
Utilization of Timed Automata as a Verification Tool for Security Protocols

Ahmet Koltuksuz

Yasar University

Department of Computer Engineering

Izmir, Turkey

ahmet.koltuksuz@yasar.edu.tr

Burcu Kulahcioglu, Murat Ozkan

Izmir Institute of Technology

Department of Computer Engineering

Izmir, Turkey

{burcukulahcioglu, muratozkan}@iyte.edu.tr

Abstract— Timed Automata is an extension to the automata-

theoretic approach for the modeling of real time systems that

introduces time into the classical automata. It has become an

important research area in both the context of formal

languages and modeling and verification of real time systems

since it was proposed by Alur and Dill in the early nineties.

Timed automata proposes an efficient model checking method

for verification real time systems having mature and efficient

automatic verification tools. One of the application areas of

timed automata is the verification of security protocols which

are known to be time sensitive. This study aims to make use of

timed automata as a verification tool for security protocols and

gives a case study on the initial part of the Neuman-

Stubblebine Repeated Authentication Protocol.

Keywords-timed automata, model checking, security protocol

verification

I. INTRODUCTION

Real time systems can be analyzed using formal methods
to verify that a system meets some specified requirements. In
the literature, most verification methods involve the partial
ordering of the occurrence of events in a qualitative notion
instead of modeling quantitative time information. However,
the correctness of a real time system depends on its
quantitative timed properties.

To meet the need for timed formalisms, some untimed
formalisms are extended with timing information such as
timed Petri nets [1], many real time logics [2] and timed
process algebras such as CSP [3]. However, timed automata
[4] is the most commonly used model for timed systems
having mature and efficient automatic verification tools and
for an easily understandable syntax and semantics with the
support of C-like data structures.

Timed automata is proposed as an extension to the
automata-theoretic approach, which is extended with clock
variables. Timed automata theory has become an important
research area and been widely studied in the context of both
formal languages and verification of real time systems.

The theory of timed automata allows us to create models
of real time systems which can be verified using model
checking methods [5]. Model checking with timed automata
involves building a finite model of a system and verifies a
property by traversing through all reachable states. It has the
advantages of being fully automatic, and generating counter
example in case of a negative result nevertheless, it suffers
from the state space explosion problem.

One of the most important application areas of timed
automata is the verification of the security protocols. Since
the use of computers and the internet is considerably
increasing, the correctness of security protocols is getting
more important. Since an attacker can exploit the timing of
message flows, quantitative time information is critical for
security issues. This study utilizes timed automata as a
verification tool for security protocols including timing
information. We directly model the Neuman-Stubblebine
repeated authentication protocol [6] using the UPPAAL
timed automata tool [7] and perform verification by
analyzing its security properties to find possible attacks on it.

The next section gives the related work including the
timed automata studies on security protocols. Section 3
briefly defines timed automata, the data structures used in its
implementation, and the UPPAAL tool. Section 4 explains
the modeling of the initial authentication part of the protocol
including the modeling of cryptology, automata for the
protocol principals and the intruder. The verification of our
model is performed in Section 5, in which we present the
type flaw attack we found and analyze the quantitative
timing properties of the protocol. In addition, we give
comments on the modeling and verification of the
subsequent authentication part. Section 6 concludes the paper
with the results we obtained and the further perspectives for
the analysis of the subsequent part of the protocol.

II. RELATED WORK

Timed automata has several academic and industrial case
studies such as the modeling and verification of TDMA
(Time Division Multiple Access) protocol [8], audio-video
protocols [9], a power controller [10] and a lip
synchronization algorithm [11]. In this study, we focus on
modeling and verification of security protocols.

In the literature, several theorem proving and model
checking methods are used to verify the correctness of
security protocols, most of which involve the qualitative
notion of time rather than the quantitative notion. In this
paper, we concentrate on the timed automata formalism
verified with model checking methods.

Some recent studies analyze security protocols with
quantitative timing properties involving the use of timed
automata. The studies in [12] and [13] examine Kerberos,
TMN, Neumann Stubblebine, Andrew Secure and Wide
Mouthed Frog protocols by not modeling them directly as
timed automata, but translating a language specification of a

2010 Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement Companion

978-0-7695-4087-0/10 $26.00 © 2010 IEEE

DOI 10.1109/SSIRI-C.2010.27

86

security protocol automatically to timed automata without
integer variables. Then, translated timed automata is used as
input for the model checker KRONOS [14] and VerICS [15].
Similarly in [16], a model checking tool is presented which
translates a security specification language into timed
automata and uses the UPPAAL tool as the verification
engine. Additionally, a case study on Wide Mouthed Frog
protocol is provided.

Similar to our case study, these studies perform
verification using timed automata tools. However, our
approach is closer to the studies in [17] and [18] which
model Needham-Schroeder and Yahalom protocols directly
with timed automata. Directly modeling provides us full
control over the timed automata model and enables us to
make use of the full expressiveness and data structures of
UPPAAL. Moreover, we are not required to have an
expertise on a specification language to model a protocol.

III. TIMED AUTOMATA

Timed automata is proposed by Alur and Dill [4] in the

early nineties as an extension to the classical automata. It is

equipped with a number of real-valued clock variables

which record the passage of time since they have been reset.

All clocks are synchronized and they run at the same speed.

In a timed automaton, it is assumed that a transition from

one state to another is assumed to be instantaneous; in other

words, time passes only in states, not on edges.

A. Timed Automata Theory:

Timed automata has an extensive theory in the context

of formal languages. Besides the first proposed model, some

variants of the model are also proposed and analyzed for

some decidability problems. In this paper, we give a brief

introduction to the classical timed automata model which is

used in the implementation of the timed automata tools.

Definition 1. A timed automaton is a tuple

< Σ, S, S0 , SF , C, E > where

 ∑is a finite event alphabet

 𝑆 is a finite set of states

 S0 ⊆ S is a set of start states

 SF ⊆ S is a set of final (accepting) states

 𝐶 is a finite set of clocks

 𝐸 ⊆ 𝑆 × 𝑆 × Σ × 2𝐶 × Φ 𝐶 , 𝜙 ∈ Φ(𝐶)

are the edges where 𝜙 ∶= 𝑥 ≤ 𝑘 𝑘 ≤ 𝑥 | 𝑥 <𝑘 𝑘 < 𝑥 𝜙 ∧ 𝜙 𝜙 ∨ 𝜙 with 𝑥 ∈ 𝑋, 𝑘 ∈ ℕ.

In this definition, 𝜙 is the set of clock constraints. A

clock constraint can be a guard on an edge to control if it is

allowed to take the transition in the current time or can be

associated with a location and called location invariant.

Fig. 1 gives a timed automaton drawn using UPPAAL,

where the state with double border line is the initial state.

This automaton has two clock variables 𝑥 and 𝑦; and the

clock constraints “𝑥 > 3”, “𝑥 < 10” ,“𝑦 = 9” as the guards

on edges. At the transitions, the clock valuations can be

tested and a set of clocks can be reset. To take the edge from 𝑠0 to 𝑠1, event 𝑎 must be received and 𝑥 must have a value

greater than 3. If this transition is enabled, 𝑥 is reset. The

constraint 𝑥 < 7 is an invariant and forces to take the edge

from 𝑠0 to 𝑠1when 𝑥 has a value smaller than 7. Note that

this invariant does not have the same effect as having clock

constraint “𝑥 > 3 ∧ 𝑥 < 7” on the transition.

Figure 1. An example timed automaton

A run of timed automaton 𝐴 has the form: 𝑠0 , 𝑣0 𝑡0 𝑠, 𝑣′0 𝑎 𝑠1 , 𝑣1
𝑡1−𝑡0 𝑠1 , 𝑣′1

𝑎1 ……
𝑎𝑛−1 𝑠𝑛 , 𝑣𝑛

where each pair (𝑎, 𝑡) is a timed event with 𝑡 ∈ ℝ, which is

the timestamp of the event 𝑎 ∈ Σ. A run is an accepting run

if 𝑠𝑛 ∈ 𝑆𝐹 . For example, the timed word for Fig. 1 is 𝑠0

𝛿(3.8) 𝑠0
𝛿(𝑎) 𝑠1

𝛿(2) 𝑠1
𝛿(𝑏) 𝑠1

𝛿(3.2) 𝑠1
𝛿(𝑎) 𝑠0 .

A certain property is decidable for a formal language if

there is a procedure that can determine whether the property

holds or not in the model. For timed automata, emptiness,

universality and language inclusion problems are the most

studied decision problems since they are also the

fundamental problems for verification. Timed automata has

decidable emptiness and undecidable universality and

language inclusion problems.

Definition 2. Emptiness problem is the problem of “given a
timed automaton 𝐴, is the set of timed traces of 𝐴 empty?”.

Emptiness problem is fundamental for verification tasks

since it is reducible to the reachability problem that tests

whether a state can be reached in a model. In a verification

task, given an implementation and a specification,

reachability problem is used to test whether a state which

satisfies the specification is reachable in the

implementation. However, the configurations of timed

automata are infinite and naive explicit state search is not

possible. The decidability of the emptiness problem for

timed automata is proved [4][19] by constructing a model

on which finite state analysis can be performed. A region

automaton that mimics the runs of the timed automaton is

constructed so that the emptiness problem of a timed

automaton can be examined by checking the emptiness of its

region automaton. However, it is shown that the problem is

PSPACE-complete since the number of regions is

exponential in the number of clocks of the timed automaton.

Theorem 1. The problem of deciding the emptiness of the

language of a timed automaton 𝐴, is 𝑃𝑆𝑃𝐴𝐶𝐸 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒.

87

B. Implementation of Timed Automata

Similar to the other model checking methods, it is needed

to perform reachability analysis on the model to perform a

verification task using timed automata. Thanks to the

decidability of the reachability (and in turn, emptiness)

problem, we can perform model checking by traversing the

state space for reachability testing. However, the region

automaton is not feasible to implement since it suffers from

a combinatorics explosion. For this reason, symbolic

representation of states and on-the-fly model checking are

preferred resulting in considerable space and time savings.

In the implementation of timed automata, zones which

can be efficiently represented using Difference Bounded

Matrices (DBM) are used instead of regions and symbolic

reachability analysis is performed on these data structures.

Timed automata tools use on-the-fly reachability

algorithm that calculates the states on-the-fly rather than

pre-computing. Thus, only the needed part of state space is

computed. The use of the symbolic structures and symbolic

model checking algorithms make timed automata to be

implemented in an efficient way. [20] [21]

C. A Timed Automata Tool - UPPAAL

UPPAAL [7] is a freely available timed automata tool

that provides an integrated tool environment for modeling,

validation and verification of real-time systems. It has a

graphical user interface for modeling, a simulation tab, and

a verification engine for automatic verification of

specifications. It is an efficient and mature tool used in

several case studies [8][9][10][11] which is in continuous

development. In this study, UPPAAL 4.0.10 is used.

UPPAAL extends timed automata with C-like data types

such as integers, arrays and functions. It allows using urgent

and committed states that ease modeling of a system.

UPPAAL verification engine uses a subset of CTL

(Computation Tree Logic) as the specification language,

consisting of state formulae or path formulae that can be

classified into reachability, safety, and liveness properties.

IV. MODELLING NEUMAN-STUBBLEBINE

AUTHENTICATION PROTOCOL

A. Protocol Modeling with Timed Automata

Timed automata model a system as a network of timed

automata which is composed of several components each

having a transition system. It consists of some number of

timed automata running in parallel that may communicate

and synchronize on some events. In a network of timed

automata, the events are partitioned into the set of output

and input actions. The output statement over channel 𝑎 is

labeled as 𝑎! (emission) and an input statement over channel 𝑎 is labeled as 𝑎? (reception). Two edges in different

processes can synchronize if one is emitting and the other is

receiving on the same channel. In the execution of a

network of timed automata, the transitions of the timed

automata with a shared action are synchronized and the

transitions that does not correspond a shared action are

interleaved.

The timed automata model for a protocol is generated by

building a finite state machine whose states and transitions

simulate the behavior of a protocol run. To find an attack on

the protocol, all possible states are explored and analyzed if

the protocol has some security flaws.

The protocol is modeled as a network of timed automata

composed of the initiator, responder, server and the intruder

automata. These principals communicate with each other by

using synchronization channels and shared variables. For

example when the initiator emits the 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔! signal over 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔 channel, this means that it has created the

message and the message is assigned to the global message

variable 𝑚𝑠𝑔which is shared between the principals. The

network takes this message over 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔? and emits 𝑟𝑒𝑠𝑝_𝑚𝑠𝑔!, which is captured by the responder. Then, the

responder reads the global message variable 𝑚𝑠𝑔.

B. Modeling Cryptology

In our model the cryptosystem is assumed to be perfect,

so we used an abstraction for the cryptographic operations.

These cryptographic abstractions are held in the local

functions 𝑔𝑒𝑛_𝑛𝑜𝑛𝑐𝑒() , 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑖𝑛𝑡 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡, 𝑖𝑛𝑡 𝑘𝑒𝑦)

and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑖𝑛𝑡 𝑐𝑖𝑝𝑕𝑒𝑟𝑡𝑒𝑥𝑡 , 𝑖𝑛𝑡 𝑘𝑒𝑦) of each principal.

When these functions are called, the result of the operation

is assigned in their local variable 𝑟𝑒𝑠𝑢𝑙𝑡 . For these time

consuming operations, we make use of the timed automata

that can model the delay and deadline requirements.

A message sent/received by an entity is represented as an

integer, which contain the information described in the

protocol specification. The creation of the messages and the

encryption/decryption scheme we used are similar to the

model used in [17] and [18]. Before moving on the creation

of a message, let us examine how to model the nonce

generation, encryption and decryption.

1) Nonce Generation:

The nonce is generated by calling the 𝑔𝑒𝑛_𝑛𝑜𝑛𝑐𝑒()

function which returns a result by incrementing the global 𝑛𝑜𝑛𝑐𝑒 variable.

2) Encryption/Decryption:

Two arrays 𝑝𝑙𝑎𝑖𝑛 and 𝑘𝑒𝑦 are used for encryption and

decryption, where the first one holds the plaintexts and the

latter holds the keys. When a block is encrypted, the

plaintext is placed in the 𝑝𝑙𝑎𝑖𝑛 array and the key is placed

in the 𝑘𝑒𝑦 array. Then, the corresponding index is returned

as the ciphertext, which is the result of the encrypt

operation. A plaintext can be decrypted only if the given key

is same with the key in the 𝑘𝑒𝑦 array corresponding to the

element in index (ciphertext) to be decrypted.

3) Representing Protocol Variables:

A protocol message is represented as an integer.

UPPAAL uses 16 bit integers where the leftmost bit is the

sign bit. In order to contain the whole message in an integer

and have simplicity in the model, we have to limit the

number of bits to represent the blocks contained in a

88

message. In our model, the nonces, keys and indexes (or

ciphertexts) are represented by 4 bits, the agent ids and 𝑡𝑏 is

represented by 2 bits. In the implementation, the possible

values for these variables are restricted since there may be

some problems in the model when these values coincide.

To reduce the state space of the intruder automata, we

used only two length variables 𝐿𝑒𝑛𝑔𝑡𝑕1 = 4, 𝐿𝑒𝑛𝑔𝑡𝑕2 =

 2 which are the length of bits to represent a variable.

4) Creating and Reading Messages:

A message is created by using shift, and 𝑜𝑟 operations.

Parts of the message are merged by shifting the message to

the left as the length of the part to be appended. Then, the

new part is appended using the 𝑜𝑟 operation.

To extract information from a received message, shift and 𝑎𝑛𝑑 operations are used. This time the message is shifted to

the right and the 𝑎𝑛𝑑 operation with the mask is applied.

For example, when the initiator creates the message 𝐴, 𝑁𝑎 ,

it shifts 𝐴 left for 𝐿𝑒𝑛𝑔𝑡𝑕1 times, and 𝑜𝑟 s the result with 𝑁𝑎 . To read this message, the responder 𝑎𝑛𝑑 s it with the

mask to obtain 𝑁𝑎 , and shifts left 𝐿𝑒𝑛𝑔𝑡𝑕1 times and

applies 𝑎𝑛𝑑 operation to obtain the claimed identity.

C. Neuman-Stubblebine Repeated Authentication Protocol

Neuman-Stubblebine protocol [6] is a repeated

authentication protocol that provides mutual authentication

between two principals. It consists of two parts. First, the

initial authentication part is executed which provides mutual

authentication. In this part, the initiator acquires a ticket to

be used in the subsequent part of the protocol. The

subsequent part is used to re-authenticate the principal

identities without using the server. This part can be repeated

several times until the ticket expires.

In the protocol specification given for the initial and

subsequent authentication parts, A , B and S are the

principals where A is the initiator, B is the responder and S

is the key distribution server. Kas , Kbs , and Kab are the

shared keys where the subscript letters denote the principals

whom the key is for (e.g. 𝐾𝑎𝑠 is shared between 𝐴 and 𝑆).

{𝑋, 𝑌}𝑘 means, 𝑋 concatenated with 𝑌, encrypted with 𝑘.

1) InitialAuthentication Part:

The initial part requires the exchange of four protocol

messages. 𝐴 initiates the authentication by sending its

identity 𝐴 and a nonce 𝑁𝑎 . After 𝐵 receives this message, it

sends its identity and a nonce created by 𝐵 as clear text and 𝐴’s name, nonce and a suggested expiration time for the

credentials as a block encrypted with the key 𝐾𝑏𝑠 . The

server can decrypt this message since it knows 𝐾𝑏𝑠 , and

assures that they are created by 𝐵. Then, the server sends 𝐴

a ticket, and 𝐵’s nonce. It also sends the identity of 𝐵, 𝐴’s

nonce, a session key 𝐾𝑎𝑏 , the expiration time 𝑡𝑏 encrypted

with 𝐾𝑎𝑠 . 𝐴 decrypts the block encrypted with 𝐾𝑎𝑠 and

verifies the 𝑁𝑎 is same with the 𝑁𝑎 in message 1. In the last

message, it sends the ticket and 𝑁𝑏 to 𝐵, proving its identity.

1. A B ∶ A, Na

2. B S ∶ B, A, Na , tb Kbs
, Nb

3. S A ∶ B, Na , Kab , tb Kas
, A, Kab , tb Kbs

, Nb

4. A B ∶ A, Kab , tb Kbs
, Nb Kab

This initial authentication provides mutual authentication
between the principals. After this initial part, the initiator 𝐴

possesses the ticket A, Kab , tb Kbs
and the session key 𝐾𝑎𝑏

that can be used for subsequent authentications.

2) Subsequent Authentication Part:
In this second part, 𝐴 uses the ticket to authenticate itself

to the responder. 𝐵 checks the sender’s identity, shared key
and the expiration time of the ticket. If it is valid, the
authentication is provided between the principals.

5. A B ∶ N′a , A, Kab , tb Kbs

6. B A ∶ N′b , N′a Kab

7. A B ∶ N′b Kab

In our experimental part, we give the timed automata
model and the verification results for the initial
authentication part of the protocol. Then, we will comment
on the modeling and verification of the subsequent part.

D. Timed Automata Model for Neuman-Stubblebine Initial

Authentication

1) Initiator, Responder and Server

The knowledge bases of the principals are modeled using

local variables for each automaton. For example, the

initiator 𝐴 has 𝐾𝑎𝑠 as initial knowledge. Then, it generates 𝑁𝑎 , gets a ticket, learns 𝐾𝑎𝑏 , and 𝑡𝑏 which will be added to

its knowledge base. The principal 𝐵, has 𝐾𝑏𝑠 as the initial

knowledge and gets a claimed id, 𝑁𝑎 , generates 𝑁𝑏 , 𝑡𝑏 and

learns 𝐾𝑎𝑏 . It should keep this knowledge to use in the later

steps of the protocol e.g. while checking the values received

in the fourth step of the message.

In order to be able to analyze timing properties, each

principal automaton has its local clock variable to keep the

time elapsed for the cryptographic operations, in addition to

a global clock representing the total time passed.

The Initiator automaton; which is given in Fig. 2, is

activated by the 𝐼𝑛𝑖𝑡 automaton that emits the 𝑠𝑡𝑎𝑟𝑡! signal.

The Initiator, first generates a nonce by calling its local

function. Time can elapse during the operation and when the

nonce is generated it is written in the 𝑟𝑒𝑠𝑢𝑙𝑡 variable. Note

that we make use of the committed states (labeled with “C”)

that allow modeling of atomic behaviors and avoids any

unnecessary interleaving in the model.

It creates the message 𝐴, 𝑁𝑎 by assigning the message to

the global variable 𝑚𝑠𝑔. Since this value is global, it can be

read by other principal’s automaton. Then, it signals 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔! to indicate that it has sent the message. This

signal is captured by the network and transmitted to the

responder. After sending the message, in state 𝐴5, it waits

for the protocol message 3. When it is sent by the server,

network signals 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔! which will be captured by the 𝑖𝑛𝑖𝑡_𝑚𝑠𝑔? of the initiator that brings it to state 𝐴6. In this

transition, initiator extracts the block encrypted with 𝐾𝑎𝑠 ,

gets the ticket which is 𝐴, 𝐾𝑎𝑏 , 𝑡𝑏 𝐾𝑏𝑠 , and 𝑁𝑏 . It decrypts

89

the block with the key 𝐾𝑎𝑠 which is shared by the initiator

and the server. Similar to generating a nonce, decryption of

a message is performed by its function. The guard on the

transition from 𝐴6 to 𝐴7 guarantees that 𝐵’s identity sent by
the server is same by the identity that 𝐴 wants to

communicate with, and the nonce value is same with the one

generated by itself. If this guard is satisfied, it gets the 𝐾𝑎𝑏

and 𝑡𝑏 . It encrypts 𝑁𝑏 with 𝐾𝑎𝑏 and creates the message 𝐴, 𝐾𝑎𝑏 , 𝑡𝑏 𝐾𝑏𝑠 , 𝑁𝑏 𝐾𝑎𝑏 by concatenating the ticket and the

encrypted block. After sending this message, the initial

protocol execution finishes for the initiator and it sets its

local variable 𝑓𝑖𝑛𝑖𝑠𝑕1 to 1.

Let us assume that 𝐴 has received a wrong message from 𝑆 in the third step. Then, 𝑁𝑎 will be different from the one 𝐴

itself generated, the guard will not be satisfied and the

transition from state 𝐴6 to 𝐴7 will not be taken. Hence, the

automata will deadlock and the 𝑓𝑖𝑛𝑖𝑠𝑕1 value will be 0

which means that there is something wrong with the

execution of the protocol.

The automata for the Responder (see Fig. 3) and the

Server are modeled in a similar way.

2) Dolev-Yao Intruder

The flaws of a security protocol are examined by

modeling an intruder who wants to exploit the features of a

protocol. In our study, we use the Dolev-Yao intruder [22]

which has the full control of network and has the abilities to

deliver or intercept messages, decompose messages, do

encryption/decryption and compose fake messages.

As it is seen from Fig. 3, that the intruder can behave as a

simple network which only receives and transmits received

messages. In addition, besides the correct recipient, it is

possible to send a message to any principal that the intruder

wants (transitions between states 𝐼1 and 𝐼3).

The Dolev-Yao intruder model allows the use of the

knowledge of the intruder which includes the identities of

the agents, its own keys and nonces, every messages it

received, every part of the messages it received, everything

it can generate by encrypting or decrypting something and

every concatenation of data it knows.

The Dolev-Yao intruder can capture the packets,

decompose into its constituent parts and examine them. For

example, when the message 𝐴 , 𝑁𝑎 is captured by the

intruder, it has the ability to read the initiator’s identity and
its nonce 𝑁𝑎 and add them to its knowledge base. Hence,

after receiving a sent message, we use the piece of timed

automata (with states 𝐼5 and 𝐼6) to enable the intruder

improve its knowledge base adding the information

extracted from the messages sent. In fact, the intruder can

nondeterministically take one of the transitions from 𝐼5 to 𝐼6 to read a message. However, this makes the state space

grow enormously. Because of that, we used some guards to

limit the possible number of transitions. It is important that

these limitations do not lessen the power of the intruder, but

decreases the number of infeasible executions.

The intruder has the ability to generate a nonce, do

encryption and decryption (between the states 𝐼6 and 𝐼14)

using the parameters in its knowledge base. It again

nondeterministically selects the parameters to apply

encryption/decryption. To avoid state space explosion [23],

we used guards that allow using a variable only if it is set.

The intruder can also create new messages and inject

them into the network. So, the model can populate each

constituent part of a message with some known information

(between the states 𝐼14 and 𝐼16). While creating a new

message, a local variable 𝑑𝑎𝑡𝑎2 can be set to any variable in

the intruder’s knowledge base. Then, it can be shifted left
for 𝐿𝑒𝑛𝑔𝑡𝑕1 or 𝐿𝑒𝑛𝑔𝑡𝑕2 times depending on the length of

the content to be appended to the message.

Our intruder model differs from the one in [17] and [18]

by having reduced number of transitions depending on the

reduced number of variables and using guarded transitions

for the states used to improve its knowledge base.

V. VERIFICATION OF THE NEUMAN-STUBBLEBINE

PROTOCOL

Timed automata model of a system can be verified using

UPPAAL verification engine that uses a subset of CTL

specifications. The tool checks these specifications by

performing reachability analysis on the state space of the

model. It has the advantage of generating a diagnostic trace

that explains why a property is (or is not) satisfied.

In this case study, we aim to verify the correctness of an

authentication protocol based on the security goals for a

protocol. Two high level goals for an authentication

protocol are listed as follows in [24]:

 Authentication: For each principal, after the

successful run of the protocol, it should be assured

that it is talking to the principal in its mind.

 Key establishment: A secret key becomes available

to the principals, for subsequent cryptographic use.

We proposed to analyze the possible attacks for the

Neuman-Stubblebine authentication protocol by writing

specifications derived from these authentication goals. In

order to examine the protocol goals given above, the

correspondence and the secrecy properties should be

verified. Correspondence means that the execution of

different principals in an authentication protocol proceeds in

a lock-stepped fashion. While the authenticating principal

finishes its part of the protocol, the authenticated principal

must have been present and participated in its part of the

protocol. And, secrecy property specifies that a distributed

session key cannot be discovered by the intruder.

In the analysis of these goals, if an attack is found on a

protocol, it is inferred that the protocol is incorrect since it

does not satisfy the properties that it is intended for.

This section gives the specifications and the

corresponding UPPAAL queries that we used to check

whether our protocol model satisfies these properties. Table

1 gives the verification results of these queries.

90

Figure 2. The initiator automaton

Figure 3. The responder automaton

Figure 4. The intruder automaton

91

Query1: Is such a state reachable where the responder

finished but the initiator has not finished the initial protocol

execution? 𝐸 <> 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 && (! 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1)

Query 1 is related to the correspondence property. Here,

we use the fact that this property is not satisfied when the

responder finishes the protocol execution although the

initiator has not executed its part. In such a situation, we can

say that an intruder has sent fake messages to the responder

to finish its protocol execution and attacked to the protocol.

However, this property is satisfied. It means that the

intruder caused the responder to finish its run by sending

fake messages and we have found an attack on the protocol.

When we examined the diagnostic trace, we realized that

this is the type flaw attack [25] given below. The intruder

(see Fig. 4) extracts the information in messages 1 and 2 in

the transitions from 𝐼5 to 𝐼6 , and learns 𝑁𝑎 , 𝑁𝑏 , and 𝐴, 𝑁𝑎 , 𝑡𝑏 𝐾𝑏𝑠 (𝑏𝑙𝑜𝑐𝑘_𝐾𝑏𝑠). It skips the protocol message 3.

To create a fake message, it takes 𝑏𝑙𝑜𝑐𝑘_𝐾𝑏𝑠 as 𝑑𝑎𝑡𝑎2

between the states 𝐼14, 𝐼15 and 𝐼16. Then, it selects 𝑁𝑏 as 𝑝𝑎𝑟𝑎𝑚1 and 𝑁𝑎 as 𝑝𝑎𝑟𝑎𝑚2 , encrypts 𝑁𝑏 with 𝑁𝑎 . It

composes this encrypted block with 𝑏𝑙𝑜𝑐𝑘_𝐾𝑏𝑠 and sends it

to the responder as the protocol message 4. In this attack, 𝐵

accepts the nonce 𝑁𝑎 as the key 𝐾𝑎𝑏 .

1. 𝐼(𝐴) 𝐵 ∶ 𝐴, 𝑁𝑎

2. 𝐵 𝐼(𝑆) ∶ 𝐵, 𝐴, 𝑁𝑎 , 𝑡𝑏 𝐾𝑏𝑠 , 𝑁𝑏

3. 𝑜𝑚𝑖𝑡𝑡𝑒𝑑

4. 𝐼 𝐴 𝐵 ∶ 𝐴, 𝑁𝑎 , 𝑡𝑏 𝐾𝑏𝑠 , {𝑁𝑏}𝑁𝑎

As it is seen, a type flaw (substitution of a different type

of message field) attack can be easily found by model

checking with timed automata.

The next query is related to the key distribution that

requires the new session key distributed by the server at

most be known by the principals it is intended for.

Query2: The execution of the protocol run leads to the fact

that, the secret key acquired by the initiator is same with the

secret key distributed to the responder which is also same

with the key generated by the server. 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 && 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 −
(𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝐾𝑎𝑏 == 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝐾𝑎𝑏 == 𝑆𝑒𝑟𝑣𝑒𝑟. 𝐾𝑎𝑏)

The property is satisfied, that means all the executions

where both the initiator and responder finished the initial

part lead to the equivalence of 𝐾𝑎𝑏 s owned by them.

In Query3, we test the secrecy property checking

whether the intruder can learn the secret key. The check is

performed using the 𝑑𝑎𝑡𝑎2 variable in order to include all

the decomposed pieces of the messages and their

encryptions or decryptions. This property is not satisfied,

meaning that if the responder uses the key generated by the

server (in the execution of a normal run); this secret key

cannot be obtained by the intruder.

Query3: Is such a state reachable where the secret key

distributed to the principals is learned by the intruder? 𝐸 <> 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 && 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1

&& (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝐾𝑎𝑏 == 𝑆𝑒𝑟𝑣𝑒𝑟. 𝐾𝑎𝑏 ==𝐼𝑛𝑡𝑟𝑢𝑑𝑒𝑟. 𝑑𝑎𝑡𝑎2)

In the next query, our aim is to find out whether we can

use the timing information to analyze the attacks on a

protocol. The timeout intervals which are the time periods

that a principal waits for a message can be used for this

purpose. If a message comes earlier than the required time

to prepare a message (depending on the encryption and the

decryption times), then we can say that the principal has

received a fake message [17][18].

The timeout intervals can be examined for both the

initiator and the responder. To demonstrate the detection of

an attack, here we give the query that examines the timeout

for the responder. In a normal run, (assuming the time to

create or read a message is negligible), the timeout for the

responder is:𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ≥ 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑡_𝑑𝑒𝑐𝑟𝑦𝑝𝑡 +

2 × 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡 + 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑡_𝑑𝑒𝑐𝑟𝑦𝑝𝑡 +𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟. 𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡 However, in a flawed run, the

message can be received in a shorter time: 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ≥ 𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡

To measure the time that the message is received, we use

a local variable 𝑡_𝑤𝑎𝑖𝑡𝑒𝑑 which is incremented at each time

unit the responder waits (see Fig. 3, state 𝐵7). Query 4 is

used to test for a possible attack using the fact that if the

message comes earlier than the required time, then we can

say that there is an attack on the protocol.

Query 4: Is such a state reachable where the responder has

finished the protocol execution but the message has been

received in a shorter time than the required time for the

correct protocol execution?

 𝐸 <> 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑓𝑖𝑛𝑖𝑠𝑕1 && (𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑟. 𝑡_𝑤𝑎𝑖𝑡𝑒𝑑 < 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑡_𝑑𝑒𝑐𝑟𝑦𝑝𝑡 + 2 × 𝑆𝑒𝑟𝑣𝑒𝑟. 𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡 +

 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟.𝑡_𝑑𝑒𝑐𝑟𝑦𝑝𝑡+𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟.𝑡_𝑒𝑛𝑐𝑟𝑦𝑝𝑡)

This property is satisfied and when we examined the

diagnostic trace, we saw that it is the execution of the attack

we have found in Query1. Hence, we infer that we can find

the possible attacks on a protocol by examining the

quantitative timing information and the flow of the protocol.

TABLE I. VERIFICATION RESULTS

No
States

Stored

States

Explored

Real

Time

User

Time

System

Time
Satisfied

1 361610 428228 5.774s 5.424s 0.128s Yes

2 1600933 3107116 28.021s 27.558s 0.408s Yes

3 1550938 3057121 27.028s 26.598s 0.332s No

4 361610 428228 5.584s 5.448s 0.088s Yes

92

The queries of our case study are executed on Ubuntu

9.04 Operating System with Intel Core 2 Duo 𝑃7350 ,

2.00 𝐺𝐻𝑧 processor and 4𝐺𝐵 of RAM. We used stand-

alone command line verifier which is more appropriate

for large verification tasks, with default configurations.

After the verification of the initial authentication part,

we modeled the subsequent authentication in order to

verify these parts together and also analyze the key

expiration time. Consequently, the initiator, responder and

the intruder automata are extended for this model which is

not included in this paper. However, while executing our

queries we have come up with state space explosion

problem [23] caused by usage of large amount of

memory. Hence, we could not obtain appreciable results.

Note that the subsequent part is exposed to a parallel

session attack which cannot be detected by an automata

model having one automaton for the initiator and one

automaton for the responder allowing them to execute just

one protocol run at a time. Because, the parallel session

attack occurs when two protocol runs are executed

concurrently and messages from one run are used to form

fake messages in another run. The analysis of the

combined Neuman-Stubblebine initial and subsequent

authentication is left as future work because of state space

explosion and the problem with parallel session attack.

VI. CONCLUSIONS & FUTURE WORK

Timed automata model for an authentication protocol

can be used to examine the predefined goals of a protocol.

Model checking of Neuman-Stubblebine initial

authentication protocol with timed automata is able to

find the type flaw attack using Dolev-Yao intruder model.

In addition, this attack can also be detected by using the

quantitative time information of the protocol.

The model can be further improved so that it can

detect parallel session attacks that need the parallel

execution of more than one protocol runs. Some work

should be devoted to overcome the state space explosion

that occurs for large models such as the verification of

both initial and subsequent parts of the protocol.

In this paper, we concentrated on the verification of

security protocols using timed automata formalism. The

study can also be extended with a broad comparison of all

of the security protocol verification methods which needs

a deeper study on the other formalisms as well.

REFERENCES

[1] A. Cerone and A. Maggiolio-Schettini, “Time-based expressivity

of timed petri nets for system specification”, Elsevier Science
Publishers Ltd., 1999, Theor. Comput. Sci, vol. 216, pp. 1-53.

[2] R. Alur, C. Courcoubetis and D. Dill, “Model-checking in dense
real-time”, Academic Press, Inc., 1993, Information and
Computation, Vol 104, pp. 2-34.

[3] G. M. Reed and A. W. Roscoe, “A timed model for
Communicating Sequential Processes”, Elsevier Science
Publishers Ltd., 1988, Theor. Comput. Sci., vol 58, pp. 249-261.

[4] R. Alur and D. Dill, “A theory of timed automata”, Springer, 1994,
Theoretical Computer Science, vol. 126, pp. 183-235.

[5] E.M. Clarke, O. Grumberg and D. A. Peled, Model Checking,
Springer, 1999.

[6] B. C. Neuman and S. G. Stubblebine, “A note on the use of
timestamps as nonces”, ACM, 1993, SIGOPS Oper. Syst. Rev.,
vol. 27, pp. 10-14.

[7] G. Behrmann, A. David, K. Larsen, “A tutorial on UPPAAL”,
Springer, 2004, LNCS, Formal Methods for the Design of Real-
Time Systems, vol 3185, pp. 200-236.

[8] H. Lönn, P. Pettersson, “Formal werification of a TDMA protocol
start-up mechanism”, IEEE Computer Society, 1997, In Pacific
Rim International Symp. on Fault-Tolerant Systems, pp. 235-242.

[9] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K. G. Larsen,
F. Larsson, P. Pettersson and W. Yi, “Automated analysis of an
audio control protocol using UPPAAL”, 2002, Journal of Logic
and Algebraic Prog., vol. 52-53, pp 163-181

[10] K. Havelund, K. G. Larsen and A. Skou, “Formal verification of a
power controller using the real-time model checker”. Springer,
1999, Proc. of the 5th International AMAST Workshop on Real-
Time and Probabilistic Systems, pp. 277-298.

[11] Bowman H., Faconti G., Katoen J-P, Latella D. and Massink M.,
“Automatic verification of a lip synchronisation algorithm using
Uppaal”, In Proc. of the 3rd Int. Workshop on Formal Methods for
Industrial Critical Systems, 1998, pp. 97-124.

[12] G. Jakubowska, W. Penczek and M. Srebrny,”Verifying security
protocols with timestamps via translation to timed automata”, Proc.
of the Int. Workshop on Concur., Spec. and Prog., 2005, Warsaw
University Press, pp. 100–115 (2005)

[13] G. Jakubowska and W. Penczek, “Modelling and checking timed
authentication of security protocols”, IOS Press, 2008, Fundamenta
Informatica, vol 79, pp. 363-378.

[14] S. Yovine, “KRONOS: a verification tool for real-time systems”,
Springer, 1997, International Journal on Software Tools for
Technology Transfer, vol 1, pp. 123-133.

[15] P. Dembinski et. al, “VerICS: a tool for verifying timed automata
and estelle specifications”, TACAS 2003, Springer, 2003, LNCS,
vol. 2619, pp. 278–283.

[16] M. Benerecetti and N. Cuomo, “TPMC: A model checker for time
sensitive security protocols”, Journal of Computers, 2009, vol. 4,
pp. 366-377.

[17] R. Corin, S. Etalle, P. H. Hartel and A. Mader, “Timed model
checking of security protocols”, Proc. of the 2004 ACM workshop
on Formal Methods in Security Engineering, pp. 23-32.

[18] R. Corin, S. Etalle, P. H. Hartel and A. Mader , “Timed analysis of
security protocols”, IOS Press, Journal of Computer Security, vol.
15, Dec 2007, pp. 619-645.

[19] R. Alur, C. Courcoubetis and D. Dill, “Model-checking for real-
time systems”, . In Proc. of the 5th IEEE Symp. on Logic in Comp.
Science. IEEE, 1990.

[20] K. G. Larsen, P. Pettersson, and W. Yi, “Compositional and
symbolic model-checking of real-time systems”, RTSS ’95: Proc.
of the 16th IEEE Real-Time Systems Symp., 1995, pp. 76-87.

[21] J. Bengtsson, and W. Yi, ”Timed automata: Semantics, algorithms
and tools”, Springer, 2004, LNCS, vol. 3098, pp. 87-124.

[22] D. Dolev and A. C. Yao, “On the security of public key protocols”.
IEEE Trans. on Information Theory, 29(2), pp. 198-208. 1983.

[23] R. Pelánek, “Fighting state space explosion: review and
evaluation”, Formal Methods for Industrial Critical Systems,
FMICS 2008, Springer, 2009, LNCS, pp. 37-52.

[24] T. Y. C. Woo and S. S. Lam, “Design, verification and
implementation of an authentication protocol”, 1994, Proc of Int.
Conf. on Network Protocols, pp 81-90.

[25] J. Clark and J. Jacob, “A survey of authentication protocol
literature” Version 1.0, 1997.

93

