
International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 4, No. 2, 306–326, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.2-025 

306 

Utilization of Symmetric Switching Functions in the Symbolic 

Reliability Analysis of Multi-State k-out-of-n Systems 

 
Ali Muhammad Ali Rushdi  

Department of Electrical and Computer Engineering 

Faculty of Engineering, King Abdulaziz University 

P. O. Box 80204, Jeddah, 21589, Saudi Arabia 

E-mail- arushdi@kau.edu.sa 

 
(Received January 1, 2019; Accepted January 24, 2019) 

 

 

 

Abstract 
Symmetric switching functions (SSFs) play a prominent role in the reliability analysis of a binary k-out-of-n: G system, 

which is a dichotomous system that is successful if and only if at least k out of its n components are successful. The 

aim of this paper is to extend the utility of SSFs to the reliability analysis of a multi-state k-out-of-n: G system, which is 

a multi-state system whose multi-valued success is greater than or equal to a certain value j (lying between 1 (the 

lowest output level) and M (the highest output level)) whenever at least km components are in state m or above for all m 

such that 1 ≤ m ≤ j. This paper is devoted to the analysis of non-repairable multi-state k-out-of-n: G systems with 

independent non-identical components. The paper utilizes algebraic techniques of multiple-valued logic (together with 

known properties of SSFs) to evaluate each of the multiple levels of the system output as an individual binary or 

propositional function of the system multi-valued inputs. The formula of each of these levels is then written as a 

probability–ready expression, thereby allowing its immediate conversion, on a one-to-one basis, into a probability or 

expected value. The symbolic reliability analysis of a commodity-supply system (which serves as a standard gold 

example of a multi-state k-out-of-n: G system) is completed successfully herein, yielding results that have been 

checked symbolically, and also were shown to agree numerically with those obtained earlier. 

 

Keywords- System reliability, Probability-ready expression, k-out-of-n system, Multi-state system, Multiple-valued 

logic, Boolean quotient, Checking symbolic reliability, Variable-entered Karnaugh map. 

 

 

 

1. Introduction 
The reliability literature deals mainly with binary or dichotomous systems, in which both a 

system and its components have two states (i.e., either operational (successful) or non-operational 

(failed)). However, in many practical situations, there are multiple levels of system capacity or 

performance and/or different component performance levels and multiple component failure 

modes having different impacts on the system performance. These systems are modeled as multi-

state systems (MSSs), which might be coherent or non-coherent. This paper deals with a 

prominent class of coherent MSSs, viz., non-repairable k-out-of-n MSSs with independent non-

identical components. The main contribution of the paper is to demonstrate that, similarly to 

binary k-out-of-n systems, multi-state k-out-of-n systems can be conveniently analyzed with the 

aid of symmetric switching functions (SSFs). 

 

The literature abounds with many efficient techniques for the reliability analysis of MSSs 

(Veeraraghavan and Trivedi, 1994; Levitin et al., 2003; Zang et al., 2003; Muselli, 2005; Shrestha 

et al., 2007; 2010; Amari et al., 2010; Li et al., 2011; Li and Kapur, 2011; Ram, 2013; Ren et al., 

2018), with many of these techniques devoted to k-out-of-n MSSs (Zuo et al., 2007; Tian et al., 

2008; Zhao and Cui, 2010; Ding et al., 2012; Levitin, 2013; Singh and Ram, 2014; Li et al., 2014; 

Khorshidi et al., 2015; Mo et al., 2015; Song et al., 2017). The paper utilizes algebraic techniques 

of multiple-valued logic (together with known properties of SSFs) to evaluate each of the multiple 
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levels of the system output as an individual binary or propositional function of the system multi-

valued inputs. The formula of each of these levels is then written as a probability–ready 

expression (see Appendix A), thereby allowing its immediate conversion, on a one-to-one basis, 

into a probability or expected value. The paper strives to provide a pedagogically-insightful 

treatment that establishes a clear and interesting interrelationship between binary modeling and 

MSS modeling by stressing that multi-valued concepts are natural and simple extensions of two-

valued ones. The paper makes its point through the multi-valued analysis of a specific (albeit 

standard) multi-state commodity-supply system. Our results have been checked symbolically with 

the aid of variable-entered Karnaugh maps. Moreover, these results provide a truly independent 

means to check and verify earlier (and future) numerical solutions of this problem. The present 

analysis can be extended to other MSSs of comparable sizes, and might be automated to handle 

more general MSSs that are of larger sizes. 

The organization of the remainder of this paper is as follows. Section 2 surveys important 

properties of symmetric switching functions (SSFs), and hence paves the way for Section 3 to 

review a prominent class of these functions, namely monotonically non-decreasing ones, which 

represent successes of binary k-out-of-n: G systems. Section 4 provides an ample verbal and 

multi-valued logical description for a commodity-supply system, a standard k-out-of-n multi-state 

system that is solved throughout this paper. Section 5 presents the main contribution of this paper, 

as it details the multi-valued logical analysis of the aforementioned system. This analysis adapts 

several important concepts of switching algebra to multi-valued logic, including those of 

probability-ready expressions, Boolean quotients, and the Boole-Shannon expansion. Section 6 

discusses methods for hand-checking the resulting MSS symbolic reliability expressions, and uses 

variable-entered Karnaugh maps to verify the analysis in the case of non-identical components. 

Section 7 shows that our numerical results exactly agree with those obtained by Tian et al. (2008) 

and later by Mo et al. (2015). Section 8 concludes the paper. Three appendices are included to 

make the paper self–contained. These appendices add a multi-valued flavor to concepts that are 

well-known in the two-valued logical analysis of reliability systems. Appendix A provides a 

quick overview of probability-ready expressions, while Appendix B reviews the concept and 

mathematics of Boolean quotients. Appendix C briefly describes the Boole-Shannon expansion 

and its utility in the recursive description of the successes of k-out-of-n: G MSSs. 

 

2. Properties of Symmetric Switching Functions 

This section reviews some of the essential properties of symmetric switching function (SSFs). 

More and detailed information about SSFs in general is available in Caldwell (1954), Marcus 

(1956), Arnold and Harrison (1963), Cunkle (1963), Born and Scidmore (1968), Lee (1978), 

Muroga (1979), Unger (1989), Kim and Dietmeyer (1991), Hill and Peterson (1993), Kravets and 

Sakallah (2000), Mishchenko (2003), Canteaut and Videau (2005), and Maurer (2015). 

 

Specific exposition of the utility of SSFs in the reliability analysis of binary k-out-of-n systems is 

given in Rushdi (1986, 1993). 

 

A symmetric switching function (SSF) is defined as 

 

𝑓 = 𝑆𝑦(𝑛; 𝑨; 𝑿) =   𝑆𝑦( 𝑛; {𝑎1, 𝑎2, … , 𝑎𝑚};  𝑋1, 𝑋2, … , 𝑋𝑛),                                                           (1) 

 

and is specified via its number of inputs 𝑛, its characteristic set  
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𝑨 =  {𝑎0, 𝑎1, … , 𝑎𝑚}  ⊆  𝑰𝑛+1  = {0, 1, 2, … , 𝑛}, {𝑚 ≤ 𝑛},                                                        (2) 

 

and its inputs 𝑿 =  [𝑋1, 𝑋2, … , 𝑋𝑛]T. This function has the value 1 if and only if 

 

∑  𝑋𝑖 
𝑛
𝑖=1 = 𝑎𝑖,                                                                                                                                 (3) 

 

for all integers 𝑖 such that 0 ≤ 𝑖 ≤  𝑚,  and has the value 0, otherwise. The SSF 𝑓 in (1) can be 

alternatively expressed in terms of the complemented arguments 𝑿̅ = [ X̅1, X̅2, …,  X̅𝑛]T for an 

elementwise-complemented characteristic set given by 

 

𝑬 = {𝑛 − 𝑎𝑚, 𝑛 − 𝑎𝑚−1, … ,  𝑛 − 𝑎1, 𝑛 − 𝑎0},                                                                                 (4) 

 

That means that the SSF 𝑓 in (1) can be also written as 

 

 𝑓 =  𝑆𝑦(𝑛;  𝑬; 𝑿̅) = 𝑆𝑦(𝑛;  {𝑛 − 𝑎𝑚, 𝑛 − 𝑎𝑚−1, … , 𝑛 − 𝑎0}; X̅1,  X̅2, … , X̅𝑛).                          (5) 

 

The complement  𝑓 ̅ of the above SSF has a characteristic set defined by the complementary set w.r.t. 

𝑰𝑛+1, given by the set difference (𝑰𝑛+1/𝑨), which might be written as (𝑰𝑛+1 − 𝑨) or  

  

 𝑨̅  =  {0, 1, 2, … , 𝑛} − {𝑎0, 𝑎1, … , 𝑎𝑚},                                                                                            (6) 

 

and hence, 𝑓 ̅can be expressed as 

 

𝑓̅   = 𝑆𝑦(𝑛; 𝑨̅; 𝑿).                                                                                                                                  (7) 

 

The ANDing and ORing of two SSFs of the same arguments 𝑿, and of characteristic sets 𝑨𝟏 and 𝑨𝟐 

are SSFs with characteristic sets equal to the intersection and union of 𝑨𝟏 and 𝑨𝟐, respectively, i.e., 

 

𝑆𝑦(𝑛; 𝑨𝟏; 𝑿)   ⋀    𝑆𝑦(𝑛; 𝑨𝟐; 𝑿)   =   𝑆𝑦(𝑛; 𝑨𝟏 ∩  𝑨𝟐; 𝑿),                                                                 (8) 

 

𝑆𝑦(𝑛; 𝑨𝟏; 𝑿)    ⋁    𝑆𝑦(𝑛; 𝑨𝟐; 𝑿)  =   𝑆𝑦(𝑛; 𝑨𝟏 ∪  𝑨𝟐; 𝑿).                                                                 (9) 

 

The Boole-Shannon expansion for the SSF 𝑓 in (1) about any of its variables 𝑋𝑚  (1 ≤ 𝑚 ≤  𝑛)  

can be stated as follows (Rushdi, 1986; 1993) 

 

𝑆𝑦(𝑛; 𝑨; 𝑿) =  𝑋̅𝑚  𝑆𝑦(𝑛 − 1; 𝑩; 𝑿/𝑋𝑚)  ∨  𝑋𝑚  𝑆𝑦(𝑛 − 1; 𝑪; 𝑿/𝑋𝑚), 𝑛 ≥ 0,                          (10) 

 

where the two sets 𝑩 and  𝑪 are both subsets of the set  𝑰𝑛 = {0, 1, 2, … , 𝑛 − 1}, as can be seen 

from their following definitions 

 

𝑩 =  𝑨 ∩ 𝑰𝑛,                                                                                                                                (11) 

 

𝑫 =  {𝑎0 − 1, 𝑎1 − 1, … , 𝑎𝑚 − 1},                                                                                                    (12) 

 

𝑪 =  𝑫 ∩ 𝑰𝑛.                                                                                                                                (13) 
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stated as followsremight be  𝑪  and 𝑩 the two sets The definitions of 

 

𝑩 =  𝑨                   𝑖𝑓 𝑎𝑚 ≠ 𝑛,                                                                                                           (11a) 

𝑩 =  𝑨 − {𝑛}        𝑖𝑓 𝑎𝑚 = 𝑛,                                                                                                           (11b) 

 

𝑪 =  𝑫                    𝑖𝑓 𝑎0 ≠ 0,                                                                                                            (13a) 

𝑪 = 𝑫 − {−1}      𝑖𝑓 𝑎0 = 0.                                                                                                            (13b) 

 

The expansion (10) can be recursively applied till one of the following boundary conditions is 

reached 

 

𝑆𝑦(𝑛; 𝑰𝑛+1; 𝑿) =   1,                                                                                                                           (14) 

 

𝑆𝑦(𝑛;  𝝓 ; 𝑿) =   0,                                                                                                                              (15) 

 

where 𝑰𝑛+1 is the universe of discourse (universal set) for 𝑛 variables, and 𝝓 = {} is the empty set 

(null set or set with no elements). 

 

3. Success of the binary k-out-of-n: G System 
The success 𝑆(𝑘, 𝑛, 𝑿) of a k-out-of-n: G system is a monotonically non-decreasing symmetric 

SSF given by (Rushdi, 1986; 1993) 

 

𝑆(𝑘, 𝑛, 𝑿) = 𝑆𝑦(𝑛; {𝑚| 𝑘 ≤ 𝑚 ≤ 𝑛}; 𝑿) =  𝑆𝑦(𝑛; {𝑘, 𝑘 + 1, … , 𝑛}; 𝑿).                                   (16) 

 

This success (like any coherent success) has the same minimal sum and complete sum. Each of 

these two sums is a disjunction of (𝑛
𝑘

) prime implicants, which are products of 𝑘 un-

complemented literals each. For example, the successes of k-out-of-4: G systems (0 ≤ 𝑘 ≤ 5) are 

 

𝑆(0, 4, 𝑿) =   𝑆𝑦(4; {0, 1, 2, 3, 4};  𝑿) =  1,                                                                               (17a) 

 

𝑆(1, 4, 𝑿) =   𝑆𝑦(4; {1, 2, 3, 4};  𝑿) =  𝑋1  ∨  𝑋2  ∨ 𝑋3  ∨  𝑋4,                                                  (17b) 

 

𝑆(2, 4, 𝑿)  =  𝑆𝑦(4; {2, 3, 4};  𝑿)  =   𝑋1 𝑋2    ∨    𝑋1 𝑋3  ∨   𝑋1 𝑋4   ∨  𝑋2 𝑋3  ∨   𝑋2 𝑋4  ∨   𝑋3 𝑋4,  

                                                                                                                                                    (17c) 

 

𝑆(3, 4, 𝑿) = 𝑆𝑦(4; {3, 4};  𝑿) = 𝑋1 𝑋2 𝑋3  ∨ 𝑋1 𝑋2 𝑋4 ∨ 𝑋1 𝑋3 𝑋4 ∨ 𝑋2 𝑋3 𝑋4,                         (17d) 

 

𝑆(4, 4, 𝑿) =   𝑆𝑦(4; {4};  𝑿) =  𝑋1 𝑋2 𝑋3 𝑋4,                                                                             (17e) 

 

𝑆(5, 4, 𝑿) =   𝑆𝑦(4;  𝝓;  𝑿) =  0.                                                                                                (17f) 

 

The six systems above are, respectively, the (fictitious) always successful system, the parallel 

(totally-redundant) system, the 2-out-of-4: G (3-out-of-4: F) system, the fail-safe system, the 

(non-redundant) series system, and the (fictitious) always failed system (Rushdi, 1993; 2010). 
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The Boole-Shannon expansion for the success 𝑆(𝑘, 𝑛, 𝑿) of a k-out-of-n: G system about any of its 

variables 𝑋𝑚 (1 ≤ 𝑚 ≤  𝑛) can be obtained as a restatement of equation (10) as the following 

recursive relation (Rushdi, 1993), which is valid for (1 ≤ 𝑘 ≤  𝑛) 

𝑆(𝑘, 𝑛, 𝑿) =   X̅𝑚  𝑆(𝑘, 𝑛 − 1, 𝑿/𝑋𝑚)  ∨  𝑋𝑚  𝑆(𝑘 − 1, 𝑛 − 1, 𝑿/𝑋𝑚).                                         (18) 

 

This relation is used in conjunction with the following Boundary conditions, which simply restate 

the limiting cases (14) and (15) 

 

𝑆(0, 𝑛, 𝑿) = 1, 𝑛 ≥ 0,                                                                                                                        (19) 

 

𝑆(𝑛 + 1, 𝑛, 𝑿) = 1, 𝑛 ≥ 0,                                                                                                                (20) 

 

Relations (18-20) can be represented by a compact regular “Signal Flow Graph” (SFG) that is 

essentially a variant of a “Reduced Ordered Binary Decision Diagram” (ROBDD) (Rushdi and 

Alturki, 2017; 2018a; 2018b). Based on this representation, iterative algorithms of quadratic 

temporal complexity and linear spatial complexity can be constructed for computing the reliability of 

various versions of k-out-of-n systems (Rushdi, 1986; 1993; 2010; Rushdi et al., 2016). 

  

The k-out-of-n: G system is a coherent system such that 

 

 𝑆(𝑘, 𝑛 − 1, 𝑿/𝑋𝑚)  ≤   𝑆(𝑘 − 1, 𝑛 − 1, 𝑿/𝑋𝑚),                                                                             (21) 

 

and hence, (18) can be rewritten as 

𝑆(𝑘, 𝑛, 𝑿) =   𝑆(𝑘, 𝑛 − 1, 𝑿/𝑋𝑚)  ∨  𝑋𝑚  𝑆(𝑘 − 1, 𝑛 − 1, 𝑿/𝑋𝑚).                                                 (22) 

 

Equation (22) means that 𝑆(𝑘, 𝑛, 𝑿) can be written as a formula of un-complemented variables only. 

In fact, this is possible for its minimal sum or complete sum, as exemplified by equations (17). 

 

4. Description of an Example Multi-State k-out-of-n System  
While a binary k-out-of-n: G system is a dichotomous system that is successful if and only if at 

least k out of its n components are successful, a multi-state k-out-of-n: G system is a multi-state 

system whose multi-valued success is greater than or equal to a certain value j (lying between 1 

(the lowest output level) and M (the highest output level)) whenever at least km components are in 

state m or above for all m such that 1 ≤ m ≤ j (Tian et al., 2008; Mo et al., 2015). 

 

In this section, we introduce a typical multi-state system that was discussed in Tian et al. (2008), 

Fadhel et al. (2014), and Mo et al. (2015). This is a commodity-supply system shown in Figure 1, 

in which a certain commodity (e.g., oil, water, energy, transportation traffic, or communication 

traffic) is delivered from the commodity source to three sinks (called stations) through four 

commodity pipelines. Both the system and each pipeline have four states, which are defined as 

follows. The states of each pipeline are defined according to which station(s) is/are reached by the 

commodity supply via this pipeline. Specifically. pipeline number 𝑖 is represented by a multi-

valued variable 𝑋𝑖, which has four values or instances 𝑋𝑖{𝑗}, (1 ≤ 𝑖 ≤ 4 , 0 ≤ 𝑗 ≤ 3). The 

instance 𝑋𝑖{𝑗} is a binary indicator that the commodity can reach up to station 𝑗 through pipeline 

𝑖. The four instances 𝑋𝑖{𝑗} are specified by the following propositions 

 

{𝑋𝑖{0} = 1}    ⟺    {𝑋𝑖 = 0}   ⟺   
{Pipeline 𝑖 does not transmit the commodity to any station},                                                     (23a) 
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{𝑋𝑖{1} = 1}    ⟺    {𝑋𝑖 = 1}   ⟺ 
{Pipeline 𝑖 transmits the commodity to station 1 only},                                                       (23b) 

 

{𝑋𝑖{2} = 1}    ⟺    {𝑋𝑖 = 2}     ⟺ 
{Pipeline 𝑖 transmits the commodity to stations 1 and 2 only},                                          (23c) 

 

{𝑋𝑖{3} = 1}    ⟺    {𝑋𝑖 = 3}   ⟺ 
{Pipeline 𝑖 transmits the commodity to stations 1, 2, and 3}.                                               (23d) 

 

 

 

 
 

Figure 1. A commodity-supply system that is modeled as a multi-state k-out-of-n: G system (Adapted from 

Tian et al., 2008). 

 

 

 

 

Note that a statement of the form {𝑋𝑖 = 𝑗} assigns the value 𝑗  to the four-valued input variable 

𝑋𝑖, while an equivalent statement of the form {𝑋𝑖(𝑗) = 1} asserts (sets to 1) its binary instance 

𝑋𝑖(𝑗). While the four pipeline variables 𝑋𝑖 are statistically independent, the four instances for 

each of them are mutually exclusive and exhaustive. For {1 ≤ 𝑖 ≤ 4} and any permutation {j0, 

j1, j2, j3} of the set {0, 1, 2, 3}, each of these instances is related to the other ones via 

 

𝑋𝑖{𝑗0}  =  𝑋̅𝑖{𝑗1}  ∧  𝑋̅𝑖{𝑗2}  ∧  𝑋̅𝑖{𝑗3},                                                                                      (24a) 
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𝑋̅𝑖{𝑗0}  =  𝑋𝑖{𝑗1}  ∨ 𝑋𝑖{𝑗2}  ∨  𝑋𝑖{𝑗3}.                                                                                       (24b) 

 

Equations (24) constitute a De-Morgan pair of relations, and mean that for {1 ≤ 𝑖 ≤ 4} the set of 

instances {𝑋𝑖{𝑗}, 0 ≤ 𝑗 ≤ 3} is an orthonormal set, i.e., in every possible configuration, one and 

only one of these four two-valued instances is 1, while each of the remaining ones is 0, namely 

 

𝑋𝑖{0} ∨  𝑋𝑖{1}  ∨ 𝑋𝑖{2}  ∨  𝑋𝑖{3}  = 1,                                                                                     (25a) 

 

𝑋𝑖{𝑗} ∧  𝑋𝑖{𝑘} = 0,            𝑗 ≠ 𝑘,                                                                                               (25b) 

 

𝑋𝑖{𝑗} ∧  𝑋̅𝑖{𝑘} =  𝑋𝑖{𝑗},            𝑗 ≠ 𝑘.                                                                                        (25c) 

 

In a similar fashion, the states of the system are defined according to whether the demands of up 

to a certain station can be met.  We use 𝑆{𝑘} {0 ≤ 𝑘 ≤ 3 } to denote a binary indicator that the 

system can meet the commodity demand up to the station number 𝑘, i.e., for all stations 𝑚 (1 ≤
𝑚 ≤ 𝑘). Note that station 0 does not exist, and hence {𝑘 = 0} means that the system cannot meet 

the commodity demand of any existing station. The four instances 𝑆{𝑗} are specified by the 

following propositions 

 

{𝑆{0} = 1}    ⟺   {𝑆 = 0}   ⟺   
{The system does not meet the commodity demand of any station},                                  (26a) 

 

{𝑆{1} = 1}    ⟺    {𝑆 = 1}   ⟺ 
{The system meets the commodity demand of station 1 only},                                            (26b) 

 

{𝑆{2} = 1}    ⟺    {S = 2}     ⟺ 
{The system meets the commodity demand of stations 1 and 2 only},                                (26c) 

 

{𝑆{3} = 1}    ⟺    {𝑆 = 3}   ⟺ 

{The system meets the commodity demand of stations 1, 2, and 3}.                                   (26d) 

 

Note again that a statement of the form {𝑆 = 𝑘} assigns the value 𝑘  to the four-valued output 𝑆, 

while a statement of the form {𝑆(𝑘) = 1} asserts (sets to 1) its binary instance 𝑆(𝑘). The four 

instances 𝑆{𝑘}, 0 ≤ 𝑘 ≤ 3 are mutually exclusive and exhaustive. For any permutation {j0, j1, 

j2, j3} of the set {0, 1, 2, 3}, each of these instances is related to the other ones via 

 

𝑆{𝑗0}  =  𝑆̅{𝑗1} ∧  𝑆̅{𝑗2}  ∧  𝑆̅{𝑗3},                                                                                            (27a) 

 

𝑆̅{𝑗0}  =  𝑆{𝑗1} ∨ 𝑆{𝑗2}  ∨  𝑆{𝑗3}.                                                                                             (27b) 

 

Equations (27) are a De-Morgan pair of relations. They mean that the set of four instances 

{𝑆{𝑘}, 0 ≤ 𝑘 ≤ 3} is an orthonormal set, i.e., in every possible configuration, one and only one 

of these four two-valued instances is 1, while each of the remaining ones is 0, namely 

 

𝑆{0}  ∨  𝑆{1}  ∨ 𝑆{2}  ∨  𝑆{3}  = 1.                                                                                           (28a) 

 

𝑆{𝑗} ∧  𝑆{𝑘} = 0,           𝑗 ≠ 𝑘.                                                                                                   (28b) 
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𝑆{𝑗} ∧  𝑆̅{𝑘}  =  𝑆{𝑗},          𝑗 ≠ 𝑘.                                                                                              (28c) 

 

Different stations have different demands on the commodity. Station 1 requires at least four 

pipelines working to meet its demand; Station 2 requires at least two pipelines working to meet 

its demand; Station 3 requires at least three pipelines working to meet its demand. Thus, this 

commodity-supply system can be regarded as a multi-state 𝑘 −out-of−𝑛  system with 𝑛 = 4, 

𝑀 = 3, 𝑘1 = 4, 𝑘2 = 2, and 𝑘3 = 3. Specifically, station 1 is an 4 −out-of−4: 𝐺  system with 

four inputs given by 

 

𝑋̅𝑖{0}  =  𝑋𝑖{1}  ∨ 𝑋𝑖{2}  ∨  𝑋𝑖{3},          {1 ≤ 𝑖 ≤ 4}.                                                             (29a) 

 

Station 2 is a 2 −out-of−4: 𝐺  system with four inputs given by 

 

𝑋̅𝑖{0} ∧  𝑋̅𝑖{1}  =   𝑋𝑖{2}  ∨  𝑋𝑖{3},          {1 ≤ 𝑖 ≤ 4}.                                                           (29b) 

 

Finally, station 3 is a 3 −out-of−4: 𝐺  system with four inputs given by 

 

𝑋̅𝑖{0} ∧  𝑋̅𝑖{1}  ∧  𝑋̅𝑖{2}  =    𝑋𝑖{3},          {1 ≤ 𝑖 ≤ 4}.                                                          (29c) 

 

We use 𝑆𝑚 {1 ≤ 𝑚 ≤ 3} to depict the success of station 𝑚 (the indicator that the commodity 

demand of station 𝑚 is met). The successes of the three stations are given (in view of (17)) by 

 

𝑆1 =   𝑆𝑦(4; {4}; 𝑋̅1{0}, 𝑋̅2{0}, 𝑋̅3{0}, 𝑋̅4{0} ) =  𝑋̅1{0}  𝑋̅2{0}  𝑋̅3{0}  𝑋̅4{0},                       (30a) 

 

𝑆2 = 𝑆𝑦(4; {2, 3, 4}; 𝑋1{2} ∨ 𝑋1{3}, 𝑋2{2} ∨ 𝑋2{3}, 𝑋3{2} ∨ 𝑋3{3}, 𝑋4{2} ∨ 𝑋4{3}) 

= (𝑋1{2} ∨ 𝑋1{3})(𝑋2{2} ∨ 𝑋2{3}) ∨ (𝑋1{2} ∨ 𝑋1{3})(𝑋3{2} ∨ 𝑋3{3})
∨ (𝑋1{2} ∨ 𝑋1{3})(𝑋4{2} ∨ 𝑋4{3}) ∨ (𝑋2{2} ∨ 𝑋2{3})(𝑋3{2} ∨ 𝑋3{3}) 

∨ (𝑋2{2} ∨ 𝑋2{3})(𝑋4{2} ∨ 𝑋4{3}) ∨ (𝑋3{2} ∨ 𝑋3{3})(𝑋4{2} ∨ 𝑋4{3}),      (30b)  

 

 

 

𝑆3 =   𝑆𝑦(4; {3, 4}; 𝑋1{3}, 𝑋2{3}, 𝑋3{3}, 𝑋4{3} ) 

=  𝑋1{3} 𝑋2{3} 𝑋3{3} ∨  𝑋1{3} 𝑋2{3} 𝑋4{3} ∨  𝑋1{3} 𝑋3{3} 𝑋4{3} ∨  𝑋2{3} 𝑋3{3} 𝑋4{3} .  
                                        (30c) 

  

5. Analysis of the Example Multi-State System 
The four instances of the system output variable S are related to station successes by 

 

𝑆{0}  =   S̅1,                                                                                                                                (31a) 

 

𝑆{1}  =   𝑆1 S̅2,                                                                                                                            (31b) 

 

𝑆{2}  =  𝑆1 𝑆2 S̅3,                                                                                                                        (31c) 

 

𝑆{3}  =   𝑆1 𝑆2 𝑆3 .                                                                                                                       (31d) 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 4, No. 2, 306–326, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.2-025 

314 

The instances of 𝑆 can now be obtained by combining equations (30) and (31). In the following, 

we state the values of these instances and their expectations. First, we obtain 𝑆{0} and its 

expectation (see Appendix A) 

 

𝑆{0} =  S̅1 =  𝑋1{0} ∨  𝑋2{0} ∨ 𝑋3{0}  ∨  𝑋4{0},                                                                      (32) 

 

𝐸{𝑆{0}} = 1 −  𝐸{𝑋̅1{0}}  𝐸{𝑋̅2{0}} 𝐸{𝑋̅3{0}} 𝐸{𝑋̅4{0}}.                                                          (33) 

 

Using properties (5) and (7) of SSFs, we complement the expression (30b) for 𝑆2 , we obtain  

 

𝑆2̅ = 𝑆𝑦(4; {0, 1}; 𝑋1{2} ∨ 𝑋1{3}, 𝑋2{2} ∨ 𝑋2{3}, 𝑋3{2} ∨ 𝑋3{3}, 𝑋4{2} ∨ 𝑋4{3}) 

 = 𝑆𝑦(4; {3, 4}; 𝑋1{0} ∨ 𝑋1{1}, 𝑋2{0} ∨ 𝑋2{1}, 𝑋3{0} ∨ 𝑋3{1}, 𝑋4{0} ∨ 𝑋4{1}).      (34) 

 

Using Eq. (B.3) of Boolean quotients, Eq. (17d) for 𝑆𝑦(4; {3, 4};  𝑿) and Eq. (25c), we obtain 

 

𝑆{1} = 𝑆1 S̅2 = 𝑆1 (S̅2 /𝑆1 ) 

=  𝑋̅1{0} 𝑋̅2{0} 𝑋̅3{0} 𝑋̅4{ 0}  𝑆𝑦(4; {3, 4}; 𝑋1{1}, 𝑋2{1}, 𝑋3{1}, 𝑋4{1}) 

 =  𝑋̅1{0} 𝑋̅2{0} 𝑋̅3{0} 𝑋̅4{0} (𝑋1{1} 𝑋2{1} 𝑋3{1}  ∨  𝑋1{1} 𝑋2{1} 𝑋4{1}  ∨  𝑋1{1} 𝑋3{1} 𝑋4{1}  

∨    𝑋2{1} 𝑋3{1} 𝑋4{1})    

=      𝑋1{1} 𝑋2{1} 𝑋3{1} 𝑋̅4{0} ∨  𝑋1{1} 𝑋2{1} 𝑋̅3{0} 𝑋4{1}  ∨  𝑋1{1} 𝑋̅2{0}  𝑋3{1} 𝑋4{1}  ∨  

𝑋̅1{0}  𝑋2{1} 𝑋3{1} 𝑋4{1}.              (35) 

 

The expression in Eq.  (35) is not a PRE, but can be made so by utilizing Eq. (29a) as follows 

𝑆{1} =    𝑋1{1} 𝑋2{1} 𝑋3{1} ( 𝑋4{1}  ∨  𝑋4{2} ∨ 𝑋4{3}) ∨ 

  𝑋1{1} 𝑋2{1} (𝑋3{1} ∨ 𝑋3{2} ∨ 𝑋3{3}) 𝑋4{1}  ∨ 

  𝑋1{1} (𝑋2{1}  ∨   𝑋2{2} ∨  𝑋2{3})  𝑋3{1} 𝑋4{1}  ∨  

 ( 𝑋1{1} ∨ 𝑋1{2} ∨ 𝑋1{3})  𝑋2{1} 𝑋3{1} 𝑋4{1}.                                         (36) 

 

Applying the distributive law to the RHS of Eq. (36), we reduce it to 12 terms. One of these terms 

(𝑋1{1} 𝑋2{1} 𝑋3{1} 𝑋4{1}) appears four times and should be reduced (by virtue of idempotency) 

to one term, so as to obtain the following PRE, which consists of 9 disjoint terms 

𝑆{1} =   𝑋1{1} 𝑋2{1} 𝑋3{1} (𝑋4{2}  ∨ 𝑋4{3}) ∨ 

  𝑋1{1} 𝑋2{1} (𝑋3{2}  ∨  𝑋3{3}) 𝑋4{1}  ∨ 

  𝑋1{1} (𝑋2{2}  ∨  𝑋2{3})  𝑋3{1} 𝑋4{1}  ∨  

(𝑋1{2}  ∨  𝑋1{3})  𝑋2{1} 𝑋3{1} 𝑋4{1}   ∨   𝑋1{1} 𝑋2{1} 𝑋3{1} 𝑋4{1}.            (37) 

 

The PRE expression (37) is now converted directly, on a one-to-one basis, to the probability 

domain as follows 

 

𝐸{𝑆{1}} =   𝐸{𝑋1{1}}  𝐸{𝑋2{1}}  𝐸{𝑋3{1}}   (𝐸{𝑋4{2}}  +  𝐸{𝑋4{3}})  + 

  𝐸{𝑋1{1}} 𝐸{𝑋2{1}}  (𝐸{𝑋3{2}} +  𝐸{𝑋3{3}})  𝐸{𝑋4{1}}  + 

  𝐸{𝑋1{1}}  (E{𝑋2{2}} +  𝐸{𝑋2{3}})  𝐸{𝑋3{1}}   𝐸{𝑋4{1}}  +  

(𝐸{𝑋1{2}} + 𝐸{𝑋1{3}})  𝐸{𝑋2{1}}  𝐸{𝑋3{1}}  𝐸{𝑋4{1}}   +   

 𝐸{𝑋1{1}} 𝐸{𝑋2{1}}  𝐸{𝑋3{1}}  𝐸{𝑋4{1}}                                     (38) 

 

Now, we compute 𝑆1 𝑆2   using (30a), (30b), (24b) and (25c) as 
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𝑆1 𝑆2 = 𝑋̅1{0}  𝑋̅2{0}  𝑋̅3{0}  𝑋̅4{0}    ((𝑋1{2} ∨ 𝑋1{3})(𝑋2{2} ∨ 𝑋2{3}) ∨ (𝑋1{2} ∨
𝑋1{3})(𝑋3{2} ∨ 𝑋3{3})   ∨   (𝑋1{2} ∨ 𝑋1{3})(𝑋4{2} ∨ 𝑋4{3})   ∨ (𝑋2{2} ∨ 𝑋2{3})(𝑋3{2} ∨
𝑋3{3})  ∨    (𝑋2{2} ∨ 𝑋2{3})(𝑋4{2} ∨ 𝑋4{3})  ∨ 

(𝑋3{2} ∨ 𝑋3{3})(𝑋4{2} ∨ 𝑋4{3})) 

=  (𝑋1{2} ∨ 𝑋1{3})(𝑋2{2} ∨ 𝑋2{3}) 𝑋̅3{0}  𝑋̅4{0}  ∨ 

(𝑋1{2} ∨ 𝑋1{3}) 𝑋̅2{0} (𝑋3{2} ∨ 𝑋3{3}) 𝑋̅4{0}  ∨  
(𝑋1{2} ∨ 𝑋1{3}) 𝑋̅2{0}  𝑋̅3{0} (𝑋4{2} ∨ 𝑋4{3})   ∨ 

𝑋̅1{0} (𝑋2{2} ∨ 𝑋2{3})(𝑋3{2} ∨ 𝑋3{3}) 𝑋̅4{0} ∨    
𝑋̅1{0} (𝑋2{2} ∨ 𝑋2{3}) 𝑋̅3{0} (𝑋4{2} ∨ 𝑋4{3})  ∨ 

𝑋̅1{0}  𝑋̅2{0}(𝑋3{2} ∨ 𝑋3{3})(𝑋4{2} ∨ 𝑋4{3}).                       (39) 

 

Next, we compute 𝑆1 𝑆3, again using (30a), (30c), (24b) and (25c), as 

𝑆1 𝑆3 =  𝑋̅1{0}  𝑋̅2{0}  𝑋̅3{0}  𝑋̅4{0}   (𝑋1{3} 𝑋2{3} 𝑋3{3}  ∨  𝑋1{3} 𝑋2{3} 𝑋4{3}  ∨
 𝑋1{3} 𝑋3{3} 𝑋4{3} ∨  𝑋2{3} 𝑋3{3} 𝑋4{3}) 

= 𝑋1{3} 𝑋2{3} 𝑋3{3}  𝑋̅4{0}    ∨  𝑋1{3} 𝑋2{3} 𝑋̅3{0} 𝑋4{3}  ∨  𝑋1{3} 𝑋̅2{0} 𝑋3{3} 𝑋4{3} 
∨  𝑋̅1{0} 𝑋2{3} 𝑋3{3} 𝑋4{3} 

= 𝑋1{3} 𝑋2{3} 𝑋3{3} ( 𝑋4{1}  ∨  𝑋4{2}  ∨ 𝑋4{3}) 

 ∨  𝑋1{3} 𝑋2{3} (𝑋3{1} ∨ 𝑋3{2}  ∨ 𝑋3{3}) 𝑋4{3} 
∨  𝑋1{3} (𝑋2{1}  ∨  𝑋2{2} ∨ 𝑋2{3}) 𝑋3{3} 𝑋4{3}  

 ∨ (𝑋1{1}  ∨  𝑋1{2} ∨  𝑋1{3}) 𝑋2{3}  𝑋3{3} 𝑋4{3}.          (40) 

 

Applying the distributive law to the RHS of (40), we reduce it to 12 terms. One of these terms 

(𝑋1{3} 𝑋2{3} 𝑋3{3} 𝑋4{3}) appears four times and should be reduced (by virtue of idempotency) 

to one term, thereby resulting in the following PRE 

 

𝑆1 𝑆3 =  𝑋1{3} 𝑋2{3} 𝑋3{3} ( 𝑋4{2} ∨  𝑋4{1}) 

 ∨  𝑋1{3} 𝑋2{3} (𝑋3{2} ∨  𝑋3{1}) 𝑋4{3}  ∨  𝑋1{3} (𝑋2{2}  ∨  𝑋2{1}) 𝑋3{3} 𝑋4{3}  
 ∨ (𝑋1{2}  ∨  𝑋1{1}) 𝑋2{3} 𝑋3{3} 𝑋4{3} ∨   𝑋1{3} 𝑋2{3} 𝑋3{3} 𝑋4{3}.    (41) 

 

Comparing (39) to (41), and taking note of (29a), we observe that 

𝑆1 𝑆3 ≤  𝑆1 𝑆2 ,                                                                                                                             (42) 

which is a useful result, since it simplifies our expression for 𝑆{3} to  

 

𝑆{3} = 𝑆1 𝑆2 𝑆3 =  (𝑆1 𝑆2 ) (𝑆1 𝑆3 ) =  𝑆1 𝑆3 .                                                                             (43) 

 

As a consequence, 𝑆{3} is given by the PRE expression (41), which is now converted directly, on 

a one-to-one basis, to the probability domain as follows 

 

𝐸{𝑆{3}} =   𝐸{𝑋1{3}}  𝐸{𝑋2{3}}  𝐸{𝑋3{3}}   (𝐸{𝑋4{2}}  +  𝐸{𝑋4{1}})  + 

  𝐸{𝑋1{3}} 𝐸{𝑋2{3}}  (𝐸{𝑋3{2}} +  𝐸{𝑋3{1}})  𝐸{𝑋4{3}}  + 

  𝐸{𝑋1{3}}  (E{𝑋2{2}} +  𝐸{𝑋2{1}})  𝐸{𝑋3{3}}   𝐸{𝑋4{3}}  +  

(𝐸{𝑋1{2}} + 𝐸{𝑋1{1}})  𝐸{𝑋2{3}}  𝐸{𝑋3{3}}  𝐸{𝑋4{3}}   +   

 𝐸{𝑋1{3}} 𝐸{𝑋2{3}}  𝐸{𝑋3{3}}  𝐸{𝑋4{3}}.                                     (44) 
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The similarity between (38) and (44) is striking, indeed. In fact, each of these two equations 

might be obtained from the other simply by interchanging the instances 1 and 3 for both inputs 

and output.  

 

Now, the instance 𝑆{2} of the multi-state four-valued variable 𝑆 is (by virtue of (31c) and (B.3))  

 

𝑆{2} =  𝑆1 𝑆2 S̅3 =  𝑆1 (𝑆2 S̅3/𝑆1 )  = 𝑆1 (𝑆2 /𝑆1 ) (S̅3/𝑆1 ),                                                         (45) 

 

where  (𝑆2 /𝑆1 )  is obtained from (30a), (29b), (30b) and (B.1) as   

 

𝑆2 /𝑆1 = 𝑆𝑦(4; {2, 3, 4}; 𝑋̅1{0} 𝑋̅1{1},  𝑋̅2{0} 𝑋̅2{1}, 𝑋̅3{0} 𝑋̅3{1}, 𝑋̅4{0} 𝑋̅4{1}) 
/ 𝑋̅1{0}  𝑋̅2{0}  𝑋̅3{0}  𝑋̅4{0} 

        = 𝑆𝑦(4; {2, 3, 4}; 𝑋̅1{1} , 𝑋̅2{1}, 𝑋̅3{1},  𝑋̅4{1}), 

 

whose PRE form is given as follows (with disjointing literals highlighted in red) 

 

𝑆2 /𝑆1 = 𝑋̅1{1} 𝑋̅2{1} ∨ 𝑋̅1{1} 𝑋2{1} 𝑋̅3{1} ∨ 𝑋̅1{1} 𝑋2{1} 𝑋3{1} 𝑋̅4{1}  ∨  𝑋1{1} 𝑋̅2{1}  𝑋̅3{1} ∨
 𝑋1{1} 𝑋̅2{1} 𝑋3{1} 𝑋̅4{1} ∨ 𝑋1{1} 𝑋2{1} 𝑋̅3{1}  𝑋̅4{1}.     (46) 

 

Now, we complement 𝑆3 using (30c), (5) and (24a) to obtain S̅3 as 

 

S̅3 =   𝑆𝑦(4; {0, 1, 2}; 𝑋1{3}, 𝑋2{3}, 𝑋3{3}, 𝑋4{3} ) 

=  𝑆𝑦(4; {0, 1, 2}; 𝑋̅1{0} 𝑋̅1{1} 𝑋̅1{2}, 𝑋̅2{0} 𝑋̅2{1} 𝑋̅2{2}, 𝑋̅3{0} 𝑋̅3{1} 𝑋̅3{2},
𝑋̅4{0} 𝑋̅4{1} 𝑋̅4{2}) 

 

and hence its quotient with respect to 𝑆1 is 

 

S̅3/𝑆1 =  𝑆𝑦(4; {0, 1, 2}; 𝑋̅1{1} 𝑋̅1{2}, 𝑋̅2{1} 𝑋̅2{2}, 𝑋̅3{1} 𝑋̅3{2}, 𝑋̅4{1} 𝑋̅4{2})   = 

𝑆𝑦(4; {2, 3, 4}; 𝑋1{1} ∨ 𝑋1{2}, 𝑋2{1} ∨ 𝑋2{2}, 𝑋3{1} ∨ 𝑋3{2}, 𝑋4{1} ∨ 𝑋4{2}), 

 

which is given by the following PRE form (again with disjointing literals highlighted in red) 

 

S̅3/𝑆1  =   (𝑋1{1} ∨ 𝑋1{2})(𝑋2{1} ∨ 𝑋2{2})  ∨  (𝑋1{1} ∨  𝑋1{2}) 𝑋̅2{1} 𝑋̅2{2} (𝑋3{1}  ∨
 𝑋3{2}) ∨  (𝑋1{1} ∨ 𝑋1{2}) 𝑋̅2{1} 𝑋̅2{2}  𝑋̅3{1} 𝑋̅3{2} (𝑋4{1} ∨  𝑋4{2})  ∨  𝑋̅1{1} 𝑋̅1{2} (𝑋2{1} ∨
 𝑋2{2}) (𝑋3{1} ∨  𝑋3{2}) ∨ 𝑋̅1{1} 𝑋̅1{2} (𝑋2{1} ∨  𝑋2{2}) 𝑋̅3{1} 𝑋̅3{2} (𝑋4{1} ∨ 𝑋4{2}) ∨
 𝑋̅1{1} 𝑋̅1{2}  𝑋̅2{1} 𝑋̅2{2}  (𝑋3{1} ∨ 𝑋3{2})(𝑋4{1} ∨ 𝑋4{2}).                                                  (47) 

 

Now, we can obtain 𝑆{2} in PRE form via (45) by logically multiplying (ANDing) the three 

PREs of  𝑆1  in (30a), (𝑆2 /𝑆1 ) in (46), and (S̅3/𝑆1 ) in (47), and making use of (25c):  

 

 

𝑆{2} = 𝑋̅1{0}  𝑋̅2{0}  𝑋̅3{0}  𝑋̅4{0} ((𝑋1{2} 𝑋2{2}  ∨  𝑋1{2} 𝑋̅2{1} 𝑋̅2{2} (𝑋3{1} ∨  𝑋3{2})  ∨   
𝑋1{2} 𝑋̅2{1} 𝑋̅2{2}  𝑋̅3{1} 𝑋̅3{2} (𝑋4{1} ∨ 𝑋4{2})   ∨  𝑋̅1{1} 𝑋̅1{2} 𝑋2{2} (𝑋3{1} ∨ 𝑋3{2}) ∨
  𝑋̅1{1} 𝑋̅1{2}  𝑋2{2}  𝑋̅3{1} 𝑋̅3{2} (𝑋4{1} ∨ 𝑋4{2})   ∨ 𝑋̅1{1} 𝑋̅1{2}  𝑋̅2{1} 𝑋̅2{2}  (𝑋3{1} ∨
 𝑋3{2}) (𝑋4{1} ∨  𝑋4{2}))   ∨ (𝑋1{2} 𝑋2{1} 𝑋̅3{1}   ∨ 0 ∨ 0 ∨  𝑋̅1{1} 𝑋̅1{2} 𝑋2{1}  𝑋3{2}   ∨ 

 𝑋̅1{1} 𝑋̅1{2}  𝑋2{1}  𝑋̅3{1} 𝑋̅3{2} (𝑋4{1} ∨ 𝑋4{2}) ∨  0)  ∨ (𝑋1{2} 𝑋2{1} 𝑋3{1} 𝑋̅4{1}  ∨ 0 ∨
0 ∨  𝑋̅1{1} 𝑋̅1{2} 𝑋2{1} 𝑋3{1} 𝑋̅4{1}  ∨ 0 ∨ 0)  ∨   (𝑋1{1} 𝑋2{2}  𝑋̅3{1}  ∨ 𝑋1{1} 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 4, No. 2, 306–326, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.2-025 

317 

𝑋̅2{1} 𝑋̅2{2}  𝑋3{2} ∨  𝑋1{1} 𝑋̅2{1} 𝑋̅2{2}  𝑋̅3{1} 𝑋̅3{2} (𝑋4{1} ∨ 𝑋4{2})  ∨ 0 ∨ 0 ∨  0) ∨
 (𝑋1{1} 𝑋2{2} 𝑋3{1} 𝑋̅4{1}   ∨ 𝑋1{1} 𝑋̅2{1} 𝑋̅2{2} 𝑋3{1} 𝑋̅4{1} ∨ 0 ∨ 0 ∨ 0 ∨ 0) ∨
(𝑋1{1} 𝑋2{1} 𝑋̅3{1}  𝑋̅4{1}  ∨ 0 ∨ 0 ∨ 0 ∨ 0 ∨ 0 )).                                                                  (48) 

 

 

The expression above in (48) is not a PRE, since statistical independence among multiplied 

quantities is violated by pairs 𝑋̅𝑖{1} 𝑋̅𝑖{2} of instances of the same variable (marked in red). Note 

that any of these pairs can be replaced by its quotient with respect to the corresponding 0-instance 

𝑋̅𝑖{0},   because this instance is a multiple of the entire expression. We utilize the identity  

 

𝑋̅𝑖{0} (𝑋̅𝑖{1} 𝑋̅𝑖{2}) = 𝑋̅𝑖{0} ((𝑋̅𝑖{1} 𝑋̅𝑖{2})/𝑋̅𝑖{0})  

= 𝑋̅𝑖{0} ((𝑋𝑖{0} ∨ 𝑋𝑖{3})/𝑋̅𝑖{0}) = 𝑋̅𝑖{0} (𝑋𝑖{3} /𝑋̅𝑖{0}) = 𝑋̅𝑖{0} 𝑋𝑖{3},           (49) 

 

to replace each pair of the form 𝑋̅𝑖{1} 𝑋̅𝑖{2} in (48) by 𝑋𝑖{3}, thereby obtaining the following 

expression (in which locations where the form 𝑋𝑖{3} emerges are marked in red) 

 

𝑆{2} = 𝑋̅1{0}  𝑋̅2{0}  𝑋̅3{0}  𝑋̅4{0}    (𝑋1{2} 𝑋2{2}   ∨  𝑋1{2} 𝑋2{3} (𝑋3{1}  ∨  𝑋3{2})  ∨   𝑋1{2} 

𝑋2{3} 𝑋3{3}  (𝑋4{1} ∨ 𝑋4{2})   ∨  𝑋1{3}  𝑋2{2} (𝑋3{1} ∨ 𝑋3{2}) ∨
  𝑋1{3}  𝑋2{2}  𝑋3{3} (𝑋4{1} ∨ 𝑋4{2})   ∨ 𝑋1{3}  𝑋2{3}   (𝑋3{1} ∨ 𝑋3{2}) (𝑋4{1} ∨ 𝑋4{2})   ∨ 

𝑋1{2} 𝑋2{1} 𝑋̅3{1} ∨ 𝑋1{3} 𝑋2{1}  𝑋3{2}   ∨  𝑋1{3}  𝑋2{1}  𝑋3{3} (𝑋4{1} ∨ 𝑋4{2})  ∨
𝑋1{2} 𝑋2{1} 𝑋3{1} 𝑋̅4{1}  ∨ 𝑋1{3} 𝑋2{1} 𝑋3{1} 𝑋̅4{1}  ∨   𝑋1{1} 𝑋2{2}  𝑋̅3{1}  ∨ 𝑋1{1} 

𝑋2{3} 𝑋3{2} ∨  𝑋1{1} 𝑋2{3} 𝑋3{3}  (𝑋4{1} ∨  𝑋4{2})  ∨ 𝑋1{1} 𝑋2{2} 𝑋3{1} 𝑋̅4{1}   ∨ 𝑋1{1} 

𝑋2{3}  𝑋3{1} 𝑋̅4{1} ∨ 𝑋1{1} 𝑋2{1} 𝑋̅3{1}  𝑋̅4{1}).                                                                      (50) 

 

 

Expression (50) is not yet a PRE.  We still need to multiply the common factor by the rest of the 

expression, where this factor gets partially or totally absorbed. Complemented instances of the 

form 𝑋̅𝑖{1} are also replaced by (𝑋𝑖{2} ∨ 𝑋𝑖{3}) upon multiplication by 𝑋̅𝑖{0}. The following 

expression for 𝑆{2} is a PRE (where changes in (50) are identified in red). The corresponding 

expectation 𝐸{𝑆{2}}  is obvious, and will not be reproduced here for sake of brevity. 

 

𝑆{2} =  𝑋1{2} 𝑋2{2} 𝑋̅3{0}  𝑋̅4{0}   ∨  𝑋1{2} 𝑋2{3} (𝑋3{1}  ∨  𝑋3{2}) 𝑋̅4{0} ∨   𝑋1{2} 

𝑋2{3} 𝑋3{3} (𝑋4{1} ∨ 𝑋4{2}) ∨  𝑋1{3}  𝑋2{2} (𝑋3{1} ∨ 𝑋3{2}) 𝑋̅4{0} ∨
  𝑋1{3}  𝑋2{2}  𝑋3{3} (𝑋4{1} ∨ 𝑋4{2})   ∨  𝑋1{3}  𝑋2{3}   (𝑋3{1} ∨ 𝑋3{2}) (𝑋4{1} ∨ 𝑋4{2})   ∨ 

𝑋1{2} 𝑋2{1} (𝑋3{2} ∨ 𝑋3{3})  𝑋̅4{0} ∨ 𝑋1{3} 𝑋2{1}  𝑋3{2} 𝑋̅4{0}  ∨ 

 𝑋1{3}  𝑋2{1}  𝑋3{3} (𝑋4{1} ∨  𝑋4{2})  ∨ 𝑋1{2} 𝑋2{1} 𝑋3{1}  (𝑋4{2} ∨ 𝑋4{3})    ∨
  𝑋1{3} 𝑋2{1} 𝑋3{1} (𝑋4{2} ∨ 𝑋4{3})  ∨   𝑋1{1} 𝑋2{2} (𝑋3{2} ∨ 𝑋3{3}) 𝑋̅4{0} ∨ 𝑋1{1} 

𝑋2{3} 𝑋3{2} 𝑋̅4{0} ∨  𝑋1{1} 𝑋2{3} 𝑋3{3}  (𝑋4{1} ∨ 𝑋4{2})  ∨ 𝑋1{1} 𝑋2{2} 𝑋3{1} (𝑋4{2} ∨
𝑋4{3})     ∨ 𝑋1{1} 𝑋2{3}  𝑋3{1} (𝑋4{2} ∨ 𝑋4{3}) ∨ 𝑋1{1} 𝑋2{1} (𝑋3{2} ∨ 𝑋3{3})  (𝑋4{2} ∨
𝑋4{3}).                                                                                                                                          (51) 

 

6. Hand-Checking of Symbolic MSS Expressions 

The tedious computations in the preceding section produced lengthy symbolic formulas. 

Naturally, one might be skeptic concerning the susceptibility of these computations (and their 

outcomes) to numerical errors and/or fallacious reasoning. While there are methods for checking 

symbolic reliability expressions in the binary case (Rushdi, 1983), there seems to be none in the 

MSS case. In the following, we present what we consider a first cut at the problem of checking a 
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symbolic MSS reliability expression. We present two kinds of checks herein. In the next section, 

we present an alternative method of verification through numerical comparison of results 

obtained by the present formulas to results obtained by other algorithms.  

 

Our first check, which is simple and quick, utilizes an important characteristic of a binary 

function called its weight, which, when normalized, is called the syndrome or first spectral 

coefficient of the function. This is the number of true input vectors of the function, the number of 

truth-table lines or Karnaugh-map cells in which the function is asserted, or simply the number of 

minterms (Rushdi and Ghaleb, 2014). We check that the sum of the weights of the four instances 

{𝑆{𝑘}, 0 ≤ 𝑘 ≤ 3} is equal to the total number of minterms or 44 = 256, namely 

 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑆{0}) + 𝑤𝑒𝑖𝑔ℎ𝑡(𝑆{1}) + 𝑤𝑒𝑖𝑔ℎ𝑡(𝑆{2}) + 𝑤𝑒𝑖𝑔ℎ𝑡(𝑆{3}) = 256.                             (52) 

 

The availability of a PRE for a binary function allows immediate computation of its weight 

through replacing logical multiplication and addition by their arithmetic counterparts, and 

replacing each uncomplemented instance of an input by 1. In view of (27b), a complemented 

instance of an input is equal to the ORing of three disjoint uncomplemented instances, and hence 

should be replaced by 3. Now, we use the PREs in (A.3), (37), (41), and (51) to obtain  

 

𝑤𝑒𝑖𝑔ℎ𝑡(S̅{0}) = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑋̅1{0} 𝑋̅2{0} 𝑋̅3{0} 𝑋̅4{0}) = 3 ∗∗ 4 = 81,                                     (53a) 

 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑆{0}) = 256 − 81 = 175,                                                                                           (53b) 

 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑆{1}) =  𝑤𝑒𝑖𝑔ℎ𝑡(𝑆{3}) = 9,                                                                                       (53c) 

 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑆{2}) = 63,                                                                                                                  (53d) 

 

which means that (52) is satisfied, as required. 

 

A second check is more profound and more assuring (albeit more time consuming). It pertains to 

verifying identities (28), which attest that the set of instances {𝑆{𝑘}, 0 ≤ 𝑘 ≤ 3} is an 

orthonormal set. This can be accomplished by constructing the function table of the four-valued 

variable 𝑆 as a function of the four four-valued arguments  𝑋1, 𝑋2, 𝑋3, and 𝑋4. The input domain 

of this table has 44 = 256 lines. A convenient form of this table is a Multi-Valued Karnaugh Map 

(MVKM) (Rushdi, 2018; Rushdi and Rushdi, 2018), whose map variables are the four four-

valued input variables 𝑋𝑖 {1 ≤ 𝑖 ≤ 4}, so that the map becomes as large as a conventional map 

of eight binary variables (Rushdi et al., 2019). An even more convenient form for the map is a 

variable-entered version of the MVKM (Rushdi, 2018). Figure 2 shows one such variable-entered 

MVKM using 𝑋1 and 𝑋3 as map variables, and 𝑋2 and 𝑋4 as entered variables. Figures 2(a)-(d) 

represent the four instances of 𝑆, and Figure 2(e) shows that the disjunction of these four 

instances of 𝑆 is identically equal to 1, while Figure 2(f) shows that the conjunction of any 

distinct two of these four instances of 𝑆 is identically equal to 0. 
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 𝑿𝟏{𝟎} 𝑿𝟏{𝟏} 𝑿𝟏{𝟑} 𝑿𝟏{𝟐} 

𝑿𝟑{𝟎} 𝟏 𝟏 𝟏 𝟏 

𝑿𝟑{𝟏} 𝟏 
𝑿𝟐{𝟎} ∨ 𝑿𝟒{𝟎} 

 

𝑿𝟐{𝟎} ∨ 𝑿𝟒{𝟎} 

 

𝑿𝟐{𝟎} ∨ 𝑿𝟒{𝟎} 

 

𝑿𝟑{𝟑} 𝟏 
𝑿𝟐{𝟎} ∨ 𝑿𝟒{𝟎} 

 

𝑿𝟐{𝟎} ∨ 𝑿𝟒{𝟎} 

 

𝑿𝟐{𝟎} ∨ 𝑿𝟒{𝟎} 

 

𝑿𝟑{𝟐} 𝟏 
𝑿𝟐{𝟎} ∨ 𝑿𝟒{𝟎} 

 

𝑿𝟐{𝟎} ∨ 𝑿𝟒{𝟎} 

 

𝑿𝟐{𝟎} ∨ 𝑿𝟒{𝟎} 

 
 

(𝒂) 𝑺{𝟎}   
 

 

 𝑿𝟏{𝟎} 𝑿𝟏{𝟏} 𝑿𝟏{𝟑} 𝑿𝟏{𝟐} 

𝑿𝟑{𝟎} 0 0 0 0 

 

𝑿𝟑{𝟏} 

 

0 

 𝑿𝟐{𝟏} ( 𝑿𝟒{𝟐} ∨ 𝑿𝟒{𝟑}) 

∨ ( 𝑿𝟐{𝟐} ∨ 𝑿𝟐{𝟑}) 𝑿𝟒{𝟏} 

∨  𝑿𝟐{𝟏}  𝑿𝟒{𝟏} 

 

 𝑿𝟐{𝟏} 𝑿𝟒{𝟏} 

 𝑿𝟐{𝟏} 𝑿𝟒{𝟏} 

𝑿𝟑{𝟑} 0  𝑿𝟐{𝟏} 𝑿𝟒{𝟏} 0 0 

𝑿𝟑{𝟐} 0  𝑿𝟐{𝟏} 𝑿𝟒{𝟏} 0 0 
 

(𝒃) 𝑺{𝟏} 

 

 

 𝑿𝟏{𝟎} 𝑿𝟏{𝟏} 𝑿𝟏{𝟑} 𝑿𝟏{𝟐} 

𝑿𝟑{𝟎} 0 0 0 0 

𝑿𝟑{𝟏} 

 

0 

 

0  𝑿𝟐{𝟑} 𝑿𝟒{𝟑} 0 

 

𝑿𝟑{𝟑} 

 

0 
 𝑿𝟐{𝟑} 𝑿𝟒{𝟑} 

 𝑿𝟐{𝟑} ( 𝑿𝟒{𝟐} ∨ 𝑿𝟒{𝟏}) 

∨ ( 𝑿𝟐{𝟐} ∨ 𝑿𝟐{𝟏}) 𝑿𝟒{𝟑} 

∨  𝑿𝟐{𝟑}  𝑿𝟒{𝟑} 

 𝑿𝟐{𝟑} 𝑿𝟒{𝟑} 

 

𝑿𝟑{𝟐} 0 0         𝑿𝟐{𝟑}  𝑿𝟒{𝟑} 0 
 

(𝒄) 𝑺{𝟑}  
 

 

 𝑿𝟏{𝟎} 𝑿𝟏{𝟏} 𝑿𝟏{𝟑} 𝑿𝟏{𝟐} 

𝑿𝟑{𝟎} 0 0 0 0 

 

𝑿𝟑{𝟏} 

 

0 

 𝑿𝟐{𝟐} ( 𝑿𝟒{𝟐} ∨ 𝑿𝟒{𝟑})   ∨ 

 𝑿𝟐{𝟑} ( 𝑿𝟒{𝟐} ∨ 𝑿𝟒{𝟑}) 

          𝑿𝟐{𝟐} 𝑿̅𝟒{𝟎} ∨ 

 𝑿𝟐{𝟑} ( 𝑿𝟒{𝟏} ∨ 𝑿𝟒{𝟐})   ∨ 

 𝑿𝟐{𝟏} ( 𝑿𝟒{𝟐} ∨ 𝑿𝟒{𝟑}) 

 𝑿𝟐{𝟐} 𝑿̅𝟒{𝟎}  ∨ 

             𝑿𝟐{𝟑} 𝑿̅𝟒{𝟎} ∨               
 𝑿𝟐{𝟏} ( 𝑿𝟒{𝟐} ∨ 𝑿𝟒{𝟑}) 

 

 

𝑿𝟑{𝟑} 

 

0 

           𝑿𝟐{𝟐} 𝑿̅𝟒{𝟎} ∨ 

 𝑿𝟐{𝟑} ( 𝑿𝟒{𝟏} ∨ 𝑿𝟒{𝟐}) ∨ 

 𝑿𝟐{𝟏} ( 𝑿𝟒{𝟐} ∨ 𝑿𝟒{𝟑}) 

 

 𝑿𝟐{𝟐} ( 𝑿𝟒{𝟏} ∨ 𝑿𝟒{𝟐})   ∨ 

 𝑿𝟐{𝟏} ( 𝑿𝟒{𝟏} ∨ 𝑿𝟒{𝟐}) 

 

 𝑿𝟐{𝟐} 𝑿̅𝟒{𝟎}  ∨ 

 𝑿𝟐{𝟑} ( 𝑿𝟒{𝟏} ∨ 𝑿𝟒{𝟐})  ∨ 

 𝑿𝟐{𝟏} 𝑿̅𝟒{𝟎} 

 

𝑿𝟑{𝟐} 

 

0 
 𝑿𝟐{𝟐} 𝑿̅𝟒{𝟎}  ∨ 

             𝑿𝟐{𝟑} 𝑿̅𝟒{𝟎} ∨              
 𝑿𝟐{𝟏} ( 𝑿𝟒{𝟐} ∨ 𝑿𝟒{𝟑}) 

 

 𝑿𝟐{𝟐} 𝑿̅𝟒{𝟎}  ∨ 

 𝑿𝟐{𝟑} ( 𝑿𝟒{𝟏} ∨ 𝑿𝟒{𝟐})  ∨ 

 𝑿𝟐{𝟏} 𝑿̅𝟒{𝟎} 

  𝑿𝟐{𝟐} 𝑿̅𝟒{𝟎} ∨ 

 𝑿𝟐{𝟑} 𝑿̅𝟒{𝟎}  ∨ 

 𝑿𝟐{𝟏} 𝑿̅𝟒{𝟎} 

 

  (𝒅) 𝑺{𝟐} 

 

 

 𝑿𝟏{𝟎} 𝑿𝟏{𝟏} 𝑿𝟏{𝟑} 𝑿𝟏{𝟐} 

𝑿𝟑{𝟎} 𝟏 𝟏 𝟏 𝟏 

𝑿𝟑{𝟏} 𝟏 1 1 1 

𝑿𝟑{𝟑} 𝟏 1 1 1 

𝑿𝟑{𝟐} 𝟏 1 1 1 
 

 𝑿𝟏{𝟎} 𝑿𝟏{𝟏} 𝑿𝟏{𝟑} 𝑿𝟏{𝟐} 

𝑿𝟑{𝟎} 𝟎 0 0 0 

𝑿𝟑{𝟏} 𝟎 0 0 0 

𝑿𝟑{𝟑} 𝟎 0 0 0 

𝑿𝟑{𝟐} 𝟎 0 0 0 
 

(𝒆)    𝑺{𝟎}  ∨  𝑺{𝟏}  ∨ 𝑺{𝟐}  ∨  𝑺{𝟑} (𝒇)   𝑺{𝒋} ∧  𝑺{𝒌},    𝒋 ≠ 𝒌 

 

 

Figure 2. Variable-entered Karnaugh maps representing the four instances of the four-valued output 

variable and verifying their orthonormality 
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7. Comparison with Previous Work 
The problem handled herein was solved via various multi-state techniques by Tian et al. (2008) 

and Mo et al. (2015). In both cases, the following input matrix was used, in which the sum of 

entries in each row is 1 (according to the expectation of (25a)).  

 

{𝐸{𝑋𝑖{𝑗}}} = [

. 𝟎𝟓𝟎 . 𝟎𝟗𝟓𝟎

. 𝟎𝟓𝟎 . 𝟎𝟗𝟓𝟎
. 𝟎𝟔𝟖𝟒 . 𝟕𝟖𝟔𝟔
. 𝟎𝟔𝟖𝟒 . 𝟕𝟖𝟔𝟔

. 𝟎𝟑𝟎 . 𝟎𝟕𝟕𝟔

. 𝟎𝟑𝟎 . 𝟎𝟕𝟕𝟔
. 𝟎𝟒𝟒𝟔 . 𝟖𝟒𝟕𝟖
. 𝟎𝟒𝟒𝟔 . 𝟖𝟒𝟕𝟖

]       (1 ≤  𝑖 ≤  4 , 0 ≤  𝑗 ≤  3)                    (54) 

 

Table 1 compares our results for this specific input with the results of the earlier two teams of 

authors. The three sets of results are essentially the same, despite the existence of minor 

differences in precision. For all the three sets of results, the sum of expectations of the four 

instances of the multi-valued output 𝑆 add exactly to one (within the precision used). 

 

 

 
Table 1. Comparison of the present results with those in earlier work 

 

 Tian et al. (2008) Mo et al. (2015) Present Results 

E{S(0)} 0.1508 0.150838 0.150837750000 

E{S(1)} 0.0023 0.002282 0.002282548128 

E{S(2)} 0.0892 0.089181 0.089180866436 

E{S(3)} 0.7577 0.757699 0.757698835436 

Total 1.0000 1.000000 1.000000000000 

 

 

 

8. Conclusions 

This paper demonstrated how MSS reliability can be handled via multi-valued logical tools. The 

techniques employed were purely algebraic, as opposed to ones employing the Karnaugh map 

(the map was used in a verification role only). The multi-valued inputs were used directly, as 

opposed to encoding them as equivalent binary variables. A classical MSS problem was manually 

analyzed. Results obtained satisfy important checks and replicate exactly earlier numerical results 

obtained by automated means. 

 

 

 

Appendix A: Probability-Ready Expressions 

The concept of a probability-ready expression (RRE) is well-known in the two-valued logical domain 

(Rushdi and Rushdi, 2017), and it is still valid for the multi-valued logical domain.  A Probability-

Ready Expression is a random expression that can be directly transformed, on a one-to-one basis, to 

its statistical expectation (its probability of being equal to 1) by replacing all logic variables by their 

statistical expectations and replacing disjunction and conjunction operations (ORing and ANDing) 

by their arithmetic counterparts of addition and multiplication. A logic expression is a PRE if  

 

a) all disjuncted (ORed) terms (products) are mutually exclusive (disjoint), and  

b) all conjuncted (ANDed) alterms (sums) are statistically independent. 
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Condition (a) is satisfied if for every pair of ORed terms, one term contains a certain instance of 

one of the multi-valued variables, while the other term contains another instance of the same 

variable. Condition (b) is satisfied if for every pair of ANDed alterms, one alterm involves 

variables describing a certain set of components, while the other alterm incorporates variables 

describing a mutually disjoint set (i.e., one of different components), under the assumption of 

independence of components. For example, the following expression 

 

𝑆{0} =  𝑋1{0} ∨  𝑋2{0} ∨ 𝑋3{0}  ∨  𝑋4{0},                                                                              (A.1) 

 

is not a PRE, since it has ORed quantities that are not disjoint. A PRE version of it might be 

obtained by using a disjointing procedure (Rushdi and Rushdi, 2017), namely 

 

𝑆{0} =  𝑋1{0} ∨ 𝑋̅1{0} (𝑋2{0} ∨  𝑋̅2{0} (𝑋3{0}  ∨ 𝑋̅3{0} 𝑋4{0})).                                         (A.2) 

 

However, a much simpler PRE is obtained by simply complementing (A.1), namely 

  

 S̅{0}  =  𝑋̅1{0}  𝑋̅2{0}  𝑋̅3{0}  𝑋̅4{0}.                                                                                        (A.3) 

 

The expression in (A.3) is a PRE since it has no ORed quantities while ANDed quantities in it are 

statistically independent. It results in the following expression, from which (11) is derived 

 

𝐸{S̅{0}} =  𝐸{𝑋̅1{0}}  𝐸{𝑋̅2{0}} 𝐸{𝑋̅3{0}} 𝐸{𝑋̅4{0}}.                                                               (A.4) 

 

Appendix B: Boolean Quotients 

The concept of a Boolean quotient is another switching-algebraic concept that can be conveniently 

viewed in a multi-valued context.  Given a Boolean function 𝑓 and a product (term) 𝑡, the Boolean 

quotient of 𝑓 with respect to 𝑡, denoted by (𝑓/𝑡) or (𝑓|𝑡), is defined to be the function formed from 

𝑓 by imposing the constraint {𝑡 =1} explicitly (Brown, 1990), i.e.,  

 

𝑓/𝑡 =  [𝑓]𝑡=1,                                                                                                                                             (B. 1) 

 

The Boolean quotient is also known as a ratio, a subfunction, or a restriction. Brown (1990) and 

Rushdi and Rushdi (2017) list several useful properties of Boolean quotients. A fundamental 

property of the Boolean quotient states that a term ANDed with a function is equal to the term 

ANDed with the Boolean quotient of the function with respect to the term, namely. 

 

𝑡 ∧ 𝑓  = 𝑡  ∧  (𝑓/𝑡 ).                                                                                                                                (B. 2) 

 

If the term 𝑡 is a factor of the function 𝑓 (i.e., 𝑓 =  𝑡 ∧  𝑔, or  𝑡 ∧ 𝑓 = 𝑓) then (B.2) takes the 

simpler form (frequently utilized in this paper) 

 

𝑓  = 𝑡  ∧  (𝑓/𝑡 ).                                                                                                                               (B.3) 

 

The Boolean quotient can be denoted by an inclined slash (𝑓/𝑡), or by a vertical bar (𝑓|𝑡). The latter 

form is particularly insightful when associated with expectations. In fact, 𝐸{𝑓|𝑡} appropriately 

expresses the conditional expectation of  𝑓 conditioned by 𝑡 or 𝑓 given 𝑡 (Rushdi and Al-Qwasmi, 

2016; Rushdi and Rushdi, 2017). 
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Appendix C: The Boole-Shannon Expansion 

The most effective way for converting a Boolean formula into a PRE form is the Boole-Shannon 

Expansion, which takes the following form in the two-valued case (Brown, 1990; Rushdi and 

Rushdi, 2017) 

 

𝑓(𝑿)  =  (𝑋̅𝑖  ∧  𝑓(𝑿|0i))  ∨  (𝑋i  ∧  𝑓(𝐗|1i)),                                                                               (C.1) 

 

This Boole-Shannon Expansion expresses a (two-valued) Boolean function 𝑓(𝑿) in terms of its two 

subfunctions 𝑓(𝑿|0i) and 𝑓(𝑿|1i). These subfunctions are equal to the Boolean quotients 𝑓(𝑿)/𝑋̅𝑖 

and 𝑓(𝑿)/𝑋i, and hence are obtained by restricting X𝑖 in the expression 𝑓(𝑿) to 0 and 1, 

respectively. If 𝑓(𝑿) is a sum-of-products expression of 𝑛 variables, the two subfunctions 𝑓(𝑿|0i) 

and 𝑓(𝑿|1i) are functions of at most (𝑛 − 1) variables.  A multi-valued extension of (C.1) in the 

context of this paper’s example is 

 

𝑆(𝑿)  = 𝑋𝑖{0}  ∧ (𝑆(𝑿)/𝑋𝑖{0})  ∨   𝑋𝑖{1}  ∧ (𝑆(𝑿)/𝑋𝑖{1}) ∨   𝑋𝑖{2}  ∧ (𝑆(𝑿)/𝑋𝑖{2})  ∨
  𝑋𝑖{3}  ∧ (𝑆(𝑿)/𝑋𝑖{3}).                                                                                                               (C.2) 

A formal proof of (C.2) is achieved by “perfect induction,” that is, by considering four exhaustive 

distinct cases, namely: {𝑋𝑖{0} = 1}, {𝑋𝑖{1} = 1}, {𝑋𝑖{2} = 1}, and {𝑋𝑖{3} = 1}. In the first 

case, for example, {𝑋𝑖{0} = 1}, and consequently {𝑋𝑖{1} =  𝑋𝑖{2} =  𝑋𝑖{3} = 0}. Therefore,  

The LHS of (C.2) = the RHS of (C.2) = 𝑆(𝑿)|(𝑋𝑖{0} = 1) =  𝑆(𝑿)/𝑋𝑖{0}.                               (C.3) 

 

The other three cases can be handled in a similar fashion. The expansion (C.2) serves our purposes 

very well. Once the subfunctions in (C.2) are expressed by PRE expressions, 𝑆(𝐗) will be also in 

PRE form, thanks to the combined two facts:  

 

(a) The RHS of (C.2) has four disjoint terms, each of which containing one of the four disjoint 

instances  𝑋𝑖{0}, 𝑋𝑖{1}, 𝑋𝑖{2}, and 𝑋𝑖{3} of the variable 𝑋𝑖,   

 

(b) Each of these four terms is a product of two statistically-independent entities, since any 

subfunction 𝑆(𝑿)/𝑋𝑖{𝑗} (0 ≤ 𝑗 ≤  3) does not involve any instance of the four-valued variable 𝑋𝑖.  

 

The expansion (C.2) transforms to the probability domain as 

𝐸{𝑆(𝑿)}  = 𝐸{𝑋𝑖{0}} ∗ 𝐸{𝑆(𝑿)/𝑋𝑖{0}}  +   𝐸{𝑋𝑖{1}} ∗ 𝐸{𝑆(𝑿)/𝑋𝑖{1}} +   𝐸{𝑋𝑖{2}} ∗
𝐸{𝑆(𝑿)/𝑋𝑖{2}}  ∗  𝐸{𝑋𝑖{3}} ∗ 𝐸{𝑆(𝑿)/𝑋𝑖{3}}.                                                                           (C.4) 

 

Equation (C.4) is nothing but a restatement of the Total Probability Theorem, with our understanding 

that the expectation of a Boolean quotient is simply a conditional probability (Rushdi and Al-

Qwasmi, 2016).  It is the basis of multi-valued decision diagrams (MDDs) for the reliability analysis 

of multi-state systems (Mo, 2014; Mo et al., 2014; 2015). 
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