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Abstract: This paper presents a machine learning model to predict the effect of Al2O3 nanoparticle
content on the coefficient of thermal expansion in Cu-Al2O3 nanocomposites prepared using an
in situ chemical technique. The model developed is a modification of Long Short-Term Memory
(LSTM) using dwarf mongoose optimization (DMO), which mimics the behavior of DMO to find
its food for predicting the behavior of the composite. The swarm of DMO consists of three groups,
namely the alpha group, scouts, and babysitters. Each group has its own behavior to capture the
food. The preparation of the nanocomposite was performed using aluminum nitrate that was added
to a solution containing scattered copper nitrate. After that, the powders of CuO and Al2O3 were
obtained, and the leftover liquid was removed using thermal treatment at 850 ◦C for 1 h. The powders
were consolidated using compaction and sintering processes. The impact of Al2O3 contents on the
thermal properties of the Cu-Al2O3 nanocomposite was investigated. The results showed that the
Thermal Expansion Coefficient (TEC) decreases with increasing Al2O3 content due to the increased
precipitation of Al2O3 nanoparticles at the grain boundaries of the Cu matrix. Moreover, the good
interfacial bonding between Al2O3 and the Cu may participate in this decrease in TEC. The proposed
machine learning model was able to predict the TEC of all the produced composites with different
Al2O3 content and was tested at different temperatures with very good accuracy, reaching 99%.

Keywords: metal matrix nanocomposites; thermal properties; artificial neural network; dwarf mongoose
optimization (DMO); long short-term memory (LSTM)

MSC: 70

1. Introduction

Metal matrix nanocomposites are a new class of material with a high chance of success
in many applications due to outstanding composite properties such as good mechanical
strength and better creep resistance at elevated temperatures [1–3]. A combination of the
metal matrix with nano-sized ceramic reinforcement has been characterized as a well-
accepted description of metal matrix composites [4,5]. Copper and its alloys are used
in applications where good wear resistance and high thermal and electrical conductivity
are required, such as electrical connectors, sliding contacts, and integrated circuit sealing
materials [6–10]. However, the highest coefficient of friction, low wear resistance, and
strength reduced its application in heavy-duty applications.
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To tackle this problem, research has been carried out to manufacture copper-based com-
posites with high electrical and thermal conductivity, while retaining good strength, hard-
ness, and wear behavior at elevated temperatures. Ceramic particles dispersion-strengthened
copper, on the other hand, can maintain its strength at high temperatures [11,12]. Copper
matrix composites with oxide dispersion strengthening (ODS) have better electrical and
thermal conductivity, as well as improved yield strength and wear resistance. Even when
heated to temperatures near the melting point of the metal matrix, the oxides rarely dissolve,
and dispersion strengthening of composites can be sustained [13].

The researchers tried to tackle these problems by immersing ceramic particles in
the Cu-matrix to improve thermal properties, such as adding Al2O3 [14,15], SiC [16],
Graphene [17–19], ZrO2 [20–23], and WC [24,25] to it to provide a new material with a
combination of metal and ceramic properties. A nanocomposite can improve mechanical,
optical, magnetic, and thermal properties, making it useful in industries such as aerospace,
automotive, electronics, sensors, catalysts, marine, chemical, biomaterials, and energy
storage and conversion. The hardness or microhardness, wear, and corrosion resistance of
Ni-Al2O3, Cu-Al2O3 [26–29], and Ni-TiO2 [30] metal matrix composites (MMCs) are found to
be superior to the bare substrate. Hardness increased as the space between particles shrank,
preventing dislocation movement and allowing more nanoparticles to be incorporated.

Powder metallurgy is one of the best techniques to manufacture metal matrix nanocom-
posites due to its low cost [31–34]. Despite this important advantage for the industry, the
low dispersion of the reinforcement phase in the matrix limits its applicability. Researchers
have recently employed in situ chemical processes to manufacture nanocomposite materials
by employing the casting process to mix the nanoparticle reinforcement directly with the
melted matrix [35–38]. They discovered that using this procedure improved the characteris-
tics because there was no considerable agglomeration and effective distribution of nanopar-
ticles occurred in the melt. Sadoun et al. [39] explored how alumina-coated silver particles
affected the electrochemical performance and corrosion resistance of Cu-Al2O3 nanocom-
posites made via powder metallurgy. According to their findings, the relative density fell
as the amount of Al2O3 rose, and the corrosion rate decreased until 9% Al2O3 reinforce-
ment but increased thereafter. Rodrigues et al. [40] manufactured a Cu-Al2O3/graphene
nanocomposite using a milling process for electromechanical applications. They reported
that electrical and thermal stability was achieved after 4 h of milling. Additionally, the
wear and mechanical properties of the produced composite were improved compared to
unreinforced metal.

Owing to the advantages of artificial intelligence in providing solutions for very
complex problems regardless of the availability of labs and the cost, it was deployed to
predict the coefficient of thermal expansion of Cu-Al2O3 nanocomposites [41–44]. We
trained the newly developed Long Short-Term Memory (LSTM) using experimental data
obtained from abrasive wear tests to predict the response of these nanocomposites with
different Al2O3 content with good accuracy.

In this work, thermal expansion and thermal conductivity are the most important
properties of Cu and its composite and allow applications in many thermal and electrical
fields. Here, we investigate the effect of Al2O3 nanoparticles on the thermal properties
of Cu-based nanocomposites. We deployed an in situ chemical method to manufacture
Cu-Al2O3 nanocomposites with different Al2O3 content. The microstructure and thermal
properties of the produced nanocomposites were characterized. Moreover, we developed
Long Short-Term Memory (LSTM) to predict the coefficient of thermal expansion of the
produced nanocomposites. This modification of LSTM depends on using a new meta-
heuristic technique, named dwarf mongoose optimization (DMO) [45], which is used to
determine the parameters of LSTM to find the best configuration. The main motivation
behind using DMO is its ability to balance the exploration and exploitation during the
search process of the feasible region and optimal solution. In addition, it has been applied to
different global and engineering optimization problems. According to the obtained results,
DMO established its efficiency in solving problems better than competitive algorithms.



Mathematics 2022, 10, 1050 3 of 17

The proposed algorithm was trained using 70% of the experimental results obtained
from composites with different Al2O3 content tested at different temperatures, while the
other 30% of the data were used to test it. The development of these composites with
optimum thermal expansion combined with good mechanical and wear properties will
increase their applicability in thermal applications such as heat sinks.

2. Machine Learning Models

In this section, we present the basic concepts of Long Short-term Memory, Dwarf
Mongoose Optimization (DMO), and the proposed model.

2.1. Long Short-Term Memory

Long Short-term Memory (LSTM) [1] is a gradient-based recurrent neural network
architecture that solves typical recurrent neural networks’ vanishing gradient problems.
Long-term dependencies in texts are a problem that develops during the training phase of
a conventional RNN when backpropagation through the time gradient descent tends to
evaporate, or in rare situations, explode exponentially.

Because of its architecture, as illustrated in Figure 1, LSTM is able to properly manage
long-term dependencies in the text. This architecture allows it to store information for
long periods of time, which is something that the normal RNN struggles with. The LSTM
network is made up of a series of recurrently connected memory cells that use the idea
of gating, which is a technique that adds or removes information to control the cell state
of each individual memory cell [2]. Each LSTM is made up of three gates: Input, forget,
and output. Each gate is made up of a sigmoid neural network layer and a pointwise
multiplication operation.
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Using X as the input vector at time t and N as the number of LSTM cells in the forward
pass, the input from the current state and the hidden state of the previous cell is first passed
to the forget gate, as shown in Figure 1, to determine whether to store the information with
an output of 1 or discard it with an output of 0 (Equation (1)). The fundamental purpose of
forget gates is to decide whether or not to forget the knowledge. The sigmoid activation
function output (σ) of the sum of the bias (b f ) and the product between the weights (W f )
and the inputs (ht−1, Xt), which comprises the input from the previous state (ht−1) and the
current input (Xt), is the forget value ( ft), which is between zero and one.

ft = σ(W f ·[ht−1, Xt] + b f ) (1)

The next step is to use the update of the cell state (Ct) using the following equation

Ct = Ct−1· ft + Nt·it (2)

where Nt represents the output of the tanh function, which uses Wn, ht−1, Xt, and bn, and
this formulated as

Nt = tanh(Wn·[ht−1, Xt] + bn) (3)



Mathematics 2022, 10, 1050 4 of 17

In Equation (2), it refers to the output of the sigmoid layer defined as:

it = σ(Wi·[ht−1, Xt] + bi) (4)

Thereafter, the sigmoid activation output (Ot) is computed using Equation (5) and
depends on the current input (Xt), previous state (ht−1), weights (Wo), and bias (bo).

Ot = σ(Wo·[ht−1, Xt] + bo) (5)

The next process is to update the hidden state (ht) using Equation (6).

ht = Ot·tanh(Ct) (6)

2.2. Dwarf Mongoose Optimization Algorithm

In this section, the mathematical model of Dwarf Mongoose Optimization (DMO)
is introduced [45]. This algorithm simulates the behavior of the dwarf mongoose when
finding its food. In general, DMO begins by setting the initial value for a set of solutions
using the following formula:

xi,j = lj + rand×
(
uj − lj

)
(7)

where rand is a random number generated from [0,1]. uj and lj are the limits of the search
domain. The swarm of DMO consists of three groups, namely the alpha group, scouts, and
babysitters. Each group has its own behavior to capture the food, and the details of these
groups are given as follows:

2.2.1. Alpha Group

The fitness of each solution is computed once the population has been initiated.
Equation (8) calculates the likelihood value for each population fitness, and the alpha
female (α) is chosen based on this probability.

α =
f iti

∑n
i=1 f iti

(8)

n corresponds to the number of mongooses in the alpha group. The number of
babysitters is denoted by bs. Peep is the vocalisation of the dominant female that keeps the
family on track.

Each mongoose sleeps in the first sleeping mound, which is set to ∅. The DMO
employs the expression in Equation (4) to generate a candidate food position.

Xi+1 = Xi + phi× peep (9)

The sleeping mound is provided in Equation (10) after each repetition, where phi is a
uniformly distributed random value [–1,1].

smi =
f iti+1 − f iti

max{| f iti+1, f iti|}
(10)

Equation (11) contains the average value of the sleeping mound.

ϕ =
∑n

i=1 smi

n
(11)

Once the babysitting exchange criterion is met, the algorithm advances to the scouting
phase, where the next food source or sleeping mound is considered.
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2.2.2. Scout Group

Because mongooses are known to not return to past sleeping mounds, the scouts look
for the next sleeping mound, ensuring exploration. For our model, scouting and foraging
are performed at the same time, as explained in [36]. This movement is modeled after a
successful or unsuccessful search for a new sleeping mound. In other words, the migration
of the mongooses is contingent on their total performance. The reasoning for this is that
if the family forages far enough, they will come to a new sleeping mound. The scout
mongoose is represented by Equation (12).

Xi+1 =

{
Xi − CF ∗ phi ∗ rand ∗ [Xi −

→
M] i f ϕi+1 > ϕi

Xi + CF ∗ phi ∗ rand ∗ [Xi −
→
M]

(12)

where rand exemplifies an arbitrary number in the range [0, 1], CF =
(

1− iter
Maxiter

)(2 iter
Maxiter

)

where the parameter that regulates the mongoose group’s collective-volitive movement

is decreased linearly as the iterations progress.
→
M = ∑n

i=1
Xi×smi

Xi
where the mongoose’s

movement to the new sleeping mound is determined by this vector.

2.2.3. Babysitters Group

Babysitters are usually inferior group members that stay with the young and are
cycled on a regular basis to allow the alpha female (mother) to lead the rest of the group
on daily foraging expeditions. She usually comes back to milk the young in the afternoon
and evening. The number of babysitters is proportional to the size of the population; they
influence the algorithm by reducing the total population size based on the percentage set.
By lowering the population size by the percentage of babysitters, we may replicate this
group. The scouting and food source information previously held by the family members
replacing them is reset using the babysitter exchange parameter. The babysitters’ fitness
weight is set to zero, ensuring that the alpha group’s average weight is reduced in the
next iteration, obstructing group movement and intensifying exploitation. Algorithm A1
contains the pseudocode for the suggested algorithm (see Appendix A).

2.3. Proposed Model

The steps of the prediction thermal model are given in Figure 2. In general, the pre-
sented model, named LSTM-DMO, depends on using the behavior of the DMO algorithm
to determine the parameters of the LSTM network.

The first step in LSTM-DMO is to form the initial solutions, which represent the value
of each parameter of LSTM using the following equation:

Xij = lj + r×
(
uj − lj

)
, i = 1, . . . , N, j = 1, . . . , D, r ∈ [0, 1] (13)

In Equation (13), uj and lj represent the boundaries of each parameter of LSTM,
whereas D refers to the number of parameters in Xi. We set D = 5 since there are five pa-
rameters that need to be determined, which include Max Epochs (MaxE), the optimization
method (OpM), the Minimum Batch Size (BS), the Learn Rate Drop Factor (LRDF), and
the number of Hidden Units (Nh). In addition, OpM ∈ {1, 2, 3} represents the stochastic
gradient descent with momentum (SGDM), RMSProp, and Adam optimizer, respectively.
Nh ∈ [20,200], LRDF ∈ [0.1, 0.9], MaxE ∈ [20, 300], and BS ∈ [64, 265]. For clarity, let
Xi = [MaxE, OpM, BS, LRDF, Nh] = [150, 2, 30, 0.4, 50], which means that RMSProp is used
as the optimization algorithm with MaxE = 100, LRDF = 0.4, Nh = 50, BS = 30. From this
example, it can be observed that the DMO algorithm is modified to deal with mixed values
(i.e., integral and decimal), and this is not included in the original implementation of DMO.
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The next step is to use the following formula as an objective function to assess the
performance of output YP obtained using the training set, representing 70% of input data,
and the current parameters of LSTM Xi.

Fiti =

√
∑Ns

i=1(YP −YT)
2

Ns
(14)

where Ns is the number of cases of the training set with the target YT . Thereafter, the best
solution is determined, and we use the operators of DMO to update other solutions as in
the Equations. This updating stage is conducted until reaching the stop conditions, then
returning the best solution. Using the testing set, which represents 30% of the input data,
we evaluate the performance of the obtained best solution using performance metrics.
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2.4. Prediction of Thermal Expansion Using the Improved LSTM Model

To validate the performance of LSTM-DMO as a prediction model, we use a set of
performance metrics including the root mean square error (RMSE), mean absolute error
(MAE), and coefficient of determination R2. The definition of these metrics is formulated as:

R2 =

(
∑ns

i=1

(
di − d

)
(yi − y)

)2

∑ns
i=1

(
di − d

)2
×∑ns

i=1(yi − y)2
(15)

RMSE =

√
1
ns

ns

∑
i=1

(di − yi)
2 (16)

MAE =
1
ns

ns

∑
i=1
|di − yi| (17)
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In Equations (15)–(17), ns, d, y, d, and y represent the number of testing/training
samples, the observed value, the predicted value, the average of observed values, and the
average of predicted values, respectively.

3. Experiments

The in situ chemical process was used to synthesize Cu-Al2O3 nanocomposite powder
from water-soluble copper Cu(NO3)2·3H2O and aluminum nitrates Al(NO3)3·9H2O. The in
situ chemical process comprises several steps as Cu(NO3)2·3H2O and Al(NO3)3·9H2O were
dissolved in water using a magnetic stirrer at 70 ◦C for 30 min. The salt concentrations were
chosen to produce a Cu-Al2O3 nanocomposite system with 2.5, 7.5, and 12.5 wt.% Al2O3.
Then, to obtain nitrate salt powder precursor particles, dry spraying was performed with a
sprayer at 180 ◦C. Copper oxide (CuO) and aluminum oxide (Al2O3) phases were obtained
via oxidation of the powder at 850 ◦C for 1 h in an air atmosphere. Finally, reduction of the
powders in hydrogen for 30 min at 500 ◦C. The reactor was then cooled in a high-purity
argon environment to prevent oxidation, with copper oxide reduced to its metallic state
and Al2O3 remaining as the scattered ceramic phase.

To consolidate the samples, powders were placed inside a steel die and then cold-
pressed at a pressure of 700 MPa. Finally, sintering of the compacted samples was per-
formed for 2 h in hydrogen gas at a temperature of 900 ◦C. The crystal structure and the
phase composition of the used powders and the fabricated nanocomposites were identified
by X-ray diffraction (XRD) with the model D8 Kristalloflex. We used a Field Emission
Scanning Electron Microscope (FE-SEM; QUANTAFEG250) with energy dispersive X-ray
(EDX) spectrometers attached to characterize the morphological changes in the powder
and consolidated samples. EDX analysis was performed to examine the composition of
the fabricated nanocomposites. According to MPIF standards 42, 1998, and using distilled
water, the Archimedes method was used to evaluate the densities of the produced samples.
The electrical conductivity of the nanocomposites was measured using PHYWE SYSTEME
GMBH 37070 Gottingen, Germany. Based on the results of the electrical conductivity, values
of the thermal conductivity were determined by the Wiedemann–Franz equation [46].

k
σ
= LT (18)

where k is the thermal conductivity (W/mK), σ is the electrical conductivity Ω·m−1 ,
T is the absolute temperature in degrees Kelvin (293 K), and L is the
Lorentz number = 2.44 × 10−8 W·Ω·k−2. A digital indicator and electrical furnace were used
to measure the coefficient of thermal expansion (CTE). A temperature range between 50 ◦C and
600 ◦C was applied with equal heating and cooling rates, 3 ◦K/min, in an argon atmosphere.

4. Results and Discussion
4.1. Structural and Thermal Properties

Figure 3 shows the morphology of the produced powders with different Al2O3 con-
tents after deoxidization. As seen in Figure 3a, the particles cluster together to form large
particle groups with an average particle size of less than 200 nm. The generated parti-
cles’ roughly spherical shape improves wettability throughout the phases [47–51]. The
microstructure of solidified composites is influenced by the formation of reinforcing par-
ticles. Figure 3c depicts high magnification of the same composite, demonstrating that
the particle size after the chemical procedure is nanoscale. The XRD examination of the
nanocomposite powder in Figure 3d shows the presence of Cu and Al2O3 exclusively, with
no other components accumulating throughout the chemical process. This provides proof of
the manufacturing process’ authenticity as well as the composition of the materials produced.
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Figure 4 shows the morphology of the consolidated Cu-Al2O3 nanocomposite with
different Al2O3 content. The figures generally reflect the good distribution of Al2O3 in all
samples. The particle and grain sizes of Cu and Al2O3 are very small, reaching 100 nm,
which makes the grain boundary relatively small around each grain. The presence of
grain refinement in the samples is in accordance with the formation of voids as shown in
Figure 4. This entrapped air is difficult to extract during sintering due to the good bond
between Al2O3, resulting in a larger void content. Moreover, the large mismatch between
the surface energy of Cu and Al2O3 particulates helps in the generation of voids at the
interface between Al2O3 and Cu. However, this can be a mechanism of void generation.
This can only contribute to the micro void formation, which will be clarified in the next
subsection. Furthermore, some Al2O3 nanoparticles lay at grain boundaries, increasing the
size of the grain boundary and improving its properties. The presence of Al2O3 at grain
boundaries decreases the capacity of grains to re-weld during sintering, resulting in welded
grains of a large size, similar to pure metal behavior. As a result, the presence of Al2O3
nanoparticles reinforces the grains by penetrating the grains’ lamellar structure and laying
at the grain borders. The distribution of reinforcement in the matrix is another key element
that influences the characteristics of nanocomposites.

Figure 5 shows the mapping analysis of the Cu-12.5%Al2O3 nanocomposite with the
elemental analysis of each component. The figure reflects the good distribution of the
reinforcing phases in this composite with the complete absence of agglomeration at the
nanoscale. The elemental analysis demonstrates that the sample’s composition is devoid of
impurities, with Cu, Al, and O being the only elements discovered in the sample.
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Figure 6 shows the relative density measurements of the Cu-Al2O3 nanocomposite
after the fabrication process. The density of the nanocomposite is decreased by increasing
the content of the Al2O3 from 94.6 for the sample containing 0.0% Al2O3 to 88.2 for the
sample containing 12.5% Al2O3. It is well known that reinforcing the matrix with light
materials leads to a decrease in the density of the matrix [52,53]. Increasing the ceramic
reinforcement percentage, especially that in the nano-size, increases the chance of producing
agglomeration that, in turn, leads to a decrease in the density of the matrix.
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Figure 7 simulates the electrical resistivity of the Cu-Al2O3 nanocomposites. The
electrical resistivity is proportional to Al2O3 addition up to 12.5%, which was observed. As
the figure illustrates, the electrical resistivity increases from 2.32 × 10−8 to 6.78 10−8 Ω. m
for nanocomposites with 0% and 12.5 wt.% Al2O3, respectively. Increasing the electrical
resistivity of the Cu-Al2O3 nanocomposites by increasing the amount of the Al2O3 up to
12.5 wt.% Al2O3 is attributed to more than one reason. The first reason is the homogeneous
distribution of the Al2O3 inside the matrix, as shown in Figure 4. The second reason is the
good adhesion between the Al2O3 and the matrix. Finally, it is related to the remarkable
electrical properties of Al2O3. Furthermore, the higher porosity content caused by the
presence of Al2O3 nanoparticles obstructs the free electron movement, increasing the
nanocomposite’s resistivity over the Cu matrix [54,55].
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Figure 8 shows the thermal expansion coefficient (TEC) of the Cu-Al2O3 nanocompos-
ites, with its different content of Al2O3, as a function of temperature. It is observed that for
the different composites considered, the TEC increases as the temperature increases. This is
because, as the temperature increases, the bonds between Cu particles were weakened and
consequently allowed the grains to deform. This increase is due to the stronger oscillation
of atomic bonds at higher temperatures and the asymmetric nature of the bond potential
curves. Moreover, the internal thermal stresses increase with increasing temperature until
reaching the material yield strength, which leads to plastic deformation of the samples [56].
This deformation occurred due to free-electron excitation during the temperature change.
At high temperatures, this excitation is incapable of motivating the free electrons to move
to higher paths. Therefore, these electrons remain in their original paths, which results in a
similar effect on the TEC values.

In addition, Figure 8 shows the decrease in the TEC with the increasing Al2O3 content
at the same temperature. This decrease is due to the existence of Al2O3 nanoparticles at
the grain boundaries of the Cu matrix. Further, the good interfacial bonding between
the Al2O3 and the Cu may participate in this decrease in TEC. Another reason for the
decrease in TEC is the heat-induced thermal stresses of Cu-Al2O3 nanocomposites. As
the temperature increases, tensile stresses increase in Al2O3 whilst the Cu particles are
subjected to compression stress due to the difference in their own thermal expansion
coefficients [56].
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temperature.

4.2. Prediction of Coefficient of Thermal Expansion

A comparison between the presented LSTM-DMO and the traditional LSTM is given
in Table 1 and Figure 9. It can be noted from these results that the performance of LSTM-
DMO is better than the traditional LSTM in both training and testing. For example, the
R2 of LSTM-DMO is better than LSTM with a difference of approximately 6% in the case
of the testing set, whereas the RMSE of LSTM is higher than LSTM-DMO with nearly
0.0955 and 3.0220 in training and testing stages, respectively. In the case of MAE, LSTM
has a higher value than LSTM-DMO with nearly 0.0303 and 2.5280 in training and testing
stages, respectively. For further analysis of the results, we use QQ plots to describe the
correlation between the output and its predicted value, as shown in Figure 9. From this
figure, we can observe that the developed LSTM-DMO is fitter than LSTM since the data
are allocated around the straight line during the testing set.

Table 1. Results of LSTM-DMO and LSTM models.

Training Set Testing Set

LSTM LSTM-DMO LSTM LSTM-DMO
R2 0.9999 1.0000 0.936 0.995

RMSE 0.1817 0.0862 4.186 1.164
MAE 0.0515 0.0212 3.534 1.006

In addition, Table 2 illustrates the influence of changing the parameters of DMO on
the performance of prediction. We assess two parameters, namely the Babysitter Exchange
Parameter (L) and Peep, and we use three different values for each of them, and one
parameter is changed the second one is fixed. In the case of changing the value of L, it can
be noted that increasing the value of L from 0.6 to 0.9 at a fixed peep of 2 leads to enhancing
the results of the testing set but with only a slight difference. In contrast, the performance of
LSTM-DMO is slightly decreased when changing the value of L from 0.6 to 0.3. Moreover,
when changing peep from 2 to 4 with a fixed L = 0.6, it can be seen that the performance is
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increased, but upon decreasing the value of peep from 2 to 1, the prediction performance is
slightly decreased.

From the above discussion, one can note the strong ability of the developed LSTM-
DMO to improve the prediction of thermal expansion of Cu-Al2O3 nanocomposites. This
results from the use of DMO, which has the ability to balance exploration and exploitation,
which leads to determining the optimal parameters of LSTM. With these advantages, it has
been noted that the main limitation of the proposed model is that it requires more CPU
time to find the optimal solution (parameter of LSTM). In contrast, the traditional LSTM
requires the shortest CPU time since it depends on one configuration of the parameters.
For example, if we assumed LSTM requires K (second) during the prediction process, the
developed method requires K (second) × No. (solutions) × No. (iterations).
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Table 2. Influence of changing the parameters of DMO.

Parameter L = 0.6 L = 0.3 L = 0.9

Set Test Train Test Train Test Train

R2 0.995 1.0000 0.9907 0.9966 0.9988 0.9963
RMSE 1.164 0.0862 1.788 1.2934 0.5779 1.3338
MAE 1.006 0.0212 1.6014 0.8319 0.5084 0.9179

Parameter peep = 2 peep = 4 peep = 1

Set Test Train Test Train Test Train

R2 0.995 1.0000 0.9985 0.9974 0.9904 0.9948
RMSE 1.164 0.0862 0.6501 1.1348 1.8408 1.5919
MAE 1.006 0.0212 0.5896 0.6485 1.5992 1.0844

5. Conclusions

An enhanced machine learning model based on a long short-term memory algorithm
was developed in this work to predict the coefficient of thermal expansion of Cu-Al2O3
nanocomposites with different Al2O3 content and was tested at different temperatures. An
in situ chemical reaction method was used to produce Cu-Al2O3 nanocomposites with
good Al2O3 nanoparticle dispersion. The produced samples were tested to characterize
their microstructure, electrical, and thermal properties. The results showed decreases in
the TEC with an increasing Al2O3 content at the same temperature. This decrease is due
to the existence of Al2O3 nanoparticles at the grain boundaries of the Cu matrix. Further,
the good interfacial bonding between Al2O3 and Cu may participate in this decrease in
TEC. Another reason behind the decrease in the TEC is the heat-induced thermal stresses
of Cu-Al2O3 nanocomposites.

The developed machine learning model was based on the modification of the long
short-term memory algorithm by Dwarf Mongoose Optimization. The results showed that
the model was able to predict the TEC of all the produced composites with different Al2O3
content, tested at different temperatures. The accuracy of the proposed model was checked
using R2 and RMSE, which reflect more than 99% accuracy of the proposed model.

Author Contributions: A.M.S., project administration, funding acquisition, data curation; I.R.N.,
software, validation, formal analysis, investigation; G.S.A., formal analysis, investigation; A.W.,
software, visualization, data curation, review and editing; M.A.E., conceptualization, methodology,
formal analysis. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation,
Ministry of Education in Saudi Arabia for funding this research work through the project number
(IFPRC-015-135-2020) and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 1050 15 of 17

Appendix A

Algorithm A1

Set the parameters of the algorithm:
Generate
For iter=1: max_iter

Compute the fitness of the mongoose
Set time counter C
Determine the alpha using Equation (8)

α =
f iti

∑n
i=1 f iti

obtain a candidate food position utilizing Equation (9)
Xi+1 = Xi + phi ∗ peep

Estimate new fitness of Xi+1
Estimate sleeping mound using Equation (10)

smi =
f iti+1− f iti

max{| f iti+1, f iti |}
Calculate the sleeping mound average value obtained using Equation (11).

ϕ = ∑n
i=1 smi

n

Compute the movement vector using
→
M = ∑n

i=1
Xi×smi

Xi

Exchange babysitters i f C ≥ L, and set
Set bs position (Equation (7)) and compute fitness

f iti ≤ α

Simulate the scout mongoose next position based on Equation (12).

Xi+1 =

{
Xi − CF ∗ rand ∗ [Xi −

→
M] i f ϕi+1 > ϕi Exploration

Xi + CF ∗ rand ∗ [Xi −
→
M] else Exploitation

Modernize best solution so far
End For
Return best solution
End
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