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AbstractÐScheduling jobs on the IBM SP2 system and many other distributed-memory MPPs is usually done by giving each job a

partition of the machine for its exclusive use. Allocating such partitions in the order in which the jobs arrive (FCFS scheduling) is fair

and predictable, but suffers from severe fragmentation, leading to low utilization. This situation led to the development of the EASY

scheduler which uses aggressive backfilling: Small jobs are moved ahead to fill in holes in the schedule, provided they do not delay the

first job in the queue. We compare this approach with a more conservative approach in which small jobs move ahead only if they do not

delay any job in the queue and show that the relative performance of the two schemes depends on the workload: For workloads typical

on SP2 systems, the aggressive approach is indeed better, but, for other workloads, both algorithms are similar. In addition, we study

the sensitivity of backfilling to the accuracy of the runtime estimates provided by the users and find a very surprising result: Backfilling

actually works better when users overestimate the runtime by a substantial factor.

Index TermsÐParallel job scheduling, backfilling, runtime estimates, workload modeling, performance metrics.
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1 INTRODUCTION

THE scheduling scheme used on most distributed-
memory parallel supercomputers is variable parti-

tioning, meaning that each job receives a partition of the
machine with its desired number of processors [5]. Such
partitions are allocated on a first-come first-serve (FCFS)
manner to submitted jobs. But, this approach suffers from
fragmentation, where free processors cannot meet the
requirements of the next job and therefore remain idle until
additional ones become available. As a result, system
utilization is typically in the range of 50-80 percent [21],
[16], [8], [11], [15].

It is well known that the best solutions for this problem
are to use dynamic partitioning [20] or gang scheduling [6].
However, these schemes have practical limitations. The
only efficient and widely used implementation of gang
scheduling was the one on the CM-5 Connection Machine.
Other commercial implementations are too coarse-grained
for real interactive support and do not enjoy much use. To
the best of our knowledge, dynamic partitioning has not
been implemented on production machines at all.

A simpler approach is to reorder the jobs in the queue,
that is, to use non-FCFS policies [9]. Consider a scenario
where a number of jobs are running side by side and the
next queued job requires all the processors in the system.
An FCFS scheduler would then reserve all the processors
that are freed for this queued job and leave them idle. A
non-FCFS scheduler would schedule some other smaller
jobs that are behind the big job in the queue rather than

letting the processors idle [12], [1]. Of course, this runs the
danger of starving the large job as small jobs continue to
pass it by. The typical solution to this problem is to allow
only a limited number of jobs to leapfrog a job that cannot
be serviced and then start to reserve (and idle) the
processors anyway. The point at which the policies are
switched can be chosen so as to amortize the idleness over
more useful computation by causing jobs that create
significant idleness to wait more before making a
reservation.

A somewhat more sophisticated policy is to require users
to estimate the runtime of their jobs. Using this information,
only short jobsÐthat are expected to terminate in timeÐare
allowed to leapfrog a waiting large job. This approach,
which is called backfilling, was developed for the IBM SP1
parallel supercomputer installed at Argonne National
Laboratory as part of EASY (the Extensible Argonne
Scheduling sYstem) [17], which has since been integrated
with the LoadLeveler scheduler from IBM for the SP2 [23].
Users are expected to provide accurate runtime estimates,
as a low estimation may lead to killing the job before it
terminates, while a high estimation may lead to a long wait
time and possibly to excessive CPU quota loss.

The EASY backfilling algorithm only checks that jobs
that move ahead in the queue do not delay the first queued
job. We show that this aggressive approach can lead to
unbounded queuing delays for other queued jobs and,
therefore, prevent the system from making definite predic-
tions as to when each job will run. We therefore compare it
with an alternative conservative approach in which short
jobs are moved ahead only if they do not delay any job in
the queue. It turns out that, for the workloads measured on
SP2 systems, the original EASY algorithm provides better
performance, so the added predictability of the conservative
approach would come at a cost. However, using workloads
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from other systems, we find that both algorithms have
about the same performance. In this case, the conservative
algorithm is preferable to the EASY algorithm due to its
improved predictability.

The main problem with backfilling is that it requires

estimates of job runtimes to be available. In order to check

the sensitivity to the accuracy of estimates, we investigate

the accuracy of real estimates and their effect on perfor-

mance. The surprising results are 1) that user estimates are

extremely unreliable and 2) that exaggerated estimates

actually lead to better performance than tight estimates! We

conclude the paper by considering ways in which these new

insights can be put to use in order to improve the

scheduling of parallel supercomputers.

2 BACKFILLING ALGORITHMS

Backfilling is an optimization in the framework of variable

partitioning. In variable partitioning, users define the

number of processors required for each job and this number

does not change during the execution. Thus, jobs can be

described as requiring a rectangle in processor/time space

(we will always draw time on the horizontal axis and

processors on the vertical axis). The jobs then run on

dedicated partitions of the requested size. The name

ªvariable partitioningº reflects the fact that the partitions

are created in different sizes as needed.

With backfilling, users also provide an estimate of the

runtime. This enables the scheduler to predict when jobs

will terminate and, thus, when the next queued jobs will be

able to run. In particular, it is possible to identify ªholesº in

the schedule and small jobs that can fit into these holes. This

is the essence of backfilling.

It is desirable that a scheduler with backfilling will

support two conflicting goals: to move as many short jobs

forward as possible in order to improve utilization and

responsiveness and to avoid starvation for large jobs and, in

particular, to be able to predict when each job will run.

Different versions of backfilling balance these goals in

different ways.

2.1 Conservative Backfilling

Conservative backfilling is the vanilla version usually

assumed in the literature (e.g., [10], [6]), although it seems

not to be used. In this version, backfilling is done subject to

checking that it does not delay any previous job in the

queue. We call this version ªconservativeº backfilling to

distinguish it from the more aggressive version used by

EASY, as described below. Its advantage is that it allows

scheduling decisions to be made upon job submittal and,

thus, has the capability of predicting when each job will run

and giving users execution guarantees. Users can then plan

ahead based on these guaranteed response times. Ob-

viously, there is no danger of starvation as a reservation is

made for each job when it is submitted.
In order to perform allocations, conservative backfilling

maintains two data structures. One is the list of queued jobs
and the times at which they are expected to start execution.
The other is a profile of the expected processor usage at

future times. When a new job arrives, the following

allocation procedure is executed:

Algorithm Conservative Backfill.

1. Find anchor point:

a. Scan the profile and find the first point where

enough processors are available to run this job.

This is called the anchor point.

b. Starting from this point, continue scanning the

profile to ascertain that the processors remain

available until the job's expected termination.
c. If not, return to (a) and continue the scan to find

the next possible anchor point.

2. Update the profile to reflect the allocation of

processors to this job, starting from its anchor point.

3. If the job's anchor is the current time, start it

immediately.

An example is given in Fig. 1. The first job in the queue does

not have enough processors to run, so a reservation for it is

made after the first two running jobs terminate. The second

queued job has a potential anchor point after only one job

terminates, but that would delay the first job; therefore, the

second anchor point is preferred. Thus, adding job reserva-

tions to the profile is the mechanism that guarantees that

future arrivals do not delay previously queued jobs. The

third job can be scheduled immediately, so it is used for

backfilling.
It is most convenient to maintain the profile in a linked

list, as it may be necessary to split items into two when a

newly scheduled job is expected to terminate in the middle

of a given period. In addition, an item may have to be

added at the end of the profile whenever a job extends

beyond the current end of the profile. The length of the

profile is therefore proportional to the number of jobs in the

system (both queued and running) because each job adds at

most one item to the profile. As the profile is scanned once

for each new job, the complexity of the algorithm is linear in

the number of jobs.
The above algorithm leaves one question unanswered.

Jobs are assigned a start time when they are submitted,

based on the current usage profile, and the system

guarantees that they will start by this time at the latest.

But, they may actually be able to run sooner because

previous jobs terminated earlier than expected, leaving a

gap in the planned schedule.

Given such a gap, one may decide to reschedule all the

jobs. However, this may violate the system's execution

guarantees. In some cases, this guaranteed time will be the

result of backfilling with this job. If a new round of

backfilling is done later, with different data about job runtimes

due to an early termination, the same job may not be

backfilled and will therefore run much later than the

guaranteed time. An example is given in Fig. 2: According

to the original schedule, the second queued job can backfill

and start at time T1, but, after the bottom running job

terminates much earlier than expected, the first queued job

can start earlier, too, leaving no space for backfilling. The

second queued job therefore has to start at the later time T3.
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The preferred choice is, therefore, to compress the

existing schedule. To do so, each job is removed from the

profile and then reinserted at the earliest possible time. Jobs

provably do not get delayed because, at worst, each job will

be reinserted in the same position it held previously. The

jobs can be considered in the order of arrival, so jobs that

are waiting longer get a better chance to move forward. The

complexity of compression is quadratic because the profile

is scanned again for each job.

2.2 EASY Backfilling

Conservative backfilling moves jobs forward only if they do

not delay any previously queued job. EASY backfilling

takes a more aggressive approach and allows short jobs to

skip ahead provided they do not delay the job at the head of

the queue [17]. Interaction with other jobs is not checked and

they may be delayed, as shown below. The objective is to

improve the current utilization as much as possible, subject

to some consideration of queue order. The price is that

execution guarantees cannot be made because it is

impossible to predict how much each job will be delayed

in the queue. Thus, the algorithm is actually not as

deterministic as stated in its documentation.
The algorithm is as follows:

Algorithm EASY Backfill.

1. Find the shadow time and extra nodes:

a. Sort the list of running jobs according to their

expected termination time.

b. Loop over the list and collect nodes until the

number of available nodes is sufficient for the

first job in the queue.

c. The time at which this happens is the shadow

time.

d. If, at this time, more nodes are available than

needed by the first queued job, the ones left over

are the extra nodes.

2. Find a backfill job:

a. Loop on the list of queued jobs in order of

arrival.

b. For each one, check whether either of the

following conditions hold:

i. It requires no more than the currently free

nodes and will terminate by the shadow

time, or

ii. It requires no more than the minimum of the

currently free nodes and the extra nodes.

c. The first such job can be used for backfilling.
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This is executed repeatedly whenever a new job arrives or a

running job terminates if the first job in the queue cannot

start. In each iteration, the algorithm identifies a job that can

backfill if one exists.
This algorithm has two properties that, together, create

an interesting combination.

Property 1. Queued jobs may suffer an unbounded delay.

Proof Sketch. The reason for this is that, if a job is not the

first in the queue, new jobs that arrive later may skip it in

the queue. While such jobs are guaranteed not to delay

the first job in the queue, they may indeed delay all other

jobs. This is the reason that the system cannot predict

when a queued job will eventually run. An example is

shown in Fig. 3: The backfill job does not delay the first

job in the queue, but it does delay the second job. The

length of the delay depends on the length of the backfill
job, which, in principle, is unbounded. tu

In practice, though, the job at the head of the queue only
waits for currently running jobs, so, if there is a limit on job
runtimes, then the bound on the queueing time is the
product of this limit and the rank in the queue. But, even
without such a bound, we still have:

Property 2. There is no starvation.

Proof Sketch. The queuing delay for the job at the head of
the queue depends only on jobs that are already running
because backfilled jobs will not delay it. Thus, it is
guaranteed to eventually run (because the running jobs
will either terminate or be killed when they exceed their
declared runtime). Then, the next job becomes first. This
next job may have suffered various delays due to jobs
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backfilled earlier, but such delays stop accumulating

once it becomes first. Thus, it, too, is guaranteed to

eventually run. The same arguments show that every job

in the queue will eventually run. tu

As noted, EASY sacrifices predictability for potentially

improved utilization by using more aggressive backfilling.

However, it is not clear that increasing the momentary

utilization at a given instant also contributes to the overall

utilization over a long time and counter examples can be

constructed. Therefore, detailed simulations are required to

evaluate the real contribution of this approach. The results

of such simulations are presented next.

3 EXPERIMENTAL RESULTS

3.1 Methodology

The experiments are based on an event-based simulation,

where events are job arrival and termination. Upon arrival,

the scheduler is informed of the number of processors the

job needs and its estimated runtime. It can then either start

the job's simulated execution or place it in a queue. Upon a

job termination, the scheduler is notified and can schedule

other queued jobs on the freed processors. The runtime of

jobs is part of the input to the simulation but is not given to

the scheduler. It is assumed that the runtime does not

depend in any way on scheduling decisions.
The workloads used to drive the simulations were the

following:

. Traces of the jobs submitted to the following super-
computers:

1. CTC: the Cornell Theory Center 512-node IBM
SP2 (79,296 jobs from July 1996 to May 1997),

2. KTH: the Swedish Royal Institute of Technology
100-node IBM SP2 (28,490 jobs from October
1996 to August 1997),

3. SDSC: the San Diego Supercomputer Center
128-node IBM SP2 (67,665 jobs from April 1998
to April 2000),

4. Par: the San Diego Supercomputer Center
416-node Intel Paragon (115,595 jobs from
January 1995 to December 1996),

5. CM5: the Los Alamos National Lab 1,024-node
Connection Machine CM-5 (201,387 jobs from
October 1994 to September 1996).

. Workload models developed based on these and
other traces:

1. Feitelson: A general model based on data
from six different traces, including CTC and
Par above [4] (350,000 jobs).

2. Jann: A model developed specifically for the
CTC trace [14] (100,000 jobs).

All these workloads are available online from the Parallel

Workloads Archive [22]. Only the first three logs contain

actual user estimates of runtime. In other cases, accurate

estimates are assumed (that is, the actual runtime is used

for the estimate).

Traces are simulated using the exact data provided with
possible modifications as noted (e.g., to check the impact of
different estimates of runtime). For models, the load on the
simulated system is modified by multiplying the inter-
arrival times by a certain factor. For example, if, by default,
the model produces a load of 0.688, we can create a higher
load of 0.8 by multiplying all interarrival times by a factor of
0:688
0:8 � 0:86. Using different factors enables the functional
relationship of performance on load to be measured.

The performance metrics used are the average response
time and the average bounded slowdown. Slowdown is
response time normalized by running time. Bounded
slowdown eliminates the emphasis on very short jobs due
to having the running time in the denominator [9]; a
threshold of 10 seconds was used. For the record, the
equation is

b sld �
Tw�Tr

Tr
if Tr > 10

Tw�Tr

10
otherwise;

(

where b sld is the bounded slowdown, Tr is the job's
runtime on a dedicated system, and Tw is the job's waiting
time. We also collected data on the waiting time; the results
were similar.

When using models, 90 percent confidence intervals for
the response time were calculated using the batch means
method [13]. Each batch size was 3,333 job terminations,
with the first batch discarded to account for warmup effects
(for the Jann model, batches were just under 1,000 jobs). The
simulation continued until any of the following three
conditions was met: 100 batches were completed or the
confidence interval was smaller than 5 percent of the mean
or the mean response time exceeded a certain high thresh-
old (30,000 seconds, determined experimentally to be where
it starts to shoot up). In practice, it turned out that most of
the simulations took 100 batches and achieved an accuracy
of about 6-9 percent.

3.2 The Results

The results of simulations using the two models are
presented in Fig 4. They indicate that the relative
performance of EASY and conservative backfilling depends
on the workload used and on the performance metric!
Specifically, according to the Feitelson model (F), both
schemes are practically identical. According to the Jann
model (J), EASY has better (lower) average response times
under high loads, but slightly worse (higher) bounded
slowdown.

The results for the actual workload traces are reported
for each month individually so as to create multiple data
points for somewhat different load conditions. They are
shown in Table 1. Again, there is a difference between the
different workloads and metrics. In general, the SP2
workloads favor the EASY backfilling over conservative
backfilling. The only case in which conservative is a
possible contender is when using the bounded slowdown
metric and the KTH trace.

The non-SP2 traces seem to also favor EASY backfilling
when measured by the response-time metric, but not for the
bounded slowdown metric. Using the Par trace leads to
inconclusive results for this metric. With the CM-5 trace,
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there seems to be a clear preference for conservative

backfilling.

3.3 Discussion

To summarize, the simulation results are somewhat incon-

clusive and depend on the workload and metric being used.

For most of the combinations checked, the performance of

the EASY backfilling algorithm was better than that of

conservative backfilling. However, in some cases, the two

algorithms seemed to provide similar performance and, in

one case, conservative was better than EASY.1

To understand the differences in performance, it is

instructive to study the amount of backfilling performed

(Fig. 5). According to the Feitelson model, both do the same

amount of backfilling, which matches the prediction of

equal performance according to this model. Using the

Jann model, we find that EASY backfills a slightly larger

percentage of the jobs than conservative backfilling.

However, the simulations based on the traces suggest

that the amount of backfilling performed is similar and, in

one case (SDSC), conservative even performs more back-

filling but achieves worse results. Thus, it is not a question of

how much backfilling is done, but more of which jobs are

backfilled.
We are therefore left with a unique situation in which the

workloads dictate the results (the only previous study to

systematically check the influence of the workload

concluded that workloads affect the quantitative results,

but not the qualitative results [18]). The problem is that

these workloads are rather complex and it is not clear

exactly what features are the decisive ones. We therefore

turn to Talby et al. [26], who made a detailed statistical

comparison of workloads and models. That work indicates

that the CTC and KTH traces and the Jann model are indeed

similar to each other and distinct from other workloads,

such as the CM5 and Par traces and the Feitelson model

(the SDSC trace was not included in the Talby paper).

Specifically, the SP2 workloads seem to have higher than

average runtimes and lower than average degrees of

parallelism. This also matches the contradictory findings

according to the Jann model, which indicate that EASY is

selective with respect to job size.
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We have verified the observations regarding the differ-

ences among the workloads by plotting the cumulative

distributions of runtimes for different job sizes for all the

different traces and models. Fig. 6 shows a subset, including

the comparison of the Feitelson and Jann models with the

CTC trace. We next tried to verify whether these character-

istics of the workloads are indeed responsible for the

distinct behavior of the backfilling algorithms. To do so, we

modified the Feitelson model so that the distributions of

runtimes will mimic those of the CTC trace. This included

two distinct modifications: changing the distribution of job

sizes to emphasize small jobs (denoted by Fs) and changing

the distribution of runtimes to emphasize longer jobs (Fl).

The combination of these modifications (Fsl) leads to

distributions that are very close to both the CTC trace and

the Jann model (Fig. 6).
The simulation results were that, indeed, both the

modifications are needed (see the Fs, Fl, and Fsl graphs in

Fig. 7). The modifications to the runtime distribution alone

made a small difference to the response time measure-

ments. Adding the modifications to the size distribution

enlarged the difference considerably. The modifications to

the size distribution alone were enough to make a

difference to the bounded slowdown measurements. How-

ever, the differences between the EASY and conservative

schedulers on the modified Feitelson model were still
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(a) Simulation Results for the Three IBM SP2 Trace Files
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smaller than on the Jann model. It therefore seems that there

are some other workload differences at play as well. We

checked and refuted two additional candidates: the

distribution of interarrival times, which turned out to be

very similar for the two models, and the feature of

repetitive execution of jobs that is present only in the

Feitelson model.

4 USER ESTIMATES oF RUNTIME

The concept of backfilling is based on estimates of job

runtimes. It has been assumed that users would be

motivated to provide accurate estimates because jobs would

run faster if the estimates are tight but would be killed if the

estimates are too low. However, this assumption needs to

be checked.
In order to study user runtime estimates we used

workload data from the three IBM SP2 installations

mentioned above. The workload data comes in the form

of a log of all jobs executed on the machine during a certain

period. The information on each job includes the estimated

runtime provided by the user upon submittal and the time

the job actually ran. The following is based on a job-by-job

comparison of these two times.

4.1 The Quality of User Estimates

The results of the analysis are shown in Fig. 8, with CTC on

the top, then KTH, and SDSC below. On the left is a

histogram showing what percentage of the requested time
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was actually used. At first glance, this seems promising as it
has a very pronounced component at exactly 100 percent
(see Table 2 for exact numbers). However, closer inspection
shows that practically all of the jobs in this peak actually
reached their allocated time and were then killed by the
system.2

The rest of the distribution is quite flat, but with
somewhat higher values at low percentages and another
peak at zero, which is obviously bad. The CTC and
SDSC data indicate that many of the jobs in the zero peak
were killed and the rest of the excess jobs at low
percentages were very short (less than 90 seconds). The
KTH data contains additional information: It shows that
all the extra jobs at low percentages, including the zero
peak, are what we call zero-length jobs. These are jobs in
which the first node was deallocated before the last node
was allocated, so there was no time at which all the nodes
were being used simultaneously. This situation most
probably indicates that the job failed immediately upon
loading. We conjecture that the situation on the other two
systems is similar. Thus, the extra jobs at low percentages
and the zero peak provide testimony about the difficulty
of getting jobs to run, but do not say much about user
estimates. In a related vein, about 8 percent of the jobs in
the SDSC data were removed before they even started to
run; these were not included in the analysis reported here.

Concentrating on the jobs that ran for 90 seconds or more
and terminated normally, we find that the histogram is
quite flat. The conclusion is that user estimates are actually
rather poor. However, it should be noted that they do
provide a good upperbound on the running time (only a
relatively small fraction of the jobs were killed because they
exceeded their estimated time). The conclusion is that users
find the motivation to overestimate so that jobs will not be

killed much stronger than the motivation to provide

accurate estimates to enable the scheduler to perform better

packing.
The same data is shown again in the scatter plot on the

right of the figure, which shows pairs of estimated runtime

and the corresponding actual runtime (only jobs requesting

up to 2 hours are shown, which is about half of the

jobsÐsee ª< 2hrº line in Table 2). This shows that users

often, but not always, round their estimates to a ªniceº

number (typically multiples of 5 minutes or, for longer jobs,

multiples of 10 or 30 minutes). However, despite the

relatively wide repertoire of estimates that are used, all of

them are equally inaccurate: For every popular estimate,

there is a nearly continuous line of dots representing jobs

with runtimes ranging uniformly from zero up to the

estimate. The system typically kills jobs that do not

terminate by the estimated time, leading to the triangular

shape of the scatter plot.

4.2 Are Good Estimates Really Needed?

In order to check the sensitivity of the backfilling algorithms

to such poor estimates, we tested them with estimates of

various qualities. Using the three workload files, we

generated new user estimates that (for each job) are chosen

at random from a uniform distribution in the range �r; f � r�,

where r is the job's actual runtime and f is a ªbadnessº

factor: the larger f , the less accurate the estimates. f � 1

indicates completely accurate estimates. For each value of f ,

10 measurements were made with different random

number generator seeds. The same set of 10 seeds was

used for the different traces and different fs.
The results are shown in Table 3, together with the

results of using the original user estimates from the traces.

Two conclusions can be reached:

. Accurate estimates are not necessarily the best. It
seems that if the estimates are somewhat inaccurate,
this gives the algorithms some flexibility, which
leads to better schedules. This result has since been
corroborated by Zotkin and Keleher [27].
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2. Note that this is not necessarily bad: Applications may checkpoint
their state periodically and then be restarted from the last checkpoint after
being killed. However, there is no direct data about how often this is
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system had requested four hours, which is the limit imposed during the
daytime. As the peak at 100 percent contains 3,215 jobs, this leads to a
maximal estimate of about one job in four.

Fig. 5. The amount of backfilling done by the two schemes.



. Our model of inaccuracy does not capture the full
badness of real user estimates. The results for the
original estimates are typically worse than those
with our randomized estimates.

4.3 Modeling User Estimates of Runtime

The second conclusion motivated a search for a better

model of the relationship between the actual runtime of jobs

and the estimates produced by users. Such a model is

needed for two reasons. First, it is useful as part of a general

workload model that can be used to study different job

scheduling schemes. For example, this would allow the

simulations reported in Section 3 to be repeated with

realistic user estimates rather than having to assume

completely accurate estimates (which we now know

probably lead to overly pessimistic performance results).

Second, an accurate model is required in order to study

whether and how the inaccuracy of user estimates can be

exploited by the scheduler.
The proposed model is quite simple. The flat histogram

of Fig. 8 implies that

Tr=Te � u;

i.e., that the ratio of the actual runtime to the estimate can be

modeled as a uniformly distributed random variable. By

changing sides, we get

Te � Tr=u;

so, given a runtime Tr, we can generate an estimate Te that,

while unrelated to the actual user estimate for this

particular job, is expected to lead to the same general

statistics of all the estimates taken together. To complete the

model, we just need to note that, in about 10 percent of the

jobs, the estimate is actually too small and, for short jobs,
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the estimates are too large by a factor of about 10. The final

model is therefore:

1. With probability of 10 percent return, 0:99� Tr.
2. Otherwise, create an estimate of Tr=u, where u is

uniform in the range �0; 1�.
3. If Tr < 90, multiply the estimate by 10.
4. If the estimate is outrageous, truncate it to some

upper bound (e.g., 24 hours).

4.4 The Alternative: Estimates Based on
Historical Information

It is well known that the workload on parallel super-

computers is highly repetitive. This means that the same

users tend to run the same programs over and over again,

sometimes up to hundreds of executions in a row [8], [3]. It

stands to reason that such repeated executions of the same

application would have highly correlated runtimes and,

indeed, several studies have shown that it is possible to

derive crude estimates of runtimes using such informa-

tion [10], [2], [24]. However, these studies were done in a

context that does not penalize underestimation, as is the

case with backfilling (where jobs that overrun their

estimated time are killed). In this context, an estimation
method that tends to overestimate is preferred, even if it is
less accurate in absolute terms.

To estimate runtimes based on historical information one
must first be able to identify repeated executions. For this
purpose, we use the combination of application (that is,
executable filename), user, and number of nodes used as an
identifier [8], [10]. The estimate is then calculated as the
average of previous runs, plus 1

1

2
times their standard

deviation. Note that this can be done based on storing only
three numbers: the number of previous executions, the sum
of their runtimes, and the sum of their runtimes squared. If
no specific previous information is available, data for the
whole workload is used as a conservative upper bound.
Finally, in order to avoid stale data, we discard historical
information if it is more than a week old and start from
scratch.

To evaluate the effectiveness of this approach we used it
to estimate the runtimes of all the jobs that were not killed
in the CTC workload and compared the estimates to the
actual runtimes as we did for the actual user estimates in
Fig. 8. Of the 62,630 jobs, there were 45,159 (72.1 percent) for
which data was available. The resulting histogram and
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scatter plot are shown in Fig. 9 and indicate that the
estimates have a better profile than those generated by

users. However, 12,001 jobs (19.2 percent) suffered from an
underestimate and would have been killed by the schedu-
ler. About half of these (6,240, or 10.0 percent) were jobs for

which previous information was available.
It is easy to reduce the number of jobs that receive

underestimates by using a more conservative approach,

e.g., the average plus three standard deviations. However,
this reduces the quality of the estimates and leads to a

relatively flat histogram. Thus, it seems that there is a trade-

off between accuracy and the danger of having jobs killed.

In any case, given the large fraction of jobs that are

underestimated, it seems that using system-generated

estimates for backfilling is not a feasible approach.

4.5 Does It Help to Know that
Estimates Are Inaccurate?

Based on a repeated execution of experiments, such as those

described in Section 4.2, Zotkin and Keleher have proposed
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that the performance of backfilling schedulers can be

improved by simply multiplying user estimates by a factor

of 2 or more, thus creating looser estimates that give the

scheduler more flexibility. However, as we noted above,

real user estimates produce worse results than the results

produced by accurate runtimes multiplied by a factor.

Therefore, it is not obvious that this scheme will work with

real user estimates.
To evaluate how well this idea works, we simulated the

execution of the three SP2 workloads under EASY back-

filling and conservative backfilling, with both the original

user estimates and these estimates multiplied by a factor of

two. The results for average response time and average

bounded slowdown are shown in Table 4. They indicate

that, in general, multiplying the user estimates by two does

indeed improve the performance. In the case of conserva-

tive backfilling, as measured by the bounded slowdown

metric, the improvement is quite significant.

5 CONCLUSIONS

Backfilling is advantageous because it provides improved

responsiveness for short jobs combined with no starvation

for long ones. This is done by making processor reserva-

tions for the large jobs and then allowing short jobs to

leapfrog them if they are expected to terminate in time. The

expected termination time is based on user input.
SP2 installations using EASY, which introduced back-

filling, report much improved support for large jobs relative

to early versions of LoadLeveler [19], [15]. However, EASY

suffers from some uncertainty regarding the time at which a

job will run because of its aggressive backfilling algorithm.

We showed that it is possible to add predictability by using

a more conservative form of backfilling in which short

jobs can start running provided they do not delay any

previously queued job.
The most interesting aspect of the performance evalua-

tion of this idea is that the results depend on the workload

and metric. Specifically, we found that, when using work-

loads characteristic of SP2 sites, the use of conservative

backfilling typically comes at the cost of degraded

performance; this was not so pervasive for other workloads.

This leads to the conjecture that the workload at the

SP2 sites may have evolved to match the EASY back-

filling algorithm used at these sites. A more detailed study
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of the workload attributes is now being conducted to try
and verify this conjecture.

In addition, we showed that user estimates of runtime

are quite bad, but that, in fact, this has the potential to be
beneficial because backfilling works better if it is allowed

some flexibility. Even a simple approach of just multiplying

user estimates by a constant leads to improvements. More
sophisticated approaches, such as that recently proposed by

Talby and Feitelson [25], may be even better.
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