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Abstract 

Energy transfer has been identified as an important process in ternary organic solar cells. Here, we 

develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and 

binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine 

the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-Phenyl-C61-butyric 

acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (DIBSq) and 

poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3′,2′-h][1,5]naphthyridine-

5,10-dione). Hetero-energy transfer is found to be crucial in the exciton dissociation process of both 

binary and ternary organic semiconductor systems. Circumstances favouring energy transfer across 



interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade 

structure is not required for efficient ternary organic solar cells. We explain how energy transfer can 

be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus 

increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that 

it is important that the DIBSq is located at the electron donor/acceptor interface, otherwise charge 

carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to 

dissociate efficiently at an interface. KMC modelling shows that only small amounts of DIBSq (<5% 

by weight) are needed to achieve substantial performance improvements due to long-range energy 

transfer. 
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1. Introduction 

The power conversion efficiency (PCE) of organic solar cells (OSCs) has consistently 

improved over the last 2-3 decades as a result of our increased understanding of the photoconversion 

mechanism in these devices1. In organic semiconductors, tightly bound excited states (excitons) are 

created upon light absorption2. These quasi-particles can be dissociated using a sufficiently large 

electrochemical potential at a heterojunction to create a charge-transfer (CT) state. The CT state may 

either recombine or result in separated charge carriers. The driving force required to efficiently 

convert excitons into separated charge carriers is seen to be at least 0.6 eV3,4. This rather large energy 

sacrifice reduces the open-circuit voltage (VOC) significantly and is the most important reason why 

organic solar cells are less efficient than inorganic solar cells5. 

Binary organic semiconductor systems have been the primary focus of OSC research over the 

last three decades. However, the last couple of years has seen a large interest in ternary semiconductor 



systems6–10 or even quaternary systems11. In general, ternary solar cells consist of a polymer as the 

host electron donor, a fullerene derivative as the host electron acceptor and a third species as an infra-

red sensitizer. Provided the absorption spectra of the different types of organic molecules complement 

each other, ternary systems are expected to absorb more light and thus achieve higher PCE than 

equivalent binary systems. In addition, the infra-red sensitiser is also observed to affect the 

microstructure of the photoactive layer7,8,12. Generally, only small amounts of the infrared sensitizer 

(<5 % by weight) are already observed to change the microstructure resulting in improved fill factor 

(FF) (indicative of reduced bimolecular recombination)8. Successful ternary bulk heterojunction 

(BHJ) structures often use materials where the third absorber is situated at the donor:acceptor 

interface (driven by surface energy)8,12. These observations suggest that the optimum relative 

concentration and highest PCE are determined by morphological constraints and, to a lesser extent, 

by light harvesting. In order to explain the experimental observations in ternary devices, a modelling 

approach that takes into account the complex ternary morphology is required. Kinetic Monte Carlo 

models have already been developed to investigate complex morphologies in binary BHJ systems13–

17 and offer an ideal modelling approach to also investigate ternary bulk heterojunction structures. 

Due to the addition of another electronically active component, ternary solar cells operate via 

a more complicated mechanism. In general, there are three photoconversion mechanisms in ternary 

organic photovoltaic (OPV) devices which are not mutually exclusive: (i) cascade charge transfer, (ii) 

energy transfer, (iii) parallel-like charge transfer10. These mechanisms are depicted in Figure 1. 

Cascade charge transfer relies on the energy levels to form a cascade structure, so that electrons and 

holes can hop between all three materials and excitons can dissociate at each interface. Mechanism 

(i) places restrictions on the lowest and highest occupied molecular orbitals (LUMO and HOMO) of 

all three materials and thus limits the number of materials that can be combined to form a ternary 

cascade charge transfer system. Mechanism (ii) relies on energy transfer to move the exciton from 

one component to another component with a smaller optical gap. Such energy transfer has been 

observed to occur over relatively large distances (>20 nm)9. Once transferred, the exciton simply 



follows the same mechanism as it would in a binary device. While the absorption and fluorescence 

spectra of the energy acceptor and donor must overlap, there are no restrictions on the position of the 

HOMO and LUMO. Furthermore, the energy donor is not required to conduct charge carriers 

provided that the energy donor concentration is low, thus relaxing some of the constraints on materials 

choice. In mechanism (iii) ternary devices are thought to act as two binary devices, meaning that there 

are either two electron donors with just one electron acceptor or two electron acceptors with just one 

donor. There is no charge or energy transfer between two of the three components. 

 

 

Figure 1. Three mechanisms that are relevant to ternary organic solar cells: (i) cascade charge 

transfer, (ii) energy transfer across a distance r, (iii) parallel-like charge transfer   

Irrespective of the type of photoconversion mechanism that is at play, the absorption spectra 

of the three materials are chosen to be complementary. Consequently, it is almost certain that the 

fluorescence spectrum of one material has overlap with the absorption spectrum of another. In other 

words, energy transfer is expected to occur to some extent in all ternary devices18.  

Energy transfer has been identified in poly(3-hexylthiophene-2,5-diyl) : [6,6]-Phenyl-C61-

butyric acid methyl ester : 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine 

(P3HT:PCBM:DIBSq) ternary devices8. While the ternary blend was shown to perform better than 

the binary equivalent, it is not clear how important energy transfer is to the success of this particular 

ternary blend. For example, quantification of what fraction of excitons is affected by energy transfer 

is current lacking. While this information would aid in assessing whether efficient energy transfer is 



required or is rather a side-effect with little impact on overall device efficiency, it is difficult to 

quantify this contribution experimentally. Instead, a rigorous modelling effort is required to 

investigate the importance of energy transfer in ternary systems. 

 In this manuscript we measure absorption and fluorescence spectra to determine the energy 

transfer parameters for P3HT, PCBM, poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9- 

dihydrodithieno[3,2-c:3’,2’-h][1,5]naphthyridine-5,10-dione) (PTNT) and DIBSq. A kinetic Monte 

Carlo (KMC) model is developed for binary and ternary BHJ systems to investigate energy transfer 

and exciton dissociation. Firstly, we assess the impact of energy transfer on the exciton dissociation 

processes in P3HT:PCBM BHJ blends and we show that energy transfer is significant even in binary 

devices. The KMC model is also applied to two ternary BHJ blend systems: the popular 

P3HT:PCBM:DIBSq8,19 and PTNT:PCBM:DIBSq. PTNT has similar optical properties to P3HT, but 

a different energy level offset, thus providing an ideal comparison for exploring the effect of the 

energy level offset at the heterojunction on device performance. Importantly, we show that the energy 

sacrifice required for efficient charge separation can be drastically reduced by utilising energy transfer 

in ternary blends, thus providing a pathway towards increasing the VOC in ternary organic solar cells. 

 

2. Simulation and Experimental Methodology 

2.1 Förster resonance energy transfer theory 

One of the primary energy transfer mechanisms in OPV devices is Förster Resonance Energy 

Transfer (FRET) and is generally used in KMC models13,14,18,20,21. FRET is a form of non-radiative 

energy transfer, where no real photon is emitted or absorbed. An exciton localised on one molecule 

(the donor) acts as an oscillating dipole and can couple to an electron in the ground state on another 

molecule (the acceptor) – the energy of the exciton is transferred to the electron in the ground state, 

producing an exciton at the new position. The exciton appears to instantaneously ‘hop’ from one place 

to another. The rate of transfer is given by22
 

      𝑘𝐹𝑅𝐸𝑇 = 1𝜏 (𝑅0𝑟 )6
     (1) 



where τ is the lifetime of the exciton in the absence of any possible acceptor sites, r is the distance 

between the exciton and the acceptor site in question and R0 is the Förster radius between the two 

materials. The Förster radius is the distance at which the rate of recombination, 1/τ, and rate of transfer, 

kFRET, are equal and is given by: 

      𝑅06 = 9000 𝑄0(ln10)𝜅2 𝐽128 𝜋5𝑛4𝑁𝐴      (2) 

where Q0 is the fluorescence quantum yield, κ the orientation factor, n the refractive index, NA 

Avogadro’s number and J the overlap integral, which is given by 

      𝐽 = ∫ 𝐹𝐷𝜖𝐴𝜆4𝑑𝜆∞0      (3) 

where λ is the wavelength of light, FD is the fluorescence spectrum of the energy donor normalised 

so that ∫ 𝐹𝐷𝑑𝜆 = 1∞0 , and ϵA the molar extinction coefficient of the energy acceptor. Förster theory 

ignores solid-state interactions and only considers the interaction between isolated dipoles 

(molecules). As such, it is more appropriate to use the optical properties of materials as measured in 

solution as opposed to in the solid-state. Moreover, the absorbance of DIBSq in a ternary blend film 

closely resembles that of DIBSq in solution and does not match the absorbance of a DIBSq solid film 

(see Supporting Information). κ is given by23
 

     𝜅 = 𝑢𝐷⃗⃗ ⃗⃗  ∙ 𝑢𝐴⃗⃗⃗⃗ − 3(𝑟 ∙ 𝑢𝐷⃗⃗ ⃗⃗  )(𝑟 ∙ 𝑢𝐷⃗⃗ ⃗⃗  )    (4) 

Where 𝑢𝐷⃗⃗ ⃗⃗   and 𝑢𝐴⃗⃗⃗⃗  are the unit vectors of the energy donor and acceptor dipoles respectively, and 𝑟  is 

the unit vector between the two dipoles. If the donor site and the acceptor site are of the same material, 

this process is known as homo-energy transfer, otherwise the hop is referred to as hetero-energy 

transfer. 

  

2.2 Kinetic Monte Carlo model 

The kinetic, or dynamic, Monte Carlo (KMC) method is a stochastic algorithm for simulating 

the evolution of a system over time. For a given set of events and knowledge of (or a way to calculate) 

the rates at which they occur, a KMC simulation provides trajectories of the individual entities in the 

system. As such, the simulation is a useful tool for our purposes, as we can see the fraction of excitons 



that, for example, hop across an interface before dissociating. In our system, possible events include: 

(i) excitons hopping from one lattice site to another via homo- or hetero-energy transfer, (ii) an exciton 

recombining on its current lattice site, (iii) an exciton dissociating across a boundary from its present 

site to an adjacent site of a different material and, (iv) a new exciton being generated on an empty 

site. 

 Here, we use the First Reaction Method (FRM) approach for the KMC model24. At the start 

of the simulation, the time, ti, for each possible event i to occur is calculated according to the formula 

     𝑡𝑖 = −(1𝑟𝑖) ln 𝑢      (5) 

where ri is the rate at which i occurs and u is a uniformly drawn random number in the range (0, 1]. 

The negative natural logarithm of a uniform random number produces random numbers from an 

exponential distribution (suitable for times between events in a Poisson process) and dividing by the 

rate appropriately scales the distribution so that a faster rate leads to shorter times. Events with slower 

rates can occur sooner than those with faster rates (as a consequence of the random number generation) 

but overall events will occur as often as would be expected statistically. 

 Events are then entered into the central queue; a chronologically ordered list of all the events 

which may occur in the system. Events are executed from the list sequentially, starting with the event 

with the shortest time, and each time an event occurs its time to occur is subtracted from all other 

queue members and any newly enabled events determined and entered into the queue. 

 The occurrence of some events may invalidate other events. For example, if an exciton 

recombines it can no longer make a FRET hop. As such, the validity of each event is checked before 

it is executed, and if the event has become invalidated it is removed from the queue without execution. 

In the case of mutually exclusive events, only the event with the shortest time need be inserted as it 

will necessarily be executed first. After the execution of an event, any newly enabled events are 

calculated with a time to occur given by Equation 5 and added to the queue in the appropriate position 

to maintain temporal order. For example, after a generation event the newly generated exciton will 

have a hop event and a recombination event inserted into the queue. 



 In our system, we consider a cubic lattice of hopping sites with lattice spacing of 1 nm, and 

site occupancy that is limited to one exciton at a time. All FRET hops between an exciton's current 

site and every other site within 30 nm are calculated. The temperature of the system is 300 K. Periodic 

boundary conditions exist for all three dimensions. The excitonic energies on each lattice site are 

randomly drawn from a Gaussian distribution at the start of each run, with a standard deviation given 

by the energy disorder of the material as calculated by fitting a Gaussian to the absorption spectrum 

of each material14. 

 Thermally activated hopping rates, kET, are calculated via  

    𝑘𝐸𝑇 = 1𝜏 (𝑅0𝑟 )6 × { 1 𝛥𝐸 ≤ 0exp (− 𝛥𝐸𝑘𝐵𝑇) 𝛥𝐸 > 0    (6) 

where 𝜏 is the exciton lifetime for the current site, R0 the Förster radius between the current and final 

site materials, r the distance between sites, ΔE the change in energy, kB the Boltzmann constant and 

T the absolute temperature of the system. The Boltzmann multiplier for ΔE>0 reduces the rate of hops 

which result in an increase in energy. The recombination rate of an exciton is simply the inverse of 

its lifetime in its current material,  

      𝑘𝑟𝑒𝑐𝑜𝑚𝑏 = 1𝜏.      (7) 

Exciton generation is calculated for the entire system, with a global rate 

      𝑘𝑔𝑒𝑛 = 𝑔𝑁,      (8) 

where N is the total number of lattice sites in the system and g the generation rate per lattice site. In 

order to draw general conclusions about energy transfer mechanisms, the same generation rate is used 

for all materials. A value for g of 10 excitons per second per lattice site was found to approximate to 

1000 W/m2 illumination under the AM1.5 standard spectrum. After each generation event, a new 

exciton is placed at a random unoccupied site on the lattice. 

 Exciton dissociation is handled separately from the event system; when an exciton is created 

on, or hops to, a site of some material adjacent to a site of a different material (an interface site), it 

has a chance to dissociate with some probability, p. The exciton either dissociates instantly across the 



interface or does nothing. If it does not dissociate, it can gain more chances to dissociate at the same 

or another interface by hopping to more interface sites; it can also hop back to previous interface sites 

it has visited to obtain more chances there. The probability p can be different for an exciton depending 

on which side of the interface it resides. For example, p may be different on the P3HT side of a 

P3HT:PCBM interface than on the PCBM side as the former proceeds via electron transfer and the 

latter via hole transfer. 

3D BHJ morphologies were created following a cellular automata method previously 

described14.  

 

2.3 Materials 

P3HT was synthesised in-house, PCBM was purchased from Solenne, Rhodamine 6G (R6G) 

and DIBSq were purchased from Sigma Aldrich, and PTNT was synthesised in-house as previously 

described25. All materials were used as received. The chemical structures are shown in Figure 2. 

 

2.4 Spectroscopy 

Absorption spectra of the materials were measured in solution using a Cary Varian 6000i. 

Fluorescence spectra were measured in solution using a Cary Eclipse fluorimeter. The fluorescence 

quantum efficiency, Q0, was determined using a rhodamine 6G standard (95 % fluorescence quantum 

efficiency in ethanol) following a standard procedure 26. 

The HOMO levels of P3HT, PCBM, DIBSq and PTNT were measured using a Riken Keiki 

AC2 photoelectron spectroscopy in air (PESA) setup. The LUMO levels were found by adding the 

optical band gap to the measured HOMO. The optical band gap was determined by finding the 

intersection of the absorption baseline with a straight line fitted to the steepest part of the slope near 

the onset of light absorption.  

 

3. Results and discussion 



3.1 Material Parameters 

The fluorescence quantum efficiency, exciton diffusion length, L, and exciton lifetime, τ, for 

all materials and Q0 for PCBM are taken from literature (reference included in Table 1). Q0 for P3HT 

and PCBM were measured. L has not previously been determined for PTNT. Since, the optimal 

domain size of PTNT:PC70BM blend devices25 is approximately the same as that of P3HT:PCBM 

blend devices27 (both are around 10-20 nm), it is reasonable to assume a similar exciton diffusion 

length for both PTNT and P3HT. The material properties are summarised in Table 1. The standard 

deviation of Gaussian energy disorder, σ, was estimated by fitting a Gaussian to the edge of the 

absorption spectrum28,29.  

 

Table 1. Q0, L, τ and σ for P3HT, PCBM and DIBSq 

Materials Q0 (%) L (nm) τ (ns) σ (eV) 

P3HT 25 8.5 30
 0.9 19

 0.06 

PCBM 8.3 x 10-2 31
 5 32

 1.43 31
 0.09 

PTNT 32 8.5 33
 0.9 34

 0.09 

DIBSq - 2 35
 4.9 19

 0.05 

 

The absorption and fluorescence spectra of P3HT, PCBM, DIBSq and PTNT in solution are 

shown in Figure 2, along with the AM1.5 spectrum. Using the absorption and fluorescence 

measurements the Förster radius was calculated using equations (2) and (3) for all relevant energy 

transfer pathways and are summarised in Table 2. The refractive indices, n, were all taken to be 1.4 8 

and the squared dipole orientation factor, κ2, is taken to be its average value of 2/3 for all transfers 

(random orientation of dipoles)18. Values for the Förster radii within materials, i.e. for homo-energy 

transfer, were found using the KMC model as follows (Table 2). For each material, a volume element 

of dimensions 100×100×100 voxels was simulated and a single exciton placed in the centre. Exciton 



generation was switched off for these simulations.  

 

Figure 2. (a) The chemical structures of the materials under study. (b) Normalised absorbance: blue 

plus signs indicates PCBM, magenta diamonds P3HT, green crosses PTNT and red squares DIBSq. 

Normalised fluorescence: green solid line indicates PTNT, magenta dashed lines P3HT and blue dash-

dot line PCBM. The normalised AM1.5 is shown as a black dotted line. 

 

The exciton was allowed to hop around the system until it recombined, at which point the total 

displacement was recorded and the system reset with a new randomised energy landscape and run 

again. The diffusion length in the material is taken to be the root-mean-square of the set of distances 

travelled. For a given material with a known energy disorder, σ, and exciton lifetime, τ, the diffusion 



length of the exciton in the material is dependent only on the (homo-energy transfer) Förster radius. 

R0 was chosen such that the calculated diffusion length for each material agreed with the 

corresponding value in Table 1. 

 

Table 2. Förster radii for all relevant energy transfer combinations. 

R0 (nm) 
Energy acceptor 

P3HT PTNT PCBM DIBSq 

E
ne

rg
y 

do
no

r  

P3HT 2.3 - 2.7 5 

PTNT - 2.3 2.8 5.2 

PCBM - - 2.3 1.2 

DIBSq - - - 1.1 

 

3.2 Impact of the dissociation probability and hetero-FRET in a P3HT:PCBM BHJ device 

Exciton dissociation is an important process in generating charges in OPV devices. Generally, 

dissociation is achieved by one of the three processes depicted in Figure 3. In process (i) light is 

absorbed by a PCBM molecule giving rise to an exciton. This exciton can dissociate efficiently at a 

P3HT:PCBM interface. The LUMO of P3HT and PCBM are such that electron transfer from PCBM 

to P3HT is unfavourable, while the HOMO offset allows for efficient hole transfer from PCBM to 

P3HT. Hence, in process (i) excitons are dissociated via hole transfer only. In process (ii), excitons 

are created in the P3HT phase, which can dissociate via electron transfer to PCBM at a P3HT:PCBM 

interface. Experimental evidence shows that exciton dissociation at the P3HT:PCBM heterojunction 

can also proceed via a two-step process36. Excitons generated in P3HT move to PCBM via energy 

transfer and are then dissociated on the PCBM side of the interface via hole transfer from PCBM to 

P3HT (Figure 3). Clearly, efficient hetero-energy transfer is crucial for this third dissociation 



mechanism.  

 

 

Figure 3. Three dissociation mechanisms in a binary P3HT:PCBM system. 

 

However, hetero-energy transfer is typically ignored when modelling exciton dissociation in binary 

systems. Here, we investigated the effect of hetero-energy transfer on the exciton dissociation 

efficiency, EDE, which is defined as the fraction of excitons that successfully dissociate. Exciton 

dissociation can be achieved either by electron transfer (into PCBM) or by hole transfer (into P3HT). 

The associated driving energy (LUMOPCBM – LUMOP3HT or HOMOP3HT – HOMOPCBM) determines 

the rate of this process37, which determines the electron and hole transfer probabilities. We modelled 

a 1:1 P3HT:PCBM BHJ morphology with a feature size, f  (f=3V/A, where V is volume and A 

interfacial area),  of 15 nm and varied the probability p of an exciton dissociating from 1% to 100% 

for each side of the interface; phole for the PCBM side (hole transfer into P3HT) and pelectron for the 

P3HT side (electron transfer into PCBM). Figure 4 shows the EDE as a function of phole and pelectron 



for two cases: (a) the traditional approach of not considering hetero-energy transfer and (b) including 

hetero-energy transfer as a possibility in the KMC model. 

  

 

Figure 4. Exciton dissociation efficiency of a BHJ structure with a feature size of 15 nm as a function 

of phole and pelectron for two cases: (a) not considering hetero-energy transfer and (b) including hetero-

energy transfer.  

 

As can be seen from the change in EDE in the vertical direction (hole transfer probability axes) in 

Figure 4, the hole transfer probability affects EDE of the BHJ system very strongly for both cases. 

The electron transfer probability, on the other hand, does not affect the EDE significantly when 



hetero-energy transfer is taken into account (Figure 4(b)), because excitons in the P3HT moiety can 

still dissociate efficiently via the two-step dissociation mechanism even if pelectron is small. Lloyd et 

al. measured the external quantum efficiency (EQE) spectrum of P3HT:C60 bilayer devices with and 

without an interlayer that prevented electron transfer from P3HT to C60 (i.e. pelectron = 0) 36. No change 

in the EQE spectra was seen when electron transfer from P3HT to C60 was prevented, indicating that 

the EDE did not change. The insensitivity of the modelled EDE to pelectron matches Lloyd et al.’s 

results, further corroborating the two-step dissociation mechanism. When hetero-energy transfer is 

ignored, phole and pelectron are equally important (Figure 4(b)) and both the driving energies for hole 

transfer (HOMOP3HT – HOMOPCBM) and electron transfer (LUMOPCBM – LUMOP3HT) must be 

optimised. However, since energy transfer between P3HT and PCBM is efficient enough to facilitate 

the two-step dissociation mechanism, the constraints on the electronic energy levels are relaxed and 

the electron transfer efficiency from P3HT to PCBM is not limiting.  

The difference in EDE for the two cases (with and without hetero-energy transfer) is shown in Figure 

5(a). If phole is similar to pelectron, the correct EDE will be predicted even if hetero-energy transfer is 

ignored. The dashed line in Figure 5(a) indicates where on the graph the difference in EDE is 

negligible. Only when phole ≠ pelectron is it important to consider hetero-energy transfer in binary BHJ 

blends for calculating EDE. It is known that hole transfer is two orders of magnitude faster than 

electron transfer in P3HT:PCBM blends and that phole is almost 100 %38. We can calculate pP3HT based 

on the radiative, non-radiative and exciton splitting rates (krad, knonrad and ksplit respectively) using the 

following equation: 

     𝑝𝑃3𝐻𝑇 = 𝑘𝑠𝑝𝑙𝑖𝑡𝑘𝑟𝑎𝑑+𝑘𝑛𝑜𝑛𝑟𝑎𝑑+𝑘𝑠𝑝𝑙𝑖𝑡     (9) 

Using krad = 1.67 GHz38, knonrad = 5 GHz39 and ksplit = 100 GHz38, pelectron is estimated to be 

approximately 94 %. Since both charge transfer probabilities are very similar, hetero-energy transfer 

can be ignored for P3HT:PCBM blends without over- or underestimating EDE.  

Since the band gap of P3HT is larger than that of PCBM, hetero-energy transfer can only 

occur from P3HT to PCBM and not vice versa. The number of dissociated excitons that undergo the 



two-step dissociation mechanism is shown in Figure 5(b) as a fraction of the total number of 

dissociated excitons that were originally generated in P3HT. As pelectron decreases, the number of 

dissociated excitons that have undergone hetero-energy transfer increases quickly leading to the 

insensitivity of EDE to pelectron as seen in Figure 4 (a).  

 

 Figure 5. (a) Difference in EDE between ignoring and including hetero-energy transfer. The dashed 

line indicates where the difference in EDE is 0. (b) fraction of dissociated P3HT excitons that undergo 

a two-step exciton dissociation process. 

 

For our expected condition of phole = 100 %  pelectron, 43 % of dissociated excitons in P3HT occurs 

via the two-step mechanism. For low pelectron nearly all excitons in P3HT dissociate via the two-step 



mechanism. In general, it is important in both binary and ternary systems to consider hetero-energy 

transfer so that this significant dissociation behaviour is not missed.  

 

3.3 Ternary BHJs 

While binary systems only have one type of interface (e.g. P3HT:PCBM) and thus 2 energy 

offsets to drive exciton dissociation, ternary systems include 3 types of interfaces and 6 energy offsets. 

Since it is difficult to ensure that all 6 offsets are such that all 6 charge transfer rates are the same, it 

is crucial to consider hetero-energy transfer in ternary systems to ensure accurate calculation of EDE. 

The P3HT:PCBM:DIBSq BHJ ternary system has recently received considerable interest 

8,19,35,40. Based on the wetting coefficient of DIBSq in P3HT:PCBM, it is likely that DIBSq is located 

at the interface between P3HT and PCBM, thus changing the morphology to a more phase-separated 

structure with crystalline P3HT domains8. This surface energy driven phase separation process was 

also observed for silicon phthalocyanine in P3HT:PCBM12. Another indication that DIBSq is located 

at the P3HT:PCBM interface is to consider the concentration of DIBSq in these blends and the 

cascade electronic energy structure shown in Figure 6. The experimentally observed optimum DIBSq 

concentration is less than 5 %, which is far too low to form continuous charge percolation pathways 

to both electrodes. If DIBSq was located in pure PCBM or P3HT domains, it would simply act as a 

charge trap, diminishing PV performance and not contributing to photocurrent. However, DIBSq is 

clearly seen to be photo-active in the EQE spectrum and to improve PV performance8, which is only 

possible if DIBSq is able to pass on holes to P3HT and electrons to PCBM. Hence, DIBSq must be 

in direct simultaneous contact with P3HT and PCBM, i.e. DIBSq must be located at the P3HT:PCBM 

interface. Following this deduction, virtual P3HT:PCBM:DIBSq BHJ structures were created by 

placing DIBSq voxels at the P3HT:PCBM interface. P3HT:PCBM BHJ binary structures were taken 

as a starting point and DIBSq was added until the desired concentration was reached. The available 

interface area decreases as the feature size increases. For a feature size of 31 nm, less than 15 % 

DIBSq could be added before the entire P3HT:PCBM interface was covered with DIBSq. Adding 



more DIBSq would necessarily mean that either DIBSq is located in P3HT or PCBM domains (where 

the DIBSq molecules would simply act as charge traps) or that large DIBSq domains are formed. 

Since the exciton diffusion length in DIBSQ is very small (<2 nm), excitons in DIBSq can only 

dissociate efficiently if the DIBSq domains are very small.  Therefore, it is plausible that the low 

optimum DIBSq concentration observed in P3HT:PCBM:DIBSq devices may be determined by the 

limited available P3HT:PCBM surface area in BHJ structures. The cascade electronic structure shown 

in Figure 6(a) indicates that the exciton is able to dissociate at all 6 interfaces. Consequently, in the 

KMC model the dissociation probability at these interfaces was set to 100%. 

 

 

Figure 6. Energy diagram of (a) P3HT, PCBM, DIBSq and (b) PTNT, PCBM, DIBSq. The six charge 

transfers associated with the six possible ways of splitting the exciton are depicted with arrows. The 

driving energy is sufficient for efficient exciton dissociation in all but one case: hole transfer across 

from DIBSq to PTNT is not favourable, because the driving energy of 0.01 eV is less than the exciton 

binding energy.  

 

Figure 7(a) shows that EDE improves significantly in P3HT:PCBM:DIBSq ternary BHJ structures. 

It is easier for an exciton to find an interface when the feature size is smaller, meaning that EDE is 

naturally larger for these systems and DIBSq has less of an effect. Only a small amount of DIBSq 

(<5%) is required to effect a substantial increase in EDE. While adding more than 5% DIBSq does 



continue to improve EDE, the rate of improvement decreases significantly.  

 

 

Figure 7. (a)  EDE as function of DIBSq content for a P3HT:PCBM:DIBSq (black) and 

PTNT:PCBM:DIBSq (red) BHJ with a feature size of 14 nm (solid line/dots), 15 nm (dashed 

line/open circles) and 31 nm (dash-dot line/diamonds). The number of excitons that dissociated at the 

DIBSq interface is also shown as a function of DIBSq content in (b). 

 

As such, adding more than 5% DIBSq is unlikely to further improve the overall power 

conversion efficiency of P3HT:PCBM:DIBSq BHJ structures, especially if it causes some DIBSq to 

enter the PCBM or P3HT domains whereupon it acts to trap charges. Indeed, while improved 



experimental power conversion efficiencies are seen for all DIBSq concentrations up to 5% (no data 

is available for higher concentrations due to the low solubility limit of DIBSq), the optimal DIBSq 

concentration is observed to be <5% 8,19. In order to determine the role of energy cascades in ternary 

OPV blends, the behaviour of PTNT:PCBM:DIBSq in the KMC model was also examined. PTNT is 

a high performance alternative to P3HT25, but its electronic energy levels are not aligned to form a 

cascade structure; thus eliminating one energy level offset. Figure 6(b) shows that an exciton in 

DIBSq does not dissociate at the PTNT interface, but may allow for free (unbound) hole transfer. In 

the KMC simulations for PTNT:PCBM:DIBSq, the dissociation probability associated with the 

DIBSq side of the PTNT:DIBSq interface was set to 0 %. Surprisingly, the results in Figure 7(a) show 

that there is no loss in EDE for the PTNT:PCBM:DIBSq blend (compared to P3HT:PCBM:DIBSq) 

despite not having a cascade energy structure. Even though excitons in DIBSq cannot dissociate at 

the PTNT interface, they can efficiently dissociate at the PCBM interface; demonstrating that an 

energy level offset is not required at all interfaces. By moving all excitons to one interface, high VOC 

can be achieved in ternary devices (as high as in equivalent binary devices) with the benefit of 

increased light absorption. This result shows that energy level cascades are not required to produce 

an efficient ternary BHJ device. Rather, the location of DIBSq, or more generally the infra-red 

absorber, and the energy transfer efficiency to the infra-red absorber are crucial. Figure 7(b) shows 

that exciton dissociation at the DIBSq interfaces, for both the P3HT:PCBM:DIBSq  and 

PTNT:PCBM:DIBSq blends, does not linearly increase with DIBSq content. Due to long range 

energy transfer, DIBSq sites are able to harvest excitons from a relatively large volume of the 

surrounding P3HT (or PTNT) and to a lesser extent PCBM sites. Since the Förster radius for energy 

transfer from P3HT (or PTNT) to DIBSq is larger than from P3HT to P3HT (or PTNT to PTNT), 

excitons preferentially move to DIBSq sites, which are located at interfaces that facilitate exciton 

dissociation thus leading to an improvement in EDE. Consequently, a small amount of DIBSq leads 

to a significant improvement in EDE. Two neighbouring DIBSq sites do not harvest twice the amount 

of excitons from its surroundings, because energy transfer to these two DIBSq sites compete with 



each other. More generally, increasing the DIBSq content increases exciton harvesting by DIBSq with 

a diminishing rate. As a result, the EDE is also observed to improve with a diminishing rate. 

Astonishingly, with a feature size of 31 nm, only 10 % DIBSq is required to force 92 % of all excitons 

to dissociate at a DIBSq interface. In other words, by controlling where the DIBSq is located one can 

control where the majority of excitons dissociate.  

While the increase in EDE with the addition of DIBSq is significant for larger feature sizes 

(Figure 7 (a)), the ability to control at which interface the excitons dissociate is potentially the most 

interesting result as it opens up a new way to reduce the energy losses associated with charge 

separation in ternary organic solar cells. In binary organic solar cells, both a LUMOdonor – 

LUMOacceptor offset and a HOMOdonor – HOMOacceptor offset are required to dissociate excitons in both 

the donor and acceptor moieties. Assuming 0.3 eV is required to dissociate excitons, an overall energy 

loss of 0.6 eV (LUMOdonor – LUMOacceptor offset + HOMOdonor – HOMOacceptor offset) is required to 

achieve high quantum efficiencies. Ternary blends with a cascade structure have six energy level 

offsets, each introducing an energy loss. Consequently, the VOC in ternary devices are often seen to 

have a lower VOC compared to the binary equivalent41, which counteracts the benefit of improved 

light absorption. However, if energy transfer is utilised to move all excitons to one particular interface, 

only a single energy level offset is required to dissociate all excitons efficiently. This approach to 

increasing the VOC is not only applicable to ternary polymer BHJ systems, but also planar structures 

and small molecules such as rubrene, other squaraines and various acenes for which high device 

efficiency and/or efficient energy transfer has already been demonstrated35,42–44. 

 In BHJ devices, an exciton must dissociate at an interface into its constituent charge carriers, 

and then those charge carriers must be collected at the electrodes to produce current. As such, the 

overall power conversion efficiency depends both on the EDE and the charge collection efficiency 

(CCE)16. Smaller feature sizes have better EDEs due to the shorter distances to an interface, but worse 

CCEs as the electrons and holes must navigate an increasingly complex morphology to reach the 

electrodes. The opposite is true for larger feature size. It has been previously found that this trade-off 



means that the best PCEs are produced by moderate feature sizes which balance the EDE and CCE 

16. Two ways to obtain better PCE in OPV would be to take a large feature size with a naturally good 

CCE and find a way to improve the naturally poor EDE, or vice versa for small feature size. The 

effect of DIBSq in BHJ structures falls into the former category, as the large Förster radius from P3HT 

and PTNT to DIBSq allows excitons to make large hops directly to the interface. We suggest that the 

addition of DIBSq to real P3HT:PCBM or PTNT:PCBM BHJ devices helps increase the PCE of these 

devices with further improvements to be expected when optimised for a larger feature size compared 

to the binary equivalent structure. In other words, the optimum annealing conditions are likely to 

change upon the addition of DIBSq. 

 

4. Conclusion 

In summary, we have determined the energy transfer parameters for P3HT, PCBM, PTNT and 

DIBSq through spectroscopic measurements and assessed the necessity for accurately modelling 

hetero-energy transfer in binary BHJ systems to calculate the exciton dissociation efficiency. In 

principle, hetero-energy transfer must be taken into account to avoid over- or underestimation of the 

EDE. However, for systems where hole transfer and electron transfer across the interface are the same, 

such as P3HT:PCBM, accurate EDEs are calculated even when hetero-energy transfer is completely 

ignored. Hetero-energy transfer causes EDE to be insensitive to the exciton dissociation probability 

at the energy donor side of the interface. As such, exciton dissociation can still be efficient even if 

one of the energy level offsets (HOMOdonor – HOMOacceptor or LUMOdonor – LUMOacceptor) 

is smaller than the exciton binding energy. The broad absorption range of PCBM means that energy 

transfer to PCBM is possible from various donor materials, which may partially explain the seemingly 

universal compatibility of PCBM with many donor materials in OPV devices. 

Energy transfer is a crucial part of the photoconversion mechanism in ternary bulk 

heterojunction solar cells. We have shown that energy transfer relaxes the electronic energy level 

requirements of the three components, because it enables non-cascade structures to still dissociate 



excitons efficiently. For example, a ternary system such as PTNT:PCBM:DIBSq is expected to 

perform well despite the poor exciton dissociation efficiency at the DIBSq:PTNT interface. More 

importantly, by eliminating the unnecessary energy offsets the loss in VOC, often seen in ternary 

devices, can be eliminated entirely while still enjoying the benefit of improved light absorption (and 

thus JSC). 

It is important for the infra-red sensitiser to be located at the electron donor/acceptor interface 

to prevent charge traps and to preferentially transport excitons to an interface where dissociation 

occurs efficiently. Only small amounts of DIBSq are required to cover a large fraction of the 

P3HT:PCBM interface. Our results suggest that the available interface area in a BHJ structure may 

limit the optimum concentration of the infra-red sensitizer. The solubility limit of DIBSq is low, which 

limits how much DIBSq can be added to a P3HT:PCBM blend. Fortunately, only small quantities of 

DIBSq (<5 %) are required to cause substantial improvements in EDE due to long-range energy 

transfer. Long-range energy transfer from P3HT to DIBSq not only improves PCE by enhancing EDE, 

but also allows for the use of larger feature sizes without significant loss in EDE, which is beneficial 

for charge collection. As such, the optimum feature size of P3HT:PCBM:DIBSq BHJ systems are 

likely to be larger compared to P3HT:PCBM binary systems.  

 

Supporting Information. Absorbance spectra of DIBSq in solution, DIBSq as a solid film and a film 

of P3HT:PCBM:DIBSq before and after annealing. 
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