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Abstract
In recent years, channel state information (CSI) in WiFi 802.11n has been increasingly used to collect data pertaining to

human activity. Such raw data are then used to enhance human activity recognition. Activities such as lying down, falling,

walking, running, sitting down, and standing up can now be detected with the use of information collected through CSI.

Human activity recognition has a multitude of applications, such as home monitoring of patients. Four deep learning

models are presented in this paper, namely: a convolution neural network (CNN) with a Gated Recurrent Unit (GRU); a

CNN with a GRU and attention; a CNN with a GRU and a second CNN, and a CNN with Long Short-Term Memory

(LSTM) and a second CNN. Those models were trained to perform Human Activity Recognition (HAR) using CSI

amplitude data collected by a CSI tool. Experiments conducted to test the efficacy of these models showed superior results

compared with other recent approaches. This enhanced performance of our models may be attributable the ability of our

models to make full use of available data and to extract all data features, including high dimensionality and time sequence.

The highest average recognition accuracy reached by the proposed models was achieved by the CNN-GRU, and the CNN-

GRU with attention models, standing at 99.31% and 99.16%, respectively. In addition, the performance of the models was

evaluated for unseen CSI data by training our models using a random split-of-dataset method (70% training and 30%

testing). Our models achieved impressive results with accuracies reaching 100% for nearly all activities. For the lying

down activity, accuracy obtained from the CNN-GRU model stood at 99.46%; slightly higher than the 99.05% achieved by

the CNN-GRU with attention model. This confirmed the robustness of our models against environmental changes.
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1 Introduction

Research into Human Activity Recognition (HAR) has

recently focused on utilizing this technology through var-

ious real-time applications, including smart homes, context

awareness, as well as various military and healthcare

related applications. Remote healthcare has witnessed

significant advances as the result of the need to adapt to

restrictions imposed by the COVID-19. A trend of e-health

has arisen, where patients are monitored through internet-

connected facilities. A multitude of computerized appli-

cations have thus been developed, their performance being

measured in terms of efficiency, safety, response time and

cost. E-health applications allow remotely connected

devices to exchange information with a controlling device,

report the current status of patients, alert the doctors or

nurses of the occurrence of an abrupt change in the health

of patients, and even make intelligent decisions without

human intervention. HAR has become an essential part of

care for elderly patients who decide (or whose family

decides) they stay home instead of at a hospital or nursing

home despite diminishing cognitive abilities. HAR

includes ‘‘fall detection’’ approaches [1], which function to

alert care providers to the need for intervention if an

elderly person falls. Other applications, including surveil-

lance and security applications, can also benefit from

advances in HAR systems [2].

Several techniques have been developed to advance

HAR. To detect a fall or other movement, a person may be
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monitored using wearable sensors [3] or other surveillance

devices, including radar devices [4], non-wearable sensors

and/or cameras. Cameras have the disadvantage of needing

good lighting conditions and angle sets. While smartphones

are now equipped with sensors, monitoring affects battery

life, and the phone may potentially be lost. Moreover, it is

difficult for some people to use wearable sensors because

they are uncomfortable to them. Wi-Fi devices have proven

to be the most suitable detection devices. Wi-Fi is currently

available at almost all universities, offices, malls, and pri-

vate residences, making Wi-Fi devices the best choice for

activity detection. Wi-Fi signals have the advantage of

breaking through many barriers with different strengths,

negating the need for the person being monitored to be in a

line-of-sight position or to wear any particular type of

device.

A device-free detection of human activity is based on

the monitoring and analyzing of changes in RSSI patterns.

Wi-Fi signals emitted between a transmitter and a receiver

are altered by human action and movement. Wireless sig-

nals may reach the receiver or may be reflected due to the

existence of an obstacle. Captured information can be

measured in terms of amplitude, phase, and signal-to-noise

ratio (SNR). Two metrics could be potentially used to

describe a Wi-Fi signal; received signal strength (RSS) and

channel state information (CSI). A large number of

researchers have found RSS not to be ideal for the

description of characteristics of Wi-Fi signals [5]. RSS is

highly sensitive to minute changes in the environment, with

a large amount of ‘‘noise’’ and, as a result, false ‘‘small

events’’ detected.

In recent years, CSI has been increasingly used for the

purposes of describing properties of a signal that propa-

gates between receivers [6] and transmitters. Subcarriers

provide additional information, including phase and

amplitude. With CSI, we can recognize any changes

causing signal reflection and multipath propagation, such

as movements of the human body. In our work, a public

dataset collected using the Linux CSI 802.11n tool [6] is

used; which is ideal for the task of describing Wi-Fi sig-

nals. Actions that occur between a Wi-Fi transmitter and

receiver affect the characteristics of the Wi-Fi signal, and

in turn, the channel displays different amplitudes and

phases with each action. Examples of change in CSI

amplitude for three person’s activities: fall, run, and stand

up between three Wi-Fi transmitters and receivers are

shown in Fig. 1. As the Figure indicates, CSI amplitude

remains almost the same when a person is stationary. Then,

when the person performs an action such as running or

falling, the CSI amplitude changes; the magnitude of the

change being different with each action. Wi-Fi devices

covering specific areas could thus be used to recognize

human activity occurring within that area [11]. Nowadays,

Wi-Fi devices are widely available for indoor usage at

affordable prices.

Some researchers reported using traditional machine

learning (ML) techniques such as the Random Forest (RF)

[7], the Hidden Markov Model (HMM) [8], the Support

Vector Machine (SVM) [9], and the K-Nearest Neighbor

(KNN) [10] for the purposed of achieving HAR.

Those methods are used for classification and prediction

after the feature extracting phase. However, to obtain good

classification, valuable features would have been carefully

selected. This is not an easy step, and, in many cases,

optimization approaches were required in order to select

the features.

Fig. 1 Examples of CSI Amplitude Variations due to Human

Activities: a Fall, b Run, and c Stand up
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Deep Learning (DL) is a fast-growing trend in the sci-

ence of ML that combines feature extraction and classifi-

cation within the same phase, making it more suitable to a

large number applications. DL is simply a function that

trains a computer to imitate how the human brain is

believed to process data and solve complex problems. DL

employs multiple layers of artificial neural networks that

enable learning. It has the advantage of being able to

overcome manual feature extraction, of being better suited

for use when there are large numbers of samples in a

dataset, and of running faster a GPU is being used. DL

models such as the convolution neural network (CNN),

Long Short-Term Memory (LSTM), and Recurrent Neural

Network (RNN) are used in many fields. A CNN is a neural

network that uses filters that are convolved to overcome

high dimensionality and share weights; RNN is a class of

neural networks that uses previous outputs as inputs in the

current step while having hidden states. RNN is used to

solve sequence problems and process time series.

Several DL approaches have recently been incorporated

into CSI-signal based HAR. Examples of such approaches

include the LSTM approach, in which learning depends

only on the current state of CSI [11], and the Attention

Based Bidirectional Long Short-Term Memory (ABLSTM)

approach, which is a combination of an attention model

designed to assign larger weights and time steps, increasing

human activity recognition performance, and a Bidirec-

tional Long Short-Term Memory (BLSTM) [12]. Accuracy

of these approaches could be further improved by the use

of more complicated DL approaches and models in real-

time applications.

Consequently, in order to achieve higher levels of

activity recognition accuracy, this paper proposes a

framework for feature extraction of human activity that

would employ Wi-Fi CSI automatic extraction rather than

manual extraction (seen in traditional ML). The main

contributions of this paper can be summarized as follows:

• Designing and testing four HAR models developed as a

combination of a CNN with either a Gated Recurrent

Unit (GRU) or LSTM, and which employ CSI signals.

CNN has the advantage of overcoming data with high

dimensionality, while GRU and LSTM are better at

processing time sequence data. Output from such

combinations are then fed to an activation function to

produce the data to be classified as the actual class. In

the proposed framework, the first model is a CNN-

GRU, the second a CNN-GRU followed by an attention

layer, the third a CNN-GRU-CNN that shuffles CNN

and GRU layers, and the fourth, a CNN-LSTM-CNN, in

which the GRU is replaced by an LSTM layer.

• The proposed models were trained using both the data

split method and the k-fold method. Various

performance metrics, including accuracy, precision,

recall, and area under the curve (AUC) were measured

in order to yield an actual response to the unseen data.

The remainder of the paper is organized as follows: first,

we discuss related work previously published in the liter-

ature in Sect. 2. Then, CNN and RNN models are dis-

cussed in Sect. 3. Next, an overview of the HAR system

and a discussion of the proposed DL models are given in

Sect. 4. Section 5 provides the results of testing our pro-

posed models. Finally, we detail our conclusions in Sect. 6.

2 Related work

In this section, an overview of the problem is given, the

technology used in HAR systems is clarified, and the basic

ideas behind DL approaches are explained. Finally, a

summary of previous studies comparable to the present

work is given.

2.1 Human activity recognition

Currently, a large number of applications require the

attainment of accurate information about human activities,

which is a pervasive computing task. In recent years, the

field of HAR has become an innovative field of study. HAR

has found a multitude of applications, including healthcare,

context awareness, national defense, and security. HAR

aims to detect human motion and determine human actions,

thus providing valuable information about the person being

monitored. In indoor settings, movements being monitored

may include running, jumping, and walking. First intro-

duced in the 1990’s, HAR has since then gradually grew as

a point of interest of both researchers and relevant vendors

[13].

Generally speaking, HAR has been managed through

two approaches: the use of external or wearable sensors. In

the external-sensors approach [14], devices such as cam-

eras and Wi-Fi devices are set up at specific sites within the

area being monitored. In the wearable-sensors approach

[3], the person being monitored is required to either con-

stantly hold a device containing multiple sensors (such as

smartphone) or be connected to the sensor itself. Invari-

ably, each of the two approaches may be more suited for

use in dissimilar applications and settings. Wearable

devices require the approval of the person to be monitored

(if they are able to make independent decisions) and are

susceptible in many cases to damage during the person’s

movements.

On the other hand, external approach devices are more

stable, are usually hidden from those being monitored and

thus pose less of a burden on them. Cameras, however,
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have the disadvantage of requiring the person being mon-

itored to stay within their defined lines of sight. Cameras

also require complex video processing techniques, and

noise can affect accuracy [15]. Cellphones can run out of

power, and then they become of no use. These concerns

regarding cameras and cellphones led to the adaption of

Wi-Fi approaches in HAR. RSS is the most commonly

used signal in Wi-Fi indoor localization [16]. While it can

be used for HAR, noise affects its performance and makes

it unstable. Currently, CSI signals represent a stable alter-

native to RSS [6].

HAR starts by collecting informative data regarding the

person being monitored. Based on the type of collected

data, a preprocessing step may be required to put the data

into a suitable form for the next step. Features of the var-

ious movements are extracted and fed to the classification

step where the type of activity is recognized. Several

methods have been used for classification such as: RF [7],

HMM [8], SVM [9] and KNN [10] CNN [17], RNN [18]

including LSTM [19] and GRU [20], Auto-Encoder (AE)

[21], Boltzmann machine (BM) [22], Restricted Boltzmann

Machine (RBM) [23], Deep Belief Network (DBN) [24],

Generative Adversarial Network (GAN) [25], and Deep

Reinforcement Learning (DRL) [26].

2.2 Previous work pertaining to HAR systems

HAR systems involve identifying specific predefined

actions. Several systems have been proposed in the litera-

ture. To narrow the scope of this review to the most rele-

vant previous studies, we review systems that incorporated

the use of ML approaches. This section presents an over-

view of the various ML and DL based solutions that have

been proposed for use in HAR. Recognizing activities need

various devices to collect data and various algorithms to

recognize activities based on this data. Algorithms used in

activity recognition devices are mainly divided into vision-

based (cameras) [15], sensor-based (wearable sensors,

smartphones, dense sensing) [27], and Wi-Fi-based (RSS

[16], CSI signal [11]). Thee algorithms are further subdi-

vided into traditional and DL. Below, we list a number of

studies that employed CSI signals and the relevant algo-

rithms used.

In [11], an LSTM model was proposed for HAR. This

model used one hidden layer with 200 hidden units. The

model achieved an accuracy of over 75% compared with to

two traditional algorithms: RF and HMM. Moreover, it had

the advantage of being able to directly extract features

without using any feature extraction technique (such as RF

or HMM).

A CARM system was designed by [28] with the aim of

defining human activity using CSI. This system rested upon

two models: a CSI-speed model and a CSI-activity model.

The relationship between the speed of human movements

and CSI dynamics was computed using the CSI-speed

model, and the relation between the speed of human

movement and human activities was computed using the

CSI-activity model. The model was shown to be highly

sensitive to minute changes in the surrounding environ-

ment, with an accuracy rate of 96%.

Another system designed for HAR was the BLSTM

[29]. The BLSTM was designed for feature learning using

past and future data for CSI signals. A proposed ABLSTM

[12] was also tested using the same dataset and its efficacy

compared with other algorithms: (RF, HMM, SAE, and

LSTM). Better recognition of all human activities occurred

with the use of the ABLSTM compared with other algo-

rithms, with an accuracy rate of C 95%.

A deep RNN was proposed by [30]. The researchers

used a CNN to extract features and used an LSTM to

classify data. This model achieved an accuracy of 95%. In

addition, the Principal Component Analysis (PCA) tech-

nique [31] was employed to eliminate noise resulting from

objects such as doors and walls, which cause static multi-

path from CSI data.

In [32], both amplitude and phase were extracted. A low

pass Butterworth filter and PCA were used for prepro-

cessing. The authors proposed an empirical mode decom-

position (EMD) for segmentation and feature extraction.

Activities including pushing, dodging, striking, pulling,

dragging, kicking, circling, punching (twice), and bowling

were classified using the RF algorithm. The confusion

matrix for both line-of-sight (LOS) and not in the line-of-

sight (NLOS) was presented. LOS achieved a higher

accuracy than NLOS, whose accuracy of 89.147%. Wi-Fi

CSI was preprocessed with a Hampel filter to eliminate

outliers and a low-pass filter to remove noise [33]. Features

were then extracted and normalized so that data could be

classified using an SVM [34]. Accuracy reached a rate of

98.4%.

Data from the SignFi public dataset and FallDeFi were

used in the (CsiGAN) HAR model [35], which consisted of

two generators and one discriminator added for recogni-

tion. This was needed to increase the performance of the

left-out user. The researchers used multiple models, with

the CsiGAN achieving the highest accuracy. Accuracy

rates stood at 84.17% with the SignFi dataset and 86.27%

with the FallDeFi dataset.

A Wi-Motion model [36] was proposed as an enhanced

HAR model. It was designed to use an amplitude and phase

extracted from CSI. A Weighted Moving Average (WMA)

was used to remove noise and a PCA to remove redundant

information. Phase calibration was used for phase prepro-

cessing and a discrete wavelet transform (DWT) was used

for feature extraction for both amplitude and phase. Lastly,

a SVM with dynamic time warping (DTW) was used for

5996 Neural Computing and Applications (2022) 34:5993–6010

123



activity recognition. Average accuracy rates stood at 96.6%

in the LOS and 92% activity in the NLOS.

The work of [37], involved a WiAct HAR system and an

Adaptive Activity Cutting Algorithm (AACA). Recogni-

tion depended on the difference in signal variance between

the action and non-action, were. The researchers used an

HMM, an SAE and an LSTM in addition to their proposed

Extreme Learning Machine (ELM). The ELM achieved the

highest accuracy, which stood at 94.20%.

In [38], the authors were able to use a device-free

method (CSI) to recognize human activity. They intro-

duced two classification algorithms: a Support Vector

Machine (SVM) and a long short-term memory (LSTM)

algorithms. Wavelet analysis was used to the purposes of

preprocessing and feature extraction. As a result, they were

able to recognize walking, sitting, standing, and running

activities. In addition, they experimented with detecting

‘‘falling.’’ Lastly, they counted the number of people in a

room using the same algorithms. As a result, most activities

were recognized with accuracies of up 95%. The fall

accuracy stood at 100%.

In the [39] study, a CNN and BLSTM model was used to

detect spatial–temporal data as handcrafted features had

failed. Various elements in the indoor setting that could

have affected accuracy were studied in order to create an

enhanced CSI dataset. Those included sizes of sliding

windows and the number of hidden units. Data were

increased by concatenating collected data from three

regions. The accuracy obtained changed for all studied

impacts and reached 96.96% for four activities. Public data

were also used by [11], and a recognition accuracy of over

90% was achieved with all activities except standing up,

for which the recognition accuracy stood at only 86%.

Synthetic data were used to reduce the need for real CSI

in a study by [40]. A PCA was used to remove noise with

high bandwidth. A Short-time Fourier transform (STFT)

was used to transform the signal into the frequency domain,

and a GAN was used to generate new data. A LSTM

algorithm was used for classification. Accuracy stood at

87.2% with 50% ‘real’ plus 50% synthetic data, and at

92.8% with a set of all ‘real’ data. In the aforementioned

works, a tenfold cross-validation evaluation method was

used. Table 1 summarizes these works and highlights the

algorithms used in recognition and accuracies reached

achieved.

3 Convolution Neural Network
and Recurrent Neural Network

Increasing recognition of the importance of DL is reflected

by the plethora of recently published studies found in the

literature. This may be attributable to its property of

automatic feature extraction without handcraft features.

Feature extraction and classification tasks are performed

together. This is why DL is used in fields where it is hard to

determine essential features mathematically. It is an

advanced branch of ML, in which the network consists of

multiple layers, each containing a group of neurons that

build up the deep neural network (DNN). DNN technology

is currently used in various applications such as image

classification, object detection, indoor localization, and

intrusion detection [41].

DL-based HAR is more robust than other frameworks,

as features are extracted automatically without the need for

features design. The same model can be used in a multitude

of applications, with each application having its own set of

data. DL-based technology is more scalable as it is able to

handle any amount of data. Various DL approaches have

been proposed, varying in their ability to perform the

various required functions of ML such as feature learning

and classification, clustering or finding correlations

between a given set of data. The DL approaches are gen-

erally classified into three main categories: generative,

discriminative, and hybrid. DBN and RNN are examples of

generative approaches with LSTM and GRU being varia-

tions of RNN. CNN is an example of discriminative

approaches, and GAN is an example of hybrid approaches.

Currently, the two most widely researched DL approa-

ches are CNN and RNN. They have been incorporated into

almost all human detection systems. In this section, dif-

ferences between CNN and RNN are detailed. For a better

understanding of the specifications of each of our proposed

models, we also discuss the types of DL frameworks we

used in this study.

3.1 Convolution neural network (CNN)

CNN models were the first DL models to be developed and

have been used in many applications since. In order to

reduce the high dimensionality of data and extract features

automatically,

CNN was designed to have several neural layers. These

layers are:

3:1:1. Convolution layer: This layer makes the analysis of

input data easier. It is composed of multiple filters,

which consist of a set of weights. Input data, which is

fed into this layer, is used to produce feature maps.

3:1:2. Batch normalization: This layer calculates means

and standard deviations of each input variable. It

uses a mini-batch to speed the learning process and

reduce overfitting.

3:1:3. Pooling (Max/Average): This layer summarizes data

features by calculating their maximum or average.

This layer helps in reducing translation invariance.
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3:1:4. Fully connected layer: It also called Dense layer; its

input is a vector obtained by flattening the three-

dimensional output of the previous layer. The output

of this dense layer is then fed to softmax activation

function for classification.

3.2 Recurrent neural networks

This type of DL model is usually used with time sequence

data and covers a wide range of applications that depend on

the real-time response. Three important categories of RNN

models have been developed: LSTM, BLSTM, and GRU.

Initially, RNN was a class of neural networking that used

previous outputs as inputs in the current step while having

hidden states, but that suffered from short-term memory

(ignoring important information at the beginning of the

sequence if it is long). LSTM, BLSTM, and GRU were

thus developed as RNNs with gates that regulate flow of

information and a resultant long-term memory.

3.2.1 Long short-term memory

RNNs have solved the problem of vanishing gradients by

featuring a memory block that stores weight values. Each

memory block consists of three gates that decide the

block’s state and output. These gates are the forget gate,

the input gate, and the output gate, as shown in Fig. 2.

• Forget gate: It is responsible for what information must

be discarded from the unit.

• Input gate: It is responsible for which input values will

update the memory state.

• Output Gate: It decides the block’s output based on the

input and the unit memory.

LSTM is used to overcome the long-term problem by

using only the previous state as its input, and is defined as a

unidirectional LSTM. Its structural complexity and

Table 1 Summary of related work

Reference

no

Activities Classification

method

Accuracy

[11] Lie down, Fall, Walk, Run, Sit down and Stand up LSTM 75%

[28] Run, Walk, Sit down, Open refrigerator, Fall, Box, Push one hand,

and Brush teeth

CARM 96%

[12] Lie down, Fall, Walk, Run, Sit down and Stand up ABLSTM 95%

[30] Lie down, Fall, Walk, Run, Si down and Stand up CNN ? LSTM 95%

[32] Push, Dodge, Strike, Pull, Drag, Kick, Circle, Punch (twice), and

Bowl

RF 89.147% for NLOS

[34] Sit down and Stand up SVM 98.4%

[35] Sign language gestures and FallDeFi Data: Fall, Walk, Jump, pick up,

Sit down, and Stand up

CSIGAN 84.17% for sign language

86.27% for FallDeFi

[36] Bend, Halve squat, Step, Stretch leg, and Jump SVM with DTW 96.6% for LOS

92% for NLOS

[37] Push, Wave, Kick, Run, Fall, Box, Sit, Pick, Walk, and Empty ELM 94.2%

[38] Walk, Sit, Stand, Run and Fall SVM, LSTM 95% and more for the rest of activities,

100% for fall

[39] Bend, Box, Clap and Wave, Fall, pick up, Run, Sit down, Stand up

and Walk

CNN ? BLSTM 96.96% for four activities for three

regions

90% for six activities except stand up is

86%

[40] Lay down, Fall, Walk, Run, Sit down and Stand up GAN ? LSTM 87.2% With 50% accuracy and 50%

Synthetic

92.8 for all data accurate

Fig. 2 LSTM architecture
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multiple parameters make it fairly expensive. An LSTM’s

input gate is used to select user information and store it in

the LSTM cell. In LSTMs, the forget gate is used to

determine the information to be neglected, and the output

gate is used to select information to be presented. It has

memory cells that store information for a long time [19].

3.2.2 Bidirectional-long-short-term-memory

It is an extension of LSTM networking. It has the ability to

train all data input in the past and future of a specific time

frame. BLSTM [29] has the advantages of Bi-RNN and

LSTM, being a combination of both. It overcomes the

problem of long-term dependency and uses past and future

states. It gives more data and better results. It, however,

requires a long time to operate as the information is

extracted from the two directions through the forward and

backward layers, as shown in Fig. 3.

3.2.3 Gated recurrent unit

It is a lighter version of the LSTM in terms of the number

of gates inside the unit and the computational cost. In

GRUs, the forget and input layers are merged into a single

cell. GRU architecture is shown in Fig. 4. It is similar to

LSTM, but GRUs have fewer parameters, and combines

the input and forget gates of LSTM into a single update

gate [20]. GRUs have an update gate and a reset gate, as

represented by Eqs. 1 and 2 [42].

The main advantage of GRUs is they are able to

maintain the information relevant to the prediction for a

long time without removing it. GRUs are straightforward

and remarkably easy to modify and take less time to train.

GRUs are thus more efficient than other models and were

deemed suitable for the purposes of this work.

zt ¼ r W zð Þxt þ U zð Þht�1ð Þ ð1Þ
rt ¼ r W rð Þxt þ U rð Þht�1ð Þ ð2Þ

where zt Update gate, rt Reset gate, xt The input, W Weight

matrices, r Sigmoid.

3.2.4 The attention mechanism

Attention is a recently introduced mechanism of DL that

leads to more robust ML. It supports sequence-to-sequence

models designed to map sequence input to sequence output.

It helps such models focus on specific elements and pay

less attention to the rest, allowing sequential reasoning to

be performed, a feat that has been quite difficult for tra-

ditional deep learning models to perform. Starting with

natural language processing, attention has now had a large

number of applications in serval fields, including machine

translation, healthcare, self-driving cars, speech recogni-

tion, and sentiment classification. The use of attention in

HAR has led to better performance, giving models the

ability to assign new weights and a larger number of fea-

tures [43].

4 CSI-based HAR system design

By displaying channel disturbances caused by human

activity, CSIs allow for the more precise recognition of

human activity. Patterns of channel distortion are corre-

lated with specific human movements/activities. The cur-

rent action the person being monitored is identified using

CSI signals received from the area where the person is

performing the action. In our work, to achieve activity

recognition based on CSI streams, we developed a DL

model that is a combination of CNN and GRU networks.

Fig. 3 BLSTM Architecture

Fig. 4 GRU circuit

Fig. 5 Architecture CSI-based deep learning activity recognition

system
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The general architecture of our CSI-based DL activity

recognition system is shown in Fig. 5. Public CSI data

were collected in the indoor office using a router with three

antennas to transmit Wi-Fi signals and a laptop with 5300

NIC to capture those signals. We extracted CSI amplitude

streams from those captured signals and used them as

inputs to the system. The system’s role was to automati-

cally extract features from the CSI stream and detect each

activity. The output of our system was the recognized

activity corresponding to the input.

In our models, we used CNNs due to their efficiency in

deriving good features from raw CSI measurements. The

models were subdivided into two main steps: feature

extraction and classification. Our models worked by first

extracting the required features from the CSI signals using

CNN, GRU, LSTM and attention, then sending them for

classification. The subsequent step involved classifying

those extracted features and generating the correct activity.

Those four proposed models are discussed in detail in the

next subsections.

4.1 The CNN-GRU model

The CNN-GRU model is presented in Fig. 6. It consists of

three parts: input, feature extraction, and classification. In

the input layer, CSI data have several samples each equal

to 1000, where each CSI sample has an initial matrix of

1 9 3 9 30. After reshaping the CSI samples to be suit-

able as inputs to CNNs, their matrices grow to a size of

1000 9 30 9 3. The feature extraction part consists of two

convolutional layers and a GRU layer. The first layer filters

data with a size 5 9 5 9 128 kernel and size 1 9 1 stride

followed by batch normalization, ReLU activation, average

pooling to reduce the number of the parameters with size

2 9 2 pool, size 2 9 2 stride, and dropout to prevent

overfitting during training with a value equal to 0.6. The

second convolutional layer is of the same structure except

that it has no dropout. Finally, the output passes through

the flattened layer with time distributed input to convert

data into a vector suitable for the GRU layer, consisting of

256 units. It is used to obtain time sequence data, and its

output connected to the fully connected layer for

classification.

4.2 The CNN-GRU-attention model

The CNN-GRU-Attention model is shown in Fig. 7. This

model uses an attention layer that assigns larger weights

and time steps, with CNNs and GRUs being used for fea-

ture extraction. Size 1000 9 30 9 3 CSI data are used as

the input. The feature extraction part includes two convo-

lution layers and a GRU layer. The first layer has a size

5 9 5 9 128 kernel and size 1 9 1 stride, followed by

batch normalization, ReLU activation, average pooling

with size 2 9 2 pool, size 2 9 2 stride, and dropout to

prevent overfitting during training with a value equal to

0.6. The second convolution layer is of the same structure

but without a dropout. After that, data exit through a flatten

layer which reshapes it into a form then enters the GRU

layer (which is made of several size 256 units). Next, data

move through the attention, which focuses on specific

Fig. 6 The CNN-GRU human activity recognition model
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features of the input. Finally, data are fed into the classi-

fication layer, which classifies it into one of the activities.

4.3 CNN-GRU-CNN model

In our third model, CNN-GRU-CNN, the first CNN is used

for automatic feature extraction, GRU is used to extract

time series features, and the second CNN is used to expand

the abstract features. As shown in Fig. 8, after the input

layer, with an input of 1000 9 30 9 3, there is a convo-

lution layer with 128 filters with a size 5 kernel, size 1

stride, batch normalization, and a ReLU activation func-

tion. These are followed by an average pooling layer with

size 2 pool, size 2 stride, dropout of 0.6, and ending with a

GRU layer with 256 neurons. This is followed by another

convolution layer with a 128 filter with a size 5 kernel, size

1 stride, batch normalization, a ReLU activation function

and another average pooling layer with size 2 pool, and

size 2 stride. Finally, the output of the second CNN layer is

fed to the flatten layer to deliver data to a vector, making

the data available to a dense layer. Finally, data are fed into

the classification layer.

4.4 The CNN-LSTM-CNN model

The structure of the CNN-LSTM-CNN model is compa-

rable to that of the CNN-GRU-CNN model, with an LSTM

replacing the GRU. The first CNN is used for automatic

Fig. 7 The CNN-GRU-attention human activity recognition model

Fig. 8 The CNN-GRU-CNN human activity recognition model
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feature extraction, the LSTM for the extraction of time

series features, and the second CNN is used to expand

abstract features.

As shown in Fig. 9, after the input layer with the input

of 1000 9 30 9 3, there is a convolution layer with 128

filters with size 5 kernel, size 1 stride, batch normalization,

and a ReLU activation function. The average pooling layer

has pool of size 2, stride 2, a dropout of 0.6, an LSTM layer

with 256 neurons, another convolution layer with the 128

filters with size 5 kernel, size 1 stride, batch normalization,

and a ReLU activation function, and another average

pooling layer with size 2 pools and size 2 stride. The output

of the second CNN layer is fed to the flatten layer to rep-

resent the data into a vector to be available for a dense

layer. Lastly, the flattened data are fed into the classifica-

tion layer. The classification part is the same for all four

models. A fully connected layer with dense equal to class

number 6 and softmax activation is used to determine one

activity for each input. All parameters are initialized ran-

domly. Errors are computed using the categorical-cross

entropy loss type. An Adaptive Moment Estimation

(Adam) optimizer is used with a learning rate of 0.0007. A

size 64 batch value is used.

5 Experimental work and results

This section describes the results of evaluations we con-

ducted to test the efficacies of our proposed CSI-based

human activity models and the training schemes we tested

as well. We also report on the comparisons we conducted

between our models and existing state-of-the-art approa-

ches [11, 12], using a public benchmark dataset.

5.1 Dataset used

We used a public dataset collected by [11] to train our

models. The dataset is comprised of CSI data collected

using an Intel 5300 NIC run laptop. This dataset is com-

patible with all devices and suitable only for a family of

IEEE 802.11a/b/g/n devices and only in the presence of a

CSI tool. The CSI tool was installed using a Linux oper-

ating system containing a modified firmware and wireless

driver. The laptop and the CSI tool were used as receivers

and the MIMO router as a transmitter with 1000 packets.

The setup had three antennas and 30 subcarriers, thus

generating 1000 9 30 9 3 shaped data. A camera was also

set up in order to capture and label each activity. A log file

was used to record packets with Matlab scripts. Each file

contained several samples: some samples with no activities

and others with activities.

The six activities tested were labeled: Lie down, Fall,

Walk, Run, Sit down and Stand up. Six persons in an indoor

office performed the activities, with each person repeating

each activity a total of 20 times. We downloaded this

dataset from [https://github.com/ermongroup/Wifi_Activ

ity_ Recognition] and selectively collected data of activity

samples for classification. The number of samples chosen

for each activity is shown in Table 2.

Fig. 9 The CNN-LSTM-CNN human activity recognition model
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This dataset has previously been used in a number of

published studies [11, 12, 30, 39, 40]. We compared our

results against two of these studies [11, 12]. The work in

[30] evaluates the model for behavior recognition using

CSI on 6 activities, with only 120 instances of each activity

not all instances, while we use all the instances which will

make the comparison unfair for them. The work in [39]

uses 6 activities different than those we consider including

(Fall, pick up, Run, Sit down, Stand up and Walk) from the

public dataset are used but our work based on 6 activities in

[11] including (Lie down, Fall, Walk, Run, Sit down and

Stand up). Finally, the work in [40], they use only 50% of

each class of this benchmark dataset which is less than we

have considered in our work (we used all the dataset).

To experiment with our proposed models, we used a

Google Colab that ran commands in pro-version Python.

Our work was conducted using a GPU Tesla P100-PCI-E-

16 GB with 25 GB of memory.

5.2 Experiments conducted

As previously discussed, this study experimented with four

Wi-Fi CSI-based HAR DL systems: a CNN-GRU model, a

CNN-GRU-Attention model, a CNN-GRU-CNN model

and a CNN-LSTM-CNN model. The performances of these

models were evaluated and comparatively assessed against

two recently introduced state-of-the-art DL models, the

LSTM [11] and the ABLSTM [12]. As in the [11, 12]

studies, tenfold cross-validation (which divided data

10-folds) was used for dataset training and testing, with

one-fold selected for testing, and the other nine folds used

for training. This process was repeated ten times with the

average of all runs used as a benchmark of the performance

of the model being evaluated.

In such cases, the model being trained using the10-fold

training method may not recognize new samples, and its

performance is thus only tested for data seen before. This

creates a problem when new data are fed into the system.

Consequently, we choose to conduct another training

method to ensure real-time accuracy of the system when

dealing with unseen data. This method splits the dataset

into 70% and 30% groups (instead of the10-fold method)

for the purposes for training and testing, respectively.

Samples used for training are not used for testing. The

performance of a system which is trained using the spilt

method is thus closer to real-world performance compared

with a system trained using the tenfold training method.

A number of performance metrics can be used to eval-

uate DL models, including accuracy, precision, recall, and

AUC. These metrics are computed upon the following

equations [44, 45]:

Precision ¼ TP

TPþ FP
ð3Þ

Recall ¼ TP

TPþ Fn
ð4Þ

Accuracy ¼ TPþ TN

TPþ FPþ TN þ FN
ð5Þ

AUC ¼ Sp � ðnp nn þ 1ð Þ=2

npnn
ð6Þ

where TP is true positive, FP is false positive, TN is true

negative, FN is false negative ; Sp is the sum of all positive

samples,np is the number of positive samples, and nn is the

number of negative samples.

5.3 Results of experiments

As aforementioned, the performances of the proposed

CNN-GRU, CNN-GRU-Attention, CNN-GRU-CNN and

CNN-LSTM-CNN models were compared with the per-

formances of two recent activity recognition models that

use CSI signals: the LSTM [11] and ABLSTM [12]. The

resultant confusion matrices of the six models (the four

from our study and the two they were being compared to)

are presented in this section. Tables 3 and 4 show the

confusion matrices for both the LSTM [11] and ABLSTM

[12] models, as reported by the authors of the two studies.

The LSTM model [11] reportedly achieved an accuracy

level at recognizing collaborative activities of up to 75%,

while the ABLSTM model [12] achieved an accuracy of up

to 95% with all activities.

We tested our models twice: once using the k-fold

method and then after randomly splitting the dataset into

70% for training and 30% for testing. We also plotted

accuracies and compared training and validation phases of

each epoch with respect to loss, precision, accuracy, recall,

and AUC.

Results indicated that our CNN-GRU model had

achieved accuracies for activities of up to 99.14% with the

Table 2 Number of samples per

activity
Activity No. of Samples

Lie Down 1318

Fall 889

Walk 2931

Run 2408

Sit down 812

Stand up 601

Total 8959
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for k-fold method, an accuracy level of 100% recognizing

all activities, except lying down, for which the activity

recognition accuracy stood at 99.46% after using the split

method (see Table. 5). Plots of model performance are

presented in Fig. 10

The CNN-GRU-Attention model achieved accuracies of

accuracy for activities of up to 99.33% with the use of the

k-fold method and of up to 99.49% after randomly splitting

the dataset, as shown in Table 6. Plots of the model’s

performance are shown in Fig. 11. As shown in Table 7,

after the use of the k-fold method, the CNN-GRU-CNN

model achieved accuracies for activities of up to 98.89%,

and after the use of the split method of up to 98.63%.

Model performance is presented in Fig. 12.

Lastly, the CNN-LSTM-CNN model achieved accura-

cies for activities of up to 96.43% after using k-fold and of

up to 98.44% after using the split method, as detailed in

Table 8. Model performance is illustrated in Fig. 13.

A summary of the above results is shown in Table 9.

Results indicate that our models had achieved consistently

high levels of accuracy with new data; providing robust

and stable performance.

Table 3 Confusion matrix of

the (LSTM) model [11]
LSTM [11] Predicted

Lie down Fall Walk Run Sit down Stand up

Actual Lie down 0.95 0.01 0.01 0.01 0.00 0.02

Fall 0.01 0.94 0.05 0.00 0.00 0.00

Walk 0.00 0.01 0. 93 0.04 0.01 0.01

Run 0.00 0.00 0.02 0.97 0.01 0.00

Sit down 0.03 0.01 0.05 0.02 0.81 0.07

Stand up 0.01 0.00 0.03 0.05 0.07 0.83

Table 4 Confusion matrix of

the (ABLSTM) model [12]
ABLSTM [12] Predicted

Lie down Fall Walk Run Sit down Stand up

Actual Lie down 0.96 0.0 0.01 0.0 0.02 0.01

Fall 0.0 0.99 0.0 0.01 0.0 0.0

Walk 0.0 0.0 0.98 0.02 0.0 0.0

Run 0.0 0.0 0.02 0.98 0.0 0.0

Sit down 0.01 0.01 0.01 0.0 0.95 0.02

Stand up 0.01 0.0 0.0 0.0 0.01 0.98

Table 5 Confusion matrix of

the CNN – GRU learning

model:( a) with k-fold, and

(b) with randomly splitting of

the dataset

Lie down Fall Walk Run Sit down Stand up

(a) CNN-GRU with k-fold Predicted

Actual Lie down 0.9969 0.0 0.0015 0.0 0.0008 0.0008

Fall 0.0 1.00 0.0 0.0 0.0 0.0

Walk 0.0 0.0 1.00 0 0.0 0.0

Run 0.0 0.0 0.0 0.9996 0.0 0.0004

Sit down 0.0037 0.0024 0.0 0.0 0.9914 0.0024

Stand up 0.0017 0.0 0.0 0.0017 0.0033 0.9933

(b) CNN-GRU with randomly splitting of the dataset Predicted

Actual Lie down 0.9975 0.0 0.0025 0.0 0.0 0.0

Fall 0.0 1.00 0.0 0.0 0.0 0.0

Walk 0.0 0.0 1.00 0 0.0 0.0

Run 0.0 0.0 0.0 1.00 0.0 0.0

Sit down 0.0 0.0 0.0 0.0 1.00 0.0

Stand up 0.0 0.0 0.0 0.0 0.0 1.00
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Table 10 illustrates our model’s metrics including Loss,

Accuracy, precision, Recall, and AUC. Those are the val-

idation values that our models reached at the last epoch.

From those results, it is found that CNN-GRU model has

the best value in each metric (i.e., lowest Loss, highest

accuracy, precision, recall and AUC values).

Another yet important performance evaluation metric is

the consumed time, which indicates the time taken by the

model for training and testing. Table 11 shows the time

consumption comparison for the six DL approaches: LSTM

[11], ABLSTM [12], the proposed CNN-GRU, CNN-GRU-

Attention, CNN-GRU-CNN and CNN-LSTM-CNN

Fig. 10 CNN-GRU model performance results

Table 6 Confusion matrix of

the CNN-GRU-Attention deep

learning model:( a) with k-fold,

and (b) with randomly splitting

of the dataset

Lie down Fall Walk Run Sit down Stand up

(a) CNN-GRU-Attention with k-fold Predicted

Actual Lie down 0.9977 0.0 0.0008 0.0 0.0015 0.0

Fall 0.0 1.00 0.0 0.0 0.0 0.0

Walk 0.0 0.0003 0.9990 0.0003 0.0003 0.0

Run 0.0 0.0 0.0 1.00 0.0 0.0

Sit down 0.0012 0.0 0.0 0.0 0.9951 0.0037

Stand up 0.0 0.0017 0.0017 0.0 0.0033 0.9933

(b) CNN-GRU-attention with randomly splitting of the dataset Predicted

Actual Lie down 0.9949 0.0 0.0051 0.0 0.0 0.0

Fall 0.0 1.00 0.0 0.0 0.0 0.0

Walk 0.0023 0.0 0.9954 0.0 0.0 0.0023

Run 0.0 0.0 0.0 1.00 0.0 0.0

Sit down 0.0 0.0 0.0041 0.0 0.9959 0.0

Stand up 0.0 0.0 0.0 0.0 0.0 1.00

Neural Computing and Applications (2022) 34:5993–6010 6005

123



models. We can see that our models have the lowest time

among the time of LSTM and ABLSTM, and the model

that has the lowest time is CNN-GRU-Attention as shown

in Table 11.

As shown in Table 12, it is found that LSTM model [11]

has the lowest number of parameters (234,006) which takes

small memory size compared to the other models. How-

ever, its accuracy is lower than ABLSTM [12] and the four

proposed models. This is because it works sequential, so it

is very slow taking large time 0.006 s for each sample

when testing the data.

The model that comes after LSTM [11] in number of

parameters (914,567) which represent their existence in the

memory is the proposed CNN-GRU-Attention model. It

has the highest accuracy which is up to 99.33% for all

activities and also has the smallest response time (0.0019 s)

for each sample. Therefore, we recommend using the

proposed CNN-GRU-Attention model in real-time appli-

cations where the response time is the main concern. It also

Fig. 11 CNN-GRU-Attention model performance results

Table 7 Confusion matrix of

the CNN-GRU-CNN deep

learning model:( a) with k-fold

and (b) with randomly splitting

of the dataset

Lie down Fall Walk Run Sit down Stand up

(a) CNN-GRU-CNN with k-fold Predicted

Actual Lie down 0.9939 0.0 0.0 0.0008 0.0053 0.0

Fall 0.0 0.9989 0.0 0.0011 0.0 0.0

Walk 0.0 0.0 0.9990 0.0010 0.0 0.0

Run 0.0004 0.0 0.0008 0.9988 0.0 0.0

Sit down 0.0025 0.0 0.0012 0.0 0.9889 0.0073

Stand up 0.0 0.0017 0.0017 0.0 0.01033 0.9933

(b) CNN-GRU-CNN with randomly splitting of the dataset Predicted

Actual Lie down 0.9873 0.0 0.0 0.0 0.0127 0.0

Fall 0.0 0.9963 0.0 0.0037 0.0 0.0

Walk 0.0 0.0 0.9875 0.0079 0.0 0.0046

Run 0.0 0.0 0.0028 0.9972 0.0 0.0

Sit down 0.0 0.0 0.0041 0.0 0.9877 0.0082

Stand up 0.0 0.0 0.0 0.0 0.0111 0.9889
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is preferable for applications that has restricted size of

memory (like for mobile applications) where is has low

memory requirements and faster which will reduce the

power consumption of such devices.

6 Conclusions and future work

HAR has become one of the most popular and most wildly

researched topics of computer science. HAR technology

has seen rapid progress and is now used in a wide variety of

applications. Further advances in HAR technology are

achievable through the development of new DL techniques.

In this work, HAR involved the use of Wi-Fi devices. CSI

was presented through the use of a combination of con-

volution layers and one GRU layer in a first model; con-

volution layers and one GRU layer and attention in a

second model, and convolution layers with one LSTM

layer in a third model. Ten-fold cross-validations of six

activities were used in order to compare the performances

of our models with the reported performances of an LSTM

and an ABLSTM model. Our models achieved accuracies

of 99.31%, 99.16, 98.88% and 98.95%, compared with

accuracies of 75%, and 95% achieved by the LSTM and

ABLSTM models, respectively.

Fig. 12 CNN-GRU-CNN model performance results

Table 8 Confusion matrix of

the CNN-LSTM-CNN deep

learning model:( a) with k-fold,

and (b) with randomly splitting

of the dataset

Lie down Fall Walk Run Sit down Stand up

(a) CNN-LSTM-CNN with k-fold Predicted

Actual Lie down 0.9772 0.0008 0.0061 0.0 .0061 0.0099

Fall 0.0 0.9989 0.0011 0.0 0.0 0.0

Walk 0.0003 0.0 0.9976 0.0017 0.0 0.0003

Run 0.0004 0.0012 0.0120 0.9855 0.0 0.0008

Sit down 0.0111 0.0012 0.0062 0.0 0.9643 0.0172

Stand up 0.0 0.0 0.0017 0.0 0.0116 0.9867

(b) CNN-LSTM-CNN with randomly splitting of the dataset Predicted

Actual Lie down 0.9899 0.0 0.0 0.0 .0101 0.0

Fall 0.0 1.00 0.0 0.0 0.0 0.0

Walk 0.0 0.0 0.9966 0.0034 0.0 0.0

Run 0.0 0.0 0.0 1.00 0.0 0.0

Sit down 0.0041 0.0 0.0082 0.0 0.9877 0.0

Stand up 0.0 0.0 0.0 0.0 0.0056 0.9944
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Our CNN-GRU and CNN-GRU-Attention models yiel-

ded superior performance, with the highest improvements

in recognition accuracy among the proposed models as

well as the LSTM and ABLSTM models. A randomly

splitting dataset method was also used to predict perfor-

mance in a real-time environment where the input data may

be unseen before the training phase. Resultant evaluation

metric values pertaining to the proposed CNN-GRU model

were: accuracy 99.46%, precision 99.52%, recall 99.43%

and AUC 99.90%. The proposed CNN-GRU-Attention

model attained evaluation metric as follows: accuracy

99.05%, precision 99.14%, recall 99.01% and AUC 99.77.

These accuracies indicate the robustness of our proposed

models and that their superior results (compared with the

LSTM and ABLSTM models) were independent of training

method.

For future work, we may consider using a denoising

algorithm for the data before training and testing. We also

may train both amplitude and phase datasets instead of

Fig. 13 CNN-LSTM-CNN model performance results

Table 9 Average Accuracy for

our four proposed models
Models Accuracy with k-fold method (%) Accuracy with split method (%)

CNN-GRU 99.31 99.46

CNN-GRU-Attention 99.16 99.05

CNN-GRU-CNN 98.88 99.05

CNN-LSTM-CNN 98.71 98.99

Table 10 Performance metrics results for the four proposed deep

learning models

Proposed Model Loss Accuracy Precision Recall AUC

CNN-GRU .0026 99.46 99.52 99.43 99.90

CNN-GRU-

Attention

.0103 99.05 99.14 99.01 99.77

CNN-GRU-CNN .0411 99.05 99.09 99.03 99.74

CNN-LSTM-CNN .0340 98.99 99.03 98.96 99.70
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using a single characteristic of the CSI signal. In addition,

other human activities recognition could be explored such

as direction of movement and fine-grained activities, Multi-

user consideration could be put in mind if a dataset that

includes multi-user scenarios is available.
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