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Abstract: In this paper, we discuss the use of fragmented bandwidth to improve the performance of 
staggered striping in a multimedia system. It is observed that potential disruptions can occur when non-
consecutive idle disks are used for displaying multimedia objects. We have identified useful retrieval 
patterns and shown that with proper selections of fragmented disks and a simple buffering scheme, 
disruptions can be easily eliminated. 
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1. Introduction 
 

Recent advances in networking and multimedia 
technology have made it possible to provide concurrent 
services, such as on-line shopping, on-line auction, etc., to 
hundreds or even thousands of customers. Unlike 
conventional video rental stores, which can serve only a 
very limited number of viewers simultaneously, a 
multimedia-on-demand (MOD) system is intended to 
provide on-line, concurrent, convenient, and faster service 
to a large number of viewers. In addition to the 
entertainment business, an MOD system can also be 
applied to other areas, such as education and library 
information systems. For example, with an MOD system, 
educational videos can be displayed and viewed by 
students over cable TV systems continuously and reliably. 
Besides videos, new multimedia applications, such as 
graphical modeling of nearby 3D objects in architectural 
buildings, urban city models, scientific visualization, etc., 
[1] can also benefit from the technology of MOD systems. 

In an MOD system, hundreds or even thousands of 
multimedia objects are stored on a storage server and are 
ready to be played out upon requests. Multimedia storage 
servers are generally connected to clients via high-speed 
networks so that continuous media such as video and audio 
can be played on users’ stations. Viewers can also access 
multimedia objects simultaneously on the server. The goal 
of an MOD server is to serve as many viewers concurrently 
as possible. A typical MOD system is shown in Figure 1.1. 

A tertiary storage architecture is usually employed on a 
large-scale MOD server [2], in which the server combines 
highly cost-effective tertiary storage devices, such as 
tapes and optical disks, with high-performance, but 
perhaps more expensive, magnetic disks. Magnetic disks 
are used to store frequently accessed objects (e.g., high-
demand objects), while tertiary storage devices are used 

for the remaining objects. 
 

 
 

Fig. 1.1. Architecture of an MOD system. 
 
Multimedia data can have varying and sometimes very 

high bandwidth requirements. For example, a 27 MBps 
(i.e., megabytes per second) bandwidth is required by 
NTSC for “network-quality” video [2], while a bandwidth 
of approximately 81 MBps is required for an HDTV-
quality image [2]. Although the bandwidth of a modern 
magnetic disk drive can reach approximately 20 MBps [3], 
multimedia data are expected to have much higher 
bandwidths in the future [4].  

Compression techniques [5], such as MPEG-1 and 
MPEG-2, have been applied successfully to multimedia 
objects like movie videos, to reduce the bandwidth 
requirements. For example, MPEG-2 movie video objects 
require only a bandwidth of 0.42 MBps [2]. However, 
these compression techniques generally are lossy and can 
result in loss of important information. Thus, they may not 
be acceptable to objects like computer programs, scientific 
data, medical data, etc., which require high accuracy. For 
example, a slight change in the structure and formation of 
cells in biology, crystals in material science, phenomena in 
space, can lead to severe errors or loss of important 
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observations [4, 6, 7]. An MOD system is expected to cope 
with compressed as well as non-compressed high-
bandwidth. Thus, one of the major challenges in building 
an MOD system is to support varying and perhaps high-
bandwidth data with low-bandwidth disk drives. 

Although individual disks may have large enough 
storage capability [8] and speed to display some 
compressed video objects, a bottleneck can easily arise 
when there are simultaneous requests for videos stored on 
the same disk. Since a bottleneck can result in a 
significant delay in display, it may not be desirable to 
store an entire video object on a single disk. Thus, how to 
place the data on disks to balance the workload and serve 
more requests without much delay has also emerged as an 
important issue. 

RAID (Redundant Array of Inexpensive Disks) is often 
used as a high-bandwidth secondary storage device by 
allowing simultaneous access to an array of disks. 
However, when used in a multimedia system, its lack of 
control over the placement of data [6] may pose some 
problems. For example, if the data retrieved from RAID is 
faster than display, it may overflow the memory buffer of 
the display station. In addition, it is hard to display several 
objects simultaneously with one disk controller.  

Replication and striping techniques [4, 6, 9, 10, 11] were 
studied by researchers as alternatives. In replication 
approaches [6, 9], objects are replicated to support 
simultaneous displays of the same video objects. However, 
the bottleneck problem may still exist when the number of 
requests exceeds the number of replicas of objects. 
Moreover, objects can take up a lot of space due to the 
replication.  

Disk striping [4, 12, 13] effectively overcomes the 
bottleneck problem by declustering objects across multiple 
disks and using the aggregated bandwidth of disks to serve 
simultaneous requests. In addition, servers in the striping 
approach can store more video objects than in the 
replication methods.  

Staggered striping [4] is a variant of the striping. It is a 
promising technique due its flexibility and capability in 
storing and displaying multimedia objects of variable 
bandwidths. However, as requests arrive and are served, 
the system could be left with dispersed variable-sized 
“holes” of idle disks, termed fragmented disks [4], during 
display. This situation is similar to the memory 
fragmentation in the traditional operating systems. When 
there is no single hole that is large enough to meet the 
bandwidth requirement of the requested object, the request 
can not be served, even though the total number of idle 
disks in the system is enough. Berson et al. [4] pointed out 
potential bandwidth waste due to this bandwidth 
fragmentation. They have shown an example of how 
portions of subobjects, which are contiguous portions of an 
object, can be retrieved using fragmented disks and 
buffered until the entire subobjects are put together. 
However, there were no discussions and analysis on how 
fragmented bandwidth can be utilized in general. In fact, 
we have found that the use of fragmented bandwidth is 

much more complex than the example they showed. 
Specifically, disruptions, termed as “hiccups” [14, 4], can 
occur not only at the beginning of the display but also in 
the middle of display. Moreover, the buffer space needed 
to store incomplete pieces of subobjects can be very large 
if we do not take advantage of the properties of retrieval 
patterns. To the best of our knowledge, there have not been 
any in-depth studies on the utilization of fragmented 
bandwidth in the staggered striping. In this paper, we 
propose a method to solve the disruption problems when 
non-consecutive idle disks are used for display. We 
identified repeated patterns of retrieval that can be utilized 
to smooth the display along. With proper selection of idle 
disks and a simple buffering scheme, fragmented 
bandwidth can be fully utilized and disruptions can be 
eliminated. 

Ghandeharizadeh, et al. [15] also discuss placement of 
data on disks, but its underlying assumptions are different 
from ours.  They assume a subobject (of the object) is 
placed on a single disk while we assume a subobject (of an 
object) is striped across a number of disks. Moreover, we 
allow objects to require different bandwidth, which causes 
the fragmented bandwidth problem on which our study 
focuses.  

The rest of the paper is organized as follows. A review 
of related work is presented in Section 2. In Section 3, we 
demonstrate the disruption problems in the staggered 
striping and point out the existence of potential disruption 
patterns. In Section 4, a formal analysis of the disruption 
patterns is conducted and a solution to the disruption 
problems is presented. Section 5 is the conclusion. 

 
 

2. Related Work 
 

In this section, we review two main approaches in 
storage and retrieval of video data from disks and discuss 
their problems. 

       
2.1 Terminology 

    

A multimedia object here, for simplicity, is referred to as 
an object. A subobject represents a contiguous portion of 
an object and is intended to be a unit of transfer between 
the server and the viewer’s station. In generally, a cluster 
of disk drives is accessed simultaneously to fulfill the 
bandwidth requirement of objects. The degree of 
declustering of an object X, denoted M(X), is defined to be 
the number of disk drives, across which a subobject of X is 
declustered. Let BDisplay(X) be the bandwidth required for 
displaying an object X, and BDisk be the effective 
bandwidth of a disk. Then, M(X) = BDisplay(X)/Bdisk. Let D 
be the number of disks in the system, which are numbered 
from 0 to D-1. Let R be the number of clusters into which 
the disk drives are partitioned. Then, R = D/M(X).  

For simplicity, in this section, we shall assume all 
objects have the same bandwidth requirement, unless 
otherwise stated. 
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2.2 Replication Methods 
 

The replication approach [6] partitions the disk drives 
into R clusters and assigns a replica of an object to at least 
one of the clusters. Frequently accessed objects can be 
replicated in as many clusters as needed. In the example 
shown in Fig. 2.1, the disk drives are partitioned into 2 
clusters, each of which has 3 disk drives. An object X, 
whose M(X) = 3, is stored in one cluster and replicated in 
another cluster. The object X is partitioned into blocks X0, 
X1, …., and X5, and these data blocks are assigned to disk 
drives in a round-robin manner within a cluster. The 
system can display the first portion of this object while 
continuously retrieving the next portion (i.e., X3, X4, and 
X5) from disk drives of the same cluster (i.e., pipelining). 
The replication method enables the system to support R 
simultaneous displays of the objects. 

Chan’s rotational mirrored declustering (RMD) [9], as 
shown in Fig. 2.2, is a variant of the replication approach, 
which uses a set of disk arrays to store objects.  Given a 
set of rn disks, numbered 0, 1, …. , rn – 1, where n is the 
number of disks in a disk array, and r is the number of 
the disk arrays, the ith partition of the jth replica of an 
object is placed on the disk d, according to the following 
formula: 

 
    d = (i + ⎣i/n⎦ * (j – 1)) mod n + (j – 1) * n  
 
An example of the data placement in RMD is shown in 

Figure 2.3. An object X, consisting of X0, …, X5, is first 
assigned to a disk array, and then a replica is properly 
rotated and declustered on another disk array. A 
predetermined replication threshold is used to determine 
the number of replicas. This method allows replicas and 
disks to be added online and was found effective in dealing 
with load balancing problem. The method is also fault 
tolerant [9]. 

In general, a replication approach can support a higher 
number of simultaneous displays because of the multiple 
copies of data. It is also more fault tolerant because the 
traffic to a failed disk can be directed to other disks 
containing the replica. However, all replication approaches 
require additional disk drives to store multiple copies of the 
objects, and the cost can be very high.  

 
2.3 Striping Methods 

     

The basic idea of the striping approach is to stripe the 
objects across clusters of disks so that the aggregate 
bandwidth of a cluster can match the bandwidth 
requirement of objects. In this section, we discuss two 
methods in this category. 

 

 
Fig. 2.1. Data Replication 

 
Fig. 2.2. A Disk-array-based Video Server 

 

 
Fig. 2.3. Data Placement in RMD 

                                                   
 

2.3.1 Simple Striping 
Figure 2.4 illustrates the placement of an object X on 

disks using the simple striping technique [4]. Assume that 
a bandwidth of 60 MBps (i.e., BDisplay(X)= 60 MBps) is 
required for displaying X and there are 9 disk drives (i.e., 
D = 9) in the system, each with 20 MBps transfer rate (i.e., 
BDisk = 20 MBps). Since the aggregated bandwidth of 3 
disk drives (i.e., M(X) = BDisplay(X)/BDisk) is needed to 
match the bandwidth of the object, disk drives are 
organized as 3 clusters (R = D/M(X)). The object X is 
divided into a sequence of equi-sized contiguous 
subobjects X0, X1, …, Xn. These subobjects are assigned to 
clusters from the first available one, say cluster 0, in a 
round-robin manner [4, 16, 17], as shown in the upper part 
of Figure 2.4. 

A subobject, which is made of 12 data blocks in the 
example, is further striped across its cluster in a round-
robin manner. Figure 2.4 shows how X1, consisting of data 
blocks 12 to 23, is interleaved among the disks of cluster 1 
[18]. The set of blocks assigned to a disk, though not 
consecutive in number, constitutes a fragment. That is, data 
blocks 12, 15, and 18 of X1, and 21 of X1 constitute the 
fragment X1.0 and data blocks 13, 16, 19, and 22 make the 
fragment X1.1, and so on. At each time interval, all 
fragments of a subobject are transferred from individual 
disks to the network at the same time. In this way, the 
system can display a subobject while retrieving it from the 
disk drives (i.e., multi-input pipelining) [4, 19].  

When a system is to display X, it starts reading from a 
cluster, say Ci, that contains the first subobject X0.  Next, it 
employs Ci+1 mod R to display X1. The system iterates over 
the clusters until X is completely displayed. 

Figure 2.5 demonstrates how the system serves 
concurrent requests for three objects, X, Y, and Z. Assume 
after retrieving subobject Xi+2 at time interval 2, the display 



4                      Utilizing Fragmented Bandwidth in a Staggered Striping Multimedia System 
 

of object X is completed. Thus, cluster 0 becomes idle at 
time intervals 3 and 6, while clusters 1 and 2 become idle 
at time intervals 4 and 5, respectively. If a request for an 
object, whose first subobject resides on cluster 0, arrives at 
or before time interval 3, cluster 0 can begin serving the 
new request at time interval 3; otherwise, this request 
would have to wait until cluster 0 becomes idle at time 
interval 6. 

Since the size of cluster is fixed and all disks in a cluster 
are operated synchronously, simple striping can not 
effectively deal with objects of varied bandwidths. In order 
to serve objects of different bandwidths, a naive approach 
[4] is to form the disk clusters based on the highest 
bandwidth requirement, which clearly would waste a large 
portion of available disk bandwidth.  

 

 
Fig. 2.4. Fragment Layout on Disks 

 

 
Fig. 2.5. Simple Striping with 3 Clusters 

 
2.3.2 Staggered Striping 

Staggered striping [4] is a refinement of the simple 
striping. In the staggered striping, disk clusters are formed 
logically, instead of physically, as in the simple striping. 
Moreover, the requirement that the assignment of two 
consecutive subobjects of X, say Xi and Xi+1, be on non-
overlapping clusters in the simple striping is removed. The 
staggered striping can alleviate the wasted bandwidth 
problem due to the varying bandwidth requirements of 
media objects in the simple striping. The staggered striping 
is described as follows. 

Stride k is defined to be the distance, in terms of the 
number of disk drives, between the first fragments of two 
consecutive subobjects Xi.0 and X(i+1).0. Notice that in the 

simple striping, k is M(X), while in the staggered striping, 
k can vary in value from 1 to D. Staggered striping is 
indeed a generalization of the simple striping.  

Objects, maybe of different bandwidths, are assigned to 
disks independently with the same stride. Figure 2.6(a) 
illustrates a possible placement of objects X, Y, and Z with 
bandwidth requirements of 40, 80, and 60 MBps, 
respectively, in a system with 9 disks (with Bdisk = 20 
MBps). X0 is stored on disks 0 and 1 (M(X) = 2), Y0 is on 
disks 2, 3, 4, and 5 (M(Z) = 4), and Z0 is on disks 0, 7, and 
8 (M(Y) = 3). Note that the strides for all objects are 1. 

In order to display an object, say X, the system must first 
locate the M(X) adjacent disk drives that contain subobject 
X0 (i.e., disks 0 and 1). If these disk drives are idle, X0 can 
be retrieved and displayed immediately; otherwise, the 
display has to be delayed until these disks become idle. At 
the next time interval, it reads from the next M(X) disk 
drives (i.e., disks 1 and 2), by shifting k (i.e., 1 in this 
example) disks to the right.  

As requests arrive and are served, the system is left with 
dispersed “holes” of idle disks, similar to the memory 
fragmentation problem in the traditional  operating system. 
Since in the striping approach, all fragments of a subobject 
must be retrieved from disks at the same time. If the disks 
containing the requested subobject are not all idle at the 
same time, bandwidth fragmentation can occur. For 
example, consider the placement of objects in Figure 2.6(a) 
again. Assume the system is to retrieve Y0 and Z0 at the 
moment and a request for X has just arrived. While there 

 

 
(a) 

 
(b) 

Fig. 2.6. Buffer Utilization for Staggered Striping with 9 Disks 
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are two disks (1 and 6) idle, a request for object X cannot 
be served until the display of Z completes, because disks 0 
and 1 are not available at the same time.  These free but 
non-consecutive idle disks, like 1 and 6, are called 
fragmented disks [4]. 

To utilize the bandwidth of fragmented disks, additional 
buffer space is used in [4]. Fragments on those 
“fragmented” disks are read and stored in the buffer until 
the rest of pieces of the subobjects are ready to transfer. 
That is, when all the pieces of a subobject are either having 
been buffered or residing on currently free disks, they are 
transmitted to the network (using a pipelining scheme). 

In Figure 2.6(b), the white regions indicate that the 
corresponding disks are idle while the shaded regions 
indicate that disks are busy serving other requests. Assume 
that a request for an object X arrives at t0 and there are two 
fragmented disks (disks 1 and 6) at this moment. Disk 1 is 
now in position to read fragment X0.1, but disk 0 is busy 
with another request. Therefore, X0.1 is read and buffered. 
At t3, since disk 0 can directly transfer fragment X0.0 onto 
the network, the buffered fragment X0.1 is also transferred 
to the network. At t6, we assume that three intervening 
disks (disks 4, 5, and 6) have completed their service and 
become free. Therefore, at t9, the entire X6 can be delivered 
directly from disks to the network without buffering.  

While it seems simple to utilize fragmented bandwidth, 
the above example only illustrates a best scenario. In fact, 
we have found that disruptions of display can occur at any 
time when fragmented disks are used. To the best of our 
knowledge, such disruptions (that occur during the display) 
have not been addressed in the literature. We will describe 
this problem in detail in Section 3 and discuss the solution 
in Section 4. 

  
 

3. Observations on the Disruptions 
 

The quality of a display is severely compromised if 
disruptions occur during the display. Disruptions can occur 
when there are not enough idle disks to display objects. 
However, even with enough idle disks, there can still be 
disruptions if these idle disks are not consecutive, i.e., 
fragmented. In this chapter, we show how disruptions can 
occur and discuss properties associated with disruptions. 

 
3.1 Disruptions in Staggered Striping 

 

As mentioned earlier, there can be variable-sized “holes” 
of idle disks in the system as disks are allocated to and 
released by requests for objects of different bandwidths. If 
non-consecutive idle disks are to be used, subobjects may 
not be able to be retrieved in their entireties, resulting in 
potential disruptions.  

In Figure 3.1, we show how disruptions can occur in a 
staggered striping system with k = 1. Assume at t0, disks 0, 
1, 2, and 4 are idle and are designated to serve a request for 
object X with M(X) = 4. Note that the four idle disks are 
not consecutive and the rest of disks are busy with other 
requests. For clarity, only fragments of object X retrieved 

 
Fig. 3.1.  Retrieval of Object X Using Non-consecutive 

Idle Disks 0, 1, 2 and 4 with k = 1. 
 

at each time interval are indicated in the figure. Note that 
each disk stores a set of fragments coming from different 
subobjects. Fragments on a disk are read sequentially for 
the display of the object. 

The rightmost column “completed subobjects” lists 
subobjects, all of whose fragments have been completely 
retrieved from disks at the corresponding time interval. As 
shown in the figure, a disruption occurred at t4, and X3 was 
not ready until t13. Note that other subobjects, such as X4, 
X5, X6, X7, X8, X9, X10, X11 and X12, are all ready before X3. 
A naive solution to eliminating disruptions is to delay the 
retrieval until there are enough consecutive idle disks in the 
system. Unfortunately, it can result in substantial delay as 
consecutive idle disks may not be available until one or 
more current requests are finished. 

It is observed from Figure 3.1 that although subobjects 
retrieved are out of sequence, there are still the same 
number of subobjects retrieved (i.e., 14 = D) in the first 14 
time units as if we were using consecutive idle disks. In 
addition, the retrieval of fragments is not completely 
random, that is, no other fragments, except the fragments 
of the first 14 subobjects are read during the first 14 time 
units. Another important observation is that the set of disks 
used at t0 is used again at t14 to retrieve fragments of X14 
and X15 (vs. X0 and X1 at t0). Consequently, the retrieval 
pattern appearing during the period t0 to t13 is repeated in 
the next and every successive 14 time units. This 
observation prompts the idea that if we can buffer a small 
amount of subobjects (e.g., the first 14 subobjects in the 
example) in advance, then the display may be able to be 
smoothed over without disruption. That is, while we are 
going to retrieve the next 14 subobjects in the next 14 time 
units, we display the previously buffered 14 subobjects. 

The proposed approach solely relies on the existence of 
such repeated retrieval pattern. Therefore, in the following, 
we discuss in what circumstances repeated patterns like 
above exist. 

 
3.2 Retrieval Patterns 

 

The values of k affect retrieval patterns when non-
consecutive idle disks are used. Recalling that in Figure 3.1, 
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where k was set to 1, although a disruption occurred at t4, 
all the first 14 subobjects, X0, X1, …, X13, were completely 
retrieved by the end of t13, and a new cycle begins at t14. 
This repeated pattern can be identified easily and can be 
very useful in eliminating disruption.  

However, the situations may be a little more complex 
when k is set to other values. Let us consider Figure 3.2, 
where k is set to 2. Although there are still four fragments 
of object X read in each time interval, some disks, such as 
disks 1, 3, 5, 7, 9, 11, and 13, have read only two fragments 
during the first 14 time units, while others read six 
fragments. Due to this imbalance in reading, the retrieval 
of those fragments on odd-numbered disks is considerably 
delayed. For example, fragments X7.1 and X7.3, on disks 1 
and 3, respectively, were not retrieved until t14 and t15, 
while some other higher-numbered fragments, like X15.2, 
X16.0, etc., were read much sooner than in the previous case 
(i.e., k = 1). Indeed, fragments on even-numbered disks are 
retrieved sooner, while much later for fragments on odd-
numbered disks, prolonging the entire retrieval process by 
a factor of 2. This implies a very large buffer may be 
needed if we attempt to eliminate disruptions.  

However, if we had used idle disks 0, 1, 2, and 5, 
assumed available, the situation would have been quite 
different. As shown in Fig. 3.3, with idle disks 0, 1, 2, and 
5 designated at t0, all the first 7 subobjects are completely 
retrieved by the end of t6. A new cycle begins at t7 and 
repeats for every 7 time units. This pattern could be useful 

 

 
Fig. 3.2. Retrieval of Object X Using Non-consecutive Idle 

Disks 0, 1, 2 and 4 when k = 2. 
 

 
Fig. 3.3. Retrieval of Object X Using Non-consecutive Idle 

Disks 0, 1, 2, and 5 when k = 2. 

in our attempt to display objects continuously. 
From Figures 3.2 and 3.3, we notice that with the proper 

choice of idle disks, if available, useful repeated patterns 
with a shorter period (less than D) may be found when k 
values are different than 1. In the next chapter, we will 
formally discuss how a pattern is affected by various 
factors, such as k, D, placement of subobjects, and idle 
disks, etc. 

 
 

4. Pattern Analysis 
 

The goal is to find the existence of a period of p time 
units, within which the next p successive subobjects can be 
completely retrieved using a given set of non-consecutive 
disks. For simplicity, we shall not mention the object of 
concern explicitly in the following discussion 

Definition. The storage sequence for the fth fragments of 
subobjects m to n, denoted Sf(m, n), is a sequence of disk 
IDs that stores the fth fragments of successive subobjects 
from m to n. 

Recall that each subobject is striped across a number of 
disks and the part of the subobject on each disk is called a 
fragment.  Let j be the ID number (0 ≤ j < D) of the disk 
containing the fth fragment of the 0th subobject of X (i.e., 
X0.f). By definition of the stride k, disk (j + k × n) mod D 
must be the disk containing the fth fragment of the nth 
subobject. Thus, S0(0, n) consists of  disks j , (j + k × 1) 
mod D, …, (j + k × n) mod D. 

 
Definition. The retrieval sequence beginning with disk i 

for the period from tm to tn, denoted as Ri(tm, tn), is the 
sequence of disk IDs beginning with disk I that are used in 
successive time intervals from tm to tn to retrieve the object  
in the staggered striping. 

Let i be the ID number (0 ≤ i < D) of one of the disks 
designated to serve a request for a certain object X at t0. 
Then at tn, we can infer that disk (i + k × n) mod D must be 
a disk serving X, because of the stride k. Consequently, 
Ri(t0, tn) is made of disks i, (i + k × 1) mod D, …, (i + k × 
n) mod D. Note that each disk designated to serve X at t0 
has its own retrieval sequence. 

Let ω be the largest common divisor of D and k. Then, 
both a storage and a retrieval sequence can be rewritten as i, 
(i + k × 1) mod D, …, (i + k × D/ω) mod D, (i + k × (D/ω + 
1)) mod D, …, etc. Since (k × D/ω) mod D = 0, (i + k × 
D/ω) mod D becomes (i + k × 0) mod D, (i + k × (D/ω+ 1)) 
mod D becomes (i + k × 1) mod D, and so on. As a result, 
there can be only D/ω distinct disks in each storage or 
retrieval sequence of length greater than D/ω, and they are 
reused every D/ω time units. 

Let im, 0 ≤ m < M(X), be a set of M(X) idle disks chosen 
to serve X at t0. As mentioned earlier, each disk stores a set 
of fragments from different subobjects (of an object) and 
those fragments on a disk are retrieved one at a time 
sequentially when the disk is used to display the object. It 
can be conceived that if the disks appearing in the 
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sequences 
mi

R (0, D/ω ), 0 ≤ m < M(X), also appear the 

same number of times in sequences Sf(0, D/ω), 0 ≤ f < 
M(X), and vice-versa, then the first D/ω subobjects, 
nothing more and nothing less, are retrieved during the first 
D/ω  period. Note that the sequences Sf(0, D/ω), 0 ≤ f < 
M(X), represent the first D/ω objects. Moreover, a new and 
identical cycle begins for each successive D/ω time 
interval because all subobjects appearing in preceding D/ω 
interval are completely retrieved during that interval. In the 
following, we will discuss how to find such set of idle 
disks, if available, so that this retrieval pattern exists. 

When ω = 1, i.e., no common divisor between k and D, 
D/ω = D. Let im, 0 ≤ m< M(X), be an arbitrarily set of 
M(X) idle disks chosen at t0. It can be observed that at the 
end of tD-1, every disk in the system appears exactly once in 
any of the retrieval sequences 

mi
R (0, D-1), 0 ≤ m < M(X). 

Meanwhile, all disks will also appear exactly once in each 
Sf(0, D-1), 0 ≤ f < M(X). Thus, at the end of tD-1, all 
fragments of the first and only the first D subobjects (i.e., 
D × M(X) fragments) are retrieved using arbitrarily chosen 
M(x) idle disks. Moreover, a new cycle begins for the next 
and successive D time units because no partially retrieved 
subobjects from previous D time units are left to be 
completed in the next D time units. 

When ω ≥ 2 (obviously, k ≥ 2), the situation is a bit more 
complex. For each disk i, designated to serving object X at 
t0, only D/ω  (< D) distinct disks appear in its retrieval 
sequence, i.e., i, (i + k × 1) mod D, (i + k × 2) mod D, (i + 
k × ((D/ω  -1)) mod D, and they are reused every D/ω 
time units. For example, consider Figure 3.2 again, where k 
= 2 and D = 14. Since ω = 2, only 7 distinct disks are used 
in each retrieval sequence. For idle disk 0 chosen at t0, R0(0, 
6) consists of only disks 0, 2, 4, 6, 8, 10 and 12, while for 
disk 1, R1(0, 6)  is made of 1, 3, 5, 7, 9, 11, and 13. 
Similarly, for each disk j storing the f th fragment, 0 ≤ f < 
M(X), of the 0th subobject, the storage sequence Sf(0, D/ω -
1) consists of  7 disks, j, (j + k × 1) mod D, …, and (j + k 
× (D/ω  -1)) mod D. 

It can be observed that if i is an idle disk chosen at t0 and 
it appears in the sequence Sf(0, D/ω) (i.e., j, (j + k × 1) mod 
D, …,  i, (i + k × 1) mod D, …, or (j + k × (D/ω -1)) mod 
D), then Ri(0, D/ω) contains the same set of D/ω distinct 
disks as Sf(0, D/ω), except that the order of the disks 
appearing in the sequences may be different. Thus, if im, 0 
≤ m < M(X), are the idle disks chosen at t0, each of them 
appearing in a distinct storage sequence Sf(0, D/ω), 0 ≤ f < 
M(X), then at tD/ω -1, then the same set of disks will appear 
the same number of times in both 

mi
R (0, D/ω  -1), 0 ≤ m 

< M(X), and Sf(0, D/ω), 0 ≤ f < M(X). That is, the first 
(and only the first) D/ω subobjects will be completely 
retrieved during the first D/ω  time units using idle disks 
im, 0 ≤ m < M(X). The pattern repeats for every D/ω time 
units as no partially retrieved subobjects from previous 
D/ω interval need to be completed in the next D/ω interval 
and the set of disks used at t0 is used again at tn×(D/ω), n >0. 
The following theorem follows. 

Theorem. If each of the idle disks chosen to serve an 
object is from a distinct storage sequence of the object, 
then each successive D/ω subobjects from the beginning 
can be completely retrieved within each successive D/ω 
time interval. 

In the following, we use a simple example to illustrate 
how idle disks, if available, are chosen to avoid potential 
disruptions. 

 
Example. Consider a system with 14 disks and a stride k 

= 4. Assume an request for object X (M(X)=3) has just 
arrived and currently disks 5, 7, 8, and 10 are idle. We 
further assume that the fragments of the first subobject of 
X  are stored on disks 2,3, and 4. 

The storage sequences are: 
        S0 = 2, 6, 10, 0, 4, 8, 12, 2, 6, … 
        S1 = 3, 7, 11, 1, 5, 9, 13, 3, 7, … 
        S2 = 4, 8, 12, 2, 6, 10, 0, 4, 6, … 
 
Notice that S0 and S2 are essentially the same sequence. 

As a result, we can choose disks 8 from S0  (or from S2), 5 
from S1, and 10 from S2 (or from S0). Another possible 
combination could be 8, 7, and 10.    

Disruptions can be eliminated by taking advantage of 
these retrieval patterns. Two buffers, each of which can 
hold D/ω subobjects, may be needed. That is, when the 
system is displaying previously retrieved D/ω subobjects 
from one buffer, it retrieves next D/ω subobjects into 
another buffer. The two buffers are used for input and 
output alternately. 

 
4.2 Discussions 

 

Disruptions are eliminated using a pair of buffers of size 
D/ω subobjects each. As conceived, the larger the ω value, 
the smaller the buffer is required, and the shorter the 
waiting time (i.e., the time to fill the buffer at the 
beginning). However, when ω gets larger, it may become 
more difficult to find suitable idle disks. As readers may 
have noticed that the disks in the system are in fact divided 
into ω disjoint groups, each of which has D/ω disks. The ω 
groups are (i, (i + k) mod D, …, (i + (D/ω -1) × k) mod D), 
(i +1, (i +1 + k) mod D, …, (i +1+ (D/ω -1) × k) mod D), 
…, (i + ω-1,  (i + ω-1 + k) mod D, …, (i + ω-1 + (D/ω -1) 
× k) mod D). In order to guarantee the appearance of 
previously mentioned patterns, idle disks must be chosen 
from groups corresponding to the storage sequences of the 
object. Note that more than one disk may need to be 
chosen from a group when M(X) > ω. The larger the 
number of groups, the more difficult it is to find a match. 
Therefore, a trade-off has to be made by the administrator. 

In summary, when ω = 1, any arbitrarily chosen M(X) 
idle disks can be used to display object X. It is most 
flexible, however, with a bit longer delay of D time units 
and a bit larger buffer. Note that there is also a delay in the 
original staggered striping, where only consecutive idle 
disks are used for display. The delay is the average amount 
of time waiting for all idle disks to shift to the right 
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positions to read the first subobject.  When ω > 1, each 
idle disk chosen must appears in a distinct storage 
sequence of the object. It may be more restrictive, but it 
uses smaller buffers and spends less time in waiting. 

 
 

5. Conclusion 
 

Striping techniques can effectively deal with the 
bottleneck problem by declustering objects across multiple 
disks and using the aggregated bandwidth of disks to 
display objects. In general, they can serve more requests 
concurrently and store more objects than the replication 
methods. The staggered striping is probably the most promising 
technique in the striping category for MOD systems 
because of its flexibility in storing multimedia objects and 
the capability of displaying objects of variable bandwidths. 

Bandwidth fragmentation can occur when requests (for 
objects of varying bandwidths) arrive and are completed. It 
renders the systems with many small holes of idle disks, 
which are not large enough to serve requests, and thus can 
degrade the performance of the system considerably. In this 
paper, we addressed the problems of potential disruptions 
in display when fragmented disks are used. We have 
analyzed the retrieval patterns and identified patterns that 
can be useful in eliminating disruptions. We have shown 
that with proper choice of idle disks and a simple buffer 
scheme, disruptions can be eliminated. Currently, we are 
investigating further improvement on the waiting time, 
which is D/ω now. 
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