5 as
an amorphous white solid (44.4 mg, 52% yield). Analytical HPLC gave 99% purity. 1H
NMR (400 MHz, DMSO-d6): δ 7.69–7.73 (m, 2H), 7.56 (m, 2H), 7.49 (m, 2H), 7.36 (m,
2H), 4.70 (s, 2H). HRMS-ESI (m/z): [M + H]+ calcd for C14H15NO4F2P, 330.0701; found,
330.0694.

(E)-5-((((3′-(Difluoro(phosphono)methyl)-[1,1′-biphenyl]-4-yl)methoxy)imino)methyl)furan-2-
carboxylic acid (6e)

To a solution of 5 (8.2 mg, 0.025 mmol) and 5-formylfuran-2-carboxylic acid (4.2 mg, 0.030
mmol) in 2 mL DMSO was added AcOH (2.9 μL, 0.050 mmol). The reaction mixture was
agitated at room temperature overnight. Product was purified via HPLC with a retention
time of 18.4 min to give white solid product (7.8 mg, 69%). 1H NMR (400 MHz, CD3OD):
δ 8.07 (s, 1H), 7.77 (s, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.56–7.59 (m, 2H), 7.41–7.52 (m, 5H),
7.22, 7.16 (d, J = 3.6 Hz, 1H), 7.18, 6.76 (d, J = 3.6 Hz, 1H), 5.26, 5.17 (s, 2H). 13C NMR
(400 MHz, CDCl3): δ 159.78 (1C), 150.55 (1C), 147.54 (1C), 145.59 (1C), 140.75 (1C),
139.89 (1C), 139.02 (1C), 136.89 (1C), 135.45 (1C), 128.55 (2C), 128.46 (1C), 128.44 (1C),
126.75 (1C), 126.66 (2C), 124.52 (1C), 118.78 (1C), 112.77 (1C), 76.01 (1C). HRMS-ESI
(m/z): [M − H]− calcd for C20H16F2NO7P, 450.0560; found, 450.0562.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Design progression leading from a library of nitrophenylphosphates (1) to bidentate
inhibitors (4).
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Figure 2.

Development of oxime-containing inhibitors (6) starting from platform 2k.
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Figure 3.

Crystal structures of YopH-bound ligands. (A) Superposition of the complex YopH•[Ac-
Asp-Ala-Asp-Glu-F2Pmp-Leu-amide] (protein backbone in red, ligand carbons in white;
PDB code 1QZ0) with YopH•5 (protein backbone in blue, ligand carbons in yellow)
showing relative binding orientations of the two ligands. (B) Residues providing key
hydrophobic contacts with 5.
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Figure 4.

Role of conserved water (Wa43) in the design of inhibitor 6e. (A) Electrostatic potential
surface rendering (blue = postive; red = negative) of the YopH•5 complex highlighting a key
conserved water (Wa43). (B) Predicted interaction of the furanyloxime oxygen of 6b with
Wa43. (C) Predicted interaction of the 5-carboxyfuranyloxime group of 6e with Wa43 and
the protein backbone.
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Figure 5.

Effect of compounds on intracellular replication of Y. pestis. Primary human monocytes
were infected with Y. pestis and cultured 12 h with 6e or a negative control (10 μM each).
Gentamycin was included as a positive control. Results are presented as viable intracellular
bacteria recovered per well of monocytes. Standard errors of the mean were <10%. The
assay was performed on three separate occasions using three independent monocyte donors.
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Scheme 1.

Synthesis of inhibitor platform 5. Reagents and conditions: (i) Zn, diethyl
(bromodifluoromethyl)phosphonate, CuBr, DMF, 60° C to room temperature (96% yield);
(ii) 4-(hydroxymethyl)phenylboronic acid, Pd(PPh3)4, satd. K2CO3, EtOH, PhMe, 70° C
(45% yield); (iii) a) N-hydroxyphtalimide, PPh3, DIAD, THF, room temperature b)
NH2NH2•H2O, EtOH, room temp. (75% yield); (iv) TMSBr, CH2Cl2, room temperature
(72% yield).
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Table 2

Comparison of YopH hydrophobic contact residues for compound 5 and F2Pmp-Leu.

Residue 5a F2Pmp-Leua, b

F229 24.6 24.6

D231 24.1 30.2

I232 23.6 19.8

A405 23.0 24.1

Q446 21.1 29.1

I443 11.0 16.0

a
Contact is given in Å2;

b
Data for F2Pmp-Leu was derived from PDB Code 1QZ0.
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Table 3

In vitro YopH IC50 values for selected inhibitors.

No. R IC50 ± S.E. (μM)a

6a 3.69 ± 0.31

6b 1.20 ± 0.22

6c 0.91 ± 0.13

6d 0.73 ± 0.30
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No. R IC50 ± S.E. (μM)a

6e 0.19 ± 0.16

a
IC50 values were determined as indicated in the Experimental Procedures.

J Med Chem. Author manuscript; available in PMC 2012 April 28.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Bahta et al. Page 27

Table 4

Inhibitory potencies of 6e against a panel of phosphatases.a

Phosphatase IC50 (μM) Fold Difference

YopH 0.19 Reference Value

PTP1B 2.23 11.7

LAR > 400 > 2000

DUS P-14 > 400 > 2000

DUS P-22 > 400 > 2000

VH1 > 400 > 2000

a
Values were determined as described in the Experimental Procedures.
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Table 5

Data collection and refinement statistics.

Data collection

X-ray source 22-ID, SER-CAT

Wavelength (Å) 1.0

Resolution (Å) 50.0–1.78 (1.80–1.78)a

Space group P 212121

Unit cell dimensions (°) a=49.2, b=55.5, c=100.1

Total Reflections/unique reflections 148922/25241

Completeness (%) 92.8/74.8

Rsym (%)b 10.6 (49.8)

I/σ(I) 21.9 (2.3)

Redundancy 5.9 (4.1)

Refinement statistics

Resolution (Å) 50.0–1.78

No. of reflections working set/test set 23875/25241

R-work (%) 16.5

R-free (%) 21.0

No. of atoms/mean B-factor (Å2)

Protein 2237/15.5

Inhibitor 22/15.7

Water 274/29.3

r.m.s. deviation from ideal geometry

Bond lengths (Å)/bond angles (°) 0.014/1.5

Ramachandran plot

Most favored (%) 93.2

Additionally allowed (%) 6.4

Generously allowed (%) 0.4

Disallowed (%) 0

MolProbity protein geometry score 1.53 (92nd percentile)

PDB accession code 2Y2F

a
Values in parenthesis are for reflections in the highest resolution shell.

b
Rsym = Σhkl Σi |Ii (hkl) − 〈I(hkl)〉 |/Σhkl ΣiI i(hkl), where <I(hkl)> is the mean intensity of multiply recorded reflections.

c
R = Σ |Fobs(hkl) − Fcalc(hkl)|/Σ |Fobs(hkl)|. Rfree is the R value calculated for 5% of the data set not included in the refinement.
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