
Utilizing Dynamically Coupled Cores to Form
a Resilient Chip Multiprocessor

Christopher LaFrieda Engin İpek José F. Martı́nez Rajit Manohar

Computer Systems Laboratory
Cornell University

Ithaca, NY 14853 USA

http://csl.cornell.edu/

Abstract
Aggressive CMOS scaling will make future chip multiproces-

sors (CMPs) increasingly susceptible to transient faults, hard er-
rors, manufacturing defects, and process variations. Existing
fault-tolerant CMP proposals that implement dual modular redun-
dancy (DMR) do so by statically binding pairs of adjacent cores
via dedicated communication channels and buffers. This can re-
sult in unnecessary power and performance losses in cases where
one core is defective (in which case the entire DMR pair must be
disabled), or when cores exhibit different frequency/leakage char-
acteristics due to process variations (in which case the pair runs at
the speed of the slowest core). Static DMR also hinders power den-
sity/thermal management, as DMR pairs running code with simi-
lar power/thermal characteristics are necessarily placed next to
each other on the die.

We present dynamic core coupling (DCC), an architectural
technique that allows arbitrary CMP cores to verify each other’s
execution while requiring no static core binding at design time or
dedicated communication hardware. Our evaluation shows that
the performance overhead of DCC over a CMP without fault tol-
erance is 3% on SPEC2000 benchmarks, and is within 5% for a set
of scalable parallel scientific and data mining applications with up
to eight threads (16 processors). Our results also show that DCC
has the potential to significantly outperform existing static DMR
schemes.

1 Introduction

Aggressive CMOS scaling has permitted exponential increases
in the microprocessor’s transistor budget for the last three decades.
Earlier processor designs successfully translated such transistor
budget increases into performance growth. Nowadays, however,
power and complexity have become unsurmountable obstacles to
traditional monolithic designs. This has turned chip multiproces-
sors (CMPs) into the primary mechanism to deliver performance
growth, by doubling the number of cores and exploiting increasing
levels of thread-level parallelism (TLP) with each new technology
generation. Current industry projections indicate that CMPs will
scale to many tens or even hundreds of cores by 2015 [4]. Unfor-
tunately, this does not mean that CMPs are free of power, tempera-
ture, or even complexity issues. Moreover, other artifacts intrinsic
to deep-submicron technologies render these future “many-core”
CMPs increasingly susceptible to soft errors [15, 21], manufac-
turing defects [6], process variations [3], and early lifetime fail-
ures [27].
One appealing aspect of CMPs is the inherent redundancy of

hardware resources, which can be exploited for error detection and
recovery. Current proposals for DMR-based CMPs statically bind
core pairs at design time and rely on dedicated cross-core com-
munication [7, 24, 29]. This presents important limitations. For
example, when a core fails due to a manufacturing defect or early
lifetime failure, the remaining core in its DMR pair can no longer
be checked for hard or soft errors. This effectively doubles the
number of unavailable cores for fault-tolerant execution. In the

presence of process variations, functional DMR pairs consisting
of cores with different frequency or leakage characteristics may
have to run at the speed of the slower core, leading to additional
performance degradations. Hardwired DMR also presents limi-
tations to effective power density/thermal management, as DMR
pairs running code with similar power/thermal characteristics are
necessarily placed next to each other on the die.
Instead of relying on a set of rigid, statically defined DMR

pairs, we would like a CMP to provide the flexibility to allow any
core to form a virtual DMR pair with any other core on demand.
We would also like to be able to use additional cores to imple-
ment other desirable features on demand, such as TMR, or activity
migration to spread heat more evenly on the die without compro-
mising fault-tolerant execution. To do this, we propose dynamic
core coupling (DCC), a processor-level fault-tolerance technique
that allows arbitrary CMP cores to verify each other’s execution
while requiring no dedicated cross-core communication channels
or buffers. DCC offers several important advantages. Specifically,
DCC:

• Degrades half as fast as mechanisms that rely on static DMR
pairs.

• Facilitates the formation of balanced DMR pairs by selec-
tively binding cores that operate at similar speeds.

• Enables low-power fault-tolerant execution by binding low-
leakage cores first.

• Supports existing thermal management techniques based on
activity migration seamlessly, regardless of functional core
count or adjacency.

• Detects and recovers from both hard and soft errors.

• Provides support for on-demand triple modular redundancy
(TMR) at no additional cost, using hot spares.

• Greatly simplifies output compression circuitry and lowers
compression bandwidth demand by tolerating large check-
pointing intervals that can amortize long compression laten-
cies.

In our evaluation, the performance overhead of DCC over a
CMP without fault tolerance is less than 3% on SPEC2000 bench-
marks, and is within 5% on a set of scalable scientific and data
mining applications with eight threads (16 cores).
This paper is organized as follows: Section 2 reviews the chal-

lenges created by CMOS scaling in deep sub-micron process tech-
nologies, and explores current fault detection and recovery tech-
niques. Section 3 presents our fault tolerant CMP architecture.
Section 4 discusses the additional modifications made to the ar-
chitecture to support parallel applications. Section 5 describes the
experimental setup and reports the results. Finally, Section 6 sum-
marizes our conclusions.

JFM
Typewritten Text
Appears in Intl. Symp. on Dependable Systems and Networks (DSN), June 2007

2 Background and Related Work

2.1 Deep Submicron Challenges
CMOS scaling in deep submicron process technologies will

create significant problems for future many-core CMP platforms.
In this section, we review some of these challenges and their im-
plications on fault-tolerant CMP design.

Soft Errors The susceptibility of a device to soft errors is in-
versely proportional to the amount of charge in its nodes [21].
With technology scaling, smaller transistors and lower supply volt-
ages decrease the amount of charge on a node, thereby making de-
vices more sensitive to soft errors [5]. The soft error rate (SER) of
combinational logic in a processor is expected to reach 1,000 FIT
(failures in 109 hours) by 2011 [21]. Since storage structures can
be protected relatively easily by parity or error-correcting codes
(ECC), combinational logic is expected to become the dominant
source of soft errors.

Manufacturing Defects and Process Variations Manu-
facturing defects are primarily artifacts of fabrication related fail-
ure mechanisms (e.g., open or short circuits), or process variations
(e.g., excessively leaky cores). During production, burn-in tests
that stress parts under extreme voltage and temperature conditions
are used to accelerate infant mortality and to expose latent fail-
ures. Once identified, defective cores are disabled and parts are
classified into bins based on functional core count. Even among
the remaining functional cores that pass burn-in tests, frequency
and leakage power can vary.
Manufacturing defects are already posing serious challenges

to semiconductor manufacturers: IBM recently announced that
many of its nine-core Cell microprocessors will ship with only
eight functional cores due to defects, and the company is consid-
ering whether to ship chips with only seven functional cores [25].
While no industrial data on core-to-core parameter variability or
defect rates in CMPs are available for current generation process
technologies, both problems are expected to become progressively
more significant with CMOS scaling.

Early Lifetime Failures Although burn-in tests are an effec-
tive mechanism to expose latent failures and identify defective
cores, testing is by no means perfect; electromigration, stress mi-
gration, time-dependent dielectric breakdown, and thermal cycling
can all lead to intrinsic hard failures [26] after manufacturer burn-
in tests. All of these factors worsen as technology scales. The
resulting effect of these failures is permanent in the sense that the
device is broken and cannot ever be relied upon to produce correct
results. The rate of early lifetime failures for 65 nm technology
has been estimated to be 7,000 FIT to 15,000 FIT[27]. It is dif-
ficult to draw conclusions about the relative rates of soft and hard
errors based on their estimates. However, these projections show
the importance of designing a system tolerant to both soft and hard
errors.

2.2 Fault Tolerance
DCC falls within a class of fault tolerant architectures that use

redundant execution. Redundant execution is a technique that
runs two independent copies of a thread and intermittently com-
pares their results. This technique has become increasing pop-
ular with the recent shift towards more on-chip thread contexts.
DCC is most similar to work that combines redundant execu-
tion with simultaneous multithreading [28] (SMT) or chip mul-
tiprocessor [16] (CMP) architectures. SMT provides additional
thread contexts by allowing multiple threads to use a processor’s
resources simultaneously. CMPs support additional thread con-
texts by simply integrating more processors on-chip.
AR-SMT [19] was one of the first proposals to use SMT to

detect transient faults. As instructions retire in a leading thread,

the A-thread, their results are stored in a delay buffer. A trail-
ing thread, the R-thread, re-executes instructions and compares
with results in the delay buffer. SRT [17] builds upon this work
by addressing memory coherence between the leading and trail-
ing threads in hardware. Specifically, both threads must see the
same inputs from the memory system and produce a single output.
SRTR [29] extends SRT by adding support for recovery. We limit
further discussion of SMT approaches to SRTR.
CRT [14] uses a CMP composed of processors with SMT sup-

port. A leading thread on one processor is checked by a trailing
thread on another processor by forwarding results through a ded-
icated bus. The advantage over SRTR is better permanent fault
coverage as no resources are shared between a leading and trail-
ing thread. CRTR [7] extends CRT by providing recovery from
transient faults. Reunion [23] is a CMP architecture that signif-
icantly reduces result forwarding bandwidth by compressing re-
sults. These signatures are exchanged between statically bound
checking pairs via a dedicated bus. Previous work can be catego-
rized by the following: i) synchronization, ii) input replication, iii)
output comparison, and iv) recovery.

Synchronization. To compare results in redundant execution,
either both threads must be synchronized, or a trailing thread must
check the results of all committed instructions against a sequence
of forwarded results. It is common in commercial systems, such
as The Tandem Himalaya [12] and Stratus [20], to use lockstep
execution. The IBM G5/G6/z990 [22, 13] uses replicated fetch,
decode and execution units running in lockstep. Lockstep means
that each processor executes the same instructions in a given cy-
cle. Lockstep is hard to achieve in SMT and CMP because of
contention for shared resources. As a result, SRTR and CRTR
maintain a slack between leader and trailer threads using simple
queues. The leader thread forwards its results to these queues.
The trailing thread reads results from these queues as it issues
instructions, thereby aligning trailing instruction execution with
leading instruction results. Reunion exchanges compressed results
between threads at approximately every fifty instructions. The lag
between leading and trailing threads is limited by the number of
unverified stores that can be buffered. In SRTR and CRTR, stores
are buffered in dedicated queues. In Reunion, stores are buffered
in a speculative portion of the store buffer. The maximum lag be-
tween threads for these two methods is on the order of a hundred
instructions.

Input Replication. There is a potential problem if a trailing
thread redundantly executes a load instruction. An intervening
store, possibly from a separate thread, may have updated that
memory address between the time the leading thread executes the
load and the trailing thread executes the load. To remedy this,
SRTR and CRTR support input replication via a load value queue
(LVQ). When the leader thread executes a load instruction, it for-
wards the result to the trailing thread’s LVQ. The trailing thread
reads load values from the LVQ rather than going to memory. Re-
union, on the other hand, allows both threads to independently
execute load instructions. In the case of an intervening store, Re-
union rolls back its state to a checkpoint and executes both threads
in a single-step mode until the first memory instruction. The au-
thors refer to this as relaxed input replication.

Output Comparison. Faults are detected by comparing the
state (register values and stores) of each thread in the redundant
execution. In SRTR and CRTR, the leading thread forwards re-
sults to the trailing thread’s register value queue (RVQ) and store
buffer (StB). The trailing thread compares its results with the lead-
ing thread’s results before committing results. In this fashion, the
trailing thread’s state is always fault-free. SRTR reduces the band-
width requirements of the RVQ by only checking register results
for instructions at the end of a dependence chain. Reunion greatly
reduces the overhead of communicating results between cores by
using Fingerprinting [24]. Fingerprinting uses a CRC-16 compres-
sion circuit to compress all the new state generated each cycle into

2

Figure 1. An eight-core
statically coupled CMP
with two failures. Only
two threads can be exe-
cuted reliably.

Figure 2. An eight-
core dynamically coupled
CMP with two failures.
Three threads can be exe-
cuted reliably.

a single 16-bit signature. Comparing these signatures is equivalent
to comparing the results of all executed instructions. The probabil-
ity of undetected error using this technique is very small, roughly
2−16.

Recovery. In SRTR and CRTR, a fault-free state can be recov-
ered by copying the committed state of the trailing thread, which is
guaranteed to be fault-free, to the leading thread. This backward-
error recovery (BER) technique provides recovery for transient
faults, but cannot be used to recover from permanent faults. Re-
union checkpoints the architectural state of each core before they
exchange fingerprints. When there is a mismatch between finger-
prints, the speculative state is squashed and the last checkpoint
is restored. The IBM G5/G6 can additionally recover from some
permanent faults by copying processor state to a spare processor.

There are two major architectural distinctions between previ-
ous work and DCC. First, DCC can recover from permanent faults
without the need for constant TMR, like in Tandem and Stratus
architectures, or the need for dedicated spares, like in the IBM
G5/G6. DCC uses a novel on-demand TMR scheme which only
employs TMR during permanent fault recovery. When not re-
covering from a permanent fault, all processors are configured as
DMR pairs and performing computation. Second, DMR pairs in
DCC are dynamically assigned. One advantage of dynamic cou-
pling is that a faulty core does not disable both cores of a DMR
pair because a working core has the flexibility to form a DMR pair
with any other working core. Accommodating dynamic coupling
requires architectural extensions over previous approaches. These
extensions are described in the following sections.

3 DCC Mechanism

3.1 Architecture Overview
DCC dynamically couples cores by performing all communi-

cation between redundant threads over the system bus of a shared
memory CMP. In statically coupled CMPs[7, 14, 23], communica-
tion between redundant threads is conducted over additional dedi-
cated buses. Dynamic coupling provides the following benefits: i)
the system degrades at half the rate of a statically coupled CMP in
the presence of permanent faults; ii) when considering variation,
cores with similar characteristics can be paired together; and iii)
hot spots can be minimized by running high IPC applications re-
dundantly on distant cores. For example, consider the statically
coupled CMP in Figure 1 and the dynamically coupled CMP in
Figure 2. With two permanent failures, the statically coupled CMP
cannot utilize any of the upper four cores for redundant execution
because the two working cores can only forward results to the two
broken cores. However, the dynamically coupled CMP has the
flexibility to pair the two working cores and use them to execute
an additional reliable thread. In addition, the dynamically coupled
CMP issues the high IPC thread A on distant cores to reduce hot
spots.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

S
y
s
te

m
 B

u
s
 T

ra
ff

ic
 I

n
c
re

a
s
e

 (
%

)

Checkpoint Interval (thousands of cycles)

Figure 3. System bus traffic with increasing checkpoint
interval size (system described in Section 5).

Utilizing the system bus for redundant thread communication
has two major implications. First, communicating over the sys-
tem bus with a potentially distant core may incur a greater latency
than communicating to an adjacent core via a dedicated bus. Sec-
ond, the resulting increase in system bus traffic could severely im-
pact performance. Figure 3 shows the average increase in sys-
tem bus traffic over a range of checkpoint intervals (time between
output comparisons) for the parallel applications discussed in Sec-
tion 5. This graph suggests that a long checkpoint interval, roughly
greater than 3, 000 cycles, is needed to amortize the increase in
system bus traffic. Supporting long checkpoint intervals requires
a significant deviation from previous work. For instance, we find
that using the relaxed input replication model from Reunion incurs
a significant overhead (we evaluate this in Section 5.1.2).

3.2 Private Cache Modifications
In order to support long checkpoint intervals, a large number

of memory stores must be buffered. Clearly, thousands of cycles
worth of stores will exceed the capacity of the store buffer used
in Reunion and CRTR. Instead, DCC’s private caches support the
cache buffering techniques proposed in Cherry[11]. When a cache
line is written, it is marked as unverified. Unverified lines are not
allowed to leave the private cache hierarchy. Once the buffered
state is known to be fault-free, at the end of a checkpoint inter-
val, all unverified marks are gang-cleared. A write to a verified
dirty line forces that line to be written back to lower levels of the
memory hierarchy, so that it may be restored if a fault occurred
during the checkpoint interval. Cherry has shown that this style of
cache buffering can easily support thousands of loads with very lit-
tle overhead (roughly one bit per cache block). In addition to cache
buffering support in the private caches, all caches are protected by
error correcting codes (ECC), as is done in previous work. It is
necessary for each processor to redundantly load data from shared
memory into their private cache. However, only one processor
needs to write dirty cache lines back into shared memory. We as-
sign the task of writing back dirty data to one processor, the mas-
ter, while the other processor, the slave, may evict updated (but
verified) cache lines without writing back. The master and slave
processors need not be leading and trailing, respectively. Mas-
ter cores ignore coherence actions to unverified lines by their own
slave(s). Conversely, slaves ignore invalidation requests from their
own master. Data consistency when running parallel applications
is discussed later (Section 4).
There exists a danger of deadlock if an application’s unverified

dirty lines are allowed to remain in the CMP cache subsystem af-
ter the application is descheduled by the operating system. Specif-
ically, the next application to run on the same core may find all
cache blocks of a set locked by unverified writes from the previ-
ous application, preventing it from making forward progress. If
the new application has also locked all cache blocks in a set used
by the old application, then a circular dependence arises between
the two applications and deadlock ensues. Similar interactions are
possible between writes from an application and the operating sys-
tem. To avoid these problems, we implement a simple policy: be-

3

Figure 4. Processor synchronization when: a.) synchro-
nizing processor is leading, or b.) synchronizing processor
is trailing.

fore control is transferred across applications and the operating
system, all unverified dirty data are verified by scheduling a check-
point. Once control is transferred, the operating system saves the
(just verified) architectural state to the application’s process con-
trol block as usual.

On a context switch, slave caches are flushed to avoid having
multiple copies of a cache line with inconsistent states. If a pre-
vious application had used the slave core as its master processor,
there is a danger that this earlier application’s verified dirty lines
may be lost during the cache flush. To avoid such cases, the oper-
ating system partitions the cores into master and slave pools, and
allocates master and slave cores accordingly. In rare cases where a
processor from the master pool may need to be moved to the slave
pool, all verified dirty data in the master’s cache are first written
back to main memory. In cases where a processor from the slave
pool needs to be relocated to the master pool, the slave cache is
flushed.

3.3 Synchronization

Figure 4 shows our multi-phase synchronization protocol. Syn-
chronization begins when a processor receives a scheduled or un-
scheduled checkpoint request. Unscheduled checkpoints occur for
the following events: i) cache buffering overflow; ii) interrupt; iii)
uncached load/store (I/O); or iv) context switch. The processor
that receives the checkpoint request sends the number of instruc-
tions committed since the last checkpoint to the other redundant
processor. The processor initiating the synchronization is either
the leading processor, Figure 4a, or the trailing processor, Figure
4b. If the synchronizing processor is leading, the other processor
commits enough instructions to synchronize, then compresses and
broadcasts its state (via the shared system bus). If the synchroniz-
ing processor is trailing, the other processor broadcasts the num-
ber of instructions it has committed since the last checkpoint. The
synchronizing processor executes enough instructions to match the
leading processor, then compresses and broadcasts its state. Once
each processor has received the compressed state of the other,
it compares against its own. If the compressed states match, a
checkpoint is taken and execution resumes. If they disagree, the
last checkpoint is restored and the checkpoint interval repeats. In
cases where the trailing processor cannot execute enough instruc-
tions to match the leading processor (e.g., due to a cache buffering
overflow), the last checkpoint is restored, and a new checkpoint
is scheduled with half the duration of the last interval. Similarly,
if a checkpoint interval does not complete within a fixed timeout
period, a rollback is forced and a new checkpoint with half the du-
ration of the last checkpointing interval is scheduled. This even-
tually guarantees forward progress in cases where a fault prevents
the cores from reaching the next checkpoint. Checkpoints are kept
in a small, ECC-protected, on-chip SRAM array.

3.4 State Compression
State compression is needed to reduce the bandwidth require-

ments of comparing state between two cores. Fingerprinting[24]
proposed the use of a CRC-16 compression circuit to compress all
of the register file and memory updates each cycle. We simulated
various parallel CRC circuits[2] in HSPICE and their fan-out-of-
four (FO4) delays1 and transistors counts are shown in Table 1.
Assuming a cycle time of 10-15 FO4s, a CRC-32 circuit and a
CRC-16 circuit (2 stages) can compress up to 32 bits in one cy-
cle. With potentially more than 256 bits of new state each cycle,
a CRC-16 circuit could not keep pace with the core. To remedy
this, Reunion uses a multicycle compression scheme. However,
the long checkpoint interval in DCC allows us to employ a simple
solution that provides a large reduction in required compression
bandwidth.

CRC Input FO4 Transistor
Circuit Width Delay Count

CRC-16 16 6.65 754
CRC-SDLC-16 16 6.10 888
CRC-32 16 7.28 2260
CRC-32 32 8.60 4240

Table 1. FO4 delay and transistor count for various CRC
circuits.

We make the observation that checking the state of the register
file at the end of a checkpoint interval is equivalent to checking all
the updates made to the register file during a checkpoint interval.
Therefore, rather than compressing all the updates to the register
file, we simply compress the state of the register file at the end
of a checkpoint interval. The time it takes to read out the con-
tents of the 32 entry architectural register file is easily amortized
over the long checkpoint interval. In this manner, only memory
stores need to be compressed on the fly during a checkpoint inter-
val. Two CRC-32 circuits are needed to compress the data and the
address of a store. At the end of a checkpoint interval, these CRC
circuits simultaneously compress the integer register file and the
floating point register file. For a checkpoint interval of 10,000 cy-
cles, this technique reduces the total state compression bandwidth
(i.e., number of bits compressed per cycle) by a factor of 5.4 for
SPEC2000 benchmarks.

Figure 5. State compression: Stores are compressed each
cycle using two CRC-32 circuits, but register values are
compressed at checkpoints. StQ is the store queue.

3.5 Recovery
DCC aims to mitigate the impact of deep submicron challenges

(Section 2) by endowing arbitrary CMP cores with the ability to
verify each other’s execution. Detection, however, is only part of
the solution; a complete framework for flexible fault-tolerance in
CMPs also requires the ability to recover from faults once they are
detected. Once again, DCC supports recovery from both hard- and

1FO4 is the delay of one inverter driving four identical copies of itself.
Delays expressed in units of FO4 are technology-independent.

4

X X

Interval
N

Interval
N

Interval
N

Interval
N

Interval
N+1

Figure 6. Recovery from a permanent fault using FER
after BER fails. After interval N fails twice, interval N is re-
executed a third time on three processors. Voting identifies
the faulty processor, the system rolls back to the beginning
of interval N, and execution continues on the remaining two
processors.

soft-errors without requiring dedicated communication hardware
or statically binding cores.
When an application requiring redundant execution is

switched-in by the operating system, it is appropriated two pro-
cessors, one master and one slave. Checkpointed register values
are stored in the application’s process control block by the op-
erating system upon context switches, and are recovered when
the application is switched-in. The allocated processors execute
instructions, using the aforementioned detection scheme, until a
fault is detected. To recover from this fault, backward error re-
covery (BER) is employed. Both processors rollback architectural
state to their last valid checkpoint, invalidate all the cache lines
marked as unverified, and resume execution from the checkpoint.
If the fault was transient, the processors will successfully complete
their next checkpoint. However, if the fault is permanent, the same
checkpoint interval will repeat and the system defaults to forward-
error recovery.
Specifically, when BER fails to recover from a fault, after re-

peating the same checkpoint interval multiple times, a third pro-
cessor is appropriated by the operating system for forward error
recovery (FER).2 (If all other processors are in use, the operating
system must choose a core and switch-out its currently running
thread.) To initiate this, the cache controller of the failing master
core makes a TMR request by generating a special bus transaction
that sets a flag in the kernel’s address space. This transaction is
observed by all other nodes, and a predetermined node is given
the responsibility of calling the operating system by jumping to
an interrupt vector (each node is responsible for handling another
node’s requests, and this assignment is made by the kernel). Prior
to taking the interrupt, the master and the slave of this remote node
synchronize, and then control is transferred to the operating sys-
tem by jumping to the TMR interrupt handler. The operating sys-
tem inspects the flags set by the failing node to identify the re-
questing pair, and allocates a third core for FER. Cases where the
requesting node is executing OS code are handled identically. The
architectural state of the last valid checkpoint is copied from the
master processor to the new slave processor. These three proces-
sors, one master and two slaves, implement FER by executing the
checkpoint interval in parallel and voting on the correct results
(signatures), as shown in Figure 6. Essentially, this amounts to
on-demand triple modular redundancy (TMR). Through TMR, the
faulty processor is isolated and marked as such, the system rolls
back to the beginning of the faulty interval, and all unverified data
are invalidated. If the master processor is faulty, all dirty verified
data in the master’s cache is written back to memory, and one of
the slaves is promoted to master. Once the faulty processor is iso-
lated, execution continues on the remaining two cores.

2The involvement of the operating system in FER is unlikely to affect
system performance since FER is only invoked on hard faults (a rare event)
and in cases where the same checkpoint interval fails multiple times in a
row due to soft errors (exceedingly unlikely).

Can be
State Cache-line’s State Description unverified?

Invalid Invalid data No
Shared Valid data, possibly inconsistent with memory Yes
Exclusive Valid data, consistent with memory, No

present only in one cache
Owned Valid, dirty data, possibly shared Yes
Modified Valid, dirty data, present only in one cache Yes

Table 2. Summary of MOESI protocol states and whether they
can hold unverified data.

4 Parallel Application Support
Our discussion of DCC thus far has been limited to fault detec-

tion and recovery for one single node. Although this is sufficient
for sequential applications, supporting flexible fault-tolerant ex-
ecution for parallel applications is at least equally important for
future CMP platforms. In this section, we provide extensions that
allow DCC to operate correctly when running shared-memory par-
allel programs. In the following discussion, we define a particular
master-slave pair as a node, and we refer to all other nodes as re-
mote nodes. Recall that master and slave cores that form a node
need not be adjacent or even close to one another.

4.1 Checkpoints

Checkpoints are taken globally across all nodes: the bus con-
troller initiates scheduled checkpoints by sending synchronization
requests to all nodes at the end of each checkpoint interval. All
master threads synchronize with their slaves (as in the sequential
case), and send an acknowledgment to the bus controller when the
synchronization is complete. When all nodes are synchronized and
no outstanding bus transactions remain, the bus controller issues
a checkpoint request, and the architectural state on each core is
saved. Descheduled threads of a parallel application need not par-
ticipate in the global checkpoint since their last checkpoint (taken
at the time they are descheduled) is still valid. In the case of a sig-
nature discrepancy or timeout (Section 3), all processors involved
in the execution of the parallel application roll back to their re-
spective checkpoint.

4.2 Coherence

Data sharing in DCC-equipped CMP architectures is different
from conventional architectures in that: (1) some of the data held
in caches may be unverified–that is, subject to rollback; and (2)
sharing decisions must consider whether the processors involved
are playing the role of master or slave.
To support sharing of unverified data, we leverage some of the

mechanisms previously proposed in the context of the multipro-
cessor version of Cherry, Cherry-MP [9]. Similarly to Cherry-MP,
a natural choice for a baseline cache coherence protocol on which
to build DCC support is a MOESI protocol [1]. MOESI allows
several copies of a cache line across processors that are possibly
incoherent with the copy in memory. Among those copies, the
owned copy is responsible for (1) providing a copy to any new
sharer, and (2) writing back the copy if it replaces the cache line.
The other copies remain in the shared state. Because DCC re-
quires keeping unverified data off memory, MOESI is convenient
for safely sharing unverified modified data across processors. Ta-
ble 2 compiles MOESI’s states; the rightmost column indicates
whether the state is apt to hold unverified data. Notice that, in
the case of shared state, it is only possible to hold unverified data
if there is an owned copy elsewhere in the system–otherwise, the
data must be necessarily consistent with memory.
To support sharing of unverified data, we extend the coherence

protocol along the lines of Cherry-MP [9] (the Cherry-MP exten-
sions are slightly more elaborate than in DCC because of some
additional restrictions specific to Cherry-MP). Specifically:

5

• Writes always mark the writer’s cache line as unverified, sim-
ilar to the uniprocessor case (Section 3.2). Writes to verified
dirty cache lines (modified or owned state) force a writeback
of the original contents to main memory, in case a rollback
later undoes the update. These writes may be initiated by
a local processor, or by a remote processor through a read-
exclusive or upgrade request. On the other hand, writes to
unverified dirty cache lines must not generate write backs to
main memory. If the cache line is marked unverified and
dirty elsewhere, the protocol simply forwards the cache line
to the requester, if needed.

• On cache-to-cache transfers, the reader’s cache line is
marked unverified if the original copy of the cache line was
marked unverified. This is so that, in the event of a rollback,
all live copies of the speculatively updated value are prop-
erly discarded. To support this, on a miss, the supplier of
the value must put on the bus its cache line’s unverified bit
as part of its snoop response. Notice that unverified, clean
cache lines can be silently dropped by the reader at any time.

To support multiple master-slave nodes, a few more changes
beyond those to support a single master-slave pair (Section 3.2)
are needed as follows:

• Slaves do not supply data to remote nodes via cache-to-cache
transfers–masters do.

• Slave reads cause remote data in modified or exclusive states
to downgrade to owned or shared states, respectively. Fur-
thermore, slave read-exclusive requests are treated as ordi-
nary reads for the purposes of state transitions at remote
nodes (specifically, they do not result in invalidations). Fi-
nally, upgrade requests by slaves are ignored by remote
caches. To ensure that remote nodes do not apply invali-
dations to their caches in response to slave threads, a master
line is added to the system bus. Cache lines in remote nodes
apply invalidations to their caches in response to bus trans-
actions generated by masters only. To facilitate this, master
threads drive the master line when they start their bus trans-
actions, and remote threads snoop this line to determine if
the bus transaction is generated by a master.

• Read-exclusive requests by a master invalidate remote copies
as usual. However, if the data is dirty unverified on a remote
master, the slave must obtain a copy of the cache line before
it is invalidated by the master. To do this, the slave checks if
it already has a copy of the cache line. If so, the cache line is
marked as dirty unverified to prevent its eviction. Otherwise,
the slave snarfs the cache-to-cache transfer and writes the
data to its local cache hierarchy as dirty unverified. If this
results in a cache buffering overflow, all cores rollback to the
last checkpoint, and a new checkpoint is scheduled with half
the duration of the last checkpointing interval (Section 3.3).

• Likewise, upgrade requests by a master invalidate remote
copies as usual. However, if the data is dirty unverified on
a remote master, and if the local slave does not have a copy
of the cache line, the master’s upgrade request is turned into a
read-exclusive request, so that the slave can snarf the remote
copy as before. If the slave already has a copy, the cache line
is marked as dirty unverified in the slave cache.

4.3 Master-Slave Consistency
The main difficulty in supporting DCC in a parallel execution

is ensuring that master and slave threads view a consistent im-
age of the shared address space at all times. In other words, ev-
ery committed load instruction on the slave should read the same
value as the corresponding committed load on the master. In a
sequential application, this is easily accomplished by preventing
unverified dirty lines from being written back to main memory.
Consequently, slave threads can always obtain the same value as
their masters from the memory system (Section 3.2).

Read A

Read B

Write B

Read A

Read B

Write B

Master Thread Slave Thread

TIME

Figure 7. Three example windows.

In a parallel execution, however, this is not necessarily the case.
Since all threads in the system have access to the shared address
space, intervening writes from other threads can cause master and
slave threads to read different values. For instance, the master
thread could read a line L, but before the slave gets a chance to
perform the corresponding read, a third core could invalidate the
master and update L. In this case, the original value that the master
read may no longer be available to the slave.
In order to accommodate thread interactions like these, we in-

troduce the notion of a master-slave memory access window, or
simply window. Roughly speaking, windows represent periods of
vulnerability during which the consistency of master-slave pairs in
the system may be compromised, and allow us to define a small set
of restrictions that guarantee correctness in such cases. Windows
are defined on a per-address basis, and are labeled as read or write
windows depending on whether the operation being performed is
a load or a store.
A read window for address A opens when either the master or

the slave thread issues a load that reads the value of A, and closes
when both master and slave threads commit the load. Windows
opened by misspeculated loads (e.g., in the shadow of a mispre-
dicted branch) are closed at recovery. Similarly, a write window
for address A opens when either the master or the slave thread
performs (necessarily at commit) a store that writes A, and closes
when both master and slave threads commit the store.
Figure 7 shows three example windows on a node. When the

master issues its first read, a read window for memory location A
opens. The master then opens a read window for B, and commits
the load that reads A. When the slave commits its read of A, the
open read window for A closes.
To guarantee master-slave consistency, it is sufficient to en-

sure that the system observes certain restrictions at all times for
each memory location M in the program’s address space. Specif-
ically, a node should not be allowed to open a write window for
M if there is already an open read or write window for M on an-
other node. This remote intervention constraint prevents master
and slave threads from reading different values due to intervening
writes by other nodes. Open windows for different locations place
no restrictions on each other. Similarly, any number of simultane-
ous read windows can be open at a time for a given address, and
private data can be read and written without any restrictions. Fur-
thermore, a node can open a read window while a write window is
open at some other node.

4.3.1 Hardware Implementation
The main addition that is required to support master-slave consis-
tency is an age table that resides with each core’s cache controller.
Each load’s instruction age is defined as the the total number of
load and store instructions committed by its thread (since the last
checkpoint) at the time that load commits. Similarly, each store’s
instruction age is the total number of loads and stores committed

6

Load Queue

Store Queue

Address
Offset

Ld/St Age

Figure 8. Example of an age table implementation.

by its thread at the time the store commits. We use this infor-
mation to detect memory operations that could lead to violations
of the remote intervention constraint, and to delay them until this
danger disappears.
Enforcing the remote intervention constraint requires detecting

open read and write windows, and the age table facilitates tracking
these by storing the age of the last committed memory instruction
on the corresponding core to an address range. The age table is a
direct-mapped, untagged SRAM array indexed by the address of
committed loads and stores (Figure 8). Age table entries contain
the age of the last committed memory instruction to an address
range. The table index is formed by using the lower-order adress
bits following the cache block offset. The table is updated locally
at commit time.

Performing Writes to Modified Data When a master
thread wants to perform a write, it checks the state of the line in
its cache in parallel with an age table access. If the cache line is
modified, no other node is currently caching that line, and there is
no danger of invalidating data that the slave will want to read later
(recall that unverified dirty lines cannot be replaced until the next
checkpoint). In addition, there is no danger of intervention in a
read window on another node (if a window had opened following
the write that put the line in modified state, the line’s state would
have transitioned to owned). In this case, the master performs the
write immediately.

Performing Writes to Data in Other States If the cache
line is not in the modified state, additional checks need to be per-
formed along with the standard read exclusive or upgrade request.
The information needed to perform these checks is piggybacked
on the bus transaction. When the read-exclusive (or upgrade) re-
quest is observed by other nodes, each core accesses its age ta-
ble to get the age of the last committed memory instruction to the
corresponding address range. In parallel, each node searches its
load queue3 for any matching reads that have already issued to the
memory system or have forwarded from a store. If there is a hit
in the load queue, a negative acknowledgment (NACK) is raised
(accomplished by pulling the NACK line of the bus high), and
the write is retried later. Searching the load queue guarantees that
any read windows opened by speculative reads are not violated
by writes from other nodes. In the case of branch mispredictions,
speculative loads are naturally removed from the load queue, and
misspeculated loads eventually cease to generate NACKs.
If all of load queue searches result in misses, each node reports

its age table entry (accessed in parallel with the load queue) on the
data bus in the following cycle. (Each slave core drives a portion
of the data bus with its age information.) In the following cycle,
every master core compares its own age with the age of its slave.
A mismatch on a remote node indicates a potentially open read or
write window, and a NACK is raised for the write.

3A port already exists for external invalidations to search the load queue
in many commercial systems. If this capability is not present, the search
can compete with local stores for access to the load queue.

Livelock Avoidance There exists a danger of livelock when
issuing NACKs for writes. For instance, consider the case of a
spin lock where the master holding the lock needs to perform an
invalidation for lock release. If masters and slaves on other nodes
repeatedly read the lock variable in a tight loop, new read win-
dows may always open before the last one closes, preventing the
lock release from performing, and thus perpetuating the cycle. We
have empirically observed that NACKs, and thus such livelocks,
are exceedingly rare in the applicationswe have studied; neverthe-
less, we need to provide a machanism to detect these situations
and be able to guarantee progress.
We propose a simple policy: A single NACK bit is added to

every age table entry; when a node issues a NACK for a write
transaction, both master and slave cores set the NACK bit for their
corresponding age table entries. At that time, both the master and
the slave temporarily stop fetching instructions, and allow their
pipelines to drain. When both pipes are drained, the master and
the slave exchange their committed instruction counts to identify
the leader and the trailer in the execution. The leader remains
stalled, while the trailer is allowed to resume execution. This ef-
fectively allows the trailer thread to close read windows left open
by the leader–in particular, the read windows opened by the spin-
lock. The remote write (which the remote node keeps retrying)
may eventually succeed once the open read window is closed.
When this happens, the NACK bit is cleared, and both the mas-
ter and the slave resume normal execution. It is also possible that
the trailer commits enough instructions to match the leader. If at
that time the NACK bit has not yet been cleared, the trailer flushes
its pipeline and stalls as well. At this point, neither the master nor
the slave have any loads in their load queues, and their age table
entries are consistent. This guarantees that the very next retry of
the remote write will succeed, at which point both master and slave
can resume execution.

Deadlock Avoidance There exists also a danger of deadlock
when issuing NACKs for writes. This may occur when writes in
two or more processors cannot perform because of open read win-
dows by out-of-order loads elsewhere, forming a cycle. For in-
stance, consider the case where processors p1 and p2 are trying to
perform writes to addresses A and B, respectively. If p1 and p2
have issued loads to addresses B and A out of order with respect
to those writes, respectively, the processors will issue NACKs
for each other’s writes, preveting forward progress. Luckily, this
deadlock situation would be eventually broken through the timeout
mechanism (Section 3.3). Nevertheless, a simple and more effec-
tive solution is possible: Upon receiving a NACK for such a write,
a processor systematically flushes its pipeline beyond the write,
and prevents loads from issuing until the write successfully com-
mits. In any case, as stated before, we have empirically observed
that such NACKs are rare in the applications we have studied.

Hard Fault Recovery Once a signature discrepancy or a
timeout occurs (Section 3.3), all processors currently running the
parallel application roll back to their last checkpoint. To recover
from permanent faults, a second slave is introduced to the node
that initially caused the fault. This third processor engages in age
exchanges just like the original slave does. When performing an
age check, the master thread compares its age against both slaves,
and considers a read window to be open if any of the two slaves has
a mismatch with it. Aside from this, the operation of our proposed
system is the same in all other respects.

4.4 Compatibility Across Memory Consis-
tency Models

The memory consistency model of a multiprocessor places a
set of ordering restrictions between memory operations issued
from a given thread. DCC does not impose or rely on any ordering
constraints, and is general enough to operate correctly under any
consistency model. In other words, regardless of how memory
operations are ordered, DCC’s master-slave consistency is never
compromised.

7

Processor

Frequency 3.2 GHz
Fetch/issue/commit width 4/4/6
Inst. window [(Int+Mem)/FP] 64/48
Reorder buffer entries 192
Int/FP registers 96/96
Functional Units 4 ALU, 3 FPU, 2 BR, 2/2 Ld/St
Ld/St queue entries 24/24
Branch penalty (cycles) 10(min.)
Store forward delay (cycles) 3
Branch predictor 16K-entry
Branch target buffer size 2048
RAS entries 24

Memory Subsystem

L1 Cache (Private) 32KB, 4-way, LRU, 64B, 3 cycles
Victim Cache (L1) 8 entries
L2 Cache (Shared) 8MB, 8-way, LRU, 64B, 43 cycles
MSHR entries 16 L1, 16 L2
System bus 256 bits, 800 MHz
Max. outstanding bus requests 96
Memory bus bandwidth 12.8 GB/s
Memory latency 400 cycles
Coherence Protocol MOESI
Consistency Model Release Consistency

Fault Tolerance Extension Parameters

Processor comm. latency 30 cycles
Age table size 64 entries
State compression latency 35 cycles
State checkpoint latency 8 cycles

Table 3. Summary of modeled architecture.

To see this, note that loads obtain their values either from the
CMP memory subsystem, or from the store queue of the processor
on which they issue. The remote intervention constraint prevents
violations of master-slave consistency through the memory sys-
tem as discussed above. However, relaxed consistency models and
aggressive implementations of sequential consistency also allow
loads to be reordered with respect to other memory instructions
by issuing early, or by forwarding from the store queue. Luckily,
DCC readily accommodates such optimizations.
Specifically, if the master forwards from its store queue, a read

window opens and prevents intervening writes to violate the win-
dow; eventually, the slave also consumes the same value from a
replica of the same store (either through its own store queue or
from its local cache). In other cases, there is a danger that the
master reads a value produced by a remote node, but the slave for-
wards from its store queue and breaks master-slave consistency.
Luckily, the remote intervention constraint prevents this: when the
master commits its copy of the store that the slave forwards from,
a write window opens and blocks intervening writes from remote
nodes, forcing both the master and the slave to consume the result
produced by their local store. Windows opened by slaves are also
safe for the same reason.

5 Evaluation

Flexible DMR frameworks like DCC hold significant poten-
tial when confronted with the challenges of deep submicron pro-
cess technologies. In this section, we evaluate DCC using detailed
execution-driven simulations of a CMP model.
In our experiments, we allow a single application to run redun-

dantly on multiple processors using the hardware modifications
described in this paper. The configuration details of this processor
are listed in Table 3. When taking global checkpoints on parallel
applications, we model the bus arbiter’s synchronization request,
master-slave synchronization, and the checkpoint latency on each
node. We find that master and slave cores are never separated by
more than 200 cycles in their execution (roughly 100 cycles on
average), leading to negligible waiting times for the receipt of ac-
knowledgments. Hence, for simplicity in our simulations, we do
not model the global handshake.

Splash-2 Description Problem size
BARNES Evolution of galaxies 16k part.
FMM N-body problem 16k part.

RAYTRACE 3D ray tracing car
Spec OpenMP
SWIM-OMP Shallow water model MinneSpec-Large
EQUAKE-OMP Earthquake model MinneSpec-Large
Data Mining
BSOM Self-organizing map 2,048 rec., 100 epochs
BLAST Protein matching 12.3k sequ.
KMEANS K-means clustering 18k pts., 18 attr.
SCALPARC Decision Tree 125k pts., 32 attr.

Table 4. Simulated parallel applications and input sizes.

To evaluate sequential applications, we simulate 19 of the
26 SPEC2000 suite of benchmarks [8] using the SESC simula-
tor [18].4 We use the largest datasets from the MinneSPEC [10]
reduced input set and run them to completion. To evaluate parallel
applications, we use a set of scalable scientific and data mining
applications, shown in Table 4. These parallel benchmarks are
simulated for 1, 2, 4, and 8 threads, on 2, 4, 8, and 16 processors
respectively.

5.1 Results
5.1.1 DCC Overhead

In this section, we assess the performance overhead of DCC over
a baseline CMP with no fault-tolerance. We are not concerned
with the inherent overhead of executing a thread redundantly on
two processors. It is obvious that redundant execution occupies
twice the number of cores, and therefore cuts the effective number
of processing elements in half. We are interested in the additional
overheads involved with orchestrating the detection and recovery
schemes presented in this work.

Sequential Applications

We evaluate the performance overhead during fault-free execution
by simulating the SPEC2000 benchmarks on a single core in our
baseline CMP. We compare this to running the benchmarks re-
dundantly on two cores with checkpoint intervals of 1,000, 5,000,
and 10,000 cycles. The slowdown with respect to a single-core
execution with no fault tolerance is shown in Figure 9. The aver-
age overheads for intervals of 1,000, 5,000, and 10,000 cycles are
20%, 5%, and 3%, respectively. In DCC, a checkpoint takes on
the order of 100-200 cycles to complete. Most of this time is spent
synchronizing both cores, compressing the register file state and
communicating results over the system bus. A checkpoint interval
of 1,000 cycles is insufficient to amortize the cost associated with
taking a checkpoint. However, an interval of 10,000 cycles re-
duces this overhead to 3%. One issue that needs to be considered
with long checkpoints is their interaction with I/O requests. Prior
work [24] has found that checkpoints should be taken at least ev-
ery 50,000 instructions in I/O intensive workloads to achieve high
performance. The applications we have studied obtain an IPC of
about 1 on the baseline system, so approximately 10,000 instruc-
tions execute in given checkpoint interval, which is well below this
50,000 instruction limit.

Parallel Applications

Parallel applications incur additional performance overheads due
to the management of shared variables consistently across nodes
(as discussed in Section 4). To see how these overheads scale,
we compare speedups under DCC to our baseline CMP for 1, 2,
4, and 8 threads (2, 4, 8, and 16 processors). Table 5 reports the

4our simulation infrastructure currently does not support the other
SPEC benchmarks

8

 0

 5

 10

 15

 20

 25

A
V

G

w
u

p
w

is
e

v
p

r
v
o

rt
e

x
tw

o
lf

s
w

im
p

a
rs

e
r

m
g

ri
d

m
e

s
a

m
c
f

g
z
ip

g
c
c

g
a

p
e

q
u

a
k
e

c
ra

ft
y

b
z
ip

2
a

rt
a

p
s
i

a
p

p
lu

a
m

m
p

E
x
e

c
u

ti
o

n
 T

im
e

 O
v
e

rh
e

a
d

 (
%

) 1,000c
5,000c

10,000c

Figure 9. Execution time overhead.

speedup across our nine parallel benchmarks. Speedups are nor-
malized to the performance of a single thread of execution on the
baseline CMP. In addition, Figure 10 reports speedups for bench-
marks with the largest overheads (barnes, and smallest overhead,
kmeans). On average, when using a 64-entry age table, the per-
formance overhead for up to 8 threads is between 4% and 5%. A
sensitivity study on the number of age table entries shows less than
a 4% reduction in execution time overhead when a 1024-entry age
table is used (Section 4). Overall, these results suggest that mod-
est hardware additions are adequate to minimize the performance
overhead of DCC on parallel applications.

 0

 1

 2

 3

 4

 5

 6

 7

 8

8421

S
p

e
e

d
u

p

Threads

kmeans
ft-kmeans

barnes
ft-barnes

Figure 10. Speedup on baseline and fault tolerant CMPs
(marked ft) for parallel benchmark with largest and smallest
overheads. All curves are normalized to a sequential run on
the baseline CMP.

5.1.2 Comparison Against Relaxed Input Replication

DCC utilizes long checkpoint intervals to amortize the cost of dy-
namic coupling. To maintain input coherence between redundant
threads, we introduce an age table to track open read windows. Re-
union [23] arguably proposes a conceptually simpler scheme of re-
laxed input replication: input incoherence may occur, but it would
be detected as a fault. To guarantee forward progress, Reunion
single-steps the cores to the first load instruction. Reunion still
relies on dedicated communication channels for output compari-
son, and thus cannot provide the flexibility of dynamic coupling.
Nevertheless, we would like to asses the performance of relaxed
input replication under DCC’s larger checkpoint intervals, and to
quantitatively establish whether we need our age table mechanism.
Figure 11 shows the slowdown of Reunion’s relaxed input

scheme compared to DCC’s age table scheme across our parallel
benchmarks. For applications that have little read-write sharing,
such as blast and swim, relaxed input replication incurs relatively
modest overhead. However, applications that have more read-
write sharing, raytrace and scalparc, incur significantly higher ex-
ecution times (more than two-fold for 10,000-cycle intervals).
Relaxed input replication performs poorly in this context for

two main reasons. First, as the checkpoint interval increases the
redundant pair of cores becomes progressively out of synch. We

 0

 50

 100

 150

 200

 250

 300

A
V

G

s
w

im

s
c
a

lp
a

rc

ra
y
tr

a
c
e

k
m

e
a

n
s

fm
m

e
q

u
a

k
e

b
s
o

m

b
la

s
t

b
a

rn
e

s

E
x
e

c
u

ti
o

n
 T

im
e

 O
v
e

rh
e

a
d

 (
%

) 1000c
5000c

10000c

Figure 11. Slowdown of Reunion’s [23] relaxed input
replication with respect to DCC.

have noticed differences of up to a few hundred instructions for
the longer checkpoint intervals. This results in more opportunity
for an intervening store to cause input incoherence. Second, sin-
gle stepping the execution to the first load instruction does little
to synchronize cores when the checkpoint interval may execute
thousands of loads. If the offending memory operation occurs at
the end of the interval, many rollbacks will ensue before single-
stepping brings the synchronized execution close to that operation.
Overall, the performance of relaxed input replication deteriorates
quickly, and is inadequate for DCC’s larger checkpoint intervals.

5.1.3 Performance under Manufacturing Defects

DCC degrades half as fast as mechanisms that rely on static DMR
pairs when confronted with manufacturing defects, process vari-
ations, and wearout. While a defective or excessively leaky core
renders both cores in a static DMR pair dysfunctional, DCC can
utilize all functional cores regardless of their physical location or
adjacency. Figure 12 compares DCC to an ideal, overhead-free
static-DMR scheme on eight- and 16-core CMPs with two de-
fective cores. The y-axis shows the speedups achieved by both
schemes over a sequential run without fault tolerance. Reported
speedups account for the small fraction of cases where two de-
fective cores may fall into the same static DMR pair, in which
case DCC does not offer an advantage. We account for such cases
by generating 100K CMP configurations with two defective cores,
where defect locations are sampled from a uniform random dis-
tribution. We report the average speedup over these 100K chips,
which include chips with two failures in a single static-DMR pair.

 1

 2

 3

 4

 5

 6

 7

 8

A
V

G

s
w

im

s
c
a

lp
a

rc

ra
y
tr

a
c
e

k
m

e
a

n
s

fm
m

e
q

u
a

k
e

b
s
o

m

b
la

s
t

b
a

rn
e

s

S
p

e
e

d
u

p

SDMR 6/8
DCC 6/8

SDMR 14/16
DCC 14/16

Figure 12. Average speedup of DCC and ideal static cou-
pling on 8- and 16-core CMPs with two defective cores.

On an eight-core CMP, DCC achieves an average speedup of
2.63 across all applications, while static-DMR’s speedup is only
1.97. For the sixteen-core CMP, DCC and static DMR obtain aver-
age speedups of 5.56 and 4.95, respectively. These results suggest
that flexible DMR frameworks like DCC are an attractive to con-
struct gracefully-degrading, fault-tolerant CMP designs that can
meet deep submicron challenges.

9

Threads
Speedup Of Benchmarks

barnes blast bsom equake fmm kmeans raytrace scalparc swim average

Baseline

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.97 1.99 2.00 1.62 1.96 2.01 1.83 1.89 1.95 1.91
4 3.77 3.96 3.96 2.57 3.68 3.99 3.20 3.66 3.70 3.61
8 7.20 7.93 7.66 3.66 6.62 7.81 5.38 6.53 6.33 6.57

DCC

1 0.96 0.97 0.96 0.97 0.96 0.97 0.97 0.98 0.96 0.97
2 1.90 1.91 1.92 1.56 1.87 1.93 1.76 1.84 1.88 1.84
4 3.58 3.84 3.82 2.48 3.52 3.86 3.06 3.51 3.57 3.47
8 6.84 7.63 7.21 3.49 6.38 7.47 5.04 6.24 6.03 6.25

Table 5. Speedup of parallel applications with 1, 2, 4, and 8 threads for both the baseline CMP and DCC.

6 Conclusions
We have presented dynamic core coupling (DCC), an inexpen-

sive DMRmechanism for CMPs, which allows arbitrary processor
cores to verify each other’s execution without requiring dedicated
communication hardware. By avoiding static binding of cores at
design time, DCC degrades half as fast in the presence of errors
and can recover from permanent faults without the need for con-
stant TMR or dedicated spares.
Our evaluation has shown the performance overhead of DCC

to be 3% on SPEC2000 benchmarks, and within 5% for a set of
scalable parallel scientific and data mining applications with up to
eight threads (16 cores). We have also seen that DCC can offer
significant performance improvements compared to static DMR
schemes. Overall, we have shown that flexible DMR frameworks
like DCC hold significant performance potential when confronted
with the challenges of deep submicron process technologies in cur-
rent and upcoming CMPs.

7 Acknowledgments
We thank Meyrem Kırman, Nevin Kırman, and the anony-

mous reviewers for useful feedback. This work was funded in
part by NSF awards CCF-0429922, CNS-0509404, CAREER
Award CCF-0545995, and an IBM Faculty Award (Martı́nez); by
NSF awards CNS-0435190, CCF-0428427, CCF-0541321, and
the DARPA/MARCO C2S2 Center (Manohar); and by equipment
donations from Intel.

References

[1] Advanced Micro Devices. AMD64 Architecture Programmer’s Man-
ual Volume 2: System Programming, February 2005.

[2] Guido Albertengo and Riccardo Sisto. Parallel CRC generation.
IEEE Micro, 10(5):63–71, 1990.

[3] Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Ke-
shavarzi, and Vivek De. Parameter variations and impact on circuits
and microarchitecture. In Design Automation Conf., June 2003.

[4] Shekhar Y. Borkar, Pradeep Dubey, Kevin C. Kahn, David J. Kuck,
Hans Mulder, Stephen S. Pawlowski, and Justin R. Rattner. Platform
2015: Intel processor and platform evolution for the next decade. In
Technology@Intel Magazine, March 2005.

[5] Cristian Constantinescu. Trends and challenges in VLSI circuit reli-
ability. IEEE Micro, 23(4):14–19, 2003.

[6] Kypros Constantinides, Stephen Plaza, Jason Blome, Bin Zhang, Va-
leria Bertacco, Scott Mahlke, Todd Austin, and Michael Orshansky.
Bulletproof: A defect-tolerant CMP switch architecture. In Intl.
Symp. on High Performance Computer Architecture, February 2006.

[7] Mohamed Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith
Pomeranz. Transient-fault recovery for chip multiprocessors. In Intl.
Symp. on Computer Architecture, June 2003.

[8] J. L. Henning. SPEC CPU2000: Measuring CPU performance in the
new millennium. IEEE Computer, 33(7):28–35, 2000.

[9] Meyrem Kırman, Nevin Kırman, and José F. Martı́nez. Cherry-
MP: Correctly integrating checkpointed early resource recycling in
chip multiprocessors. In Intl. Symp. on Microarchitecture, Decem-
ber 2005.

[10] AJ KleinOsowski and David J. Lilja. MinneSPEC: A new SPEC
benchmark workload for simulation-based computer architecture re-
search. IEEE Computer Architecture Letters, 1(2), 2002.

[11] José F. Martı́nez, Jose Renau, Michael C. Huang, Milos Prvulovic,
and Josep Torrellas. Cherry: Checkpointed early resource recycling
in out-of-order microprocessors. In Intl. Symp. on Microarchitecture,
November 2002.

[12] Dennis McEvoy. The architecture of Tandem’s NonStop system. In
ACM’81, November 1981.

[13] Patrick J. Meaney, Scott B. Swaney, Pia N. Sanda, and Lisa
Spainhower. IBM z990 soft error detection and recovery. IEEE
Trans. on Device and Materials Reliability, 5(3):419–427, 2005.

[14] Shubhendu S. Mukherjee, Michael Kontz, and Steven K. Reinhardt.
Detailed design and evaluation of redundant multithreading alterna-
tives. In Intl. Symp. on Computer Architecture, May 2002.

[15] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K.
Reinhardt, and Todd Austin. A systematic methodology to compute
the architectural vulnerability factors for a high-performance micro-
processor. In Intl. Symp. on Microarchitecture, December 2003.

[16] Kunle Olukotun, Basem A. Nayfeh, Lance Hammond, Ken Wilson,
and Kunyung Chang. The case for a single-chip multiprocessor. In
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, October 1996.

[17] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault
detection via simultaneous multithreading. In Intl. Symp. on Com-
puter Architecture, June 2000.

[18] Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic,
Luis Ceze, Smruti Sarangi, Paul Sack, Karin Strauss, and PabloMon-
tesinos. SESC simulator, 2005. http://sesc.sourceforge.net.

[19] Eric Rotenberg. AR-SMT: A microarchitectural approach to fault
tolerance in microprocessors. In Intl. Symp. on Fault-Tolerant Com-
puting, June 1999.

[20] L. Sherman. Stratus continuous processing technology – the smarter
approach to uptime. Technical report, Stratus Technologies, 2003.

[21] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler,
Doug Burger, and Lorenzo Alvisi. Modeling the effect of technology
trends on the soft error rate of combinational logic. In Intl. Conf. on
Dependable Systems and Networks, June 2002.

[22] T. J. Slegal, Timothy J. Slegel, Robert M. Averill III, Mark A.
Check, Bruce C. Giamei, Barry W. Krumm, Christopher A. Kry-
gowski, Wen H. Li, John S. Liptay, John D. MacDougall, Thomas J.
McPherson, Jennifer A. Navarro, Eric M. Schwarz, Kevin Shum, and
Charles F. Webb. IBM’s S/390 G5 microprocessor design. IEEE Mi-
cro, 19(2):12–23, 1999.

[23] Jared C. Smolens, Brian T. Gold, Babak Falsafi, and James C. Hoe.
Reunion: Complexity-effective multicore redundancy. In Intl. Symp.
on Microarchitecture, December 2006.

[24] Jared C. Smolens, Brian T. Gold, Jangwoo Kim, Babak Falsafi,
James C. Hoe, and Andreas G. Nowatzyk. Fingerprinting: bounding
soft-error detection latency and bandwidth. In Intl. Conf. on Architec-
tural Support for Programming Languages and Operating Systems,
October 2004.

[25] Ed Sperling. Turn down the heat. . . please, March 2007.
http://www.edn.com.

[26] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers.
The case for microarchitectural awareness of lifetime reliability. In
Intl. Symp. on Computer Architecture, June 2004.

[27] Jayanth Srinivasan, Sarita V. Adve, Pradip Bose, and Jude A. Rivers.
The impact of technology scaling on lifetime reliability. In Intl. Conf.
on Dependable Systems and Networks, June 2004.

[28] Dean M. Tullsen, Susan Eggers, and Henry M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In Intl. Symp. on
Computer Architecture, June 1995.

[29] T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng. Transient-fault
recovery using simultaneous multithreading. In Intl. Symp. on Com-
puter Architecture, May 2002.

10

