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Utilizing Genetic Predisposition Score in Predicting Risk of Type 
2 Diabetes Mellitus Incidence: A Community-based Cohort 
Study on Middle-aged Koreans

Contribution of genetic predisposition to risk prediction of type 2 diabetes mellitus (T2DM) 
was investigated using a prospective study in middle-aged adults in Korea. From a community 
cohort of 6,257 subjects with 8 yr’ follow-up, genetic predisposition score with subsets of 
3, 18, 36 selected single nucleotide polymorphisms (SNPs) (genetic predisposition score; 
GPS-3, GPS-18, GPS-36) in association with T2DM were determined, and their effect was 
evaluated using risk prediction models. Rs5215, rs10811661, and rs2237892 were in 
significant association with T2DM, and hazard ratios per risk allele score increase were 1.11 
(95% confidence intervals: 1.06-1.17), 1.09 (1.01-1.05), 1.04 (1.02-1.07) with GPS-3, 
GPS-18, GPS-36, respectively. Changes in AUC upon addition of GPS were significant in 
simple and clinical models, but the significance disappeared in full clinical models with 
glycated hemoglobin (HbA1c). For net reclassification index (NRI), significant improvement 
observed in simple (range 5.1%-8.6%) and clinical (3.1%-4.4%) models were no longer 
significant in the full models. Influence of genetic predisposition in prediction ability of 
T2DM incidence was no longer significant when HbA1c was added in the models, confirming 
HbA1c as a strong predictor for T2DM risk. Also, the significant SNPs verified in our subjects 
warrant further research, e.g. gene-environmental interaction and epigenetic studies. 
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INTRODUCTION

Although type 2 diabetes mellitus (T2DM), a prevalent and com-
plex disease, is known to be caused by combinations of genes 
and environmental factors, the genetic contribution is not clear-
ly evaluated. Dozens of single nucleotide polymorphisms (SNPs) 
in association with T2DM were identified by genome-wide as-
sociation studies (GWAS), such as PPAR, KCNJ11, TCF7L2, CD­
KAL1, CDKN2A/B, and FTO (1, 2). However, contribution of 
SNPs to development of T2DM was found to be limited, with re
ported estimates of genetic contribution to heritability for T2DM 
unveiled by GWAS as 6%-15% (3, 4).
  Genetic predisposition, expressed in scores of combined risk 
alleles of SNPs discovered from GWAS, has been used in resear
ches on utilizing genotype information for practical use. One of 
them is constructing risk prediction models (5-7), which so far 
have shown limited improvement in prediction ability on T2DM 
risk, compared to common risk factors (3, 8). 
  While limited explanation ability by SNPs on T2DM still re-
mains as a challenge, possibility of disparity in predictive per-
formance by study design and population characteristics has 
been pointed out (9). As most of the polygenic T2DM predic-

tion studies are based on Caucasian populations, extending the 
research to non-European subjects has been strongly recom-
mended (10). 
  Therefore, we aimed to explore the contribution of genetic 
variants on T2DM in a different ethnicity using a well-designed 
prospective data from a community-based cohort study in Ko-
rea. With SNPs found to be in association with T2DM from pre-
viously reported studies, we made a genetic predisposition score 
(GPS) in constructing the prediction models in a cohort study 
of 8-yr follow-up. 

MATERIALS AND METHODS

The Anseong-Ansan Cohort Study, one of the 3 prospective com-
munity-based cohort studies from the Korean Genome and 
Epidemiology Study (KoGES), begun with 10,038 subjects aged 
40 to 69 yr at baseline (2001-2003). Whole-genome sequencing 
using Affymetrix 500K Array (Affymetrix, Santa Clara, CA, USA) 
was performed in 8,842 randomly selected subjects during the 
baseline investigation period, and unphased genotypes were 
imputed with Japanese+Chineses HapMap phase 2 haplotype 
panel using IMPUTE version 2 (http://mathgen.stats.ox.ac.uk/
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impute). Follow-up studies are carried out in 2-yr intervals, at 
2003-2005, 2005-2007, and so on. In this study, we used 8-yr fol-
low-up data, collected biennially until the 4th follow-up (2009-
2011). Details regarding the KoGES, including methods and qual-
ity control for the genotyping, have been described in previous 
reports (11, 12). 
  At baseline, we excluded 2 subjects without any information 
needed for T2DM definition, 683 subjects with history of DM 
diagnosis/treatment or in current oral hypoglycemic medica-
tion/insulin therapy for DM, and 544 subjects with glycated he-
moglobin (HbA1c) ≥ 6.5% or fasting plasma glucose (FPG) ≥  
7.0 mM/L or plasma glucose level 2-hr after ingestion of 75 g 
oral glucose load (2 hr-OGTT) ≥ 11.1 mM/L. From 8,809 sub-
jects at baseline, 954 (10.8%) subjects were eliminated due to 
follow-up loss after fourth follow-up in 2009-2011. Of the re-
maining 7,855 subjects, we excluded another 945 (12.0%) sub-
jects who had not been selected for genotyping procedures at 
baseline. Thus 6,910 subjects remained for analysis (Fig. 1). In-
cident T2DM cases at each follow-up was identified as corre-
sponding to at least one of the following definitions: HbA1c ≥  
6.5%, FPG ≥ 7.0 mM/L, 2 hr-OGTT ≥ 11.1 mM/L, or in treat-
ment state for T2DM with insulin or oral hypoglycemic medi-
cation since the last follow-up or two years’ period. 
  In our study, we tested 38 SNPs reported to be in association 
with T2DM in Korean or East Asian population, from GWAS 
meta-analysis or candidate gene analysis that partly or entirely 
used KoGES baseline data (11, 13, 14). We investigated frequen-
cy of risk alleles of each SNP, and calculated hazard ratios (HR) 
and 95% confidence intervals (CI) by the risk allele on the inci-
dent T2DM in our study subjects by Cox’s proportional hazard 

functions. For GPS, numbers of risk alleles of selected SNPs were 
combined to a continuous variable, ranging from 0 to number 
of selected SNPs multiplied by 2. We also calculated weighted 
GPSs to adjust for different effect estimates of each SNP in as-
sociation with T2DM, using relative effect sizes from the associ-
ation analysis. Thus, higher GPS indicate a higher genetic pre-
disposition to T2DM (15).

Statistical analysis
Cox’s proportional hazard functions were used to estimate HR 
and their 95% CIs. Stepwise procedures were used for variable 
selection in the prediction model. First, we tested all a priori co-
variates in a univariate Cox regression model at significant level 
of P value ≤ 0.2, then fitted all significant and non-significant 
covariates in multivariate Cox regression models with P value 
≤ 0.15 required for inclusion in backward and forward selection 
procedures, respectively. Finally, we used stepwise selection 
with the selected covariates with P value ≤ 0.15 to attain the 
main-effects model. Likelihood ratio test was used for all co-
variate inclusion/exclusion decisions (16). 
  From the full model with all selected variables, we also con-
structed several subset models in accordance with previous lit-
erature (5, 17). For all subset models, we evaluated discrimina-
tion, calibration and risk reclassification after adding risk alleles 
(i.e. GPS) in the models. C-statistics and Hosmer-Lemeshow 
chi-square test were used to test for model discrimination and 
calibration, and net reclassification index (NRI) and integrated 
discrimination improvement (IDI) were analyzed to examine 
risk reclassification upon addition of selected risk alleles (18). 
  A two-tailed P < 0.05 indicated statistical significance. Statis-
tical analyses were performed using SAS version 9.3 (SAS Insti-
tute, Cary, NC, USA) and Stata/SE 13.0 (StataCorp LP, College 
Station, TX, USA).

Ethics statement
Informed written consent was obtained from all participants, 
and the study protocol was approved by the institutional review 
board of the Korea Centers for Disease Control and Prevention 
(KCDC) as well as Seoul National University Hospital (IRB No. 
1306-046-495).

RESULTS 

Mean age of subjects were 51.8 yr at baseline, and males ac-
counted for 47% of the total 6,910 subjects. Over the 8-yr follow-
up, 1,240 (18.0%) were defined as incident T2DM cases (Table 
1). As well as variables tested for prediction modeling (i.e. age, 
body mass index [BMI], triglyceride [TG], FPG, HbA1C, etc.) GPSs 
were higher in incident diabetic cases compared to those who 
remained non-diabetic (P value < 0.001). 
  Among the selected 38 SNPs, three SNPs, rs10811661 (CDK­Fig. 1. Flow chart showing selection of subjects included in the analysis.

Ansung-Ansan Cohort Study 
subjects enrolled at baseline (N = 10,038)

Study subjects for analysis (n = 6,910)

6,257 subjects with 
information on GPS-3

6,299 subjects with 
information on GPS-18

3,033 subjects with 
information on GPS-36

(1) Excluded at baseline
     - No information needed for T2DM definition (n = 2)
     - �DM diagnosis/treatment history, or in current oral 

hypoglycemic medication/insulin therapy for DM 
(n = 683)

     - �HbA1c ≥ 6.5% or FPG ≥ 7.0 mM/L or 2 hr-OGTT ≥ 
11.1  mM/L (n = 544)

(2) Excluded during follow-up
     - follow-up loss after 8 yr (n=954)

(3) Excluded before analysis
     - �not selected for genotyping procedures at 

baseline (n = 945)



Park HY, et al.  •  Genetic Polymorphism Effect on Diabetes Mellitus Prediction

http://jkms.org    1103http://dx.doi.org/10.3346/jkms.2015.30.8.1101

N2A/B), rs5215 (KCNJ11), and rs2237892 (KCNQ1) showed sig-
nificant association with T2DM incidence in our subjects (rs108 
11661, HR 1.22 [95% CI 1.02-1.46]; rs5215, HR 1.27 [1.06-1.52], 
rs2237892, HR 1.37 [1.12-1.68]), and most SNPs showed same 
direction of estimate as reported by original researches (Table 
2). In constructing GPS, we eliminated rs7756992 and rs71724 
32 as they showed strong linkage with rs9465871 (D’ = 0.977, 
r2 = 0.933) and rs1436955 (D’ = 1, r2 = 0.627), respectively. We 
constructed three GPSs with differently selected SNPs, i.e. 1) 
GPS-3 with three SNPs in significant association with T2DM in 
our study subjects (range 0-6); 2) GPS-18 with 18 SNPs analyzed 
by Affymetrix 500K (range 0-36); 3) GPS-36, with addition of 18 
further SNPs attained through imputation of HapMap data (ran
ge 0-72).
  After stepwise selection procedures, age, BMI, family history 
of T2DM, hypertension history, regular physical exercise, and 
clinical indices such as triglyceride, FPG, and HbA1c as well as 
GPSs were selected as variables for risk prediction modeling. 
We used subsets of variables in building simple (information 
from questionnaires and anthropometric measurements, i.e. 
age, BMI, family history of T2DM, history of hypertension, reg-
ular physical excercise), clinical (variables from simple model 

plus clinical examination data, i.e. serum TG, HDL-cholesterol, 
FPG levels), and full clinical (variables from clinical model plus 
serum HbA1c level) models. Within the models, we tested for 
significant changes in discrimination and reclassification by 
the prediction models upon addition of GPS-3 (Table 3), GPS-
18 (Table 4) or GPS-36 (Table 5). 
  Hazard ratios for T2DM incidence per risk allele score increase 
were 1.11 (95% CI 1.06-1.17, full clinical model), 1.03 (1.01-1.06), 
and 1.04 (1.02-1.07), in cases of GPS-3, GPS-18, and GPS-36, re-
spectively. This relationship was significant across all three mo
dels, and HRs analyzed with weighted GPSs also showed signif-
icant results (1.11; 95% CI, 1.06-1.17, full clinical model), 1.03 
(1.01-1.05), and 1.04 (1.01-1.05) with GPS-3, GPS-18, GPS-36, 
respectively). 
  Evaluation of risk prediction in addition to GPSs is also shown 
in Tables 3-5. In case of comparing prediction models with or 
without GPS-3 (Table 3), subtle significant changes in area un-
der the curve (ΔAUC) were found across all three models (ΔAUC; 
0.007 [P = 0.044], 0.005 [P = 0.007], 0.003 [P = 0.024] for simple, 
clinical, full clinical models, respectively), while reclassification 
analysis showed significance with simple and clinical models 
but not with full clinical model, where HbA1c is lastly added 

Table 1. Baseline characteristics of study subjects 

Parameters All (n = 6,910) Case (n = 1,240) Control (n = 5,670)

Mean ± SD
Age (yr) 51.77 ± 8.79 53.4 ± 8.78 51.41 ± 8.76
Body mass index (kg/m3) 24.47 ± 3.02 25.04 ± 3.21 24.34 ± 2.96
HDL cholesterol (mM/L) 1.17 ± 0.26 1.13 ± 0.26 1.17 ± 0.26
Triglyceride (mM/L) 1.76 ± 1.10 2.09 ± 1.29 1.69 ± 1.04
Fasting glucose (mM/L) 4.61 ± 0.50 4.88 ± 0.61 4.56 ± 0.45
HbA1c (%) 5.55 ± 0.35 5.77 ± 0.36 5.51 ± 0.33
Risk allele scores of 3 analyzed SNPs 3.13 ± 1.19 3.27 ± 1.2 3.1 ± 1.18
Risk allele scores of 18 analyzed SNPs 18.76 ± 2.71 19.04 ± 2.73 18.69 ± 2.71
Risk allele scores of 36 analyzed SNPs 40.54 ± 3.53 41.07 ± 3.58 40.43 ± 3.51
Average systolic blood pressure (mmHg) 120.71 ± 18.17 125.04 ± 18.77 119.77 ± 17.9
Average diastolic blood pressure (mmHg) 79.98 ± 11.41 82.31 ± 11.48 79.47 ± 11.33
Average waist circumference (cm) 82.13 ± 8.68 84.16 ± 8.78 81.68 ± 8.6
Average hip circumference (cm) 93.47 ± 5.91 94.32 ± 5.98 93.29 ± 5.87
HOMA-IR 1.55 ± 1.00 1.70 ± 1.02 1.52 ± 0.99

Frequency (%)
Sex Male

Female
3,251 (47.05)
3,659 (52.95)

642 (51.77)
598 (48.23)

2,609 (46.01)
3,061 (53.99)

Current smoking No 
Yes

5,124 (75.07)
1,702 (24.93)

893 (72.9)
332 (27.1)

4,231 (75.54)
1,370 (24.46)

Current drinking No 
Yes

3,561 (51.96)
3,292 (48.04)

618 (50.24)
612 (49.76)

2,943 (52.34)
2,680 (47.66)

Regular physical activity No 
Yes

2,842 (41.53)
4,001 (58.47)

465 (37.71)
768 (62.29)

2,377 (42.37)
3,233 (57.63)

Family history of T2DM No 
Yes

6,191 (89.59)
719 (10.41)

1,066 (85.97)
174 (14.03)

5,125 (90.39)
545 (9.61)

Hypertension No 
Yes

4,928 (71.32)
1,982 (28.68)

750 (60.48)
490 (39.52)

4,178 (73.69)
1,492 (26.31)

Metabolic syndrome No 
Yes

4,654 (67.35)
2,256 (32.65)

641 (51.69)
599 (48.31)

4,013 (70.78)
1,657 (29.22)

HDL, high-density lipoprotein; FPG, fasting plasma glucose; HbA1c, glycated hemoglobin A1c; HOMA-IR, homeostasis model assessment of insulin resistance index; T2DM, 
type 2 diabetes mellitus.
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Table 2. Characteristics of selected risk loci for type 2 diabetes mellitus

SNP
Chromo-
somes

Locus
Risk  
allele

RAF of case/
control

HR (95% CI) P value
Reported OR (95% CI)  

in East Asians*
Reported OR (95% CI)  

in Caucasians†

18 SNPs analyzed by Affymetrix 500K
rs10923931   1 NOTCH2 T 0.04/0.03 0.88 (0.12-6.24) 0.896 1.05 (0.92-1.20) 1.13 (1.08-1.17) (1)
rs7593730   2 RBMS1 C 0.83/0.83 1.28 (0.86-1.91) 0.224 1.03 (0.97-1.09) 1.11 (1.08-1.16) (2)
rs1470579   3 IGF2BP2 C 0.33/0.31 1.07 (0.86-1.34) 0.526 1.13 (1.08-1.19) 1.17 (1.11-1.23) (3)
rs1801282   3 PPARG C 0.96/0.95 1.83 (0.46-7.33) 0.394 1.13 (1.01-1.28) 1.14 (1.08-1.20) (3)
rs4607103   3 ADAMTS9 C 0.62/0.61 1.11 (0.91-1.35) 0.317 0.99 (0.95-1.04) 1.09 (1.06-1.12) (1)
rs831571   3 PSMD6 C 0.63/0.63 1 (0.83-1.21) 0.993 1.09 (1.06-1.12) NA 
rs7754840   6 CDKAL1 C 0.48/0.47 1.15 (0.97-1.37) 0.114 1.20 (1.14-1.25) 1.12 (1.08-1.16) (4)
rs9465871   6 CDKAL1 C 0.56/0.54 1.15 (0.97-1.38) 0.110 1.14 (1.09-1.18) NA 
rs864745   7 JAZF1 T 0.74/0.72 1.27 (0.98-1.65) 0.074 1.06 (1.00-1.12) 1.10 (1.07-1.13) (1)
rs10811661   9 CDKN2A/B T 0.58/0.56 1.22 (1.02-1.46) 0.033 1.21 (1.14-1.28) 1.20 (1.14-1.25) (4)
rs10906115 10 CDC123/CAMK1D A 0.54/0.53 1.06 (0.89-1.26) 0.528 1.09 (1.04-1.14) 1.13 (1.08-1.18) (5)
rs5015480 10 HHEX C 0.19/0.19 0.97 (0.69-1.36) 0.855 1.16 (1.1-1.23) 1.19 (1.11-1.28) (6)
rs5215 11 KCNJ11 C 0.41/0.39 1.27 (1.06-1.52) 0.010 1.13 (1.08-1.18) 1.14 (1.10-1.19) (7)
rs1531343 12 HMGA2 C 0.11/0.11 0.77 (0.45-1.31) 0.335 1.06 (0.99-1.14) 1.10 (1.07-1.14) (8)
rs7961581 12 TSPAN8/LGR5 C 0.22/0.23 0.84 (0.63-1.11) 0.207 1.01 (0.95-1.06) 1.09 (1.06-1.12) (1)
rs1359790 13 SPRY2 G 0.71/0.7 1.17 (0.94-1.47) 0.166 1.02 (0.97-1.08) 1.15 (1.10-1.20) (5)
rs1436955 15 C2CD4A/C2CD4B C 0.7/0.69 0.94 (0.76-1.16) 0.583 1.13 (1.06-1.21) NA 
rs9939609 16 FTO A 0.87/0.88 1.09 (0.67-1.79) 0.726 1.15 (1.08-1.22) 1.15 (1.09-1.23) (9)

20 SNPs from HapMap imputation  
rs340874   1 PROX1 C 0.37/0.35 1.16 (0.96-1.41) 0.132 1.08 (1.03-1.14) 1.07 (1.05-1.09) (10)
rs243021   2 BCL11A A 0.67/0.66 1.03 (0.84-1.27) 0.790 1.05 (1.00-1.10) 1.08 (1.06-1.10) (8)
rs2943641   2 IRS1 C 0.94/0.95 0.44 (0.14-1.37) 0.155 1.12 (1.03-1.22) 1.19 (1.13-1.25) (11)
rs6780569   3 UBE2E2 G 0.83/0.81 1.2 (0.83-1.76) 0.337 1.13 (1.07-1.20) 1.21 (1.14-1.30) (12)
rs10010131   4 WFS1 G 0.98/0.98 NA 0.947 1.00 (0.91-1.10) 1.11 (1.05-1.16) (13)
rs7756992   6 CDKAL1 G 0.56/0.54 1.16 (0.97-1.39) 0.314 1.14 (1.09-1.18) 1.19 (1.13-1.27) (14)
rs2191349   7 DGKB T 0.68/0.68 1 (0.8-1.25) 0.978 1.11 (1.05-1.16) 1.06 (1.04-1.08) (10)
rs4607517   7 GCK A 0.23/0.21 1.21 (0.92-1.6) 0.173 1.03 (0.97-1.09) 1.07 (1.05-1.10) (10)
rs972283   7 KLF14 G 0.7/0.69 1.17 (0.93-1.48) 0.186 0.99 (0.93-1.06) 1.07 (1.05-1.10) (8)
rs13266634   8 SLC30A8 C 0.59/0.59 1.02 (0.84-1.22) 0.871 1.11 (1.06-1.16) 1.15 (1.12-1.19) (15)
rs896854   8 TP53INP1 T 0.29/0.29 0.93 (0.72-1.19) 0.546 1.07 (1.02-1.12) 1.06 (1.04-1.09) (8)
rs13292136   9 CHCHD9 C 0.9/0.89 0.88 (0.54-1.44) 0.610 0.99 (0.92-1.07) 1.11 (1.07-1.15) (8)
rs12779790 10 CDC123/CAMK1D G 0.11/0.1 1.27 (0.75-2.15) 0.381 1.12 (1.02-1.23) 1.11 (1.07-1.14) (1)
rs7903146 10 TCF7L2 T 0.03/0.02 1.45 (0.21-10.24) 0.711 1.16 (1.02-1.31) 1.37 (1.31-1.43) (4)
rs10830963 11 MTNR1B G 0.44/0.44 0.98 (0.82-1.17) 0.816 0.99 (0.93-1.06) 1.09 (1.06-1.12) (10)
rs1552224 11 CENTD2 A 0.94/0.94 1.04 (0.85-1.27) 0.143 1.16 (1.06-1.27) 1.14 (1.11-1.17) (8)
rs2237892 11 KCNQ1 C 0.64/0.6 1.37 (1.12-1.68) 0.003 1.17 (1.11-1.23) 1.40 (1.34-1.47) (16)
rs231362 11 KCNQ1 G 0.89/0.88 1.17 (0.64-2.12) 0.623 1.10 (1.00-1.20) 1.08 (1.06-1.10) (8)
rs2334499 11 INS/IGF2B T 0.82/0.82 0.81 (0.6-1.09) 0.167 NA 1.35 (NA) (17)
rs7172432 15 C2CD4A/C2CD4B A 0.55/0.55 1.02 (0.85-1.22) 0.989 1.09 (1.04-‐1.15) 1.14 (1.09-1.20) (12)

Adjusted for age, sex, and body mass index. *Referred from Cho YS et al. (11), 2012, Ryoo H et al. (13), 2011 and Shu XO et al. (14); †References for reported odd ratios (OR) 
and CIs in Caucasians are in the Supplemental Material. HR, OR and CI, hazard ratio, odds ratio and confidence intervals; RAF, risk allele frequency; NA, not available. 

(NRI; 6.1% [P < 0.001], 3.1% [P = 0.006], 2.0% [P = 0.106], re-
spectively). In case of GPS-18 (Table 4), both discrimination 
(ΔAUC; 0.007 [P = 0.033], 0.003 [P = 0.054], 0.001 [P = 0.130] for 
simple, clinical, full clinical models, respectively) and reclassifi-
cation (NRI; 5.1% [P < 0.001], 3.3% [P = 0.002], 1.0% [P = 0.336], 
respectively) indices were significant or borderline-significant 
at simple but not in full clinical models. In case of GPS-36 (Ta-
ble 5), significant or borderline-significant discrimination was 
observed (ΔAUC; 0.014 [P = 0.047], 0.006 [P = 0.041], 0.005 [P =  
0.050] for simple, clinical, full clinical models, respectively). Sim-
ilar to reclassification improvement with GPS-3 and GPS-18, NRI 
was positively significant in simple and clinical models, but not 

in full clinical model (NRI; 8.6% [P < 0.001], 4.4% [P = 0.012], 
1.7% [P = 0.352], respectively).

DISCUSSION

From a community cohort of 8-yr follow-up in Korea, we ob-
served some influence of genetic predisposition drawn from 
genotype information on 3, 18, and 36 selected SNPs, on risk of 
T2DM incidence. The significant discrimination or reclassifica-
tion indices upon addition of GPS in simple and clinical models 
were on longer observed in full models, i.e. when HbA1c was fi-
nally included, and this tendency was consistent across all three 
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tested GPSs. 
  Risk prediction modeling for T2DM on the same Anseong-
Ansan cohort population had been carried out previously, at 
4-yr follow-up and without considering for genetic predisposi-
tion. The authors also had focused on the HbA1c variable, which 
substantially increased NRI (12.8%) upon addition to the pre-
diction model (12). Another 5-yr follow-up cohort study on Jap-
anese population also reported FPG and HbA1c together were 
effective predictors for T2DM incidence (19). Lastly, a case-co-
hort research from European Prospective Investigation into Can-
cer and Nutrition (EPIC)-Potsdam study that utilized metabolic 
markers including HbA1c as well as genetic markers in predict-
ing T2DM risk, found that addition of genetic information to 
metabolic markers, age, anthropometry, and lifestyle charac-
teristics, did not significantly improve disease prediction, while 
FPG and HbA1c considerably contributed to the prediction (20). 
Thus, as an indicator of chronic glycemia, it is convincible that 
HbA1c is a strong indicator of T2DM prediction, well over in-
formation on genetic predisposition (21). Our results, where 
the apparent influence by genetic variation on T2DM predic-
tion weakened in the final model including HbA1c, strongly 

support the previous findings. At the same time, the decrease in 
prediction ability across the simple, clinical and full clinical mo
dels also imply that HbA1c is a phenotype already inherent and 
reflected by the genetic predisposition, as confirmed by signifi-
cant association between the selected SNPs and HbA1c levels 
in our subjects (Supplementary Table 2). To our knowledge, ours 
is one of the few studies that utilized information on both ge-
netic predisposition and HbA1c in testing T2DM risk prediction 
model, especially in a non-European ethnicity. 
  As younger populations are subject to less developed clinical 
risk factors, confirming our findings in a younger population 
would be meaningful. In younger adults, HbA1c may be a less 
important factor in predicting T2DM, and influence by genetic 
variation may persist even after multiple-variable adjustment 
(17). However, inconsistent and non-significant results were 
found in subjects ≤ 50 yr old in our study (results not shown). 
This may be explained by poor validity due to much decreased 
number and the baseline characteristic of the middle-aged par-
ticipants, who may have already begun developing subclinical 
metabolic disorders.
  We have selected SNPs already validated from previous stud-

Table 3. Evaluation of T2DM risk prediction with consideration for genetic predisposition derived from 3 selected SNPs (GPS-3)

Risk factors
Model 1: Simple model Model 2: Clinical model Model 3: Full clinical model

Without GPS-3 With GPS-3 Without GPS-3 With GPS-3 Without GPS-3 With GPS-3

Age 1.02 (1.02-1.03) 1.02 (1.02-1.03) 1.03 (1.02-1.03) 1.03 (1.02-1.03) 1.02 (1.01-1.03) 1.02 (1.01-1.03)
BMI (Ref: < 23 kg/m3) 23-25

25-30
≥ 30

1.16 (0.98-1.36)
1.41 (1.22-1.62)
1.87 (1.42-2.45)

1.16 (0.98-1.37)
1.43 (1.24-1.64)
1.91 (1.46-2.51)

1.07 (0.91-1.26)
1.17 (1.01-1.35)
1.58 (1.20-2.07)

1.07 (0.91-1.27)
1.18 (1.02-1.36)
1.62 (1.23-2.13)

1.07 (0.90-1.26)
1.11 (0.96-1.29)
1.42 (1.08-1.87)

1.07 (0.91-1.26)
1.12 (0.97-1.30)
1.45 (1.10-1.91)

Family history of T2DM (Ref: No) Yes 1.57 (1.32-1.87) 1.55 (1.30-1.85) 1.41 (1.18-1.68) 1.39 (1.17-1.66) 1.36 (1.14-1.62) 1.35 (1.13-1.61)
HTN history (Ref: No) Yes 1.44 (1.27-1.64) 1.44 (1.27-1.64) 1.17 (1.03-1.34) 1.18 (1.03-1.34) 1.18 (1.03-1.34) 1.18 (1.03-1.34)
Regular exercise (Ref: No) Yes 1.28 (1.13-1.45) 1.29 (1.13-1.46) 1.25 (1.10-1.42) 1.25 (1.10-1.43) 1.27 (1.12-1.44) 1.27 (1.12-1.45)
Triglyceride (Ref: < 120 mg/dL) 120-150

≥ 150
1.26 (1.05-1.52)
1.84 (1.58-2.14)

1.26 (1.05-1.52)
1.85 (1.59-2.15)

1.24 (1.03-1.49)
1.74 (1.49-2.02)

1.24 (1.03-1.49)
1.75 (1.50-2.03)

HDL-C (Ref: ≥ 50 mg/dL) < 35
35-49

1.32 (1.07-1.62)
1.10 (0.94-1.28)

1.32 (1.07-1.62)
1.10 (0.95-1.28)

1.32 (1.07-1.62)
1.11 (0.95-1.29)

1.31 (1.07-1.61)
1.11 (0.95-1.30)

FPG (Ref: 90-100 mg/dL) < 90
≥ 100

0.51 (0.44-0.59)
2.47 (2.02-3.01)

0.51 (0.44-0.60)
2.48 (2.03-3.02)

0.54 (0.47-0.63)
2.34 (1.92-2.85)

0.55 (0.47-0.63)
2.35 (1.93-2.87)

HbA1c (Ref: < 5.5%) ≥ 5.5 1.97 (1.69-2.29) 1.96 (1.69-2.28)
GPS-3 1.12 (1.07-1.18) 1.11 (1.06-1.17) 1.11 (1.06-1.17)
GPS-3 (weighted) 1.09 (1.05-1.14) 1.09 (1.05-1.13) 1.11 (1.06-1.17)
1) Discrimination
   AUC (95% CI) 0.624  

(0.606-0.642)
0.631  

(0.613-0.649)
0.703  

(0.685-0.720)
0.708  

(0.690-0.725)
0.723  

(0.705-0.740)
0.726   

(0.709-0.743)
   P value for contrast 0.044 0.007 0.024
2) Calibration
   Hosmer-Lemeshow χ2 (P) 4.72 (0.7866) 10.50 (0.2318) 8.51 (0.3851) 10.08 (0.2594) 11.73 (0.1636) 5.44 (0.7092)
3) Reclassification
   IDI, (SE) 0.0034 (0.0008) 0.0027 (0.0009) 0.0026 (0.0009)
   P value < 0.001 0.002 0.002
   NRI, (SE) 0.0610 (0.0145) 0.0309 (0.0113) 0.0196 (0.0122)
   P value < 0.001 0.006 0.106

Range of risk alleles scores (GPS-3); 0-6. Model 1 (simple model) adjusted for age, BMI, family history of T2DM, HTN history, regular physical exercise ± risk alleles; model 2 
(clinical model), adjusted for variables in model 1 plus triglyceride, HDL-cholesterol, FPG ± risk alleles; model 3, adjusted for all variables in model 3 ± risk alleles. Risk classi-
fication in NRI analysis: 10%, 20%, 30%. T2DM, type 2 diabetes mellitus; GPS, genetic predisposition score; HDL, high-density lipoprotein; FPG, fasting plasma glucose; HbA1c, 
glycated hemoglobin A1c; HOMA-IR, homeostasis model assessment of insulin resistance index; AUC, area under the curve; IDI, integrated discrimination improvement; NRI, 
net reclassification improvement. 
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Table 4. Evaluation of T2DM risk prediction with consideration for genetic predisposition derived from 18 selected SNPs (GPS-18)

Parameters
Model 1: Simple model Model 2: Clinical model Model 3: Full clinical model

Without GPS-18 With GPS-18 Without GPS-18 With GPS-18 Without GPS-18 With GPS-18

Age 1.02 (1.02-1.03) 1.02 (1.02-1.03) 1.02 (1.02-1.03) 1.02 (1.02-1.03) 1.02 (1.01-1.03) 1.02 (1.01-1.03)
BMI (Ref: < 23 kg/m3) 23-25

25-30
≥ 30

1.13 (0.96-1.33)
1.40 (1.22-1.61)
1.94 (1.48-2.53)

1.13 (0.96-1.33)
1.42 (1.23-1.63)
1.99 (1.52-2.60)

1.05 (0.89-1.23)
1.15 (0.99-1.32)
1.59 (1.21-2.09)

1.05 (0.89-1.24)
1.16 (1.00-1.34)
1.64 (1.25-2.15)

1.05 (0.89-1.24)
1.09 (0.95-1.26)
1.45 (1.11-1.91)

1.05 (0.89-1.24)
1.10 (0.95-1.27)
1.48 (1.13-1.95)

Family history of T2DM (Ref: No) Yes 1.59 (1.34-1.90) 1.58 (1.33-1.88) 1.46 (1.23-1.74) 1.45 (1.22-1.73) 1.42 (1.19-1.69) 1.41 (1.19-1.68)
HTN history (Ref: No) Yes 1.47 (1.29-1.67) 1.47 (1.29-1.67) 1.19 (1.05-1.36) 1.19 (1.05-1.36) 1.19 (1.05-1.36) 1.20 (1.05-1.36)
Regular exercise (Ref: No) Yes 1.16 (1.03-1.31) 1.16 (1.03-1.32) 1.15 (1.01-1.30) 1.15 (1.01-1.30) 1.17 (1.03-1.32) 1.16 (1.03-1.32)
Triglyceride (Ref: < 120 mg/dL) 120-150

≥ 150
1.32 (1.11-1.59)
1.88 (1.61-2.18)

1.32 (1.10-1.58)
1.88 (1.62-2.19)

1.29 (1.08-1.55)
1.77 (1.52-2.06)

1.29 (1.08-1.55)
1.78 (1.53-2.07)

HDL-C (Ref: ≥ 50 mg/dL) < 35
35-49

1.22 (1.00-1.50)
1.06 (0.91-1.23)

1.22 (0.99-1.49)
1.06 (0.91-1.23)

1.22 (1.00-1.50)
1.07 (0.92-1.24)

1.21 (0.99-1.49)
1.07 (0.92-1.24)

FPG (Ref: 90-100 mg/dL) < 90
≥ 100

0.49 (0.42-0.56)
2.23 (1.83-2.72)

0.49 (0.43-0.57)
2.21 (1.81-2.69)

0.52 (0.45-0.60)
2.13 (1.75-2.60)

0.53 (0.46-0.61)
2.11 (1.74-2.57)

HbA1c (Ref: < 5.5%) ≥ 5.5 2.01 (1.73-2.34) 1.99 (1.71-2.32)
GPS-18 1.04 (1.02-1.06) 1.03 (1.01-1.05) 1.03 (1.01-1.06)
GPS-18 (weighted) 1.05 (1.03-1.07) 1.04 (1.02-1.06) 1.03 (1.01-1.05)
1) Discrimination
   AUC (95% CI) 0.621  

(0.603-0.639)
0.628  

(0.610-0.646)
0.702  

(0.685-0.720)
0.705  

(0.688-0.723)
0.724  

(0.707-0.740)
0.725  

(0.709-0.742)
   P value for contrast 0.033 0.054 0.130
2) Calibration
   Hosmer-Lemeshow χ2 (P) 10.34 (0.2417) 20.08 (0.01) 7.57 (0.4766) 6.98 (0.5388) 9.17 (0.3283) 13.24 (0.1038)
3) Reclassification
   IDI, (SE) 0.0036 (0.0008) 0.002 (0.0007) 0.0019 (0.0007)
   P value <  0.001 0.002 0.005
   NRI, (SE) 0.0507 (0.0138) 0.0326 (0.0106) 0.0101 (0.0105)
   P value < 0.001 0.002 0.336

Range of risk alleles scores (GPS-18); 0-36. Model 1 (simple model) adjusted for age, BMI, family history of T2DM, HTN history, regular physical exercise ± risk alleles; model 
2 (clinical model), adjusted for variables in model 1 plus triglyceride, HDL-cholesterol, FPG ± risk alleles; model 3, adjusted for all variables in model 3 ± risk alleles. Risk clas-
sification in NRI analysis: 10%, 20%, 30%. T2DM, type 2 diabetes mellitus; GPS, genetic predisposition score; HDL, high-density lipoprotein; FPG, fasting plasma glucose; HbA1c, 
glycated hemoglobin A1c; HOMA-IR, homeostasis model assessment of insulin resistance index; AUC, area under the curve; IDI, integrated discrimination improvement; NRI, 
net reclassification improvement. 

ies that included genetic information from the same Anseong-
Ansan cohort for GWAS or meta-GWAS analyses. Also, the as-
sociation tests between the SNPs and T2DM incidence (or prev-
alence) were restricted to East Asian populations. This method 
has advantage over a single GWAS in the study population, which 
face insufficient validity of results due to small number of sub-
jects and limited resource for independent population with iden-
tical ethnicity for replication. On the other hand, the major dis-
advantage of this method is possibility of overfitting. The signif-
icant SNPs found in our study, already replicated in studies in-
cluding the same subjects, could otherwise be interpreted as 
those that show strong association specifically in our Anseong-
Ansan cohort subjects. Again, this problem could be overcome 
by replication in an independent population of identical eth-
nicity. The pros and cons of using validated SNPs for which in-
formation from same subjects were utilized as subset data war-
rant further investigation. 
  Three SNPs with significant HRs found in our study were KC­
NJ11 (rs5215), CDKN2A/B (rs10811661), and KCNQ1 (rs22378 
92), and their HRs were about 1.3. Insulin secretion is the main 
explained function of the three genes, with CDKN2A/1B in re-

lation with development of pancreatic β-cells, while KCNJ11 
and KCNQ1 are related with the β-cell dysfunction (22), and ef-
fects of these genotype variants on T2DM have been tested in 
East Asian populations (11, 23, 24). KCNJ11 (potassium inward-
ly-rectifying channel, subfamily J, member 11) regulates glucose-
dependent insulin secretion, and its mutations have been re-
ported to cause severe neonatal diabetes (25). It consists a sub-
unit of sulfonylurea receptor, and the mutation can alter response 
to sulfonylurea treatment in T2DM patients (26). CDKN2A/B 
(cyclin-dependent kinase inhibitor 2A/B) and KCNQ1 (potassi-
um voltage-gated channel, KQT-like subfamily, member 1) are 
known to be associated with impaired pancreatic β-cell func-
tion (22). Mutation in rs10811661 is also known for its associa-
tion with myocardial infarction, to which T2DM is a high risk 
factor (27). 
  In the prediction models that included GPSs, we found inde-
pendent effects of family history of T2DM and GPS on T2DM 
risk, with greater HRs by family history than GPS across all sub-
set models with all three GPSs. Our results support speculations 
that family history may provide more information from shared 
environmental influence, i.e. non-genetic familial behaviors 
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Table 5. Evaluation of T2DM risk prediction with consideration for genetic predisposition derived from 36 selected SNPs (GPS-36)

Parameters
Model 1: Simple model Model 2: Clinical model Model 3: Full clinical model

Without GPS-36 With GPS-36 Without GPS-36 With GPS-36 Without GPS-36 With GPS-36

Age 1.03 (1.02-1.04) 1.03 (1.02-1.04) 1.03 (1.02-1.04) 1.03 (1.02-1.04) 1.02 (1.01-1.04) 1.02 (1.01-1.04)
BMI (Ref: < 23 kg/m3) 23-25

25-30
≥ 30

1.09 (0.86-1.39)
1.32 (1.07-1.62)
2.09 (1.43-3.07)

1.09 (0.86-1.39)
1.34 (1.09-1.64)
2.21 (1.50-3.23)

1.03 (0.81-1.31)
1.15 (0.94-1.42)
1.98 (1.34-2.91)

1.03 (0.81-1.32)
1.16 (0.94-1.43)
2.04 (1.39-3.01)

1.04 (0.81-1.32)
1.10 (0.89-1.36)
1.74 (1.18-2.56)

1.05 (0.82-1.33)
1.11 (0.90-1.37)
1.80 (1.22-2.65)

Family history of T2DM (Ref: No) Yes 1.49 (1.15-1.93) 1.48 (1.14-1.91) 1.33 (1.03-1.73) 1.33 (1.02-1.72) 1.30 (1.00-1.69) 1.31 (1.01-1.70)
HTN history (Ref: No) Yes 1.47 (1.22-1.76) 1.47 (1.22-1.77) 1.13 (0.93-1.36) 1.13 (0.93-1.37) 1.12 (0.93-1.36) 1.13 (0.93-1.37)
Regular exercise (Ref: No) Yes 1.31 (1.09-1.57) 1.32 (1.10-1.59) 1.28 (1.07-1.54) 1.29 (1.07-1.55) 1.27 (1.06-1.53) 1.28 (1.07-1.54)
Triglyceride (Ref: < 120 mg/dL) 120-150

≥ 150
1.35 (1.03-1.76)
2.10 (1.68-2.62)

1.34 (1.03-1.76)
2.11 (1.69-2.63)

1.33 (1.02-1.74)
1.98 (1.59-2.48)

1.33 (1.02-1.74)
2.00 (1.60-2.50)

HDL-C (Ref: ≥ 50 mg/dL) < 35
35-49

0.97 (0.72-1.32)
0.92 (0.74-1.15)

0.99 (0.73-1.34)
0.93 (0.74-1.16)

0.96 (0.71-1.29)
0.92 (0.73-1.14)

0.96 (0.71-1.31)
0.92 (0.74-1.15)

FPG (Ref: 90-100 mg/dL) < 90
≥ 100

0.52 (0.42-0.64)
3.20 (2.41-4.24)

0.54 (0.43-0.67)
3.16 (2.38-4.19)

0.56 (0.45-0.70)
3.09 (2.33-4.10)

0.58 (0.47-0.72)
3.05 (2.30-4.05)

HbA1c (Ref: < 5.5%) ≥ 5.5 2.07 (1.66-2.59) 2.05 (1.64-2.55)
GPS-36 1.05 (1.03-1.06) 1.03 (1.02-1.05) 1.04 (1.02-1.07)
GPS-36 (weighted) 1.06 (1.03-1.08) 1.04 (1.02-1.07) 1.03 (1.01-1.05)
1) Discrimination
   AUC (95% CI) 0.629  

(0.604-0.655)
0.643  

(0.617-0.669)
0.713  

(0.687-0.738)
0.719  

(0.694-0.744)
0.735  

(0.711-0.760)
0.740  

(0.716-0.765)
   P value for contrast 0.047 0.041 0.050
2) Calibration
   Hosmer-Lemeshow χ2 (P) 8.84 (0.3556) 7.74 (0.4595) 6.65 (0.5750) 9.66 (0.2898) 14.14 (0.0781) 10.96 (0.2041)
3) Reclassification
   IDI, (SE) 0.0086 (0.0018) 0.005 (0.0016) 0.0041 (0.0015)
   P value < 0.001 0.003 0.007
   NRI, (SE) 0.0863 (0.0239) 0.0440 (0.0175) 0.0173 (0.0185)
   P value < 0.001 0.012 0.352

Range of risk alleles scores (GPS-36); 0-72. Model 1 (simple model) adjusted for age, BMI, family history of T2DM, HTN history, regular physical exercise ± risk alleles; model 
2 (clinical model), adjusted for variables in model 1 plus triglyceride, HDL-cholesterol, FPG ± risk alleles; model 3, adjusted for all variables in model 3 ± risk alleles. Risk clas-
sification in NRI analysis: 10%, 20%, 30%. T2DM, type 2 diabetes mellitus; GPS, genetic predisposition score; HDL, high-density lipoprotein; FPG, fasting plasma glucose; HbA1c, 
glycated hemoglobin A1c; HOMA-IR, homeostasis model assessment of insulin resistance index; AUC, area under the curve; IDI, integrated discrimination improvement; NRI, 
net reclassification improvement. 

such as lifestyle and dietary habits, than inherited genetic influ-
ence alone (5, 6). Thus, while considering family history of T2DM 
is necessary in investigating genetic influence by the risk alleles, 
we also suggest research on gene-environment interactions and 
epigenetics to be continuously encouraged (3, 28). 
  Although we constructed risk prediction models from a pro-
spective cohort study, duration of follow-up was relatively short. 
Longer follow-up duration could improve prediction ability of 
genetic variants relative to time-varying factors e.g. clinical ex-
amination findings, as discrimination power of GPS increase 
with extended follow-up period (7, 10). Also, we could not con-
sider lifestyle risk factors such as smoking and diet in our pre-
diction model due to statistical insignificance of their influence 
on T2DM and subsequent elimination by statistical procedures, 
despite the alleged influence to the disease (29). As studies have 
also reported some interaction effect between behavioral risk 
factors and genetic polymorphisms as well as significant effect 
of lifestyle intervention in subjects with high genetic risk scores 
(30), further investigations on gene-lifestyle interaction may be 
required. 
  In conclusion, we observed influence of genetic variation, de-

scribed by subsets of selected SNPs, on risk prediction of T2DM 
incidence in a 8-yr cohort of middle-aged Koreans, but the sig-
nificance in discrimination and reclassification of prediction 
ability disappeared when information on HbA1c levels were 
added. We have also verified three SNPs in significant associa-
tion with T2DM in our subjects, and our results as elementary 
findings may contribute to expanded genetic studies.
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Supplementary Table 1. Evaluation of T2DM risk prediction with consideration for age and genetic predisposition derived from selected SNPs (GPS-3, GPS-18, GPS-36)

Without GPS-3 With GPS-3 Without GPS-18 With GPS-18 Without GPS-36 With GPS-36

Age 1.03 (1.02-1.03) 1.03 (1.02-1.03) 1.03 (1.02-1.03) 1.03 (1.02-1.03) 1.03 (1.02-1.04) 1.03 (1.02-1.04)
GPS 1.13 (1.07-1.19) 1.05 (1.02-1.08) 1.06 (1.03-1.08)
GPS (weighted) 1.14 (1.06-1.17) 1.04 (1.02-1.06) 1.04 (1.02-1.06)
(1) Discrimination
   AUC (95% CI) 0.566 (0.547-0.584) 0.577 (0.559-0.596) 0.567 (0.549-0.585) 0.574 (0.556-0.593) 0.578 (0.551-0.604) 0.594 (0.567-0.62)
   P value for contrast 0.031 0.120 0.058
(2) Calibration
   Hosmer-Lemeshow χ2 (P) 9.97 (0.267) 15.38 (0.0522) 9.07 (0.3368) 6.94 (0.5426) 14.34 (0.0733) 10.06 (0.2609)
(3) Reclassification
   IDI, (SE) 0.0030 (0.0007) 0.0029 (0.0007) 0.0064 (0.0015)
   P value < 0.001 < 0.001 < 0.001
   NRI NA NA NA

NA, not available due to conformability error.
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Supplementary Table 2. Effect of genetic predisposition on (a) baseline HbA1c or (b) change of HbA1c

(a) Regression analysis (b) Mixed model analysis

β (SE) P value β (SE) P value

rs10811661 Crude
Adjusted

0.0117 (0.006)
0.0103 (0.006)

0.049
0.089

0.0219 (0.0069)
0.0102 (0.0059)

0.002
0.082

rs5215 Crude
Adjusted

0.0083 (0.0061)
0.0112 (0.0062)

0.178
0.070

0.0086 (0.0071)
0.0137 (0.006)

0.023
0.024

rs2237892 Crude
Adjusted

0.0152 (0.0064)
0.0143 (0.0064)

0.018
0.025

0.0252 (0.0074)
0.017 (0.0063)

< 0.001
0.007

GPS-3 Crude
Adjusted

0.0123 (0.0037)
0.012 (0.0037)

< 0.001
0.001

0.0202 (0.0043)
0.014 (0.0036)

< 0.001
< 0.001

GPS-18 Crude
Adjusted

0.0078 (0.0016)
0.0074 (0.0017)

< 0.001
< 0.001

0.0105 (0.0019)
0.0079 (0.0016)

< 0.001
< 0.001

GPS-36 Crude
Adjusted

0.0103 (0.0018)
0.0077 (0.0018)

< 0.001
< 0.001

0.0144 (0.0021)
0.0081 (0.0018)

< 0.001
< 0.001

Adjusted for age, BMI, hypertension history, family history of T2DM, regular physical activity, and serum levels of TG, HDL-cholesterol, FPG.
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