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Abstract— Timed Automata is an extension to the automata-

theoretic approach for the modeling of real time systems that 

introduces time into the classical automata. It has become an 

important research area in both the context of formal 

languages and modeling and verification of real time systems 

since it was proposed by Alur and Dill in the early nineties. 

Timed automata proposes an efficient model checking method 

for verification real time systems having mature and efficient 

automatic verification tools. One of the application areas of 

timed automata is the verification of security protocols which 

are known to be time sensitive. This study aims to make use of 

timed automata as a verification tool for security protocols and 

gives a case study on the initial part of the Neuman-

Stubblebine Repeated Authentication Protocol.  

Keywords-timed automata, model checking,  security protocol 

verification 

I.  INTRODUCTION 

Real time systems can be analyzed using formal methods 
to verify that a system meets some specified requirements. In 
the literature, most verification methods involve the partial 
ordering of the occurrence of events in a qualitative notion 
instead of modeling quantitative time information. However, 
the correctness of a real time system depends on its 
quantitative timed properties.  

To meet the need for timed formalisms, some untimed 
formalisms are extended with timing information such as 
timed Petri nets [1], many real time logics [2] and timed 
process algebras such as CSP [3]. However, timed automata 
[4] is the most commonly used model for timed systems 
having mature and efficient automatic verification tools and 
for an easily understandable syntax and semantics with the 
support of C-like data structures.  

Timed automata is proposed as an extension to the 
automata-theoretic approach, which is extended with clock 
variables. Timed automata theory has become an important 
research area and been widely studied in the context of both 
formal languages and verification of real time systems.  

The theory of timed automata allows us to create models 
of real time systems which can be verified using model 
checking methods [5]. Model checking with timed automata 
involves building a finite model of a system and verifies a 
property by traversing through all reachable states. It has the 
advantages of being fully automatic, and generating counter 
example in case of a negative result nevertheless, it suffers 
from the state space explosion problem.  

One of the most important application areas of timed 
automata is the verification of the security protocols. Since 
the use of computers and the internet is considerably 
increasing, the correctness of security protocols is getting 
more important. Since an attacker can exploit the timing of 
message flows, quantitative time information is critical for 
security issues. This study utilizes timed automata as a 
verification tool for security protocols including timing 
information. We directly model the Neuman-Stubblebine 
repeated authentication protocol [6] using the UPPAAL 
timed automata tool [7] and perform verification by 
analyzing its security properties to find possible attacks on it.  

The next section gives the related work including the 
timed automata studies on security protocols. Section 3 
briefly defines timed automata, the data structures used in its 
implementation, and the UPPAAL tool. Section 4 explains 
the modeling of the initial authentication part of the protocol 
including the modeling of cryptology, automata for the 
protocol principals and the intruder. The verification of our 
model is performed in Section 5, in which we present the 
type flaw attack we found and analyze the quantitative 
timing properties of the protocol. In addition, we give 
comments on the modeling and verification of the 
subsequent authentication part. Section 6 concludes the paper 
with the results we obtained and the further perspectives for 
the analysis of the subsequent part of the protocol.  

II. RELATED WORK 

Timed automata has several academic and industrial case 
studies such as the modeling and verification of TDMA 
(Time Division Multiple Access) protocol [8], audio-video 
protocols [9], a power controller [10] and a lip 
synchronization algorithm [11]. In this study, we focus on 
modeling and verification of security protocols.  

In the literature, several theorem proving and model 
checking methods are used to verify the correctness of 
security protocols, most of which involve the qualitative 
notion of time rather than the quantitative notion. In this 
paper, we concentrate on the timed automata formalism 
verified with model checking methods. 

Some recent studies analyze security protocols with 
quantitative timing properties involving the use of timed 
automata. The studies in [12] and [13] examine Kerberos, 
TMN, Neumann Stubblebine, Andrew Secure and Wide 
Mouthed Frog protocols by not modeling them directly as 
timed automata, but translating a language specification of a 
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security protocol automatically to timed automata without 
integer variables. Then, translated timed automata is used as 
input for the model checker KRONOS [14] and VerICS [15]. 
Similarly in [16], a model checking tool is presented which 
translates a security specification language into timed 
automata and uses the UPPAAL tool as the verification 
engine. Additionally, a case study on Wide Mouthed Frog 
protocol is provided.  

Similar to our case study, these studies perform 
verification using timed automata tools. However, our 
approach is closer to the studies in [17] and [18] which 
model Needham-Schroeder and Yahalom protocols directly 
with timed automata. Directly modeling provides us full 
control over the timed automata model and enables us to 
make use of the full expressiveness and data structures of 
UPPAAL. Moreover, we are not required to have an 
expertise on a specification language to model a protocol. 

III. TIMED AUTOMATA 

Timed automata is proposed by Alur and Dill [4] in the 

early nineties as an extension to the classical automata. It is 

equipped with a number of real-valued clock variables 

which record the passage of time since they have been reset.  

All clocks are synchronized and they run at the same speed. 

In a timed automaton, it is assumed that a transition from 

one state to another is assumed to be instantaneous; in other 

words, time passes only in states, not on edges.  

A. Timed Automata Theory: 

Timed automata has an extensive theory in the context 

of formal languages. Besides the first proposed model, some 

variants of the model are also proposed and analyzed for 

some decidability problems. In this paper, we give a brief 

introduction to the classical timed automata model which is 

used in the implementation of the timed automata tools.   

 

Definition 1. A timed automaton is a tuple 

< Σ, S, S0 , SF , C, E >  where 

 ∑is a finite event alphabet 

 𝑆 is a finite set of states 

 S0 ⊆ S is a set of start states 

 SF ⊆ S is a set of final (accepting) states 

 𝐶 is a finite set of clocks 

 𝐸 ⊆ 𝑆 × 𝑆 ×  Σ × 2𝐶 ×  Φ 𝐶 ,   𝜙 ∈ Φ(𝐶)   

are the edges where 𝜙 ∶= 𝑥 ≤ 𝑘  𝑘 ≤ 𝑥 | 𝑥 <𝑘  𝑘 < 𝑥   𝜙 ∧ 𝜙   𝜙 ∨ 𝜙  with 𝑥 ∈ 𝑋, 𝑘 ∈  ℕ. 

In this definition, 𝜙 is the set of clock constraints. A 

clock constraint can be a guard on an edge to control if it is 

allowed to take the transition in the current time or can be 

associated with a location and called location invariant. 

Fig. 1 gives a timed automaton drawn using UPPAAL, 

where the state with double border line is the initial state. 

This automaton has two clock variables 𝑥  and 𝑦; and the 

clock constraints “𝑥 > 3”, “𝑥 < 10” ,“𝑦 = 9” as the guards 

on edges. At the transitions, the clock valuations can be 

tested and a set of clocks can be reset. To take the edge from 𝑠0 to 𝑠1, event 𝑎 must be received and 𝑥 must have a value 

greater than 3. If this transition is enabled, 𝑥 is reset. The 

constraint 𝑥 < 7 is an invariant and forces to take the edge 

from 𝑠0  to 𝑠1when 𝑥 has a value smaller than 7. Note that 

this invariant does not have the same effect as having clock 

constraint “𝑥 > 3 ∧  𝑥 < 7” on the transition. 

 

 
Figure 1. An example timed automaton 

A run of timed automaton 𝐴  has the form:  𝑠0 , 𝑣0  𝑡0   𝑠, 𝑣′0 𝑎  𝑠1 , 𝑣1  
𝑡1−𝑡0      𝑠1 , 𝑣′1  

𝑎1 ……  
𝑎𝑛−1     𝑠𝑛 , 𝑣𝑛     

where each pair (𝑎, 𝑡) is a timed event with 𝑡 ∈ ℝ, which is 

the timestamp of the event 𝑎 ∈ Σ.  A run is an accepting run 

if 𝑠𝑛 ∈ 𝑆𝐹 . For example, the timed word for Fig. 1 is 𝑠0

𝛿(3.8)     𝑠0  
𝛿(𝑎)    𝑠1  

𝛿(2)    𝑠1  
𝛿(𝑏)    𝑠1  

𝛿(3.2)     𝑠1  
𝛿(𝑎)    𝑠0 . 

 

A certain property is decidable for a formal language if 

there is a procedure that can determine whether the property 

holds or not in the model. For timed automata, emptiness, 

universality and language inclusion problems are the most 

studied decision problems since they are also the 

fundamental problems for verification. Timed automata has 

decidable emptiness and undecidable universality and 

language inclusion problems.  

 

Definition 2. Emptiness problem is the problem of “given a 
timed automaton 𝐴, is the set of timed traces of 𝐴 empty?”. 

 

Emptiness problem is fundamental for verification tasks 

since it is reducible to the reachability problem that tests 

whether a state can be reached in a model. In a verification 

task, given an implementation and a specification, 

reachability problem is used to test whether a state which 

satisfies the specification is reachable in the 

implementation. However, the configurations of timed 

automata are infinite and naive explicit state search is not 

possible. The decidability of the emptiness problem for 

timed automata is proved [4][19] by constructing a model 

on which finite state analysis can be performed. A region 

automaton that mimics the runs of the timed automaton is 

constructed so that the emptiness problem of a timed 

automaton can be examined by checking the emptiness of its 

region automaton. However, it is shown that the problem is 

PSPACE-complete since the number of regions is 

exponential in the number of clocks of the timed automaton. 

 

Theorem 1. The problem of deciding the emptiness of the 

language of a timed automaton 𝐴, is 𝑃𝑆𝑃𝐴𝐶𝐸 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒.  
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B. Implementation of Timed Automata 

Similar to the other model checking methods, it is needed 

to perform reachability analysis on the model to perform a 

verification task using timed automata. Thanks to the 

decidability of the reachability (and in turn, emptiness) 

problem, we can perform model checking by traversing the 

state space for reachability testing. However, the region 

automaton is not feasible to implement since it suffers from 

a combinatorics explosion. For this reason, symbolic 

representation of states and on-the-fly model checking are 

preferred resulting in considerable space and time savings. 

In the implementation of timed automata, zones which 

can be efficiently represented using Difference Bounded 

Matrices (DBM) are used instead of regions and symbolic 

reachability analysis is performed on these data structures. 

Timed automata tools use on-the-fly reachability 

algorithm that calculates the states on-the-fly rather than 

pre-computing. Thus, only the needed part of state space is 

computed. The use of the symbolic structures and symbolic 

model checking algorithms make timed automata to be 

implemented in an efficient way. [20] [21] 

C.  A Timed Automata Tool - UPPAAL 

UPPAAL [7] is a freely available timed automata tool 

that provides an integrated tool environment for modeling, 

validation and verification of real-time systems. It has a 

graphical user interface for modeling, a simulation tab, and 

a verification engine for automatic verification of 

specifications. It is an efficient and mature tool used in 

several case studies [8][9][10][11] which is in continuous 

development. In this study, UPPAAL 4.0.10 is used. 

UPPAAL extends timed automata with C-like data types 

such as integers, arrays and functions. It allows using urgent 

and committed states that ease modeling of a system.  

UPPAAL verification engine uses a subset of CTL 

(Computation Tree Logic) as the specification language, 

consisting of state formulae or path formulae that can be 

classified into reachability, safety, and liveness properties. 

IV. MODELLING NEUMAN-STUBBLEBINE 

AUTHENTICATION PROTOCOL 

A. Protocol Modeling with Timed Automata 

Timed automata model a system as a network of timed 

automata which is composed of several components each 

having a transition system. It consists of some number of 

timed automata running in parallel that may communicate 

and synchronize on some events. In a network of timed 

automata, the events are partitioned into the set of output 

and input actions. The output statement over channel 𝑎 is 

labeled as 𝑎! (emission) and an input statement over channel 𝑎  is labeled as 𝑎?  (reception). Two edges in different 

processes can synchronize if one is emitting and the other is 

receiving on the same channel. In the execution of a 

network of timed automata, the transitions of the timed 

automata with a shared action are synchronized and the 

transitions that does not correspond a shared action are 

interleaved.  

The timed automata model for a protocol is generated by 

building a finite state machine whose states and transitions 

simulate the behavior of a protocol run. To find an attack on 

the protocol, all possible states are explored and analyzed if 

the protocol has some security flaws.  

The protocol is modeled as a network of timed automata 

composed of the initiator, responder, server and the intruder 

automata. These principals communicate with each other by 

using synchronization channels and shared variables. For 

example when the initiator emits the 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔! signal over 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔  channel, this means that it has created the 

message and the message is assigned to the global message 

variable 𝑚𝑠𝑔which is shared between the principals. The 

network takes this message over 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔?  and emits 𝑟𝑒𝑠𝑝_𝑚𝑠𝑔!, which is captured by the responder. Then, the 

responder reads the global message variable 𝑚𝑠𝑔. 

B. Modeling Cryptology 

In our model the cryptosystem is assumed to be perfect, 

so we used an abstraction for the cryptographic operations. 

These cryptographic abstractions are held in the local 

functions 𝑔𝑒𝑛_𝑛𝑜𝑛𝑐𝑒() , 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑖𝑛𝑡 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡, 𝑖𝑛𝑡 𝑘𝑒𝑦) 

and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑖𝑛𝑡 𝑐𝑖𝑝𝑕𝑒𝑟𝑡𝑒𝑥𝑡 , 𝑖𝑛𝑡 𝑘𝑒𝑦)  of each principal. 

When these functions are called, the result of the operation 

is assigned in their local variable 𝑟𝑒𝑠𝑢𝑙𝑡 . For these time 

consuming operations, we make use of the timed automata 

that can model the delay and deadline requirements.  

A message sent/received by an entity is represented as an 

integer, which contain the information described in the 

protocol specification. The creation of the messages and the 

encryption/decryption scheme we used are similar to the 

model used in [17] and [18]. Before moving on the creation 

of a message, let us examine how to model the nonce 

generation, encryption and decryption. 

1) Nonce Generation: 

The nonce is generated by calling the 𝑔𝑒𝑛_𝑛𝑜𝑛𝑐𝑒() 

function which returns a result by incrementing the global 𝑛𝑜𝑛𝑐𝑒 variable. 

2) Encryption/Decryption: 

Two arrays 𝑝𝑙𝑎𝑖𝑛  and 𝑘𝑒𝑦  are used for encryption and 

decryption, where the first one holds the plaintexts and the 

latter holds the keys. When a block is encrypted, the 

plaintext is placed in the 𝑝𝑙𝑎𝑖𝑛 array and the key is placed 

in the 𝑘𝑒𝑦 array. Then, the corresponding index is returned 

as the ciphertext, which is the result of the encrypt 

operation. A plaintext can be decrypted only if the given key 

is same with the key in the 𝑘𝑒𝑦 array corresponding to the 

element in index (ciphertext) to be decrypted. 

3) Representing Protocol Variables: 

A protocol message is represented as an integer. 

UPPAAL uses 16 bit integers where the leftmost bit is the 

sign bit. In order to contain the whole message in an integer 

and have simplicity in the model, we have to limit the 

number of bits to represent the blocks contained in a 
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message. In our model, the nonces, keys and indexes (or 

ciphertexts) are represented by 4 bits, the agent ids and 𝑡𝑏  is 

represented by 2 bits. In the implementation, the possible 

values for these variables are restricted since there may be 

some problems in the model when these values coincide.  

To reduce the state space of the intruder automata, we 

used only two length variables 𝐿𝑒𝑛𝑔𝑡𝑕1 =  4,  𝐿𝑒𝑛𝑔𝑡𝑕2 =

 2 which are the length of bits to represent a variable. 

4) Creating and Reading Messages: 

A message is created by using shift, and 𝑜𝑟 operations. 

Parts of the message are merged by shifting the message to 

the left as the length of the part to be appended. Then, the 

new part is appended using the 𝑜𝑟 operation.  

To extract information from a received message, shift and 𝑎𝑛𝑑 operations are used. This time the message is shifted to 

the right and the 𝑎𝑛𝑑 operation with the mask is applied.  

For example, when the initiator creates the message 𝐴, 𝑁𝑎 , 

it shifts 𝐴 left for 𝐿𝑒𝑛𝑔𝑡𝑕1 times, and 𝑜𝑟 s the result with 𝑁𝑎 . To read this message, the responder 𝑎𝑛𝑑 s it with the 

mask to obtain 𝑁𝑎 , and shifts left 𝐿𝑒𝑛𝑔𝑡𝑕1  times and 

applies 𝑎𝑛𝑑 operation to obtain the claimed identity. 

C. Neuman-Stubblebine Repeated Authentication Protocol 

Neuman-Stubblebine protocol [6] is a repeated 

authentication protocol that provides mutual authentication 

between two principals. It consists of two parts. First, the 

initial authentication part is executed which provides mutual 

authentication. In this part, the initiator acquires a ticket to 

be used in the subsequent part of the protocol. The 

subsequent part is used to re-authenticate the principal 

identities without using the server. This part can be repeated 

several times until the ticket expires.  

In the protocol specification given for the initial and 

subsequent authentication parts, A , B  and S  are the 

principals where A is the initiator, B is the responder and S 

is the key distribution server. Kas , Kbs , and Kab  are the 

shared keys where the subscript letters denote the principals 

whom the key is for (e.g. 𝐾𝑎𝑠  is shared between 𝐴 and 𝑆). 

{𝑋, 𝑌}𝑘  means, 𝑋 concatenated with 𝑌, encrypted with 𝑘.  

1) InitialAuthentication Part: 

The initial part requires the exchange of four protocol 

messages. 𝐴  initiates the authentication by sending its 

identity 𝐴 and a nonce 𝑁𝑎 . After 𝐵 receives this message, it 

sends its identity and a nonce created by 𝐵 as clear text and 𝐴’s name, nonce and a suggested expiration time for the 

credentials as a block encrypted with the key 𝐾𝑏𝑠 . The 

server can decrypt this message since it knows 𝐾𝑏𝑠 , and 

assures that they are created by 𝐵. Then, the server sends 𝐴 

a ticket, and 𝐵’s nonce. It also sends the identity of 𝐵, 𝐴’s 

nonce, a session key 𝐾𝑎𝑏 , the expiration time 𝑡𝑏  encrypted 

with 𝐾𝑎𝑠 . 𝐴  decrypts the block encrypted with 𝐾𝑎𝑠 and 

verifies the 𝑁𝑎  is same with the 𝑁𝑎  in message 1. In the last 

message, it sends the ticket and 𝑁𝑏  to 𝐵, proving its identity. 

1. A   B ∶   A, Na  

2. B   S ∶   B,  A, Na , tb Kbs
, Nb   

3. S   A ∶    B, Na , Kab , tb Kas
,  A, Kab , tb Kbs

, Nb  

4. A   B ∶    A, Kab , tb Kbs
,  Nb Kab

 

This initial authentication provides mutual authentication 
between the principals. After this initial part, the initiator 𝐴 

possesses the ticket  A, Kab , tb Kbs
and the session key 𝐾𝑎𝑏  

that can be used for subsequent authentications. 

2) Subsequent Authentication Part: 
In this second part, 𝐴 uses the ticket to authenticate itself 

to the responder. 𝐵 checks the sender’s identity, shared key 
and the expiration time of the ticket. If it is valid, the 
authentication is provided between the principals. 

5. A   B ∶   N′a ,  A, Kab , tb Kbs
  

6. B   A ∶   N′b ,   N′a Kab
 

7. A   B ∶    N′b Kab
 

In our experimental part, we give the timed automata 
model and the verification results for the initial 
authentication part of the protocol. Then, we will comment 
on the modeling and verification of the subsequent part. 

D. Timed Automata Model for Neuman-Stubblebine Initial 

Authentication 

1) Initiator, Responder and Server  

The knowledge bases of the principals are modeled using 

local variables for each automaton. For example, the 

initiator 𝐴 has 𝐾𝑎𝑠  as initial knowledge. Then, it generates 𝑁𝑎 , gets a ticket, learns 𝐾𝑎𝑏 , and 𝑡𝑏  which will be added to 

its knowledge base. The principal 𝐵, has 𝐾𝑏𝑠  as the initial 

knowledge and gets a claimed id, 𝑁𝑎 ,  generates 𝑁𝑏 , 𝑡𝑏  and 

learns 𝐾𝑎𝑏 . It should keep this knowledge to use in the later 

steps of the protocol e.g. while checking the values received 

in the fourth step of the message.  

In order to be able to analyze timing properties, each 

principal automaton has its local clock variable to keep the 

time elapsed for the cryptographic operations, in addition to 

a global clock representing the total time passed. 

The Initiator automaton; which is given in Fig. 2, is 

activated by the 𝐼𝑛𝑖𝑡 automaton that emits the 𝑠𝑡𝑎𝑟𝑡! signal. 

The Initiator, first generates a nonce by calling its local 

function. Time can elapse during the operation and when the 

nonce is generated it is written in the 𝑟𝑒𝑠𝑢𝑙𝑡 variable. Note 

that we make use of the committed states (labeled with “C”) 

that allow modeling of atomic behaviors and avoids any 

unnecessary interleaving in the model.  

It creates the message 𝐴, 𝑁𝑎  by assigning the message to 

the global variable 𝑚𝑠𝑔. Since this value is global, it can be 

read by other principal’s automaton. Then, it signals 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔!  to indicate that it has sent the message. This 

signal is captured by the network and transmitted to the 

responder. After sending the message, in state 𝐴5, it waits 

for the protocol message 3. When it is sent by the server, 

network signals 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔! which will be captured by the 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔? of the initiator that brings it to state 𝐴6. In this 

transition, initiator extracts the block encrypted with 𝐾𝑎𝑠 , 

gets the ticket which is  𝐴, 𝐾𝑎𝑏 , 𝑡𝑏 𝐾𝑏𝑠 , and 𝑁𝑏 . It decrypts 
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the block with the key 𝐾𝑎𝑠  which is shared by the initiator 

and the server. Similar to generating a nonce, decryption of 

a message is performed by its function. The guard on the 

transition from 𝐴6 to 𝐴7 guarantees that 𝐵’s identity sent by 
the server is same by the identity that 𝐴  wants to 

communicate with, and the nonce value is same with the one 

generated by itself. If this guard is satisfied, it gets the 𝐾𝑎𝑏  

and 𝑡𝑏 . It encrypts 𝑁𝑏  with 𝐾𝑎𝑏  and creates the message  𝐴, 𝐾𝑎𝑏 , 𝑡𝑏 𝐾𝑏𝑠 ,  𝑁𝑏 𝐾𝑎𝑏  by concatenating the ticket and the 

encrypted block. After sending this message, the initial 

protocol execution finishes for the initiator and it sets its 

local variable 𝑓𝑖𝑛𝑖𝑠𝑕1 to 1. 

Let us assume that 𝐴 has received a wrong message from 𝑆 in the third step. Then, 𝑁𝑎  will be different from the one 𝐴 

itself generated, the guard will not be satisfied and the 

transition from state 𝐴6 to 𝐴7 will not be taken. Hence, the 

automata will deadlock and the 𝑓𝑖𝑛𝑖𝑠𝑕1  value will be 0 

which means that there is something wrong with the 

execution of the protocol. 

The automata for the Responder (see Fig. 3) and the 

Server are modeled in a similar way. 

2) Dolev-Yao Intruder 

The flaws of a security protocol are examined by 

modeling an intruder who wants to exploit the features of a 

protocol. In our study, we use the Dolev-Yao intruder [22] 

which has the full control of network and has the abilities to 

deliver or intercept messages, decompose messages, do 

encryption/decryption and compose fake messages. 

As it is seen from Fig. 3, that the intruder can behave as a 

simple network which only receives and transmits received 

messages. In addition, besides the correct recipient, it is 

possible to send a message to any principal that the intruder 

wants (transitions between states 𝐼1 and 𝐼3). 

The Dolev-Yao intruder model allows the use of the 

knowledge of the intruder which includes the identities of 

the agents, its own keys and nonces, every messages it 

received, every part of the messages it received, everything 

it can generate by encrypting or decrypting something and 

every concatenation of data it knows. 

The Dolev-Yao intruder can capture the packets, 

decompose into its constituent parts and examine them. For 

example, when the message 𝐴 , 𝑁𝑎  is captured by the 

intruder, it has the ability to read the initiator’s identity and 
its nonce 𝑁𝑎  and add them to its knowledge base. Hence, 

after receiving a sent message, we use the piece of timed 

automata (with states 𝐼5  and 𝐼6 ) to enable the intruder 

improve its knowledge base adding the information 

extracted from the messages sent. In fact, the intruder can 

nondeterministically take one of the transitions from 𝐼5 to 𝐼6 to read a message. However, this makes the state space 

grow enormously. Because of that, we used some guards to 

limit the possible number of transitions. It is important that 

these limitations do not lessen the power of the intruder, but 

decreases the number of infeasible executions.   

The intruder has the ability to generate a nonce, do 

encryption and decryption (between the states 𝐼6 and 𝐼14) 

using the parameters in its knowledge base. It again 

nondeterministically selects the parameters to apply 

encryption/decryption. To avoid state space explosion [23], 

we used guards that allow using a variable only if it is set. 

The intruder can also create new messages and inject 

them into the network. So, the model can populate each 

constituent part of a message with some known information 

(between the states 𝐼14  and 𝐼16 ). While creating a new 

message, a local variable 𝑑𝑎𝑡𝑎2 can be set to any variable in 

the intruder’s knowledge base. Then, it can be shifted left 
for 𝐿𝑒𝑛𝑔𝑡𝑕1 or 𝐿𝑒𝑛𝑔𝑡𝑕2 times depending on the length of 

the content to be appended to the message.  

Our intruder model differs from the one in [17] and [18] 

by having reduced number of transitions depending on the 

reduced number of variables and using guarded transitions 

for the states used to improve its knowledge base. 

V. VERIFICATION OF THE NEUMAN-STUBBLEBINE 

PROTOCOL 

Timed automata model of a system can be verified using 

UPPAAL verification engine that uses a subset of CTL 

specifications. The tool checks these specifications by 

performing reachability analysis on the state space of the 

model. It has the advantage of generating a diagnostic trace 

that explains why a property is (or is not) satisfied. 

In this case study, we aim to verify the correctness of an 

authentication protocol based on the security goals for a 

protocol. Two high level goals for an authentication 

protocol are listed as follows in [24]: 

 Authentication: For each principal, after the 

successful run of the protocol, it should be assured 

that it is talking to the principal in its mind. 

 Key establishment: A secret key becomes available 

to the principals, for subsequent cryptographic use. 

We proposed to analyze the possible attacks for the 

Neuman-Stubblebine authentication protocol by writing 

specifications derived from these authentication goals. In 

order to examine the protocol goals given above, the 

correspondence and the secrecy properties should be 

verified. Correspondence means that the execution of 

different principals in an authentication protocol proceeds in 

a lock-stepped fashion. While the authenticating principal 

finishes its part of the protocol, the authenticated principal 

must have been present and participated in its part of the 

protocol. And, secrecy property specifies that a distributed 

session key cannot be discovered by the intruder. 

In the analysis of these goals, if an attack is found on a 

protocol, it is inferred that the protocol is incorrect since it 

does not satisfy the properties that it is intended for. 

This section gives the specifications and the 

corresponding UPPAAL queries that we used to check 

whether our protocol model satisfies these properties. Table 

1 gives the verification results of these queries. 
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Figure 2. The initiator automaton  

 
Figure 3. The responder automaton 

 
Figure 4. The intruder automaton 
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Query1: Is such a state reachable where the responder 

finished but the initiator has not finished the initial protocol 

execution? 𝐸 <> 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 && (! 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1) 

 

Query 1 is related to the correspondence property. Here, 

we use the fact that this property is not satisfied when the 

responder finishes the protocol execution although the 

initiator has not executed its part. In such a situation, we can 

say that an intruder has sent fake messages to the responder 

to finish its protocol execution and attacked to the protocol. 

However, this property is satisfied. It means that the 

intruder caused the responder to finish its run by sending 

fake messages and we have found an attack on the protocol. 

When we examined the diagnostic trace, we realized that 

this is the type flaw attack [25] given below. The intruder 

(see Fig. 4) extracts the information in messages 1 and 2 in 

the transitions from 𝐼5  to 𝐼6 , and learns 𝑁𝑎 , 𝑁𝑏 , and  𝐴, 𝑁𝑎 , 𝑡𝑏 𝐾𝑏𝑠 (𝑏𝑙𝑜𝑐𝑘_𝐾𝑏𝑠). It skips the protocol message 3. 

To create a fake message, it takes 𝑏𝑙𝑜𝑐𝑘_𝐾𝑏𝑠  as 𝑑𝑎𝑡𝑎2 

between the states 𝐼14, 𝐼15 and 𝐼16. Then, it selects 𝑁𝑏  as 𝑝𝑎𝑟𝑎𝑚1  and 𝑁𝑎  as 𝑝𝑎𝑟𝑎𝑚2 , encrypts 𝑁𝑏  with 𝑁𝑎 . It 

composes this encrypted block with 𝑏𝑙𝑜𝑐𝑘_𝐾𝑏𝑠 and sends it 

to the responder as the protocol message 4. In this attack, 𝐵 

accepts the nonce 𝑁𝑎  as the key 𝐾𝑎𝑏 .  

1. 𝐼(𝐴)    𝐵 ∶   𝐴, 𝑁𝑎  

2. 𝐵   𝐼(𝑆)  ∶   𝐵,  𝐴, 𝑁𝑎 , 𝑡𝑏 𝐾𝑏𝑠 , 𝑁𝑏   

3. 𝑜𝑚𝑖𝑡𝑡𝑒𝑑 

4. 𝐼 𝐴   𝐵 ∶    𝐴, 𝑁𝑎 , 𝑡𝑏 𝐾𝑏𝑠 , {𝑁𝑏}𝑁𝑎  

As it is seen, a type flaw (substitution of a different type 

of message field) attack can be easily found by model 

checking with timed automata. 

The next query is related to the key distribution that 

requires the new session key distributed by the server at 

most be known by the principals it is intended for.  

 

Query2: The execution of the protocol run leads to the fact 

that, the secret key acquired by the initiator is same with the 

secret key distributed to the responder which is also same 

with the key generated by the server.    𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 && 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 −  
(𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝐾𝑎𝑏 ==  𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝐾𝑎𝑏 ==  𝑆𝑒𝑟𝑣𝑒𝑟. 𝐾𝑎𝑏)  

 

The property is satisfied, that means all the executions 

where both the initiator and responder finished the initial 

part lead to the equivalence of 𝐾𝑎𝑏 s owned by them. 

In Query3, we test the secrecy property checking 

whether the intruder can learn the secret key. The check is 

performed using the 𝑑𝑎𝑡𝑎2 variable in order to include all 

the decomposed pieces of the messages and their 

encryptions or decryptions. This property is not satisfied, 

meaning that if the responder uses the key generated by the 

server (in the execution of a normal run); this secret key 

cannot be obtained by the intruder. 

Query3: Is such a state reachable where the secret key 

distributed to the principals is learned by the intruder? 𝐸 <>   𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 && 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1   

&& (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝐾𝑎𝑏 ==  𝑆𝑒𝑟𝑣𝑒𝑟. 𝐾𝑎𝑏 ==𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟. 𝑑𝑎𝑡𝑎2)  

 

In the next query, our aim is to find out whether we can 

use the timing information to analyze the attacks on a 

protocol. The timeout intervals which are the time periods 

that a principal waits for a message can be used for this 

purpose. If a message comes earlier than the required time 

to prepare a message (depending on the encryption and the 

decryption times), then we can say that the principal has 

received a fake message [17][18].  

The timeout intervals can be examined for both the 

initiator and the responder. To demonstrate the detection of 

an attack, here we give the query that examines the timeout 

for the responder. In a normal run, (assuming the time to 

create or read a message is negligible), the timeout for the 

responder is:𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ≥  𝑆𝑒𝑟𝑣𝑒𝑟. 𝑡_𝑑𝑒𝑐𝑟𝑦𝑝𝑡 +

2 × 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡 + 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑡_𝑑𝑒𝑐𝑟𝑦𝑝𝑡 +𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡  However, in a flawed run, the 

message can be received in a shorter time: 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ≥ 𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡  

To measure the time that the message is received, we use 

a local variable 𝑡_𝑤𝑎𝑖𝑡𝑒𝑑 which is incremented at each time 

unit the responder waits (see Fig. 3, state 𝐵7). Query 4 is 

used to test for a possible attack using the fact that if the 

message comes earlier than the required time, then we can 

say that there is an attack on the protocol. 

 

Query 4: Is such a state reachable where the responder has 

finished the protocol execution but the message has been 

received in a shorter time than the required time for the 

correct protocol execution? 

 𝐸 <> 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 && (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑡_𝑤𝑎𝑖𝑡𝑒𝑑 < 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑡_𝑑𝑒𝑐𝑟𝑦𝑝𝑡 +  2 × 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡 +

 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟.𝑡_𝑑𝑒𝑐𝑟𝑦𝑝𝑡+𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟.𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡)   
 

This property is satisfied and when we examined the 

diagnostic trace, we saw that it is the execution of the attack 

we have found in Query1. Hence, we infer that we can find 

the possible attacks on a protocol by examining the 

quantitative timing information and the flow of the protocol.   

TABLE I.  VERIFICATION RESULTS 

No 
States 

Stored 

States 

Explored 

Real 

Time 

User 

Time 

System 

Time 
Satisfied 

1 361610 428228 5.774s 5.424s 0.128s Yes 

2 1600933 3107116 28.021s 27.558s 0.408s Yes 

3 1550938 3057121 27.028s 26.598s 0.332s No 

4 361610 428228 5.584s 5.448s 0.088s Yes 
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The queries of our case study are executed on Ubuntu 

9.04  Operating System with Intel Core 2  Duo 𝑃7350 , 

2.00 𝐺𝐻𝑧  processor and 4𝐺𝐵  of RAM. We used stand-

alone command line verifier which is more appropriate 

for large verification tasks, with default configurations. 

After the verification of the initial authentication part, 

we modeled the subsequent authentication in order to 

verify these parts together and also analyze the key 

expiration time. Consequently, the initiator, responder and 

the intruder automata are extended for this model which is 

not included in this paper. However, while executing our 

queries we have come up with state space explosion 

problem [23] caused by usage of large amount of 

memory. Hence, we could not obtain appreciable results. 

Note that the subsequent part is exposed to a parallel 

session attack which cannot be detected by an automata 

model having one automaton for the initiator and one 

automaton for the responder allowing them to execute just 

one protocol run at a time. Because, the parallel session 

attack occurs when two protocol runs are executed 

concurrently and messages from one run are used to form 

fake messages in another run. The analysis of the 

combined Neuman-Stubblebine initial and subsequent 

authentication is left as future work because of state space 

explosion and the problem with parallel session attack. 

VI. CONCLUSIONS & FUTURE WORK 

Timed automata model for an authentication protocol 

can be used to examine the predefined goals of a protocol. 

Model checking of Neuman-Stubblebine initial 

authentication protocol with timed automata is able to 

find the type flaw attack using Dolev-Yao intruder model. 

In addition, this attack can also be detected by using the 

quantitative time information of the protocol.  

The model can be further improved so that it can 

detect parallel session attacks that need the parallel 

execution of more than one protocol runs. Some work 

should be devoted to overcome the state space explosion 

that occurs for large models such as the verification of 

both initial and subsequent parts of the protocol.  

In this paper, we concentrated on the verification of 

security protocols using timed automata formalism. The 

study can also be extended with a broad comparison of all 

of the security protocol verification methods which needs 

a deeper study on the other formalisms as well.  
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