
 Journal of Information Processing Systems, Vol.4, No.1, March 2008 1

Utilizing Fragmented Bandwidth in a Staggered Striping
Multimedia System

Wen-Chi Hou*, Yang Pan*, and Dunren Che*

Abstract: In this paper, we discuss the use of fragmented bandwidth to improve the performance of
staggered striping in a multimedia system. It is observed that potential disruptions can occur when non-
consecutive idle disks are used for displaying multimedia objects. We have identified useful retrieval
patterns and shown that with proper selections of fragmented disks and a simple buffering scheme,
disruptions can be easily eliminated.

Keywords: Disk Striping, Multimedia System, Bandwidth

1. Introduction

Recent advances in networking and multimedia
technology have made it possible to provide concurrent
services, such as on-line shopping, on-line auction, etc., to
hundreds or even thousands of customers. Unlike
conventional video rental stores, which can serve only a
very limited number of viewers simultaneously, a
multimedia-on-demand (MOD) system is intended to
provide on-line, concurrent, convenient, and faster service
to a large number of viewers. In addition to the
entertainment business, an MOD system can also be
applied to other areas, such as education and library
information systems. For example, with an MOD system,
educational videos can be displayed and viewed by
students over cable TV systems continuously and reliably.
Besides videos, new multimedia applications, such as
graphical modeling of nearby 3D objects in architectural
buildings, urban city models, scientific visualization, etc.,
[1] can also benefit from the technology of MOD systems.

In an MOD system, hundreds or even thousands of
multimedia objects are stored on a storage server and are
ready to be played out upon requests. Multimedia storage
servers are generally connected to clients via high-speed
networks so that continuous media such as video and audio
can be played on users’ stations. Viewers can also access
multimedia objects simultaneously on the server. The goal
of an MOD server is to serve as many viewers concurrently
as possible. A typical MOD system is shown in Figure 1.1.

A tertiary storage architecture is usually employed on a
large-scale MOD server [2], in which the server combines
highly cost-effective tertiary storage devices, such as
tapes and optical disks, with high-performance, but
perhaps more expensive, magnetic disks. Magnetic disks
are used to store frequently accessed objects (e.g., high-
demand objects), while tertiary storage devices are used

for the remaining objects.

Fig. 1.1. Architecture of an MOD system.

Multimedia data can have varying and sometimes very

high bandwidth requirements. For example, a 27 MBps
(i.e., megabytes per second) bandwidth is required by
NTSC for “network-quality” video [2], while a bandwidth
of approximately 81 MBps is required for an HDTV-
quality image [2]. Although the bandwidth of a modern
magnetic disk drive can reach approximately 20 MBps [3],
multimedia data are expected to have much higher
bandwidths in the future [4].

Compression techniques [5], such as MPEG-1 and
MPEG-2, have been applied successfully to multimedia
objects like movie videos, to reduce the bandwidth
requirements. For example, MPEG-2 movie video objects
require only a bandwidth of 0.42 MBps [2]. However,
these compression techniques generally are lossy and can
result in loss of important information. Thus, they may not
be acceptable to objects like computer programs, scientific
data, medical data, etc., which require high accuracy. For
example, a slight change in the structure and formation of
cells in biology, crystals in material science, phenomena in
space, can lead to severe errors or loss of important

DOI : 10.3745/JIPS.2008.4.1.001

Copyright ⓒ 2008 KIPS (ISSN 1976-913X)

Manuscript received July 6, 2007; first revision December 8, 2007;
second revision February 26, 2008; accepted February 27, 2008.
Corresponding Author: Dunren Che
* Dept. of Computer Science, Southern Illinois University, Carbondale,

Illinois, USA ({hou, ypan, dche}@cs.siu.edu)

High-Speed

Network

P P P

2 Utilizing Fragmented Bandwidth in a Staggered Striping Multimedia System

observations [4, 6, 7]. An MOD system is expected to cope
with compressed as well as non-compressed high-
bandwidth. Thus, one of the major challenges in building
an MOD system is to support varying and perhaps high-
bandwidth data with low-bandwidth disk drives.

Although individual disks may have large enough
storage capability [8] and speed to display some
compressed video objects, a bottleneck can easily arise
when there are simultaneous requests for videos stored on
the same disk. Since a bottleneck can result in a
significant delay in display, it may not be desirable to
store an entire video object on a single disk. Thus, how to
place the data on disks to balance the workload and serve
more requests without much delay has also emerged as an
important issue.

RAID (Redundant Array of Inexpensive Disks) is often
used as a high-bandwidth secondary storage device by
allowing simultaneous access to an array of disks.
However, when used in a multimedia system, its lack of
control over the placement of data [6] may pose some
problems. For example, if the data retrieved from RAID is
faster than display, it may overflow the memory buffer of
the display station. In addition, it is hard to display several
objects simultaneously with one disk controller.

Replication and striping techniques [4, 6, 9, 10, 11] were
studied by researchers as alternatives. In replication
approaches [6, 9], objects are replicated to support
simultaneous displays of the same video objects. However,
the bottleneck problem may still exist when the number of
requests exceeds the number of replicas of objects.
Moreover, objects can take up a lot of space due to the
replication.

Disk striping [4, 12, 13] effectively overcomes the
bottleneck problem by declustering objects across multiple
disks and using the aggregated bandwidth of disks to serve
simultaneous requests. In addition, servers in the striping
approach can store more video objects than in the
replication methods.

Staggered striping [4] is a variant of the striping. It is a
promising technique due its flexibility and capability in
storing and displaying multimedia objects of variable
bandwidths. However, as requests arrive and are served,
the system could be left with dispersed variable-sized
“holes” of idle disks, termed fragmented disks [4], during
display. This situation is similar to the memory
fragmentation in the traditional operating systems. When
there is no single hole that is large enough to meet the
bandwidth requirement of the requested object, the request
can not be served, even though the total number of idle
disks in the system is enough. Berson et al. [4] pointed out
potential bandwidth waste due to this bandwidth
fragmentation. They have shown an example of how
portions of subobjects, which are contiguous portions of an
object, can be retrieved using fragmented disks and
buffered until the entire subobjects are put together.
However, there were no discussions and analysis on how
fragmented bandwidth can be utilized in general. In fact,
we have found that the use of fragmented bandwidth is

much more complex than the example they showed.
Specifically, disruptions, termed as “hiccups” [14, 4], can
occur not only at the beginning of the display but also in
the middle of display. Moreover, the buffer space needed
to store incomplete pieces of subobjects can be very large
if we do not take advantage of the properties of retrieval
patterns. To the best of our knowledge, there have not been
any in-depth studies on the utilization of fragmented
bandwidth in the staggered striping. In this paper, we
propose a method to solve the disruption problems when
non-consecutive idle disks are used for display. We
identified repeated patterns of retrieval that can be utilized
to smooth the display along. With proper selection of idle
disks and a simple buffering scheme, fragmented
bandwidth can be fully utilized and disruptions can be
eliminated.

Ghandeharizadeh, et al. [15] also discuss placement of
data on disks, but its underlying assumptions are different
from ours. They assume a subobject (of the object) is
placed on a single disk while we assume a subobject (of an
object) is striped across a number of disks. Moreover, we
allow objects to require different bandwidth, which causes
the fragmented bandwidth problem on which our study
focuses.

The rest of the paper is organized as follows. A review
of related work is presented in Section 2. In Section 3, we
demonstrate the disruption problems in the staggered
striping and point out the existence of potential disruption
patterns. In Section 4, a formal analysis of the disruption
patterns is conducted and a solution to the disruption
problems is presented. Section 5 is the conclusion.

2. Related Work

In this section, we review two main approaches in
storage and retrieval of video data from disks and discuss
their problems.

2.1 Terminology

A multimedia object here, for simplicity, is referred to as
an object. A subobject represents a contiguous portion of
an object and is intended to be a unit of transfer between
the server and the viewer’s station. In generally, a cluster
of disk drives is accessed simultaneously to fulfill the
bandwidth requirement of objects. The degree of
declustering of an object X, denoted M(X), is defined to be
the number of disk drives, across which a subobject of X is
declustered. Let BDisplay(X) be the bandwidth required for
displaying an object X, and BDisk be the effective
bandwidth of a disk. Then, M(X) = BDisplay(X)/Bdisk. Let D
be the number of disks in the system, which are numbered
from 0 to D-1. Let R be the number of clusters into which
the disk drives are partitioned. Then, R = D/M(X).

For simplicity, in this section, we shall assume all
objects have the same bandwidth requirement, unless
otherwise stated.

Wen-Chi Hou, Yang Pan, and Dunren Che 3

2.2 Replication Methods

The replication approach [6] partitions the disk drives
into R clusters and assigns a replica of an object to at least
one of the clusters. Frequently accessed objects can be
replicated in as many clusters as needed. In the example
shown in Fig. 2.1, the disk drives are partitioned into 2
clusters, each of which has 3 disk drives. An object X,
whose M(X) = 3, is stored in one cluster and replicated in
another cluster. The object X is partitioned into blocks X0,
X1, …., and X5, and these data blocks are assigned to disk
drives in a round-robin manner within a cluster. The
system can display the first portion of this object while
continuously retrieving the next portion (i.e., X3, X4, and
X5) from disk drives of the same cluster (i.e., pipelining).
The replication method enables the system to support R
simultaneous displays of the objects.

Chan’s rotational mirrored declustering (RMD) [9], as
shown in Fig. 2.2, is a variant of the replication approach,
which uses a set of disk arrays to store objects. Given a
set of rn disks, numbered 0, 1, …. , rn – 1, where n is the
number of disks in a disk array, and r is the number of
the disk arrays, the ith partition of the jth replica of an
object is placed on the disk d, according to the following
formula:

 d = (i + ⎣i/n⎦ * (j – 1)) mod n + (j – 1) * n

An example of the data placement in RMD is shown in

Figure 2.3. An object X, consisting of X0, …, X5, is first
assigned to a disk array, and then a replica is properly
rotated and declustered on another disk array. A
predetermined replication threshold is used to determine
the number of replicas. This method allows replicas and
disks to be added online and was found effective in dealing
with load balancing problem. The method is also fault
tolerant [9].

In general, a replication approach can support a higher
number of simultaneous displays because of the multiple
copies of data. It is also more fault tolerant because the
traffic to a failed disk can be directed to other disks
containing the replica. However, all replication approaches
require additional disk drives to store multiple copies of the
objects, and the cost can be very high.

2.3 Striping Methods

The basic idea of the striping approach is to stripe the
objects across clusters of disks so that the aggregate
bandwidth of a cluster can match the bandwidth
requirement of objects. In this section, we discuss two
methods in this category.

Fig. 2.1. Data Replication

Fig. 2.2. A Disk-array-based Video Server

Fig. 2.3. Data Placement in RMD

2.3.1 Simple Striping
Figure 2.4 illustrates the placement of an object X on

disks using the simple striping technique [4]. Assume that
a bandwidth of 60 MBps (i.e., BDisplay(X)= 60 MBps) is
required for displaying X and there are 9 disk drives (i.e.,
D = 9) in the system, each with 20 MBps transfer rate (i.e.,
BDisk = 20 MBps). Since the aggregated bandwidth of 3
disk drives (i.e., M(X) = BDisplay(X)/BDisk) is needed to
match the bandwidth of the object, disk drives are
organized as 3 clusters (R = D/M(X)). The object X is
divided into a sequence of equi-sized contiguous
subobjects X0, X1, …, Xn. These subobjects are assigned to
clusters from the first available one, say cluster 0, in a
round-robin manner [4, 16, 17], as shown in the upper part
of Figure 2.4.

A subobject, which is made of 12 data blocks in the
example, is further striped across its cluster in a round-
robin manner. Figure 2.4 shows how X1, consisting of data
blocks 12 to 23, is interleaved among the disks of cluster 1
[18]. The set of blocks assigned to a disk, though not
consecutive in number, constitutes a fragment. That is, data
blocks 12, 15, and 18 of X1, and 21 of X1 constitute the
fragment X1.0 and data blocks 13, 16, 19, and 22 make the
fragment X1.1, and so on. At each time interval, all
fragments of a subobject are transferred from individual
disks to the network at the same time. In this way, the
system can display a subobject while retrieving it from the
disk drives (i.e., multi-input pipelining) [4, 19].

When a system is to display X, it starts reading from a
cluster, say Ci, that contains the first subobject X0. Next, it
employs Ci+1 mod R to display X1. The system iterates over
the clusters until X is completely displayed.

Figure 2.5 demonstrates how the system serves
concurrent requests for three objects, X, Y, and Z. Assume
after retrieving subobject Xi+2 at time interval 2, the display

4 Utilizing Fragmented Bandwidth in a Staggered Striping Multimedia System

of object X is completed. Thus, cluster 0 becomes idle at
time intervals 3 and 6, while clusters 1 and 2 become idle
at time intervals 4 and 5, respectively. If a request for an
object, whose first subobject resides on cluster 0, arrives at
or before time interval 3, cluster 0 can begin serving the
new request at time interval 3; otherwise, this request
would have to wait until cluster 0 becomes idle at time
interval 6.

Since the size of cluster is fixed and all disks in a cluster
are operated synchronously, simple striping can not
effectively deal with objects of varied bandwidths. In order
to serve objects of different bandwidths, a naive approach
[4] is to form the disk clusters based on the highest
bandwidth requirement, which clearly would waste a large
portion of available disk bandwidth.

Fig. 2.4. Fragment Layout on Disks

Fig. 2.5. Simple Striping with 3 Clusters

2.3.2 Staggered Striping

Staggered striping [4] is a refinement of the simple
striping. In the staggered striping, disk clusters are formed
logically, instead of physically, as in the simple striping.
Moreover, the requirement that the assignment of two
consecutive subobjects of X, say Xi and Xi+1, be on non-
overlapping clusters in the simple striping is removed. The
staggered striping can alleviate the wasted bandwidth
problem due to the varying bandwidth requirements of
media objects in the simple striping. The staggered striping
is described as follows.

Stride k is defined to be the distance, in terms of the
number of disk drives, between the first fragments of two
consecutive subobjects Xi.0 and X(i+1).0. Notice that in the

simple striping, k is M(X), while in the staggered striping,
k can vary in value from 1 to D. Staggered striping is
indeed a generalization of the simple striping.

Objects, maybe of different bandwidths, are assigned to
disks independently with the same stride. Figure 2.6(a)
illustrates a possible placement of objects X, Y, and Z with
bandwidth requirements of 40, 80, and 60 MBps,
respectively, in a system with 9 disks (with Bdisk = 20
MBps). X0 is stored on disks 0 and 1 (M(X) = 2), Y0 is on
disks 2, 3, 4, and 5 (M(Z) = 4), and Z0 is on disks 0, 7, and
8 (M(Y) = 3). Note that the strides for all objects are 1.

In order to display an object, say X, the system must first
locate the M(X) adjacent disk drives that contain subobject
X0 (i.e., disks 0 and 1). If these disk drives are idle, X0 can
be retrieved and displayed immediately; otherwise, the
display has to be delayed until these disks become idle. At
the next time interval, it reads from the next M(X) disk
drives (i.e., disks 1 and 2), by shifting k (i.e., 1 in this
example) disks to the right.

As requests arrive and are served, the system is left with
dispersed “holes” of idle disks, similar to the memory
fragmentation problem in the traditional operating system.
Since in the striping approach, all fragments of a subobject
must be retrieved from disks at the same time. If the disks
containing the requested subobject are not all idle at the
same time, bandwidth fragmentation can occur. For
example, consider the placement of objects in Figure 2.6(a)
again. Assume the system is to retrieve Y0 and Z0 at the
moment and a request for X has just arrived. While there

(a)

(b)

Fig. 2.6. Buffer Utilization for Staggered Striping with 9 Disks

Wen-Chi Hou, Yang Pan, and Dunren Che 5

are two disks (1 and 6) idle, a request for object X cannot
be served until the display of Z completes, because disks 0
and 1 are not available at the same time. These free but
non-consecutive idle disks, like 1 and 6, are called
fragmented disks [4].

To utilize the bandwidth of fragmented disks, additional
buffer space is used in [4]. Fragments on those
“fragmented” disks are read and stored in the buffer until
the rest of pieces of the subobjects are ready to transfer.
That is, when all the pieces of a subobject are either having
been buffered or residing on currently free disks, they are
transmitted to the network (using a pipelining scheme).

In Figure 2.6(b), the white regions indicate that the
corresponding disks are idle while the shaded regions
indicate that disks are busy serving other requests. Assume
that a request for an object X arrives at t0 and there are two
fragmented disks (disks 1 and 6) at this moment. Disk 1 is
now in position to read fragment X0.1, but disk 0 is busy
with another request. Therefore, X0.1 is read and buffered.
At t3, since disk 0 can directly transfer fragment X0.0 onto
the network, the buffered fragment X0.1 is also transferred
to the network. At t6, we assume that three intervening
disks (disks 4, 5, and 6) have completed their service and
become free. Therefore, at t9, the entire X6 can be delivered
directly from disks to the network without buffering.

While it seems simple to utilize fragmented bandwidth,
the above example only illustrates a best scenario. In fact,
we have found that disruptions of display can occur at any
time when fragmented disks are used. To the best of our
knowledge, such disruptions (that occur during the display)
have not been addressed in the literature. We will describe
this problem in detail in Section 3 and discuss the solution
in Section 4.

3. Observations on the Disruptions

The quality of a display is severely compromised if
disruptions occur during the display. Disruptions can occur
when there are not enough idle disks to display objects.
However, even with enough idle disks, there can still be
disruptions if these idle disks are not consecutive, i.e.,
fragmented. In this chapter, we show how disruptions can
occur and discuss properties associated with disruptions.

3.1 Disruptions in Staggered Striping

As mentioned earlier, there can be variable-sized “holes”
of idle disks in the system as disks are allocated to and
released by requests for objects of different bandwidths. If
non-consecutive idle disks are to be used, subobjects may
not be able to be retrieved in their entireties, resulting in
potential disruptions.

In Figure 3.1, we show how disruptions can occur in a
staggered striping system with k = 1. Assume at t0, disks 0,
1, 2, and 4 are idle and are designated to serve a request for
object X with M(X) = 4. Note that the four idle disks are
not consecutive and the rest of disks are busy with other
requests. For clarity, only fragments of object X retrieved

Fig. 3.1. Retrieval of Object X Using Non-consecutive

Idle Disks 0, 1, 2 and 4 with k = 1.

at each time interval are indicated in the figure. Note that
each disk stores a set of fragments coming from different
subobjects. Fragments on a disk are read sequentially for
the display of the object.

The rightmost column “completed subobjects” lists
subobjects, all of whose fragments have been completely
retrieved from disks at the corresponding time interval. As
shown in the figure, a disruption occurred at t4, and X3 was
not ready until t13. Note that other subobjects, such as X4,
X5, X6, X7, X8, X9, X10, X11 and X12, are all ready before X3.
A naive solution to eliminating disruptions is to delay the
retrieval until there are enough consecutive idle disks in the
system. Unfortunately, it can result in substantial delay as
consecutive idle disks may not be available until one or
more current requests are finished.

It is observed from Figure 3.1 that although subobjects
retrieved are out of sequence, there are still the same
number of subobjects retrieved (i.e., 14 = D) in the first 14
time units as if we were using consecutive idle disks. In
addition, the retrieval of fragments is not completely
random, that is, no other fragments, except the fragments
of the first 14 subobjects are read during the first 14 time
units. Another important observation is that the set of disks
used at t0 is used again at t14 to retrieve fragments of X14
and X15 (vs. X0 and X1 at t0). Consequently, the retrieval
pattern appearing during the period t0 to t13 is repeated in
the next and every successive 14 time units. This
observation prompts the idea that if we can buffer a small
amount of subobjects (e.g., the first 14 subobjects in the
example) in advance, then the display may be able to be
smoothed over without disruption. That is, while we are
going to retrieve the next 14 subobjects in the next 14 time
units, we display the previously buffered 14 subobjects.

The proposed approach solely relies on the existence of
such repeated retrieval pattern. Therefore, in the following,
we discuss in what circumstances repeated patterns like
above exist.

3.2 Retrieval Patterns

The values of k affect retrieval patterns when non-
consecutive idle disks are used. Recalling that in Figure 3.1,

6 Utilizing Fragmented Bandwidth in a Staggered Striping Multimedia System

where k was set to 1, although a disruption occurred at t4,
all the first 14 subobjects, X0, X1, …, X13, were completely
retrieved by the end of t13, and a new cycle begins at t14.
This repeated pattern can be identified easily and can be
very useful in eliminating disruption.

However, the situations may be a little more complex
when k is set to other values. Let us consider Figure 3.2,
where k is set to 2. Although there are still four fragments
of object X read in each time interval, some disks, such as
disks 1, 3, 5, 7, 9, 11, and 13, have read only two fragments
during the first 14 time units, while others read six
fragments. Due to this imbalance in reading, the retrieval
of those fragments on odd-numbered disks is considerably
delayed. For example, fragments X7.1 and X7.3, on disks 1
and 3, respectively, were not retrieved until t14 and t15,
while some other higher-numbered fragments, like X15.2,
X16.0, etc., were read much sooner than in the previous case
(i.e., k = 1). Indeed, fragments on even-numbered disks are
retrieved sooner, while much later for fragments on odd-
numbered disks, prolonging the entire retrieval process by
a factor of 2. This implies a very large buffer may be
needed if we attempt to eliminate disruptions.

However, if we had used idle disks 0, 1, 2, and 5,
assumed available, the situation would have been quite
different. As shown in Fig. 3.3, with idle disks 0, 1, 2, and
5 designated at t0, all the first 7 subobjects are completely
retrieved by the end of t6. A new cycle begins at t7 and
repeats for every 7 time units. This pattern could be useful

Fig. 3.2. Retrieval of Object X Using Non-consecutive Idle

Disks 0, 1, 2 and 4 when k = 2.

Fig. 3.3. Retrieval of Object X Using Non-consecutive Idle

Disks 0, 1, 2, and 5 when k = 2.

in our attempt to display objects continuously.
From Figures 3.2 and 3.3, we notice that with the proper

choice of idle disks, if available, useful repeated patterns
with a shorter period (less than D) may be found when k
values are different than 1. In the next chapter, we will
formally discuss how a pattern is affected by various
factors, such as k, D, placement of subobjects, and idle
disks, etc.

4. Pattern Analysis

The goal is to find the existence of a period of p time
units, within which the next p successive subobjects can be
completely retrieved using a given set of non-consecutive
disks. For simplicity, we shall not mention the object of
concern explicitly in the following discussion

Definition. The storage sequence for the fth fragments of
subobjects m to n, denoted Sf(m, n), is a sequence of disk
IDs that stores the fth fragments of successive subobjects
from m to n.

Recall that each subobject is striped across a number of
disks and the part of the subobject on each disk is called a
fragment. Let j be the ID number (0 ≤ j < D) of the disk
containing the fth fragment of the 0th subobject of X (i.e.,
X0.f). By definition of the stride k, disk (j + k × n) mod D
must be the disk containing the fth fragment of the nth
subobject. Thus, S0(0, n) consists of disks j , (j + k × 1)
mod D, …, (j + k × n) mod D.

Definition. The retrieval sequence beginning with disk i

for the period from tm to tn, denoted as Ri(tm, tn), is the
sequence of disk IDs beginning with disk I that are used in
successive time intervals from tm to tn to retrieve the object
in the staggered striping.

Let i be the ID number (0 ≤ i < D) of one of the disks
designated to serve a request for a certain object X at t0.
Then at tn, we can infer that disk (i + k × n) mod D must be
a disk serving X, because of the stride k. Consequently,
Ri(t0, tn) is made of disks i, (i + k × 1) mod D, …, (i + k ×
n) mod D. Note that each disk designated to serve X at t0
has its own retrieval sequence.

Let ω be the largest common divisor of D and k. Then,
both a storage and a retrieval sequence can be rewritten as i,
(i + k × 1) mod D, …, (i + k × D/ω) mod D, (i + k × (D/ω +
1)) mod D, …, etc. Since (k × D/ω) mod D = 0, (i + k ×
D/ω) mod D becomes (i + k × 0) mod D, (i + k × (D/ω+ 1))
mod D becomes (i + k × 1) mod D, and so on. As a result,
there can be only D/ω distinct disks in each storage or
retrieval sequence of length greater than D/ω, and they are
reused every D/ω time units.

Let im, 0 ≤ m < M(X), be a set of M(X) idle disks chosen
to serve X at t0. As mentioned earlier, each disk stores a set
of fragments from different subobjects (of an object) and
those fragments on a disk are retrieved one at a time
sequentially when the disk is used to display the object. It
can be conceived that if the disks appearing in the

Wen-Chi Hou, Yang Pan, and Dunren Che 7

sequences
mi

R (0, D/ω), 0 ≤ m < M(X), also appear the

same number of times in sequences Sf(0, D/ω), 0 ≤ f <
M(X), and vice-versa, then the first D/ω subobjects,
nothing more and nothing less, are retrieved during the first
D/ω period. Note that the sequences Sf(0, D/ω), 0 ≤ f <
M(X), represent the first D/ω objects. Moreover, a new and
identical cycle begins for each successive D/ω time
interval because all subobjects appearing in preceding D/ω
interval are completely retrieved during that interval. In the
following, we will discuss how to find such set of idle
disks, if available, so that this retrieval pattern exists.

When ω = 1, i.e., no common divisor between k and D,
D/ω = D. Let im, 0 ≤ m< M(X), be an arbitrarily set of
M(X) idle disks chosen at t0. It can be observed that at the
end of tD-1, every disk in the system appears exactly once in
any of the retrieval sequences

mi
R (0, D-1), 0 ≤ m < M(X).

Meanwhile, all disks will also appear exactly once in each
Sf(0, D-1), 0 ≤ f < M(X). Thus, at the end of tD-1, all
fragments of the first and only the first D subobjects (i.e.,
D × M(X) fragments) are retrieved using arbitrarily chosen
M(x) idle disks. Moreover, a new cycle begins for the next
and successive D time units because no partially retrieved
subobjects from previous D time units are left to be
completed in the next D time units.

When ω ≥ 2 (obviously, k ≥ 2), the situation is a bit more
complex. For each disk i, designated to serving object X at
t0, only D/ω (< D) distinct disks appear in its retrieval
sequence, i.e., i, (i + k × 1) mod D, (i + k × 2) mod D, (i +
k × ((D/ω -1)) mod D, and they are reused every D/ω
time units. For example, consider Figure 3.2 again, where k
= 2 and D = 14. Since ω = 2, only 7 distinct disks are used
in each retrieval sequence. For idle disk 0 chosen at t0, R0(0,
6) consists of only disks 0, 2, 4, 6, 8, 10 and 12, while for
disk 1, R1(0, 6) is made of 1, 3, 5, 7, 9, 11, and 13.
Similarly, for each disk j storing the f th fragment, 0 ≤ f <
M(X), of the 0th subobject, the storage sequence Sf(0, D/ω -
1) consists of 7 disks, j, (j + k × 1) mod D, …, and (j + k
× (D/ω -1)) mod D.

It can be observed that if i is an idle disk chosen at t0 and
it appears in the sequence Sf(0, D/ω) (i.e., j, (j + k × 1) mod
D, …, i, (i + k × 1) mod D, …, or (j + k × (D/ω -1)) mod
D), then Ri(0, D/ω) contains the same set of D/ω distinct
disks as Sf(0, D/ω), except that the order of the disks
appearing in the sequences may be different. Thus, if im, 0
≤ m < M(X), are the idle disks chosen at t0, each of them
appearing in a distinct storage sequence Sf(0, D/ω), 0 ≤ f <
M(X), then at tD/ω -1, then the same set of disks will appear
the same number of times in both

mi
R (0, D/ω -1), 0 ≤ m

< M(X), and Sf(0, D/ω), 0 ≤ f < M(X). That is, the first
(and only the first) D/ω subobjects will be completely
retrieved during the first D/ω time units using idle disks
im, 0 ≤ m < M(X). The pattern repeats for every D/ω time
units as no partially retrieved subobjects from previous
D/ω interval need to be completed in the next D/ω interval
and the set of disks used at t0 is used again at tn×(D/ω), n >0.
The following theorem follows.

Theorem. If each of the idle disks chosen to serve an
object is from a distinct storage sequence of the object,
then each successive D/ω subobjects from the beginning
can be completely retrieved within each successive D/ω
time interval.

In the following, we use a simple example to illustrate
how idle disks, if available, are chosen to avoid potential
disruptions.

Example. Consider a system with 14 disks and a stride k

= 4. Assume an request for object X (M(X)=3) has just
arrived and currently disks 5, 7, 8, and 10 are idle. We
further assume that the fragments of the first subobject of
X are stored on disks 2,3, and 4.

The storage sequences are:
 S0 = 2, 6, 10, 0, 4, 8, 12, 2, 6, …
 S1 = 3, 7, 11, 1, 5, 9, 13, 3, 7, …
 S2 = 4, 8, 12, 2, 6, 10, 0, 4, 6, …

Notice that S0 and S2 are essentially the same sequence.

As a result, we can choose disks 8 from S0 (or from S2), 5
from S1, and 10 from S2 (or from S0). Another possible
combination could be 8, 7, and 10.

Disruptions can be eliminated by taking advantage of
these retrieval patterns. Two buffers, each of which can
hold D/ω subobjects, may be needed. That is, when the
system is displaying previously retrieved D/ω subobjects
from one buffer, it retrieves next D/ω subobjects into
another buffer. The two buffers are used for input and
output alternately.

4.2 Discussions

Disruptions are eliminated using a pair of buffers of size
D/ω subobjects each. As conceived, the larger the ω value,
the smaller the buffer is required, and the shorter the
waiting time (i.e., the time to fill the buffer at the
beginning). However, when ω gets larger, it may become
more difficult to find suitable idle disks. As readers may
have noticed that the disks in the system are in fact divided
into ω disjoint groups, each of which has D/ω disks. The ω
groups are (i, (i + k) mod D, …, (i + (D/ω -1) × k) mod D),
(i +1, (i +1 + k) mod D, …, (i +1+ (D/ω -1) × k) mod D),
…, (i + ω-1, (i + ω-1 + k) mod D, …, (i + ω-1 + (D/ω -1)
× k) mod D). In order to guarantee the appearance of
previously mentioned patterns, idle disks must be chosen
from groups corresponding to the storage sequences of the
object. Note that more than one disk may need to be
chosen from a group when M(X) > ω. The larger the
number of groups, the more difficult it is to find a match.
Therefore, a trade-off has to be made by the administrator.

In summary, when ω = 1, any arbitrarily chosen M(X)
idle disks can be used to display object X. It is most
flexible, however, with a bit longer delay of D time units
and a bit larger buffer. Note that there is also a delay in the
original staggered striping, where only consecutive idle
disks are used for display. The delay is the average amount
of time waiting for all idle disks to shift to the right

8 Utilizing Fragmented Bandwidth in a Staggered Striping Multimedia System

positions to read the first subobject. When ω > 1, each
idle disk chosen must appears in a distinct storage
sequence of the object. It may be more restrictive, but it
uses smaller buffers and spends less time in waiting.

5. Conclusion

Striping techniques can effectively deal with the
bottleneck problem by declustering objects across multiple
disks and using the aggregated bandwidth of disks to
display objects. In general, they can serve more requests
concurrently and store more objects than the replication
methods. The staggered striping is probably the most promising
technique in the striping category for MOD systems
because of its flexibility in storing multimedia objects and
the capability of displaying objects of variable bandwidths.

Bandwidth fragmentation can occur when requests (for
objects of varying bandwidths) arrive and are completed. It
renders the systems with many small holes of idle disks,
which are not large enough to serve requests, and thus can
degrade the performance of the system considerably. In this
paper, we addressed the problems of potential disruptions
in display when fragmented disks are used. We have
analyzed the retrieval patterns and identified patterns that
can be useful in eliminating disruptions. We have shown
that with proper choice of idle disks and a simple buffer
scheme, disruptions can be eliminated. Currently, we are
investigating further improvement on the waiting time,
which is D/ω now.

References

 [1] Santos, J. R., Muntz, R., “Design of the RIO
(Randomized I/O) Storage Server”, Technical Report
970032, Computer Science Dept., UCLA, 1997.

 [2] Gemmel, D. J., Vin, H. M., Kandlur, D. D., Rangan,
P.V., Rowe, L. A., “Multimedia Storage Servers: A
Tutorial”, IEEE Computer, May 1995, pp. 40 – 49.

 [3] Ng., S., “Advances in Disk Technology: Performance
Issues”, IEEE Computer, May 1998, pp. 75 – 81.
[ORS 97] Ozden, B., Rastogi, R., Silberschatz, A.,
“Periodic Retrieval of Videos from Disk Arrays”,
IEEE 1997, pp.333 – 343.

 [4] Berson, S., Ghandeharizadeh, S., Muntz, R, Ju, X.,
“Staggered Striping in Multimedia Information
System”, Proc. of the 1994 ACM SIGMOD, vol. 23
no 2, June 1994, pp.79 – 90.

 [5] Raghavan, S. V., Tripathi, S. K., “Networked
Multimedia Systems: Concepts, Architecture, and
Design”, Prentice Hall, 1998.

 [6] Ghandeharizadeh, S., Ramos, L., “Continuous
Retrieval of multimedia data using parallelism”,
IEEE Transactions on Knowledge and Data
Engineering, vol. 5, no. 4, 1993, pp. 658 – 669.

 [7] Freedman, C., DeWitt, D. J., “The SPIFFI Scalable Video-
on-Demand System”, SIGMOD’ 95, pp. 352 – 361.

 [8] Luther, A.C., “Digital Video in the PC Environment”,
New York: McGraw-Hill Book Company, 1989.

 [9] Chen,M., Hsiao, H., Li, C., Yu, P., “Using Rotational
mirrored Declustering for Replica Placement in a
Disk-array-based Video Server”, Multimedia Systems,
vol. 5, December 1997, pp. 371 – 379.

[10] Ghandeharizadeh, S., Kim, S. H., Shi, W.,
Zimmermann, R., “On Minimizing Startup Latency in
Scalable continuous Media Servers”, Proceedings of
Multimedia Computing and Networking conference,
Feb. 1997.

[11] Shahabi, C., “Scheduling the Retrievals of
Continuous Media Objects”, USC Computer Science
Ph.D. Thesis, Aug. 1996.

[12] Al-Marri, J. A. M., “Variable Bit Rate Continuous
Media Servers”, USC Computer Science Ph.D. Thesis,
Aug. 1998.

[13] Ghandeharizadeh, S., Zimmermann, R., Shi, W.,
Rejaie, R., Ierardi, D., Li, T., “Scalable Continuous
Media Server”, Multimedia Tools and Applications
Journal, Kluwer Academic Publishers, vol. 5, issue 1,
July 1997, pp.79 – 108.

[14] Dashti, A.E., Ghandeharizadeh, S., “On
Configuring Hierarchical Storage Structures”, Joint
NASA/IEEE Mass Storage Conference, March 1998.

[15] Ghandeharizadeh, S., Kim, S., “Design of Multi-user
Editing Servers for Continuous Media” J. of
Multimedia Tools and Applications, Vol. 11, pp. 101-
127, 2000.

[16] Zimmermann, R., Ghandeharizadeh, S., “Continuous
Display Using Heterogeneous Disk Subsystems”,
ACM Multimedia Conference, Nov. 1997.

[17] Zimmermann, R., “Continuous Media Placement and
Scheduling in Heterogeneous Disk Storage Systems”,
USC Computer Science Ph.D. Thesis, Dec. 1998.

[18] Shi, W., “Data Sharing in Interactive Continuous
Media Servers”, USC Computer Science Ph.D. Thesis,
Aug. 1998.

[19] Ghandeharizadeh, S., Dashti, A., Shahabi, C.,
“Pipelining Mechanism to Minimize the Latency
Time in Hierarchical Multimedia Storage Managers”,
Computer Communications, vol. 18, issue 3, March
1995, pp. 170 – 184.

Wen-Chi Hou
He received a Ph.D. degree in Computer
Sci. & Eng. from Case Western Reserve
Univ., Cleveland Ohio, in 1989. He is an
Associate Professor at Southern Illinois
University Carbondale, USA. His research
interests include database & data mining.

Dunren Che
He received his Ph.D. in Computer Science
from Beijing University of Aeronautics and
Astronautics, China, in 1994. He is
currently an Assistant Professor at Southern
Illinois University Carbondale, U.S.A. His
main interests are in database and data
mining.

