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Abstract: It is more than four years since the 2030 agenda for sustainable development was 22 

adopted by the United Nations and its member states in September 2015. Several efforts are 23 

being made by member countries to contribute towards achieving the 17 Sustainable 24 

Development Goals (SDGs). The progress which had been made over time in achieving 25 

SDGs can be monitored by measuring a set of quantifiable indicators for each of the goals. 26 

It has been seen that geospatial information plays a significant role in measuring some of 27 

the targets, hence it is relevant in the implementation of SDGs and monitoring of their 28 

progress. Synoptic view and repetitive coverage of the Earth’s features and phenomenon by 29 

different satellites is a powerful and propitious technological advancement. The paper 30 

reviews robustness of Earth Observation data for continuous planning, monitoring and 31 

evaluation of SDGs. The scientific world has made commendable progress by providing 32 

geospatial data at various spatial, spectral, radiometric and temporal resolutions enabling 33 

usage of the data for various applications. This paper also reviews the application of big 34 

data from earth observation and citizen science data to implement SDGs with a multi-35 

disciplinary approach. It covers literature from various academic landscapes utilizing 36 

geospatial data for mapping, monitoring, and evaluating earth’s features and phenomena as 37 

it establishes the basis of its utilization for the achievement of the SDGs. 38 

Keywords: sustainable development goals, geospatial data and techniques, geographic 39 

information system, remote sensing, and indicators 40 

 41 

1. Introduction 42 

The Sustainable Development Goals (SDGs) are a universal call for action to end 43 

poverty, hunger, protect the planet, and ensure that all people enjoy peace (United Nations 44 

& Nations, 2015). The success of the Millennium Development Goals (MDGs) has 45 

encouraged us to achieve 2030’s Agenda for 17 SDGs which lead the world to prosperity 46 
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and sustainability. To monitor the progress for each goal, a set of quantifiable indicators, 47 

targets, and observable data specific to each goal has been devised (Tomás, Svatava, & 48 

Bedrich, 2016). This requires systematic data observations at the local community level and 49 

subsequent decisions, which include the collaboration of various stakeholders. The United 50 

Nations has highlighted issues of data quality and data collection abilities to optimally 51 

measure various indicators and has emphasized the need for a Data Revolution to enhance 52 

the data quality (Kharas, Homi. Gerlach, Karina. Elgin-Cossart, 2013). Geospatial data is 53 

one of the most promising data sources. It can be applied for monitoring progress in 54 

achieving the SDGs. The role of big data in analyzing SDG indicators has been discussed 55 

by MacFeely (2019). It has been pointed out that conventional data sources are not 56 

sufficient. Therefore, the possibility of using big data for SDG monitoring has been studied. 57 

This paper presents the issues and challenges in compiling SDG indicators. A review of 58 

methods for translating SDG interconnected goals into a policy action has been given by 59 

Breuer, Janetschek, & Malerba (2019). Here, the existing framework for the 60 

conceptualization of SDGs and the interconnections among the 17 goals is presented. Also, 61 

the advantages and limitations of several used frameworks have been studied. A study by 62 

Allen, Metternicht, & Wiedmann (2019)  presented a novel integrated method to prioritize 63 

SDG targets through study cases from 22 countries in the Arab region. A multi-attribute 64 

decision method has been adopted for the study basing on the level of urgency, systemic 65 

impact, and policy gap. 66 

The earth observation data gathers information about the physical, chemical, and 67 

biological systems of the planet that can be detected via remote-sensing technologies which 68 

are useful in achieving the SDGs (Masó, Serral, Domingo-Marimon, & Zabala, 2019). 69 

Moreover, in-situ sensors can be installed to measure these variables at the local scale with 70 

a higher frequency. There are numerous satellite sensors, each with particular 71 

characteristics, which are essential tools in monitoring and visualizing local and global level 72 

changes (various satellite sensors and their characteristics are given in Annexure 1). The 73 

RS and Geographic Information Systems (GIS) techniques utilize satellite data that 74 

provides a synoptic view with global and local coverage at various spatial resolutions. These 75 

approaches, in addition to field surveying data, can also be used to monitor the impact of 76 

climate change on different components of aquatic and terrestrial ecosystems (Avtar, 77 

Takeuchi, & Sawada, 2013). The study by Koch & Krellenberg (2018) pointed out the 78 

targets for SDGs which need to be translated into a national context. SDG indicators and 79 

monitoring systems need to be altered depending on the national context. 80 

Geospatial data and techniques can be used very effectively for monitoring most of the 81 

SDGs. Furthermore, the scientific results provided through the use of geospatial technologies 82 

can provide a strong basis for policymaking to promote sustainable development in 83 

communities at local and regional levels (United Nations Secretary, 2016). For example, the 84 

visualization of indices generated from census data may indicate the spatiotemporal changes 85 

in poverty (SDG 1: end poverty). Similarly, visualization of schools, literacy, green space in 86 

cities, usage of natural resources, GHGs emissions over product life cycle, cases registered 87 

against violence, and many more likewise would help communities in the preliminary survey 88 
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thereby to take concrete actions to achieve SDG 1, SDG 4, SDG 11, SDG 12, and SDG 16, 89 

respectively within the stipulated time frame. The impact of climate change can be witnessed 90 

in all the sectors from health to the terrestrial ecosystem. The recent GIS technologies 91 

utilizing spatial statistics for analyzing spatial distributions and patterns can be used for 92 

controlling diseases by monitoring water quality and sanitation for different areas (SDG 3, 93 

SDG 6 and SDG 14). Geospatial data and techniques can be used very effectively for 94 

monitoring most of the SDGs, but in some SDGs, it can be used as proxy data. However, the 95 

use of geospatial data is arguably not yet plausible for all SDGs. The selected SDGs and use 96 

of geospatial data and techniques to generate relevant data for monitoring the progress of 97 

various indicators of the goals is illustrated in Figure 1. Figure 1 also shows the various RS 98 

and GIS based methods for implementing SDGs. In this paper, we focus on the following 99 

goals: SDG 1: no poverty, SDG 2: no hunger, SDG 3: good health, SDG 6: clean water and 100 

sanitation, SDG 11: sustainable cities and communities, SDG 13: protect the planet, SDG 14: 101 

life below water, and SDG 15: life on land. 102 

This paper provides a systematic review of the scientific literature concerning the use of 103 

geospatial data for achieving the SDGs. Specifically, this paper highlights: (i) the various 104 

SDG indicators, (ii) which indicators can be monitored using geospatial data and their 105 

progress, (iii) how to improve the monitoring techniques with advanced sensors, citizen 106 

science, and big data. 107 
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Figure 1. Utilization of geospatial data for SDGs (Modified from: Sustainable 109 

Development Knowledge Platform)  110 

2. Methodology 111 

For this review paper, the following keywords were used in Google Scholar to gather 112 

relevant papers from 2015 - 2019: "Sustainable Development Goals"; "remote sensing AND 113 

SDGs"; "remote sensing AND GIS AND SDGs"; "geospatial data AND SDGs"; "monitoring 114 

SDGs"; and "monitoring the progress of SDGs". These keywords displayed various literature 115 

depending on various factors such as exact keywords (put in double quotes), search period 116 

(anytime and since 2015), Boolean operators used (AND, OR, NOT), etc. as summarized in 117 

figure 2. Figure 2 shows the flowchart of literature review to develop this review paper on 118 

the use of remote sensing techniques for SDGs’ implementation. 119 
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Figure 2. Flowchart of review paper on application of remote sensing techniques to 121 

implement SDGs. 122 
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Resulting literature was scrutinized in two phases. In the first phase, only abstracts with 123 

relevant keywords were examined to determine whether to choose the paper for further 124 

analysis or not. To reduce the biases, the first selection was based on the title of the paper 125 

with the pertinent keywords regardless of the authors’ names and countries. We prioritized 126 

peer-reviewed articles in the first phase of scrutiny. During the second phase of literature 127 

scrutiny, reports, news’ articles, book sections, etc. were also included. A critical appraisal 128 

of the selected papers through the second phase of scrutiny was carried out.  129 

3. Geospatial data for Sustainable Development Goals (SDGs) 130 

3.1. Sustainable Development Goal 1: no poverty 131 

The spatial information from satellite data can help to acquire backdated census data at 132 

a global scale, especially for developing countries. The United Nations has defined 7 targets 133 

and 14 indicators for SDG-1. The traditional method to measure poverty relies on census 134 

data, which typically has a repeat cycle of 5 or 10 years as it is difficult to update the data 135 

yearly. In some of the low and middle-income countries, census data is unavailable; or if 136 

available, it is outdated. Therefore, the use of alternative techniques based on GIS and mobile 137 

mapping can help in updating and filling up such data gaps (Tatem et al., 2017). The poverty 138 

maps based on geospatial data provide information on inequality within a country and hence 139 

divulge the spatial disparities related to the various indicators of SDG 1 (Kuffer et al., 2018). 140 

These maps are becoming an important tool for the development of effective policies, aiming 141 

to reduce inequalities within countries by implementing social protection programs. These 142 

programs include allocating subsidies, effective resource use, disability pension, 143 

unemployment insurance, old-age pension, etc. Multi-temporal poverty maps can be used to 144 

see the change in poverty by implementing social protection programs. The use of geospatial 145 

information can give information about potential hotspots where the international community 146 

must work together to reduce poverty. Mobile phone data has also been used as an indicator 147 

of poverty, for example: the use of monthly credit consumption, the proportion of people 148 

using mobile phones, movement of mobile phones, etc. (Eagle, Macy, & Claxton, 2010; Soto, 149 

Frias-Martinez, Virseda, & Frias-Martinez, 2011). There are numerous studies where GIS 150 

tools are leveraged towards implementing policies to achieve SDGs, some of which are 151 

discussed below. 152 

Gallo and Ertur studied the distribution of regional GDP per capita in Europe from 153 

1980-1995 and found clear evidence of global and local spatial autocorrelation (Gallo, J. L. 154 

& Ertur, 2003). Minot & Baulch (2005) investigated spatial patterns of poverty in Vietnam, 155 

which reveals that most of the poor people do not live in the poorest districts but in the 156 

lowland deltas, where poverty incidence is intermediate. Therefore, governments should 157 

consider poor people, not poor areas. Kuffer et al. (2016) reviewed literature related to slum 158 

area mapping using remote sensing data, emphasizing the role of high-resolution satellite 159 

data and object-based image analysis (OBIA) for robustness across cities and imagery. 160 

Asensio focused on the targeting aspect of poverty alleviation (Asensio, 1997). In this work, 161 

census data were used alongside aerial-photo interpretation within a GIS environment. 162 

Numerous and varied indicators which revolved around unemployment rate, health-infant 163 
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mortality rate, ethnicity, educational attainment of female household heads, housing quality, 164 

etc. were used. The level of data aggregation was the building block. The use of GIS-based 165 

poverty maps can integrate data from various sources in defining and describing poverty. 166 

This can generate reliable poverty indicators at district and sub-district levels. The application 167 

of GIS can provide an insightful idea of the census data, which seems underutilized in 168 

developing countries.  169 

In Indonesia, Poverty Reduction Information System for Monitoring and Analysis 170 

(PRISMA) has been widely used to conduct spatial analysis of poverty in relation with other 171 

variables in the GIS platform (Sugiyarto, 2007). Okwi et al. (2007) mentioned in their study 172 

that acquisition of various thematic data such as slope, soil type, distance, travel time to 173 

public resources, elevation, type of land use, and demographic variables can be useful to 174 

explain spatial patterns of poverty (Okwi et al., 2007). Elvidge et al. (2009) derived a global 175 

poverty map using a poverty index calculated by dividing population count by the brightness 176 

of satellite observed night time light (DMSP nighttime light data). They used land cover, 177 

topography, population settlement, as well as DMSP nighttime light data and estimated that 178 

the numbers of individuals living in poverty are 2.2 billion, slightly under the world 179 

development indicators (WDI) estimation of 2.6 billion. This information can be updated 180 

easily with the use of multi-temporal satellite data. Blumenstock et al. (2016) demonstrated 181 

that policymakers in the world’s poorest countries are often forced to make policies with data 182 

insufficiency especially in the African region (Blumenstock et al., 2016). Therefore, the use 183 

of high-resolution satellite imagery and machine learning can fill the gap of data 184 

insufficiency. Multi-dimensional poverty index (MPI) based on mobile call details, 185 

ownership, call volume, as well as satellite-based nighttime light data has been used in 186 

Rwanda with high accuracy (Njuguna & McSharry, 2017). This study shows that mobile and 187 

satellite-based big data can be effectively used for evaluating spatiotemporal poverty. The 188 

use of high-resolution satellite data to estimate variation in poverty across small local areas 189 

by analyzing features such as the density of paved and unpaved roads, building density, roof 190 

types, and farmland types have been conducted in Sri Lanka (Engstrom, 2016). Geospatial 191 

data can be effectively used as a tool to provide updated data as well as to monitor the 192 

progress or growth due to the implementation of current policies. One study developed a 193 

transfer learning approach using convolutional neural networks (CNN), where night-time 194 

light intensities are used as a data-rich proxy to predict poverty in Africa (Xie, Jean, Burke, 195 

Lobell, & Ermon, 2015). This approach can easily be generalized to other RS tasks and has 196 

great potential to solve global sustainability challenges. One of the recent studies 197 

demonstrated how mobile phone and satellite data can be utilized as a mapping tool for 198 

poverty (Tatem et al., 2017). The findings indicate the feasibility to estimate and continually 199 

monitor poverty rates at high spatial resolution in countries with limited capacity to support 200 

traditional methods of data collection. Hence, it can be concluded from the above-discussed 201 

literature review that geospatial techniques are effective means to reach out to the most 202 

vulnerable groups to better execute the policies aimed at poverty elimination. 203 

3.2. Sustainable Development Goal 2: no hunger 204 
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Remote Sensing based estimation of agricultural yield can be used to avoid hunger. 205 

According to the United Nations Food and Agriculture Organization (FAO), there is more 206 

than enough food produced in the world to feed everyone. But recent data shows that the 207 

estimated number of undernourished people has increased from 777 million in 2015 to 815 208 

million in 2016 (FAO IFAD UNICEF, 2017). Tackling the hunger problem is not an easy 209 

task and it needs international cooperation among countries. Knowing the problem of 210 

malnutrition in an area, projecting future crop production and water availability could help 211 

us to mitigate the problem in the future since we would make needful plans in a timely 212 

manner. The satellite data can contribute to achieving the goal of zero hunger by providing 213 

timely data on agriculture yield and market demand using modeling techniques. The use of 214 

unmanned aerial vehicles (UAVs) in precision agriculture can also support sustainable 215 

agriculture production by precision farming (Paganini et al., 2018). Nhamo et al. (2018) 216 

studied improving the estimation of irrigated area using Landsat data in Limpopo province, 217 

South Africa with the use of UAV-based information. Arroyo et al. (2017) estimated the yield 218 

of corn using UAV data as well as the optimization of fertilizer use.  219 

RS and GIS could be used to detect key areas struggling to ensure enough food.  One 220 

study analyzed the current situation of the distribution of underweight children in Africa and 221 

found the highest prevalence rate around the border between Nigeria and Niger, Burundi, and 222 

central/northern Ethiopia (Nubé & Sonneveld, 2005). They indicated that the regional 223 

characteristics, as well as national policies and circumstances, play a role in high causation 224 

as well as prevention. Liu et al. (2008) also analyzed hotspots of hunger along with the 225 

climate change scenario for the subnational level of Sub-Saharan Africa. The authors found 226 

that existing problems in Nigeria, Sudan, and Angola would be mitigated by improving the 227 

domestic food security situation through gaining economic power, but some regions in 228 

Tanzania, Mozambique, and DR Congo would face more serious hunger problems if climate 229 

change continues to progress. Basing on the projections, SDG-2 can be achieved for these 230 

countries only if the international community could work together to help struggling 231 

countries. Geospatial data can be used to forecast the agricultural yield at the national, 232 

regional, and global levels with the use of ground-based observation and weather data in a 233 

timely and accurate manner. Satellite data can provide useful information about poor growing 234 

seasons and years of low crop productions. Group on Earth Observations Global Agricultural 235 

Monitoring (GEOGLAM) is one of the seminal agencies that use geospatial data for 236 

agriculture forecasting. Raising agricultural productivity and climate resilience are necessary 237 

to feed the growing population by adopting advanced technologies (World Bank, 2016).  238 

3.3 Sustainable Development Goal 3: good health 239 

Spatial analysis techniques can help in examining healthcare systems as well as 240 

estimating the path of infectious diseases. Improving sanitary conditions such as access to 241 

clean water is crucial in maintaining good health. Therefore, SDG-3 is feasible if SDG 6 242 

(clean water and sanitation), is achieved. It is worth mentioning here that all the 17 goals of 243 

SDGs are not independent, rather these goals are interconnected. The WDI data and the 244 

World Water Development Report by UN-Water provide us the percentage of the population 245 

with access to clean water using GIS maps (UN Water, 2018). The maps show a cluster in 246 
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Africa telling that the situation must be improved in the future for the attainment of SDGs. 247 

Similar to its use for detecting hunger problems, GIS plays an important role in assisting 248 

decision-makers to improve the situation. 249 

In addition to sanitation, maintaining good health requires access to the healthcare 250 

system. GIS can be used to analyze healthcare conditions nationally and internationally. One 251 

study analyzed the condition of healthcare in Costa Rica by measuring its spatial access 252 

within the country (Rosero-Bixby, 2004). His findings provide important information to 253 

achieve SDG 3 in Costa Rica because it clearly points out certain communities without 254 

adequate access to healthcare. Together with other healthcare indicators such as child 255 

mortality rate, if the regional differences are revealed, the government could intensively 256 

allocate the budget and human resources in areas lagging behind others to improve the 257 

situation for achieving SDG 3. A similar analysis is useful for Sub-Saharan countries to show 258 

the precise location seeking help from the international community.  259 

Gaugliardo (2004) studied the situation of the primary care by measuring the 260 

distance to a healthcare facility and found the differences in accessibility of primary care in 261 

Washington DC. Some areas have more than 70 medical service providers for 100,000 262 

children while others have less than 20. Wang and Luo (2005) studied to find areas, which 263 

suffered from the shortage of healthcare workers in Illinois and found that disadvantaged 264 

areas were widespread all over the state, except big cities such as Chicago. Both studies 265 

implied that GIS can also be used in medical geography to depict social inequality in 266 

developed countries. Also, improving social conditions contributes to achieving both SDG 3 267 

and SDG 10: reduced inequalities. 268 

The effectiveness of GIS is not limited to the general healthcare system. We could 269 

utilize it for epidemiology studies to prevent future pandemics. Maude et al. (2014) analyzed 270 

the spatial and temporal data on clinical malaria in Cambodia, and depicted the distribution 271 

of the disease and village malaria workers. Timo Lüge (2014) prepared a case study to report 272 

how GIS was used to combat the recent Ebola outbreak in Guinea. In countries like Guinea, 273 

it is quite challenging to tackle communicable diseases because a lot of basic information 274 

including geographic and social data is missing. Quick responses are crucial to control 275 

outbreaks. A medical humanitarian organization, Medicine Sans Frontier, needed to start 276 

from collecting geographic data to know how streets connect residential areas as well as 277 

where the cases were reported. Jones et al. (2008) studied global temporal and spatial patterns 278 

of emerging infectious diseases (EIDs) and found that the origin of EIDs is significantly 279 

correlated with socio-economic, environmental, and ecological factors. The study revealed 280 

that the fragile regions due to EIDs in the world include developed countries, and the risk 281 

map would help us to prepare for future outbreaks. EIDs include zoonosis, which is common 282 

to both humans and animals. Outbreaks of zoonosis such as avian/swine influenza, Ebola, 283 

and rabies would significantly impact both human health and national economies, especially 284 

if livestock is a major industry. Preventing infectious diseases through monitoring is 285 

necessary for SDG-3. With the current trends of global warming and globalization, the 286 

infected area is expanding into new areas as mosquitos move along with human and material 287 

flows. Therefore, controlling infectious diseases will be challenging to all countries. The 288 
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recent outbreak of the Zika virus in South America has already spread widely to North 289 

America, Europe, and Asia. Furthermore, the impact of the disease is especially significant 290 

for pregnant women and newborn babies. Therefore, for SDG 3, analyzing the origin, 291 

tracking the outbreak and preventing the disease from invasion is an important process for 292 

which GIS is an effective tool. Orimoloye et al. (2018) studied about changes in land surface 293 

temperature and radiation due to urbanization in South Africa using Landsat data and 294 

radiation risks to heatstroke, skin cancer, and heart disease (Orimoloye, Mazinyo, Nel, & 295 

Kalumba, 2018). Strano et al. (2018) proposed a tool for supporting the design of disease 296 

surveillance and control strategies through mapping areas of high connectivity with roads in 297 

the African region (Strano, Viana, Sorichetta, & Tatem, 2018). 298 

3.4 Sustainable Development Goal 6: clean water and sanitation 299 

SDG 6 addresses the issues related to clean water and sanitation. It has seven targets to 300 

be achieved by 2030 ranging from water resources to the hygiene of people. The application 301 

of geospatial techniques like remote sensing and GIS promises to achieve each of the seven 302 

targets. Target 1 is to achieve universal and equitable access to safe and affordable drinking 303 

water for all by 2030. The study “Assessment of Groundwater Potential in a Semi-Arid 304 

Region of India Using RS, GIS and Multi-Criteria Decision Making Techniques” (Machiwal, 305 

Jha, & Mal, 2011) provides a very good insight to achieve this target. In this study, the authors 306 

proposed a standard methodology to delineate groundwater potential zones integrating RS, 307 

GIS, and Multi-Criteria Decision Making (MCDM) techniques. Using each of these 308 

techniques, they have generated a groundwater map and demarcated four groundwater 309 

potential zones as good, moderate, poor, and very poor based on groundwater potential index 310 

in the Udaipur district of Rajasthan, Western India. On the basis of hydrogeology and 311 

geomorphic characteristics, four categories of groundwater prospect zones were delineated. 312 

Another study in the drought-prone Bundelkhand region also showed the importance of RS, 313 

GIS, and ground survey data to identify groundwater potential zones. This study can be used 314 

to address drought mitigation and adaptation (Avtar et al., 2010).  315 

Target 2 of the SDG 6 is to achieve access to adequate and equitable sanitation and 316 

hygiene for all and end open defecation paying special attention to the needs of women, girls, 317 

and those in vulnerable situations. Open defecation is a very common sight in developing 318 

countries due to inaccessibility to infrastructure and facilities. Various information on land 319 

cover and infrastructure derived from satellite data can be used for geographical analysis in 320 

the planning of infrastructure development (Paulson, 1992). Information like land-cover 321 

derived from satellite imagery combined with land ownership, slope, soil type, and visibility 322 

indicators in GIS can be used to design infrastructure facilities (Tatem et al., 2017). These 323 

techniques are also important for assessing the environmental impact and cost of construction 324 

(Kuffer et al., 2018). Another type of application is the zoning of cities according to the 325 

physical and socio-economic attributes for infrastructure planning. The zones can be used for 326 

different purposes such as sanitation, housing, etc. Information about population density and 327 

area can also be used to calculate the approximate number of users and hence building costs. 328 

The study on water pollution and management in Tiruchirappalli Taluk (District), Tamil 329 

Nadu, India used IRS LISS-III (Linear Imaging Self Scanning Sensor), satellite imagery, and 330 
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SRTM (Shuttle Radar Topography Mission) data integrated with water level data, canal 331 

inflow, and groundwater condition to generate a map showing the distribution of water 332 

pollution in the area (Alaguraja, Yuvaraj, & Sekar, 2010). Another study conducted in the 333 

Alabata community (Nigeria), which is a community without basic infrastructure facilities, 334 

revealed the importance of RS-GIS based techniques in the bacteriological examination of 335 

water supply to the rural communities. Data on sanitation, health, water sources, and water 336 

sampling points were taken and plotted in GIS and a base map was generated in this study. 337 

Development of the RS-GIS system allows the overlapping of the spatial location of water 338 

sources and bacteriological quality data as well as the generation of a map for the planning 339 

and management (Shittu et al.,  2015). 340 

Over-exploitation of groundwater resources can also be monitored by RS-GIS 341 

techniques. The study on integrated RS-GIS application for groundwater exploitation and 342 

identification of artificial recharge sites provides a very good example to support this 343 

argument. In this study, IRS-LISS-II data and other relevant datasets were used to extract 344 

information on hydro-geomorphic features of hard rock terrain. This study was conducted in 345 

Sironj area of Vidisha district of Madya Pradesh (India). IRS-LISS-II data has been integrated 346 

with DEM, as well as drainage and groundwater data analysis in GIS. This study has helped 347 

in designing an appropriate groundwater management plan for a hard rock terrain (Saraf & 348 

Choudhury, 1998). Satellite data with multiple applications can be useful to monitor clouds, 349 

precipitation, soil moisture, groundwater potential, inland water bodies, change in the river, 350 

surface water levels, etc. (Paganini et al., 2018). 351 

Target 5 of SDG 6 is protecting and restoring water-related ecosystems, including 352 

mountains, forests, wetlands, rivers, aquifers, and lakes by 2020. The availability of water 353 

depends on several factors such as forests, wetlands, mountain springs, etc. Therefore, 354 

protecting them and restoring them plays a vital role in achieving SDG 6. The study was done 355 

by Reusing (2000) on change detection of natural high forests in Ethiopia using RS and GIS 356 

techniques set a very good example. The author has done a countrywide change detection 357 

analysis of Ethiopia’s natural high forests using multi-temporal LANDSAT-TM satellite 358 

images. Wetlands are important in mitigating and controlling floods - a hazard which brings 359 

lots of negative impacts on the poor communities due to the widespread of waterborne 360 

diseases, destroying properties and agricultural fields. Therefore, restoring and protecting 361 

existing wetlands is a timely necessity and RS and GIS can be incorporated in this. Rebelo et 362 

al. (2009) have developed a multiple purpose wetland inventory using integrated RS-GIS 363 

techniques and specific analysis at different scales in response to past uncertainties and gaps. 364 

Furthermore, they have quantified the conditions of wetlands along the western coastline of 365 

Sri Lanka using satellite data and GIS to describe trends in land use due to the changes in 366 

agriculture, sedimentation, and settlement patterns.  367 

3.5 Sustainable Development Goal 11: sustainable cities and communities 368 

There has been accelerated progress made on global spatial data collection and 369 

processing because of advancements in technologies and computer science. Therefore, 370 

increased investment and technical applications are needed to expand on the progress being 371 
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made to integrate geospatial data into the global goal of implementing sustainable cities and 372 

human settlements. UN-Habitat is already engaging research institutions to develop a 373 

representative dataset of urban areas that would make possible the monitoring of urban land-374 

use efficiency, land-use mix, street connectivity, and other key factors of sustainable urban 375 

development (Habitat, 2015). Consequently, adopting SDG 11 is also transformational in the 376 

sense that it targets the sequential progress of urban planning, the complex provision of public 377 

space, access to basic services and transportation systems by the growing population in this 378 

digital world of uncertainties.  379 

United Nations Regional Cartographic Conference for Asia-Pacific (2015) emphasized 380 

the importance of an integrated approach to sustainable development, including the need for 381 

quality data and information for decision making (Lehmann et al., 2017). The high need for 382 

geographic data was then first captured in a global sustainable development dialogue. The 383 

report of the summit, under the ‘means of implementation’ theme called for member states 384 

to inter-alia: promotion of development and wider use of earth observation technologies 385 

including satellite RS, global mapping and geographic information systems, to collect quality 386 

data on environmental impacts, land-use and land cover changes, etc. Also, it echoed urgent 387 

action at all levels of data access, exploring the use of geographic information by utilizing 388 

the technologies of satellite RS for further development as far as urbanization is concerned. 389 

How geographic information would be applied to sustainable development challenges or be 390 

implemented was not clarified. There was simply no apex intergovernmental mechanism in 391 

existence that could suitably address the production and use of geographic information within 392 

national, regional, and global policy frameworks – or how they could be applied to 393 

sustainable development challenges. There are various sectors in a city that really need the 394 

application of geospatial information. Acquiring data on these indicators will contribute a lot 395 

to the implementation of the sustainable cities through SDG 11 achievements by 2030. For 396 

example, the application of RS data in wastewater monitoring can clearly assist us to identify 397 

the flow and can be used as an indicator for monitoring the proportion of wastewater safely 398 

treated (Ulugtekin et al.,  2005). There is a similar situation on the population density, land 399 

use, land cover and many other data needed for the achievement of SDG 11. If this data is 400 

integrated with other geospatial layer, and administrative data of high-resolution satellite 401 

images which can document the location of treatment facilities in a city, can help to estimate 402 

the wastewater generation potential as well as their impacts. The use of geospatial data in the 403 

implementation of SDG 11 will contribute a lot to filling most of the knowledge gaps. It will 404 

place many demands on national statistical systems, as well as cost-effective gains on 405 

monitoring in general.   406 

Geospatial information and analysis significantly enhances the effectiveness of the SDG 407 

11 indicators in monitoring and guiding sustainable development from global to local scales. 408 

The value of statistical and geospatial data compilation for the implementation and 409 

monitoring of the 2030 Agenda and SDG 11 constitutes an important basis for the continued 410 

collaboration between the geospatial field and many other sectors involved in achieving the 411 

implementation of the sustainable cities goal. However, this will require us not only to 412 

promote the use of statistical and geospatial data as reporting and monitoring tools for 413 
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achieving the SDG 11 but to further support capacity building in the intersection of various 414 

disciplines in a transdisciplinary approach ((ISO) & (IHO), 2015).  415 

This review paper has recognized the need for the global geospatial information 416 

community, particularly for the implementation of SDG 11 through the utilization of national 417 

geospatial information agencies. There is an opportunity to integrate geospatial information 418 

into the sustainable cities goal in more accurate ways to gather, measure, and monitor the 419 

targets and indicators of SDG 11. For example, through an approach called Backcasting, 420 

conceptually developed to support sustainable decisions in the energy sector (Haslauer, 421 

Biberacher, & Blaschke, 2012). Backcasting works backward from the envisioned future 422 

goals to the present, setting milestones to achieve the desired objective. These milestones are 423 

small interim scenarios along the way between the future scenario (usually 20–50 years 424 

ahead) and the present situation. The use of the Backcasting methodology, if implemented in 425 

a modeling environment of many cities, as well as the urban planning process based on GIS 426 

using the scripting language Python will play a major part in implementing SDG 11. Most 427 

importantly, in order to achieve this outcome, national geospatial information institutes need 428 

to collaborate more with the national statistical and earth observatory professional 429 

communities.  430 

The governments need to ensure unity between institutions having similar goals and 431 

objectives both at national and global perspectives. Institutions are required to deliver the 432 

same data, as practical as possible and depending on national circumstances and functions 433 

usefulness of the geospatial data in the implementation of the SDG 11 is concerned. Urban 434 

centers/cities contribute around 80% of global greenhouse gas (GHG) emissions, especially 435 

in most developing nations where urban centres and cities are spaced with no effective means 436 

of urban transport systems. Therefore, sustainability indicators can provide new ideas and 437 

solutions to the planning and expansion occurring globally. The decisions for sustainable 438 

cities planning and management should be taken on an evaluation of their consequences. 439 

Correspondingly, each strategy needs to design the right tools of study, analysis, and 440 

prediction (Martos et al., 2016). For this reason, the integration of RS and geospatial tools 441 

like GIS and many modeling and projection tools will have an effective impact to implement 442 

and monitor achievement of the sustainable city goal. An urban transport indicator for SDGs 443 

has been discussed by Brussel et al. (2019). It has been argued that the urban transport 444 

indicator has many limitations. Out of several limitations, the major limitation is supply 445 

oriented. The indicators for this study have been collected using geoinformation for the city 446 

of Bogota in Columbia. The mapping, modeling, and measurements of urban growth can be 447 

analyzed using GIS and RS-based statistical models. While achieving safe, resilient, 448 

sustainable cities and communities surely present the global community with a set of 449 

significant social, environmental, and economic challenges where geospatial information can 450 

provide a set of science and time-based monitoring solutions. As noted at the second session 451 

of United Nations Initiative on Global Geospatial Information Management (UN-GGIM) in 452 

August 2012, “all of the issues impacting sustainable development can be analyzed, mapped, 453 

discussed and/or modeled within a geographic context” (Scott & Rajabifard, 2017). The use 454 

of Geo-information will effectively reduce the network load and the building modeling cost 455 
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as well. This will contribute substantially to the achievement of sustainable and low carbon 456 

cities by saving three quarters of manpower, time and cost during the implementation of most 457 

construction projects (Rau & Cheng, 2013). A case study on GIS based methods for assessing 458 

the environmental effects in informal settlements in Cuiaba, Central Brazil has been carried 459 

out by Zeilhofer & Piazza  (2008). The reason for the rise in informal settlements in Cairo, 460 

the capital of Egypt, has been studied by El-Batran & Arandel (2005). The sustainable 461 

informal settlements in Dharavi, Mumbai from India; Santa Marta favela, Rio de Janeiro 462 

from Brazil; Tondo, Manila from the Philippines have been studied by Dovey (2015). The 463 

author explains that the informal settlements for shelter and community have risen globally 464 

and are legally unjustifiable. The informal settlements in Kisumu, Kenya have been described 465 

by Karanja (2010). In conclusion, whether collecting and analysing satellite images or 466 

developing geopolitical policy, geography provides the integrative approach necessary for 467 

global collaboration and consensus decision making towards the achievement of SDG 11 on 468 

safe, resilient and sustainable cities. 469 

3.6 Sustainable Development Goal 13: climate action 470 

The key to understand our dynamic climate is creating a framework to take many 471 

different pieces of past and future data from a variety of sources and merge them together in 472 

a single system using GIS (Dangermond & Artz, 2010). A particular technological measure, 473 

which was specifically identified by national development targets and strategies of most 474 

countries all over the world is the use of RS, particularly on climate monitoring and analysis. 475 

For instance, Indonesia has initiated the development of its National Satellite Development 476 

Programme to aid the application of satellite RS on the issues of climate change and food 477 

security in the country. Also, countries like the Philippines are pushing for the capacity 478 

building of technical people to earn needed expertise on the use and application of new and 479 

sophisticated tools such as GIS. It goes without saying that RS has become a pre-requisite 480 

for reliable information bulletins on climate change which was relied on by decision-makers. 481 

Various pieces of literature pointed out the following reasons why RS has become a very 482 

important ingredient in climate change study and decision making related to it: 483 

• Many regions in the world are characterized by the lack of a dense network of ground-based 484 

measurements for Essential Climate Variables (ECVs). 485 

• Some parameters can only be observed from space or can be observed with better accuracy 486 

from space (e.g. top of atmosphere radiation budget). 487 

• RS provides climate variables with a large regional coverage up to global coverage. 488 

• Assimilation of satellite data has largely increased the quality of reanalyzed data. 489 

• Satellite-derived products have the potential to increase the accuracy of gridded climate 490 

datasets gained from dense ground-based networks. 491 

At present, the application of RS in dealing with the issue of climate change has been 492 

very useful. It is noteworthy to mention one of the earliest and globally important 493 

contributions of RS in climate change study, which is the discovery of the ozone hole over 494 

Antarctica. It was discovered by a British scientist and was confirmed by the Nimbus-7 Total 495 

Ozone Mapping Spectrometer (TOMS) launched in 1978. Since then, the TOMS make maps 496 

of daily global ozone concentration. These data were used as scientific pieces of evidence in 497 



14 

 

the First Montreal Protocol, where 46 nations agreed to reduce the use of chlorofluorocarbons 498 

(CFCs) by 50% by 1999. However, like many other great things, it is also being hurdled by 499 

some issues and criticisms including (i) there are types of data which are not accurate when 500 

downscaled to a more human scale of meters (e.g., while standing in the field), (ii) requires 501 

highly technical expertise, (iii) involve the use of costly/expensive equipment, (iv) accuracy 502 

is highly dependent on the source data. This pushed different organizations (i.e., NASA, 503 

ESRI) to strive for future directions in RS and global change, including international 504 

cooperation, dataset management, and distributed computing. Recent developments in RS 505 

opened up new possibilities for monitoring climate change impacts on the glacier and 506 

permafrost-related hazards and threat to human lives and infrastructure in mountainous areas 507 

(Kaab et al., 2006). Previous studies show the importance of RS and GIS in the assessment 508 

of natural hazards in mountainous regions, therefore, it will play a major role in the 509 

sustainability of the region in the near future (Kääb, 2002; Quincey et al., 2005).  510 

3.7 Sustainable Development Goal 14: life below water 511 

This goal addresses the sustainable use and conservation of oceans, seas, and marine 512 

resources. This goal consists of several targets addressing marine pollution, protection of 513 

marine and coastal ecosystems, minimizing ocean acidification, regulating and managing 514 

fishing activities, prohibiting overfishing, increasing economic benefits to the small island 515 

via the sustainable use of marine resources, developing research capacity, and implementing 516 

international laws which support sustainable utilization of marine resources. Geospatial 517 

techniques provide an enhanced interface to achieve these targets in numerous ways. One 518 

good example can be taken by the study done by Dahdouh-guebas (2002). The author has 519 

studied the sustainable use and management of important tropical coastal ecosystems such as 520 

mangrove forests, seagrass beds and coral reefs using integrated RS and GIS. He determined 521 

the ecosystem resilience and recovery followed by an adverse impact using these techniques. 522 

The author stressed that there is a need for more comprehensive approaches that deal with 523 

new RS technologies and analysis in a GIS environment, and that integrate findings collected 524 

over longer periods with the aim of future prediction. Another study done for seagrass 525 

meadows in North Carolina, USA supports the significance of geospatial techniques in the 526 

sustainable use of the ocean and its resources. Seagrass meadows are vulnerable to external 527 

environmental changes and they provide a habitat for coastal fisheries. Therefore, monitoring 528 

and conserving seagrass is key to a healthy ocean environment. Spatial monitoring of 529 

seagrasses can improve coastal management and provides a change in location and areal 530 

extent through time (Ferguson & Korfmacher, 1997).  531 

Oil spills are a common problem in oceans mainly associated with shipping activities. In 532 

recent years, the frequency of oil spills has increased due to the development of marine 533 

transportation. Oil spills can significantly affect the primary productivity of ocean and marine 534 

ecosystems including fisheries, marine animals, corals, etc. RS based algorithm has been 535 

used widely to detect oil spills. There is a significant improvement in the oil spill detection 536 

with the use of microwave remote sensing techniques (Yu et al., 2017). For example, 537 

Satellite-based oil pollution monitoring capabilities in the Norwegian waters were 538 

demonstrated in the early 1990s by using images from the ERS-1 satellite (Wahl et al., 539 
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(1994). With the advancement of RS technologies, Synthetic Aperture Radar (SAR) plays an 540 

important role in oil-spill monitoring (Brekke & Solberg, 2005). Arslan (2018) reported that 541 

Sentinel-1 SAR and Landsat-8 data can be effectively used to highlight the oil spill area. 542 

Global fish production was relatively stable during the past decade, whereas aquaculture 543 

production continued to rise (FAO (Food & Agriculture Organisation), 2012). Both sectors 544 

are very important in global food security and there is an increasing threat to their 545 

sustainability. Some of the challenges are overfishing, degradation of keystone species, and 546 

climate change. On the other hand, aquaculture faces problems like competition for space, 547 

disease outbreak, labor, and impacts of climate change. The solutions to some of these 548 

problems can involve applying satellite remotely sensed (SRS) information (Saitoh et al. 549 

2011). RS can be used to detect ocean temperature, sea surface height anomaly, ocean color 550 

etc. which are very important in operational oceanography. In pelagic fisheries, there are 551 

mainly two RS applications. One is for the identification of potential fishing zones, and the 552 

other one is for the development of management measures in order to minimize the catch of 553 

endangered species. For example, Howell et al. (2008) demonstrated a tool that facilitated 554 

the avoidance of loggerhead turtle (Caretta caretta) by catch, while fishing for swordfish 555 

(Xiphias gladius) and tuna (Thunnus spp.) in the North Pacific (Howell et al. (2008).  556 

3.8 Sustainable Development Goal 15: life on land  557 

Forest plays a major role in regulating the global carbon cycle at regional to the global 558 

scale. According to the MEA (2005) report, (Finlayson, 2016), 335- 365 Gigatonnes of 559 

carbon is locked up by forests each year. Any significant alterations or reduction in the 560 

forested area due to any or many of the following reasons, namely changes in land use and 561 

land cover, the practice of selective logging, forest fires, pest, and diseases, would definitely 562 

lessen the productive functioning of the forest. The previous studies concluded that it is 563 

highly important to reduce greenhouse gas (GHG) emissions from deforestation and forest 564 

degradation as a step towards mitigating climate change (Angelsen et al., 2012; Instituter & 565 

Meridian Institute, 2009).  566 

Climate change is a growing concern that has led to international negotiations under the 567 

United Nations Framework Convention on Climate Change (UNFCC) (Sustainable 568 

Development Solutions Network (SDSN), 2014). The REDD+ concept emphasizes reducing 569 

emissions from deforestation and forest degradation, promoting sustainable forest 570 

management, as well as enhancing carbon sinks are all integrated and regarded as mitigating 571 

GHG emissions. Forest degradation heavily impacts small communities, who are dependent 572 

on the forest as a source of income and food. Destruction of the forest also affects soil and 573 

water quality in the immediate area and can adversely affect biodiversity over a range of 574 

connected ecosystems. There has been a lot of ambiguity in the definition of forest 575 

degradation. According to FAO report (FAO, 2011), forest degradation has been defined as; 576 

changes within the forests which negatively affect the structure or functions of the stand or 577 

site, and thereby lower the capacity to supply products and/or services. While REDD+ 578 

defines degradation as a long-term loss (persisting for x years or more) of at least y% of forest 579 

carbon stocks since time T, and not qualifying as deforestation which is conversion of forest 580 

land to another land use category. Thus, it is highly essential to decide the definition, the 581 
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indicators on the basis of which a nation’s trajectory towards the achievement of SDGs could 582 

be monitored. Once, the international organizations decide the common indicators, the 583 

phenomenon or feature can be monitored by geospatial techniques.  584 

Looking into the grave problem that stands right in front of humanity, is the need to 585 

accurately monitor, map and estimate the net forest cover, monitor deforestation, and 586 

degraded forest area and quantify the Above Ground Biomass (AGB). RS technique which 587 

offers comprehensive spatial and temporal coverage has been used for the same in past 588 

decades. Many types of research and monitoring programs have been carried out to map 589 

deforestation and forest degradation using optical RS. For instance,  Reddy et al. (2016) 590 

quantified and monitored deforestation in India over eight decades extending from 1930 to 591 

2013 using grid cell analysis of multi-source and multi-temporal dataset. The satellite 592 

imageries were acquired from cloud-free Landsat Multispectral Scanner System (MSS) from 593 

1972-1977, IRS 1A/IB LISS I (1995), IRS P6 Advanced Wide Field Sensor (AWiFS) (2005) 594 

and Resources at-2 AWiFS (2013) with an overall accuracy of forest cover more than 89%. 595 

Another study by Ritters et al. (2016), who assessed global and regional changes in forest 596 

fragmentation in relation to the change of forest area from 2000 to 2012. The study utilized 597 

global tree cover data to map forest and forest interior areas in 2000 and concluded that forest 598 

area change is not necessarily a good predictor of forest fragmentation change. Thus, we see 599 

that there are still some gaps between our understanding of the ecological processes and 600 

finding using geospatial techniques. It is required that basic science, technology, and policy 601 

evolve and develop hand-in-hand.  602 

Regional-scale studies do provide insights into general trends in space and time domain 603 

over the entire country and are important for designing a national-level policy to stop the 604 

progress of deforestation and degradation. But, they do tend to overlook the changes at a 605 

local level, which will require the usage of high-resolution satellite imagery. The choice of 606 

usage of satellite imagery depends on the objective of the study. For instance, WWF 607 

Indonesia Tesso Nilo Programme (2004) (Kusumaningtyas et al., (2009)  used ASTER 608 

satellite image procured on 24 July 2003 covering a part of Tesso Nilo National Park, Riau 609 

Province, Sumatra Island to monitor the illegal logging practices in the area. In conjunction 610 

with the satellite data, they collected other information like GPS location of each logging 611 

operation and time when trucks with illegal logs left the site of investigation and likewise. 612 

The study could find out the company involved in illegal logging on the site. Such studies at 613 

the local level surely help to monitor the activities of private companies and thereby a strong 614 

monitoring system will help to stop deforestation and forest degradation. But, the use of 615 

satellite working in the optical range is constrained by the unfavorable weather conditions. 616 

In such a case, microwave RS is a more preferred option. The data is available in around the 617 

year with its penetration capability to clouds thus, providing data even in rainy and cloudy 618 

conditions. Shimada et al. (2014) generated four global forest/non-forest mosaics of 619 

Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture 620 

Radar (PALSAR). The maps provided a new global resource for documenting the changing 621 

extent of forests and offer opportunities for quantifying historical and future dynamics 622 
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through comparison with historical (1992–1998) Japanese Earth Resources Satellite (JERS-623 

1) SAR. 624 

Green plants uptake carbon from the atmosphere via the process of photosynthesis. The 625 

removal of carbon from the atmosphere, referred to as carbon sequestration is a function of 626 

the terrestrial ecosystem, for instance, the authors (Jaramillo, Kauffman, Rentería-Rodríguez, 627 

Cummings, & Ellingson, 2003) found that forest ecosystems sequester more carbon per unit 628 

area than any other land type. Another factor playing a vital role in carbon sequestration is 629 

the quantity of biomass (Brown, Schroeder, & Kern, 1999). Therefore, it is important for 630 

each country to assess above-ground biomass accurately, which has a prime role in 631 

quantifying carbon stored in the forest. From the usage of destructive techniques to highly 632 

accurate non-destructive techniques, the world has witnessed tremendous growth of 633 

technology in the way of quantifying AGB. The forest biomass has been estimated using 634 

PolInSAR coherence based regression analysis of using RADARSAT-2 datasets covering 635 

Barkot Reserve Forest, Doon Valley, India (Singh, Kumar, & Kushwaha, 2014).   636 

Achievement of targets under Sustainable Development Goal 15 which basically focuses 637 

on sustainable management of all types of forest will require each nation to establish a 638 

transparent, consistent, and accurate forest monitoring system. The implication of the present 639 

human activities along with the policies developed and practiced are the factors, which will 640 

certainly shape the future of the forest ecosystem. Thus, it is critically important to forecast 641 

future scenarios. One key component of these systems lies in satellite RS approaches and 642 

techniques to determine baseline data on forest loss against which future rates of change can 643 

be evaluated. Advances in approaches meeting these criteria for measuring, reporting and 644 

verification purposes are therefore of tremendous interest. Thapa et al. (2015) carried out 645 

research to generate future above-ground forest carbon stock in Riau Province, Indonesia. 646 

The study utilized ALOS PALSAR-2 Mosaic data at a 25m spatial resolution to generate a 647 

baseline and generated future scenarios in correspondence to the IPCC Assessment Report 648 

(AR 5). The three policy scenarios were analyzed: BAU, corresponding to the ‘business as 649 

usual policy’, G-FC indicating the ‘government-forest conservation policy’, and G-CPL, 650 

representing the ‘government-concession for plantations and logging policy’. It was found 651 

that if the currently practiced policies are continued then, the place will lose the forest cover 652 

and thereby impact carbon sequestration. Such studies play a paramount role in designing 653 

and analyzing the current policies and their implications on the future. Thus, it is evident that 654 

the use of an objective specific geospatial technique is essentially important for the 655 

implementation and achievement of SDG 15.  656 

4. Discussion 657 

The progress being made in achieving SDGs can be measured by several quantifiable 658 

indicators. The role of RS techniques in the measurement to monitor the roadmaps for 659 

achieving SDGs has been significant in terms of its capacity to use sensor data in order to 660 

augment the census data. Several studies, which use one kind of RS technique or others, have 661 

shown that RS methods play a major role in the monitoring of SDGs. Citizens, science and 662 

big data have also been found useful for measuring and monitoring SDG indicators. The data 663 
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generated by citizens is data that people or their organizations produce to directly monitor, 664 

demand, or drive changes on issues that affect them. It is generated by using surveys, 665 

messages, phone calls, emails, reports, social media, etc. The produced data can be 666 

quantitative or qualitative in various formats (DataShift, 2017). The lessons learned from the 667 

Millennium Development Goals (MDGs) showed the engagement of citizens and civil 668 

societies can play a critical role for an inclusive, transparent, and participatory SDGs 669 

accountability framework (Romano, 2015). Public participation at all levels should be 670 

prioritized as per Post-2015 agenda to ensure inclusive development. It can help to bring the 671 

most marginalized voices to the table with the rights to freedom of expression, association, 672 

peaceful assembly, and access to information (Romano, 2015). Citizen-driven data could 673 

play a major role in monitoring and driving progress of SDGs implementation in real-time. 674 

Citizen-driven data has a high potential to fill the existing gaps by providing real-time, 675 

prioritized or precise data. It can ensure transformational changes that are required to tackle 676 

the huge global challenges to implement SDGs (DataShift, 2017). Citizen science can 677 

contribute to the implementation of SDGs in various ways such as additional data and 678 

capacity, fulfilling commitments to multi-stakeholder partnerships, driving innovation and 679 

capacity building, broad ownership and accuracy of data, strengthening accountability, 680 

shadow monitoring, etc. The authors in Cronforth Jack (2015) said “SDG monitoring should 681 

be rigorous, based on evidence, time, reliability and disaggregation by different groups in 682 

society. All citizens generated data can make a crucial contribution to make a reality”. Some 683 

of the examples for the above points can be already seen affecting our everyday life in the 684 

form of Google Maps or Google Earth, data addition, and analysis with geotagging and image 685 

uploads by individuals all over the world. Not only do others have the practical aspect of the 686 

situation; they also keep the system updated. With the massive interest of highly complex 687 

data available from satellites all over the world and presented in a simple form and easily 688 

understandable format of Google Earth, people are encouraged to make astonishing 689 

discoveries e.g. largest rain forest in Southern Africa or identification of unusual cave 690 

systems that lead to the discovery of a New Human Ancestor (Nobre et al., 2010). These are 691 

a few examples of citizen data, as well as making a contribution to the betterment of the 692 

system and increasing scientific curiosity & making discoveries (Santens, 2011). A study by 693 

Global Pulse on mining citizen feedback data for enhancing local government decision 694 

making in 2015 demonstrated the potential utility of near real-time information on public 695 

policy issues and their corresponding locations within defined constituencies, enhanced data 696 

analysis for prioritization and rapid response, and deriving insights on different aspects of 697 

citizen feedback (UN Global Pulse, 2015). Forest Watchers “proposes a new paradigm in 698 

conservationism based on the convergence of volunteer computing with free or donated 699 

catalogs of high-resolution Earth imagery” (Gonzalez D. L., 2012). It involves volunteer 700 

citizens and scientists from around the globe, who help monitor levels of deforestation. By 701 

reviewing satellite images of forested regions, local residents, volunteers, non-governmental 702 

organizations, and governments can help in the assessment of these regions. Moreover, this 703 

initiative encourages local citizens and provides the rights of ownership to help in 704 

implementing SDGs. Flückiger & Seth (2016) suggested that data from civil-society can be 705 

crowdsourced to implement and monitor the progress of SDGs. United Nations 706 
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Environmental Program (UNEP) is involved in capacity development, environmental 707 

awareness, and information exchange programs to foster a generation of environmentally 708 

conscious citizens that can help ecosystem renewal in Kenya (UNEP, 2017). The use of 709 

citizen, science, and data/information can provide transparency in a system with updated and 710 

real-time information that can change the course of our future with a political will. A positive 711 

example for such political and citizen, science and data movements is the accessibility to free 712 

satellite data such as Landsat, Sentinel, MODIS for scientific purposes. It has led to a 713 

tremendous increase in research studies and monitoring of areas ranging from busiest 714 

metropolitans to the most remote location on the plant ushering a new era of scientific 715 

research backed by satellite data analysis. 716 

Over the last decade, big data has become an interesting field of research with an increase in 717 

attention attracting the interest of academia, industries, governments, and other 718 

organizations. The authors in  (Kitchin, 2014) have suggested it to be a predominant source 719 

of innovation, competition, and productivity. The recent development in computer science 720 

with the high-performance computer, storage capacity, and the growth of high-resolution 721 

satellite data is dramatically increasing by several terabytes per day. Scientists are 722 

considering RS data as “Big Data” because of the continuation in controlling global earth 723 

observation for environmental monitoring (Skyland, 2012). The RS big data do not merely 724 

refer to the volume and velocity of data but also to the variety and complexity of data. This 725 

diversity and complexity in data make the access and processing significantly difficult 726 

especially for the layman (Ma et al., 2014). Annexure1 shows various satellites and their 727 

specifications. These satellites have sensors with different spatial, temporal, and spectral 728 

resolution resulting in multi-sensor complex data. The use of a multi-sensor approach can 729 

overcome the limitations of one sensor with the use of other sensor data from local to global 730 

scale (Ma et al., 2014). The opportunity of big data for SDGs lies in leveraging new/non-731 

traditional data sources and techniques to better measure or monitor progress for the 732 

achievement of the SDGs. Moreover, with the interest in big data in the global SDG 733 

discourse, attempts have been made to identify ongoing regional and country-specific 734 

activities. It is important to understand the applicability of big data in relation to the SDGs 735 

by identifying how big data can help to implement and monitor potential targets. The use of 736 

urban big data for advancing more innovative targets and indicators relevant to the SDGs has 737 

been studied by Kharrazi, Qin, & Zhang, 2016. The SDG for any government can be 738 

challenging to understand and even more difficult to put a system in place for the 739 

achievement of such goals. The initiation of government interest for Big data mining can be 740 

on various fronts and for a variety of purposes. The first step for any government is to make 741 

the life of the citizen of that country/region better than before and ensure sufficient resources 742 

for the future generation. For example, the benefits of big data mining done by governments 743 

intended for the improvement for citizen services can potentially be the determination of 744 

eligibility of beneficiaries, using advanced analytical tools, to plan and track welfare schemes 745 

to ensure that benefits reach only eligible citizens, identify deceased, invalid, and duplicate 746 

persons to eliminate duplicate benefit payments. While these benefits are just a few to start 747 

with, it is just an example of the broad spectrum of impacts in all aspects of any nation. 748 

Further, to achieve these development targets in a sustained manner, converged governance 749 
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efforts are required at the grassroots, which in turn would inevitably result in the generation 750 

of continuous baseline data. The use of structured baseline data and unstructured citizens’ 751 

data can be combined and analyzed by the application of big data analytics and emerging 752 

Information and Communication Technologies (ICTs). There is a need to raise awareness of 753 

the potential of big data for public purposes and invest in institutional capacity building as 754 

well as data-driven regulation and policy-making (Development, 2017). The use of big data 755 

analysis in medicine and healthcare practices is on the rise, and we are already seeing legal 756 

proposals such as the draft Electronic Data Records standards in order to both enable and 757 

govern the collection of medical data. The pooling of medical data for identification, 758 

diagnosis, and treatment of a wide range of health problems is one such example of everyone 759 

benefiting from data pooling. The study by Lu et al. (2015) suggested five priorities for the 760 

SDGs viz. devise metrics, establish monitoring mechanisms, evaluate progress, enhance 761 

infrastructure, standardize, and verify data. The authors Maurice (2016) measure the progress 762 

of SDGs by using data from the 2015 edition of the global burden of diseases, injuries and 763 

risk factor study. The authors of Jotzo (2013) discuss that big data should be selected in such 764 

a way that it can be used to test different aspects for sustainable production of energy, food 765 

security, water security, and eliminating poverty. 766 

5. Concluding remarks  767 

The 17 SDGs have been set for improvement of human well-being, protecting natural 768 

resources, and mitigating the impact of human activities on the planet for future generations. 769 

Unlike the previous MDGs, the SDGs are meant for both developed and developing 770 

countries. Considering the broad themes and areas of the SDGs, monitoring is crucial for 771 

their successful accomplishment by 2030, as well as to revise the existing policies for better 772 

functioning and precise targeting. Geospatial data can visualize regional differences. Hence, 773 

it is useful to detect social and economic inequalities at both national and local levels. Many 774 

studies have revealed that geospatial data is an effective tool to monitor the SDGs’ 775 

achievement and progress to make effective future plans. However, it is not fully applied in 776 

the monitoring and evaluation of global problems and targets. For the success of SDGs, the 777 

monitoring process should be standardized for all countries with the cooperation of the 778 

scientific and political communities. Considering the broad range of SDGs’ targets, 779 

geospatial information is one of the most important tools for monitoring their achievement. 780 

It will also pave the way for the successful accomplishment of SDGs. Based on this 781 

observation, it is still necessary to develop geospatial techniques for the implementation and 782 

monitoring of SDGs 5, 8, 10, and 17 where very limited research has been done.  783 

Achieving the SDGs undoubtedly demands massive global concerted efforts to efficiently 784 

make use of data sharing, processing, and aggregation in a highly multidisciplinary 785 

framework. National geospatial information agencies will need to collaborate closely with 786 

national statistical and earth observation professional communities to deliver consistent and 787 

reliable data to fit into the formulation of wide-ranging sustainable development policies. 788 

This review paper also discussed the role of citizen science and big data for the success of 789 

SDGs’ implementation. Participation and transparency are the key components for a robust, 790 
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effective, and accountable mechanism for SDGs from local to a global scale. By the potential 791 

use of Google Earth Engine, it is evident that many future opportunities exist for the real-792 

time processing of satellite data. The integrative approach of partnership, capacity-building, 793 

and big data can result in sustainable solutions for SDGs’ implementation. 794 
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Annexure-1 1114 

Satellite sensors and their characteristics  1115 

S. 

No. 

Sensors Spatial resolution 

(m) 

No. of Spectral  

bands 

Radiometric 

resolution (bit) 

Band range  

(μm) 
Swath width (km) Revisit 

cycle 

(days) 

A. Coarse Resolution Sensors 

1 AVHRR 1000 4 11 0.58-11.65 2900 daily 

2 MODIS 250, 500,1000 36 12 0.62-2.16 2330 daily 

B. Multi-Spectral Sensors 

3 Landsat-1, 2, 3 MSS 56X79 4 6 0.5-1.1 185 16 

4 Landsat-4, 5 TM 30 7 8 0.45-2.35 185 16 

5 Landsat-7 ETM+ 30 8 8 0.45-1.55 185 16 

6 Landsat-8 30 11 16 0.43-2.29 185 16 

7 ASTER 15, 30, 90 15 8 0.52-2.43 60 16 

8 ALI 30 10 12 0.433-2.35 37 16 

9 SPOT-1, 2, 3, 4, 5 2. 5-20 15 16 0.50-1.75 60 3 - 5 

10 IRS 1C, 1D  23.4 (SWIR 70.5) 4 7 0.52-1.7 141/140 24 

11 IRS 1C, IRS 1D  188 2 7 0.62-0.86 810 24 

12 IRS 1C, IRS1D 5.8 1 6 0.50-0.75 70 24 

13 IRS P6  5.8 3 10 0.52-0.86 70/23 (mono) 24  

14 IRS P6  56 4 10 and 12 0.52-1.7 737/740 24  

15 Cartosat-1 (PAN) 2.5 1 10 0.5-0.85 30 5 

16 Cartosat-2 (PAN) 0.8 1 10 0.5-0.85 9.6 5 

17 CBERS-2 20 m pan,  11 0.51-0.89 113 26 

18 Sentinel-2 10, 20, 60 13 12 0.44-2.2 290 5 

19 Sentinel-3 Full resolution 
300m 

21  12 0.44-1.02 ~1270 27 

C. Hyper-Spectral Sensor 

1 Hyperion 30 196 16 0.427-0.925  7.5 16 

D. Hyper-Spatial Sensor 

1 SPOT-6 1.5 (PAN) 4 12 0.455 - 0.89 60 daily 

2 RAPID EYE 6.5 5 12 0.44-0.89 77 1 - 2 

4 WORLDVIEW 0.55 1 11 0.45-0.51 17.7 1.7-5.9 

5 FORMOSAT-2 2 - 8 5 12 0.45-0.90 24 daily 

6 KOMPSAT-3A 0.55 (PAN) 6 14 0.45 - 0.9  12 28 

7 Pleiades -1A 0.5 (PAN)  5 12 0.43 - 0.94 20 daily 

8 GeoEye 0.46 (PAN) 5 11 0.45 -0.92 15.2 3 

9 IKONOS 1 - 4 4 11 0.445-0.853 11.3 5 

10 QUICKBIRD 0.61-2.44 4 11 0.45-0.89 18 5 

E. Synthetic Aperture Radar Sensor 

1 ERS -1 5.3 (C-band) VV 100 30 30 35 

2 JERS -1 1.275 (L-band) HH 75 18 18 44 

3 RADARSAT-1 5.3 (C-band) HH 50-500 9-147 6-147 24 

4 ENVISAT 5.33 (C-band) HH, VV 56.5 - 104.8 30-100 35 

5 ALOS (PALSAR) 1.27 (L-band) single, dual, quad 20 - 350 10 - 100  46 

6 RADARSAT-2 5.3 (C-band) Full polarimetric 125 4.6-7.6  3.1-10.4(Wide multi-
look)  

24 

7 TerraSAR-X 9.65 (X-band) Single and dual 100 (scanSAR) 0.24  0.9-1.8 (Spotlight) 11 

8 RISAT-1 5.35 (C-band) single, dual 25 (stripmap-1) 3  2 (stripmap-1) 25 

9 TanDEM-X 9.65 (X-band) single, dual 30 1.7-3.4 1.2 (spotlight) 11 

10 PALSAR-2 1.27 (L-band) single, dual 25-350 1  3 (spotlight) 14 

11 Sentinel-1 5.405 (C-band) single or dual  80 (strip mode)  4.3 - 4.9  1.7 - 3.6 (strip mode)  12 
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