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In this study, strain-hardening ultra-high-performance geopolymer concrete (SH-
UHPGC) was produced using Na2CO3, Na2SiO3 and their hybridization (1:1 in mole
ratio) as alkaline activators. An ultra-high compressive strength was achieved for all
the developed strain-hardening ultra-high-performance geopolymer concrete
(i.e., over 130 MPa). Strain-hardening ultra-high-performance geopolymer
concrete with hybrid Na2CO3 and Na2SiO3 activators showed the highest
compressive strength (186.0 MPa), tensile strain capacity (0.44%), and tensile
strength (11.9 MPa). It should be highlighted that very significant multiple cracking
can be observed for all the strain-hardening ultra-high-performance geopolymer
concrete even at a very low tensile strain level (e.g., 0.1%). According to the reaction
heat, microstructures, and chemical composition analyses, strain-hardening ultra-
high-performance geopolymer concrete with hybrid activators had the highest
reaction degree, while that of Na2CO3-based strain-hardening ultra-high-
performance geopolymer concrete was the lowest. It was found that the
Na2CO3-based strain-hardening ultra-high-performance geopolymer concrete
showed the best sustainability, and the strain-hardening ultra-high-performance
geopolymer concrete with hybrid Na2SiO3 and Na2CO3 presented the best overall
performance (considering the mechanical performance, energy consumption,
environmental impact, and economical potential). The findings of this work
provide useful knowledge for improving the sustainability and economic potential
of strain-hardening ultra-high-performance geopolymer concrete materials.
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1 Introduction

In the past few decades, breakthroughs have been achieved in both strength and ductility
improvements of concrete materials, leading to the generation of ultra-high-performance
concrete (UHPC) (Xiang et al., 2017; Huang et al., 2021a; Yoo et al., 2022a; Khan et al., 2022)
and Engineered/Strain-Hardening Cementitious Composites (ECC/SHCC) (Li, 2019; Wu et al.,
2021a; Wu et al., 2021b; Deng et al., 2023). Specifically, UHPC is an innovative material with
densely-packed matrix, which typically presents an ultra-high compressive strength (e.g., over
120 MPa), excellent durability and high toughness (Yoo et al., 2016; Huang et al., 2022a; Jang
et al., 2022). However, in order to achieve ultra-high strength, the manufacture of UHPC
inevitably requires large volumes of Portland cement and ultra-low water-to-binder ratio (e.g.,
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below 0.20) (Wu et al., 2017; Yoo and Kim, 2019). Considering that
Portland cement production takes up 5%–8% of the total global CO2

emission (Scrivener and Kirkpatrick, 2008), the material sustainability
of conventional UHPC is a concern, despite its excellent mechanical
and durability performances. Therefore, the promotion of more
sustainable binder materials for UHPC are essential.

In recent decades, geopolymer, which is known as a clinker-free low-
carbon binder, has a good potential to be a sustainable replacement for
Portland cement, and has gradually attracted increasing attentions of
researchers (Li et al., 2019; Amran et al., 2020; Xu et al., 2021a; Peng et al.,
2022; Peng et al., 2023). Since geopolymer can present a similar
mechanical performance with the cement paste, it has been
successfully adopted to produce different types of advanced sustainable
construction materials, such as artificial geopolymer aggregates (Xu et al.,
2021b; Qian et al., 2022; Qian et al., 2023), Engineered/Strain-Hardening
Geopolymer Composites (EGC/SHGC) (Yoo et al., 2022b; Lao et al.,
2023), and ultra-high-performance geopolymer concrete (UHPGC)
(Ambily et al., 2014; Ranjbar et al., 2017; Wetzel and Middendorf,
2019; Liu et al., 2020a; Liu et al., 2020b; Lao et al., 2022). Here, it is
mentioned that strain-hardening can also be achieved in UHPGC
through proper matrix design and fiber utilization, and this material

can be termed as strain-hardening UHPGC (SH-UHPGC) (Lao et al.,
2022). The tensile strain-hardening behavior can further extend the
potential of such construction materials for different application
purposes (e.g., precast structure, repair, impact, and explosive
resistances) (Kumar et al., 2022; Deng et al., 2023; Yin et al., 2023a;
Yin et al., 2023b).

To achieve high/ultra-high compressive strength, several methods are
utilized in the design and development of UHPGC. High-reactivity
precursors are commonly used, and the particles of different
precursors should be well-packed to form a very dense matrix. In
addition, alkali activators with a proper alkalinity and silica modulus
are required to provide an alkaline aqueous environment for the
dissolution of precursors and the condensation of reaction products.
Typical alkaline activators are sodium hydroxide (NaOH), sodium silicate
(Na2SiO3), waterglass, or their hybridizations due to their strong alkalinity
and high efficiency of activation. In this aspect, SiO3

2- can participate in
the formation of the reaction products by supplementing essential
components for the condensation of aluminosilicate gels (Kashani
et al., 2014). Also, heat curing is appreciated as it can highly promote
the reaction degree of the precursors.

However, although geopolymer is considered greener than
cement, the production and use of the sodium silicate (Na2SiO3) as
alkaline activator will still contribute to comparatively high carbon
emission (Habert et al., 2011), as this material is typically synthesized
by dissolving silica in molten sodium carbonate at 1,400°C. Currently,
the available UHPGC mixes in literature still heavily rely on silicate-
based activators (Qaidi et al., 2022). Moreover, compared to normal-
strength geopolymer concrete, a comparatively high precursor content
is used due to the low water-to-precursor ratio, which inevitably
requires a high dosage of alkalis. Therefore, it is of great
significance to seek alternative greener alkaline activators for
UHPGC (Alnahhal et al., 2021; Ahmad et al., 2022).

Compared to Na2SiO3, sodium carbonate (Na2CO3) can be a
promising substitution with lower environmental impact, together
with wide availability and chemical stability, and success has been
achieved in utilizing Na2CO3 in the production of normal-strength
geopolymer (Krivenko, 1994; Xu et al., 2008; Abdalqader et al., 2016;
Akturk et al., 2019). It is noted that Na2CO3 is exclusively manufactured
by the Solvay process, where the CO2 in the air can even be captured and
reduced (Lackner, 2002; Huijgen and Comans, 2003). However, since
the reaction products in geopolymer are highly dependent on the
functional group in the alkaline activator (e.g., SiO3

2-, CO3
2-), the

characteristics of the produced Na2CO3-based geopolymer may differ
from that of the Na2SiO3-based ones. For example, from the geopolymer
paste study, the Na2CO3-based geopolymer is usually characterized by a
prolonged setting time (Fernández-Jiménez and Puertas, 2001; Bernal
et al., 2015; Walling et al., 2018) and extremely slow strength

FIGURE 1
SEM images of raw materials: (A) Fly ash, (B) GGBS, (C) silica fume,
and (D) silica sand.

TABLE 1 Mix proportions of SH-UHPGC (weight ratio).

Mix IDs Precursors (total
1.000)

Activators Extra
water

Total
water

Sand Steel
fibers

FA GGBS SF Na2CO3-
anhydrous

Na2SiO3-
anhydrous

Waterglass

C100S0

0.185 0.738 0.077

0.0825 /

0.141 (Water:
0.080)

0.180 0.260 0.650 2.0 (Vol. %)C50S50 0.0413 0.0475

C0S100 / 0.0950
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development, as the lower alkalinity (i.e., lower PH value) and the
functional group CO3

2- of Na2CO3 will impede the formation of the
hardened products (Bernal et al., 2015). In order to avoid the above
drawbacks, combining Na2CO3 with other activators (e.g., Na2SiO3,
NaAlO2, or NaOH) (Li and Sun, 2000; Bernal et al., 2016; Ishwarya et al.,
2019; Wang et al., 2021) or additives [e.g., Ca(OH)2, MgO, or CaO]
(Bellmann and Stark, 2009; Abdalqader et al., 2015; Wang et al., 2018)
can be an effective method to reduce the setting time and even enable
higher mechanical performance of geopolymers. However, up to now,
almost no efforts have been tried to produce UHPGC (especially SH-
UHPGC) by utilizing Na2CO3 as alkaline activators. To fill the
knowledge gap, this study explores the feasibility of Na2CO3-based
SH-UHPGC for the first time, and tries to understand the influence of
Na2CO3 on the matrix characteristics, mechanical properties, and
environmental impacts of SH-UHPGC.

In the following, a comprehensive investigation was performed to
study the properties of SH-UHPGC with pure Na2SiO3, hybrid
Na2SiO3 and Na2CO3, and pure Na2CO3 as solid alkaline
activators. First, matrix characteristics including compressive
strength, reaction heat, microstructures, and the chemical
compositions were analyzed. Then, tensile performances and
cracking behaviors of the produced SH-UHPGC were tested and
compared. Finally, environmental impacts and economical
potentials of the developed SH-UHPGC were performed, and the
overall performance was assessed.

2 Experimental programs

2.1 Raw materials

Fly ash (FA), ground granulated blast-furnace slag (GGBS), and silica
fume (SF) were used as precursors for SH-UHPGC production. The
commercial fly ash and GGBS are provided by Green Island Cement Co.
Ltd., Hong Kong, and silica fume is purchased from mainland China.
According to X-ray fluorescence (XRF) tests, the fly ash was classified as
Class F according to ASTM C618-19 (ASTM, 2019), with 52.4% SiO2,
25.8% Al2O3, and 8.4% Fe2O3, GGBS contained 44.2% CaO, 32.1% SiO2,

and 14.1% Al2O3, while silica fume contained over 95% SiO2. The three

FIGURE 3
Compressive strength of SH-UHPGC with different activators.

FIGURE 4
Reaction heat of SH-UHPGC pastes with different activators: (A) early-age reaction heat, (B) 7-d reaction heat.

FIGURE 2
Dimensions of dumbbell specimen.
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types of precursors (i.e., FA, GGBS, and SF) have D50 particle sizes of
13.47 μm, 10.83 μm, and 0.56 μm, respectively. Fine silica sand was used
as the aggregates in SH-UHPGC, which have an average diameter smaller
than 300 μm and water absorption of 0.8%. Figure 1 presents the
morphological patterns of these materials under scanning electron
microscopic (SEM). Fly ash particles were mostly spherical while
GGBS particles were angular, and silica fume was in a much smaller
size. Two types of solid alkaline activators were adopted in this study,
i.e., sodium metasilicate (Na2SiO3-anhydrous) and sodium carbonate
(Na2CO3-anhydrous). Both were in analytical grade with purity over
99.5%. Besides, liquid waterglass purchased from Kowloon Sodium
Silicate Factory Ltd. containing 27.7% SiO2, 8.7% Na2O, and 56.8%
H2O was also used as the alkaline activator in this study. Finally,
straight copper-coated steel fibers with a length and diameter of
13 mm and 200 μm, respectively, were used as reinforcements to
realize the tensile strain-hardening behavior of UHPGC.

2.2 Preparation of strain-hardening ultra-
high-performance geopolymer concrete

The mix proportion of SH-UHPGC was adapted from the authors’
previous work (Lao et al., 2022), wherein the precursor and aggregate
contents were optimized by the particle packing theory to achieve the
ultra-high compressive strength. With the same waterglass content,
different ratios of Na2CO3 and Na2SiO3 were adopted as the variables
(i.e., pure Na2CO3, hybrid Na2CO3 and Na2SiO3, and pure Na2SiO3), and
the mix proportions of SH-UHPGC are summarized in Table 1.
Specifically in this study, the fly ash-to-GGBS ratio was fixed at 1:4,
and the water/precursor ratio was 0.26. Besides, the Na2O/precursor ratio
was fixed at 6%, and 2.0% (by volume) steel fibers were added. In the table,
the Mix ID “CaSb” was used to represent the mixtures with different
sodium silicate/carbonate ratios, wherein C and S represent Na2CO3 and
Na2SiO3, respectively, and a and b represent their percentages. It should
be noted that for C50S50 in Table 1, the mole ratio of Na2CO3 anhydrous
and Na2SiO3 anhydrous was 1:1.

Before the SH-UHPGC preparation, the solid activators, waterglass,
and water were mixed to form a uniform alkaline solution, which was
cooled down until the room temperature was reached. For the SH-UHPGC
production, precursors and sand were firstly dry-mixed for 5 min, followed
by the adding of alkali solution and the continuous stirring for another
10min. Finally, steel fibers were added and the mixture was further mixed
for 5min. After all the mixing steps were completed, the mini-slump tests

were conducted to measure the flowabilities of different mixes, which were
measured as 135mm, 162mm, and 185mm for C100S0, C50S50, and
C0S100, respectively. The flowability of SH-UHPGC decreased with higher
ratio of Na2CO3. After that, the fresh slurry was cast into cubic and
dumbbell molds, and sealed with plastic films to avoid excessive water loss.
It should be noted that demolding was conducted after 7 days as the
C100S0 specimens took a much longer time to set and get hardened. Then,
in order to accelerate the reaction and achieve high strength, the demolded
samples were sealed with plastic films and cured at 80°C in an oven for
3 days. After heat curing, the specimens were dried at room temperature
(23°C) for 2 days until further tests.

2.3 Testing methods

The compressive strengths were measured by three 50 mm ×
50 mm × 50 mm cubes under the loading rate of 1.0 MPa/s. The
direct tensile stress-strain relationships of SH-UHPGC were
tested by three dumbbell specimens (Figure 2) under a
displacement-controlled rate of 0.5 mm/min (Wu et al., 2018;
Wu et al., 2020). The tensile strain of the middle area (with 80 mm
gauge length) was measured by two symmetrically arranged linear

FIGURE 5
BSE images of SH-UHPGC pastes with different activators: (A) C100S0, (B) C50S50, and (C) C0S100.

FIGURE 6
Reaction degrees of SH-UHPGC pastes with different activators.
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variable differential transformers (LVDTs). For digital image
correlation (DIC) analysis, one side of the dumbbell specimen
was sprayed with black and white spackles (Huang et al., 2017; Li
et al., 2021), and this side was continuously photographed by a
digital camera at an interval of 3 s during the test.

For the matrix characterization, the release of the reaction heat
during the first 7 days was recorded by an isothermal calorimeter
(Calmetrix I-Cal 4,000). For each mix, approximately 100 g paste
sample (excluding sands and steel fibers) was stirred outside the
machine for 3 min ahead of time, after which they were put in the
isothermal calorimeter for 7 days for the reaction heat measurement.
Then, the hardened pastes were collected and cured in the same way as
described in Section 2.2, and the fragments from the inner regions
were cut, fixed in epoxy, polished to obtain a smooth surface, freeze-
dried at −80°C for 4 h, and coated with a gold sputter for backscattered
electron (BSE) analysis (Tescan VEGA3). In the BSE test, a

magnification of 1,200 times was adopted. Additionally, for
Fourier-Transform Infrared Spectroscopy (FTIR) tests, fragments of
the pastes were collected and pulverized into powders (smaller than
75 μm). The spectra from 400 cm-1 to 2000 cm-1 with a resolution of
4 cm-1 were recorded under ATR (Attenuated Total Reflection) mode.

3 Compressive strength and matrix
characteristics

3.1 Compressive strength

The compressive strengths of SH-UHPGC are presented in
Figure 3. All the mixes exhibited compressive strengths over
130 MPa. In the aspect of the different activators used, the
compressive strength of the mix with sodium carbonate
(i.e., C100S0, 135.8 MPa) was significantly lower than the mix
with sodium silicate (i.e., C0S100, 179.0 MPa). Considering that
the former mixture took a much longer time to set during sample
preparation (up to 7 days), pure sodium carbonate showed a lower
activation potential and cannot achieve rapid strength
development of SH-UHPGC. Interestingly, C50S50
(186.0 MPa) with hybrid Na2CO3 and Na2SiO3 showed the
highest strength among the three mixes (37.0% and 3.9%
higher than those of C100S0 and C0S100, respectively). This
phenomenon indicates the positive effect of combining
Na2CO3 and Na2SiO3 in the alkali-activation and the
mechanical performance improvement of SH-UHPGC. The
mechanism of this phenomenon will be discussed in the
following sections based on reaction kinetics.

3.2 Reaction heat

The 7-day reaction heat release curves of the SH-UHPGC pastes
are plotted in Figure 4. Generally, the reaction heat release can be
divided into five stages as proposed by Shi and Day (Shi and Day,
1995): 1) initial stage, 2) induction stage, 3) acceleration stage, 4)
deceleration stage, and 5) steady-state diffusion stage. Such five-stage
heat release procedure was observed in the mixture containing
Na2SiO3 (i.e., C0S100 and C50S50), while for C100S0, the

FIGURE 7
Results of FTIR analysis of SH-UHPGC pastes with different
activators.

FIGURE 8
Tensile stress–strain curves of SH-UHPGC (A) C100S0, (B) C50S50, and (C) C0S100.
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acceleration and deceleration stages were not clearly observed in the
early 7 days.

To make a clearer observation, the early-age heat release
procedures of different mixes in the first 10 hours are presented in
Figure 4A. For the initial stage associated with the preliminary
dissolution of the precursors and the initial reaction within the first
hour, the heat release rate was higher as the Na2CO3 ratio increased. A
possible reason could be that at the very early stage, the Ca2+ released
from the precursors immediately combined with CO3

2- to form

CaCO3 polymorphs or sodium-calcium carbonate phase
(pirssonite, hydroxysodalite, and gaylussite) (Bernal et al., 2016).
But for C0S100, no such phenomenon was observed due to the
absence of CO3

2-.
After the initial stage, C100S0 maintained an extremely slow heat

release rate until the end of the test (168 h). In comparison,
C50S50 showed a significant induction stage, which appeared as a
concave between the initial peak and the acceleration stage in the heat
release rate curve. For C0S100, however, such induction stage was less
obvious, which was the major difference between C50S50 and C0S100.
The induction stage corresponds to the progressive dissolution of the
precursors and the initial condensation and precipitation of the
reaction product. The reason may lay in the comparatively lower
PH value of the hybrid activators and the fixation of Ca2+ ions by CO3

2-

in C50S50 at the early stage, which made the release of Ca2+ from the
precursors slower, reduced its concentration in the pore solution and
consequently impeded the precipitation of reaction products.
However, no such phenomena occurred in C0S100 due to the
absence of CO3

2-.
Then, after the acceleration stage, C50S50 and C100S0 peaked

almost at the same value in the heat release rate curve. After 48 h,
C50S50 exhibited a higher heat release rate than that of C0S100 as the
difference between their cumulative heat release curves gradually
became closer. The reason for the above phenomenon is that in
C50S50, the CaCO3 polymorphs formed at the initial and
induction stages, could act as nucleation seeds (Tan et al., 2019),
promote the reaction and facilitate the formation of the reaction
products. From the end of the 7-day detection, it could be forecasted
that the cumulative heat release of C50S50 may exceed that of
C0S100 under further curing. In comparison, the heat release rate
of C100S0 showed a gradually increasing trend over time, indicating
that the alkali-activation reaction would gradually take effects after the

FIGURE 9
Summarized tensile performances of SH-UHPGC with different
activators.

FIGURE 10
DIC strain fields of SH-UHPGC at different strain levels (A) C100S0, (B) C50S50, and (C) C0S100.
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TABLE 2 Embodied carbon, embodied energy, and cost of raw materials.

Raw materials Embodied carbon (metric ton eq. CO2/
metric ton)

Embodied energy (GJ/metric ton) Cost (HKD/metric ton)

FA 0.004 Hammond and Jones (2008) 0.10 Yu et al. (2019b) 350 Xu et al. (2022b)

GGBS 0.042 Hammond and Jones (2008) 0.20 Yang et al. (2020) 500 Xu et al. (2022b)

SF 0.024 Vijayarethinam (2009) 0.10 Yu et al. (2019b) 2,100 Xu et al. (2022b)

Silica Sand 0.023 Yu et al. (2019b) 0.08 Yu et al. (2019b) 950 Xu et al. (2021c)

Na2SiO3 1.860 Xu et al. (2021b) 9.40 Yang et al. (2020) 860 Xu et al. (2022b)

Na2CO3 0.110 Yang et al. (2020) 5.80 Yang et al. (2020) 700 Yang et al. (2020)

Waterglassa 0.804 Xu et al. (2021b) 4.07 Yang et al. (2020) 2,266 Song et al. (2020)

Water 0.001 Yu et al. (2019b) 0.01 Yu et al. (2019b) 7 Xu et al. (2022b)

Steel Fiber 2.830 Yu et al. (2019b) 36.00 Yu et al. (2019b) 14,000 Yu et al. (2019b)

aWaterglass contains 56.8% H2O in weight.

TABLE 3 Embodied carbon, embodied energy, and cost of SH-UHPGC.

Raw materials Embodied carbon (kg CO2/m3) Embodied energy (MJ/m3) Cost (HKD/m3)

C100S0 C50S50 C0S100 C100S0 C50S50 C0S100 C100S0 C50S50 C0S100

FA 0.8 0.8 0.8 19.2 19.2 19.2 67.1 67.1 67.1

GGBS 32.2 32.2 32.2 153.2 153.2 153.2 383.1 383.1 383.1

SF 1.9 1.9 1.9 8.0 8.0 8.0 167.8 167.8 167.8

Silica Sand 15.7 15.7 15.7 54.6 54.6 54.6 640.8 640.8 640.8

Na2SiO3 0.0 91.6 183.2 0.0 463.0 925.9 0.0 42.4 84.7

Na2CO3 9.4 4.7 0.0 496.4 248.2 0.0 59.9 30.0 0.0

Waterglass 117.9 117.9 117.9 596.6 596.6 596.6 332.4 332.4 332.4

Water 0.2 0.2 0.2 1.9 1.9 1.9 1.3 1.3 1.3

Steel Fiber 441.5 441.5 441.5 5,616.0 5,616.0 5,616.0 2,184.0 2,184.0 2,184.0

Total 619.6 706.5 793.4 6,945.8 7,160.6 7,375.3 3,836.4 3,848.8 3,861.2

FIGURE 11
Environmental impacts and economical potentials of SH-UHPGC: (A) Embodied carbon, (B) embodied energy, and (C) material costs.
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CO3
2- was continuously consumed by the Ca2+ release from the

precursors (Bernal et al., 2015).

3.3 Backscattered electron analysis

The microstructures of SH-UHPGC pastes with different
activators observed from BSE tests are shown in Figure 5. As can
be seen in all the mixes, a large number of unreacted GGBS and fly ash
particles with different sizes remained in the pastes, and the dark-grey
region encapsulating the unreacted particles represented the space-
filling gels generated from alkali-activation. For C100S0, obviously, the
number of the unreacted raw precursors seemed to be the largest, and
the microstructure of the generated gels was loose and heterogeneous
with some evident flaws, which is the reason for the lowest
compressive strength of this mix as presented in Figure 3. In
comparison, both C50S50 and C0S100 presented denser and more
uniform microstructures without significant flaws and voids.
Therefore, the C50S50 and C0S100 mixes with Na2SiO3 had a
higher reaction degree than C50S50 and the reaction products both
presented excellent space-filling effects as compared to C100S0.

To further illustrate the reaction conditions of SH-UHPGC pastes
with different activators, the reaction degree was calculated based on
the BSE images as recommended by Scrivener et al. (2016). For each
mix, 15 BSE images with the dimensions of 170 μm × 230 μm were
used for calculation, and the obtained results are shown in Figure 6. As
observed from the figure, the reaction degrees of C50S50 and
C0S100 were much higher than that of C100S0, which coincided
well with the reaction heat results in Figure 4. Interestingly, a higher
reaction degree was observed in C50S50 (40.8%) than that in C0S100
(35.1%). As discussed in Section 3.2, the CaCO3 polymorphs, as initial
products from Na2CO3 activation, could play as nucleation seeds and
facilitate the gel formation of C50S50, which thus presents a higher
degree of reaction than C0S100 under further curing. In comparison,
C100S0 exhibited a reaction degree even lower than 20% (i.e., 17.9%)
and was almost half that of C0S100. Therefore, such a low reaction
degree of C100S0 could not provide sufficient reaction products to

complete the space-filling procedure. In order to present the
relationship between reaction degrees and compressive strengths of
SH-UHPGC, these two indices are plotted together in Figure 6 as well.
Obviously, the compressive strength showed a positive relation with
the reaction degree, indicating that the adjustment of the reaction
degree of the matrix is important for tailoring the compressive
strengths of SH-UHPGC.

3.4 Fourier-transform infrared spectroscopy
analysis

FTIR was employed to investigate the chemical composition
differences of the reaction products in different mixes, and the
tested results are presented in Figure 7. Baseline correction was
done on all the spectra. In the figure, the intensity of the
characteristic bands at around 1,421–1,470 cm-1 corresponds to the
asymmetric stretching vibrations of ν3 C-O bonds in CO3

2-, and the
intensity at around 876 cm-1 corresponds to the out-of-plane bending
vibration of ν2 C-O bonds in HCO3

− (Nedeljković et al., 2018), which
both tended to increase as the sodium carbonate ratio increased. Here,
it is noted that the weak signals occurred in C0S100 are attributed to
the unavoidable carbonation during the sample preparation. The
signal of ν4 C-O bonds in CO3

2- and the bending of Al-O-Si could
have overlapped at around 712 cm-1. The peak centered at around
449 cm-1 was assigned to the bending vibrations in the Al-O
octahedrons (Cao et al., 2020). The main peaks at around 970 cm-1

are designated to the Si-O-T (T denotes Si or Al) bonds in silicate gels,
whose intensity was highest in C50S50, followed by C0S100 and
C100S0 in sequence. This result is in accordance with the findings
in reaction heat and BSE observations, which may further validate the
enhanced alkali-activation reaction degree in SH-UHPGCwith hybrid
Na2CO3 and Na2SiO3 activators.

4 Tensile performance and cracking
behavior

4.1 Tensile performance

The tensile stress–strain curves of SH-UHPGC with different
matrices are presented in Figure 8. Obviously, strain-hardening
behaviors were observed in all the mixes (i.e., tensile strength could
further increase after the first cracking strength, together with the
increase of tensile strain). Unlike ECC materials showing multiple
stress drops in tensile responses (Yu et al., 2020; Xu et al., 2022a; Li
et al., 2023; Xu et al., 2023), the tensile stress-strain curves of SH-
UHPGC were very smooth, indicating the excellent crack width
control ability of steel fibers (Lao et al., 2022). To further analyze
the tensile performances of SH-UHPGC, their tensile strengths and
strain capacities are summarized in Figure 9. From the figure, the
highest tensile strain capacity (0.44%) and tensile strength
(11.9 MPa) were achieved in C50S50, indicating the excellent
tensile performance of the mix using hybrid Na2SiO3 and
Na2CO3 activators. Considering that the tensile strength of
strain-hardening cementitious (geopolymer) composites is
highly dependent on the fiber/matrix bond (Lao et al., 2023),
the highest tensile strength of C50S50 can be attributed to the
highest reaction degree of the matrix (as presented in Figure 6). In

FIGURE 12
Overall assessment of SH-UHPGC considering mechanical
performance, energy consumption, environmental impact, and material
cost.
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comparison, the other two mixes showed similar tensile strengths,
and C100S0 presented the lowest tensile strain capacity (0.37%),
indicating that Na2SiO3 showed better activation effect than
Na2CO3 in producing SH-UHPGC.

4.2 Digital image correlation strain fields

The DIC analysis was performed on a subset radius and subset
spacing of 30 pixels and 3 pixels, respectively. The local strain
value was calculated based on a strain radius of 3 pixels. Figure 10
presents the DIC strain fields of SH-UHPGC at different strain
levels under direct tension. Here, four constant strain levels
(i.e., 0.10%, 0.20%, 0.30%, and 0.40%) and the ultimate strain
were adopted for analysis. From the figure, for all the SH-UHPGC
mixes, multiple cracks were observed at all the presented strain
levels, and the cracking became more saturated as the strain level
increased. It should be highlighted that very significant multiple
cracking can be observed for all the developed SH-UHPGC even
at a very low tensile strain level (e.g., 0.1% or 0.2%). This
phenomenon is quite different from those of cement-based
strain-hardening UHPC and high/ultra-high-strength ECC,
which only showed few cracks with the tensile strain lower
than 0.2% (Huang et al., 2021b; Huang et al., 2021c; Huang
et al., 2022b; Zhu et al., 2022). For the developed SH-UHPGC,
the steel fibers used can effectively narrow the crack widths
(i.e., below 30 μm). However, the tensile crack width of ECC/
SHCC is commonly 60–150 μm (Ding et al., 2018; Yu et al., 2019a;
Huang et al., 2019). Thus, at the same tensile strain level, the crack
number of SH-UHPGC would be much larger than that of ECC/
SHCC, leading to the pronounced multiple-cracking behavior of
SH-UHPGC.

Due to the limitation of the digital camera used, the maximum
resolution of the captured photographs was not enough for the
analysis of crack width, and thus no visible cracks could be found
in the photographs at different strain levels. It indicated that the
crack widths of the developed SH-UHPGC should be smaller than
30 μm, as 1 pixel = 30 μm in the captured photographs. The actual
value of the crack width of SH-UHPGC in this study remains
unknown, and it should be further investigated in the
following work.

5 Environmental impacts and
economical potentials

5.1 Embodied carbon, embodied energy, and
material costs

Although geopolymer is generally regarded as a green material
owing to its clinker-free feature, the use of conventionally adopted
alkaline activator (e.g., Na2SiO3) still shows a heavy impact on the
environment from life-cycle assessments (Habert et al., 2011).
Therefore, it is of great significance to evaluate the environmental
impact and economical potential of replacing Na2SiO3 with Na2CO3

in the production of SH-UHPGC.
The embodied carbon, embodied energy, and costs of raw

materials and the produced SH-UHPGC are summarized in
Table 2 and Table 3, respectively. In addition, the results of

SH-UHPGC with different matrices are presented in Figure 11 for
a more distinctive comparison. It can be found in Table 2 that Na2SiO3

shows higher embodied carbon, embodied energy, and material cost
than Na2CO3. In consequence, when the replacement ratio of Na2SiO3

by Na2CO3 increased from 0% to 100% to produce SH-UHPGC, the
embodied carbon decreased from 793.4 kg CO2/m

3 to 619.6 kg CO2/
m3 and the embodied energy decreased from 7,375.3 MJ/m3 to
6,945.8 MJ/m3, while the material cost changed very little.
Therefore, the Na2CO3-based SH-UHPGC shows better
sustainability and is more eco-friendly than the Na2SiO3-based one.
Also, among all the raw materials of SH-UHPGC, it is mentioned that
the use of steel fibers made heavy contributions to the three indices
(i.e., 55.6%–71.3% of the total embodied carbon, 76.1%–80.9% of the
total embodied energy, and 56.6%–56.9% of the total material cost). In
this aspect, it is meaningful to seek for alternative fibers to realize
tensile strain-hardening behavior of greener and cheaper UHPGC in
the future.

5.2 Overall assessment

Based on the results in the above sections, an overall assessment
was conducted considering mechanical performances,
environmental impacts, and material costs. A radar graph was
used to present the results (i.e., Figure 12). Here, because lower
embodied carbon, embodied energy, and material cost are desirable
for the practical applications of UHPGC, their reciprocals were
used in the six-dimensional presentation. For easy comparison, all
values are normalized by the corresponding value of C0S100.
Among the three mixes, C100S0 was the most environmentally
friendly, but presented the poorest mechanical performances. In
comparison, C50S50 showed the most distinguished tensile strain
capacity, tensile strength, and compressive strength, and a
moderate environmental impact, demonstrating the superiority
of this mix. For C0S100, although its mechanical performance is
also excellent, this mix showed the highest embodied carbon, as
well as comparatively high embodied energy and material cost.
Therefore, the use of hybrid Na2SiO3 and Na2CO3 is a promising
method to achieve the best overall performance of the developed
SH-UHPGC.

6 Conclusion

In this study, Na2CO3 was used to replace the Na2SiO3 partially or
fully in strain-hardening ultra-high performance geopolymer concrete
(SH-UHPGC) production. A comprehensive investigation was
conducted to study the mechanical performances and reaction
mechanisms, and an environmental and cost analysis was also
conducted. From the obtained results, main conclusions can be
drawn as follows.

• Among the three mixes, SH-UHPGC with hybrid activators
showed the highest compressive strength (186.0 MPa), while
that activated by Na2CO3 presented the lowest strength. From
the reaction heat results, SH-UHPGC with hybrid activators
presented the highest heat release rate at the later stage, while
that of SH-UHPGCwith pure Na2CO3 was very slow, although it
showed a gradually increasing trend over time. In the aspect of
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BSE observations, SH-UHPGC with pure Na2CO3 showed a
loose and heterogeneous microstructure and the lowest reaction
degree, and the highest reaction degree was found in SH-
UHPGC with hybrid activators. FTIR results further
demonstrated the high reaction efficiency of SH-UHPGC with
hybrid activators.

• Strain-hardening andmultiple cracking were achieved in all the SH-
UHPGC mixes. The highest tensile strain capacity (0.44%) and
tensile strength (11.9 MPa) were achieved in SH-UHPGC with
hybrid activators, which is accordance with the findings in reaction
procedure and product analysis. In comparison, the other twomixes
showed similar tensile strengths. It should be highlighted that very
significantmultiple cracking can be observed for all the SH-UHPGC
even at a very low tensile strain level (e.g., 0.1%).

• SH-UHPGC with pure Na2CO3 showed the lowest embodied
carbon, embodied energy, and material costs, indicating an
excellent potential of using Na2CO3 as activator in SH-
UHPGC production. In addition, SH-UHPGC with hybrid
Na2SiO3 and Na2CO3 presented the best overall performance,
considering the mechanical properties, energy consumption,
environmental impact, and economical potential.

Na2CO3 has been successfully used in producing green SH-
UHPGC. However, several limitations still exist in the Na2CO3-
based SH-UHPGC. At the current stage, SH-UHPGC still need heat
curing for achieving a high early strength, which hinders the
application in practical constructions. Furthermore, Na2SiO3

cannot be fully replaced by Na2CO3 considering the
unacceptable setting time and compromised performance.
Finally, steel fibers used in SH-UHPGC inevitably brought the
largest proportion of material cost, carbon emission, and energy
consumption. In the following studies, additional efforts are
needed to further optimize this material.

It is worth mentioning that in the previous work, the authors have
successfully designed and developed steel-fiber-reinforced SH-UHPGC
with an ultra-high compressive strength up to 220MPa and PE-fiber-
reinforced SH-UHPGC [or Ultra-High-Strength Engineered Geopolymer
Composites, (UHS-EGC)] with compressive strength over 180MPa and
tensile strain capacity over 9%. Detailed information can be found in Lao
et al. (2022), Lao et al. (2023).
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