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Abstract

Many statistical analyses of genetic data rely on the assumption of independence among samples.

Consequently, relatedness is either modeled in the analysis or samples are removed to “clean” the

data of any pairwise relatedness above a tolerated threshold. Current methods do not maximize the

number of unrelated individuals retained for further analysis, and this is a needless loss of

resources. We report a novel application of graph theory that identifies the maximum set of

unrelated samples in any dataset given a user-defined threshold of relatedness as well as all

networks of related samples. We have implemented this method into an open source program

called Pedigree Reconstruction and Identification of a Maximum Unrelated Set, PRIMUS. We

show that PRIMUS outperforms the three existing methods, allowing researchers to retain up to

50% more unrelated samples. A unique strength of PRIMUS is its ability to weight the maximum

clique selection using additional criteria (e.g. affected status and data missingness). PRIMUS is a

permanent solution to identifying the maximum number of unrelated samples for a genetic

analysis.
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INTRODUCTION

Interrelatedness can be a confounding factor in many statistical analyses, including burden

tests in sequence data, association studies [Devlin and Roeder, 1999; Voight and Pritchard,

2005], genome-wide estimates of identity by descent (IBD) [Sun and Dimitromanolakis,

2012], and principle component analyses [Patterson et al., 2006]. Unless modeled into the

statistical analysis [Kang et al., 2010; Thornton and McPeek, 2010], interrelatedness must be

removed from the data before proceeding with genetic analyses. Given the expense of DNA

ascertainment, clinical phenotyping, sequencing and/or genotyping, and data analysis,

maximizing the number of unrelated samples utilized in such analyses should be a priority.
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Estimates of pairwise IBD, a quantitative measure of relatedness, can reliably detect

relatives as distant as first cousins [Huff et al., 2011]. Over the years, multiple strategies to

detect IBD have been developed [Browning and Browning, 2011; Browning and Browning,

2010; Han and Abney, 2011; Huff et al., 2011; Kong et al., 2008; Manichaikul et al., 2010;

Purcell et al., 2007], and new methods are emerging that use IBD estimates to confidently

detect more distant relatives (up to third cousins) [Browning and Browning, 2010; Huff et

al., 2011]. With good IBD estimates, relatedness structures that violate the assumption of

sample independence can be identified and removed from the dataset through sample

pruning.

METHODS

CURRENT APPROACHES

We have identified three publicly available methods to produce a set of unrelated individuals

given a threshold of tolerated pairwise IBD. The documentation for PLINK [Purcell et al.,

2007] (see Web Resources) suggests a method to remove pairwise relatedness by iteratively

removing one member of each pair until no pairs remain (Figure 1A). Pemberton et al.

[2010] suggest generating networks of relatedness in which samples are nodes and pairwise

relationships are edges. Relatedness networks are then broken by iteratively removing the

most highly connected node, until no edges remain in the dataset (Figure 1B). Finally, the

authors of KING [Manichaikul, et al., 2010] describe how they generate a set of unrelated

individuals in a recent paper [Manichaikul et al., 2012]. They first add the person who is

related to the fewest other people in the dataset and then proceed to add the individual who

is related to the next fewest people in the dataset, as long as the individual to be added is not

related to anyone already in the set of unrelated individuals (Figure 1C). However, none of

these approaches maximize the number of retained unrelated samples or selectively retain

the most informative samples.

In order to test software package called Pedigree Reconstruction and Identification of a

Maximum Unrelated Set (PRIMUS) and compare it to other methods, we programed each of

the three methods as described (Figure 1). This was required because neither method

described in PLINK Pemberton is available in a software package, and the KING program

does not allow for the input of user-defined IBD estimates. Rather, KING calculates its own

IBD estimates from input genotype data.

NEW METHOD

We present a method adapted from graph theory that always identifies the maximum set of

unrelated individuals in any dataset, and allows weighting parameters to be utilized in

unrelated sample selection (Figure 1D). We implemented this method in a new software

package PRIMUS, and it is available online (see Web Resources).

PRIMUS reads in user-generated IBD estimates and outputs the maximum possible set of

unrelated individuals, given a user-defined threshold of relatedness. PRIMUS converts the

IBD relationship file to an undirected graph in which nodes represent individuals and edges

represent pairwise relationships; each connected component represents a “family network”

or pedigree. PRIMUS writes out each family network to a .dot file to be viewed in graph

visualization software such as GraphViz (see Web Resources) to generate images of the

family networks (Figure 2).

All individuals within each family network of the data are unrelated to any individual in a

different family network (at the user-specified threshold). Thus, the problem of identifying

the maximally sized unrelated set is reduced to finding the maximum unrelated set within
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each family network and then combining the unrelated sets of each family network to get the

maximum unrelated set of the entire graph/dataset.

In graph theory, the maximum unrelated set is referred to as the maximum independent set;

the maximum independent set of a graph is the same as the maximum clique of the

complement graph. In the complement of a graph, all missing edges are added and all

existing edges of the graph are removed. Here, this is equivalent to forming edges when

relationships fall below the user-defined relatedness threshold rather than above it. We then

search this complement graph for a maximum clique. A clique is defined as a portion of the

graph (subgraph) where each node is connected to every other node in the subgraph. A

maximal clique is a clique that is not a subgraph of a larger clique. Finally, a maximum

clique is the largest maximal clique.

PRIMUS uses the Bron–Kerbosch algorithm [Bron and Kerbosch, 1973] with improved

pivot selection [Cazals and Karande, 2008] to enumerate all maximal cliques of each

complement family network. For each family network, PRIMUS picks the maximum clique

or the weighted maximum clique to add to the maximum unrelated set of individuals.

Finally, it generates a file containing the maximum set of unrelated individuals.

WEIGHTED MAXIMUM SET SELECTION

A unique strength of our program is its ability to weight the maximum clique selection using

additional criteria. The maximum clique is the clique containing the most samples; however,

there are often two or more maximum cliques. Any one of these will produce a maximum

unrelated set, and PRIMUS allows for preferential selection of the maximum clique based

on additional weighting criteria. In case/control studies this function is particularly useful,

because it allows for the retention of the maximum clique with the most affected individuals.

Alternatively, the user may wish to select the maximum clique with the lowest missingness

rate within the data, or perhaps to first select for affected status and then for lowest

missingness. PRIMUS allows specification of as many of these weighting criteria as desired

as well as ordering how they are applied in the selection. No other available method for

selecting unrelated samples offers weighting functionality.

PRIMUS can also retain the maximum number of unrelated individuals with a desired

binary characteristic (e.g. affected status), even if this unrelated set is smaller than the

maximum set of unrelated individuals. For example, a study may contain a trio with an

affected child and two unaffected parents. The maximum unrelated set would require

removing the child and retaining both parents, because the parents are unrelated to each

other. It is likely that one would wish to retain the single affected child for further analysis

instead of both unaffected parents. As a result, the overall unrelated set size will be smaller,

but the set will contain more of the affected samples.

Because none of the PLINK, Pemberton, and KING methods has a weighting algorithm, we

implemented one for each. These implementations are available upon request. For PLINK

method, we implemented weighting by selecting the individual with the desired trait. For

example, to preferentially select affected individuals, the algorithm will keep the affected

individual in a case/control related pair. For Pemberton method, we implemented a

weighting scheme by choosing to remove the node with the less optimal criteria whenever

two nodes are equally connected. For the KING method, we implemented weighting by

retaining the more desirable individual whenever two individuals are related to the same

number of other individuals.
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THE APPROXIMATION FUNCTION

The Bron–Kerbosch algorithm is impractical to run on large, sparse family networks due to

the algorithm’s exponentially increasing computational cost (Figure 3). To remedy this, we

implemented an approximation function for networks above a set cut-off size (Table I).

PRIMUS’ approximation function takes a similar approach to the Pemberton method

[Pemberton et al., 2010] by repeatedly removing the highest degree node from the family

network until the network is smaller than the approximation function size cutoff or until it

breaks into subnetworks smaller than the cutoff. Once the size of the network or

subnetworks is below the approximation function size cutoff, PRIMUS uses the Bron–

Kerbosch algorithm to obtain an independent set that is approximately the largest.

FAMILY NETWORK SIMULATIONS

To compare the performance of PRIMUS to these methods on all types of family networks,

we randomly generated 7,500 simulated family networks of varying sizes and network

connectivity, which is a measure of how interconnected the network is. Connectivity can

vary widely in family data (Figure 4); some family networks are highly connected (e.g. a

father, mother, and 10 offspring), whereas other family networks may be sparsely connected

(e.g. a “string” of cousins in which each is related through a unique parent). For each

network size (five to 130 by increments of five), we randomly generated 30 simulated

networks with the network connectivity proportion ranging from 0.1 (10% of all possible

pairwise relationships exist in the network) to 1 (every individual is related to every other

individual), and our simulation data are available upon request. For each simulation, we

obtained an unrelated set from PRIMUS and the three other methods.

RESULTS

SIMULATION RESULTS

In all 6,540 simulations that did not require the use of the approximation function, PRIMUS

produced an unrelated set of size equal to or greater than all other approaches. In our

simulations, PRIMUS increased the unrelated set size by more than 50% relative to the

PLINK method (Figure 5) and by similar amounts relative to the other selection methods

(Supporting Information Figures S1A–C). Although PRIMUS provides the greatest

improvement as the network size and connectivity increase, even for sparse; small networks

PRIMUS typically provides 5–20% improvement compared to the other method (Supporting

Information Figures S1A–C).

Only when PRIMUS’ approximation function was used (960 simulations), the other

methods have the potential to outperform PRIMUS. The Pemberton method never

outperforms PRIMUS because PRIMUS’ approximation function is very similar to the

Pemberton method; the size of the network is above the approximation size thresholds

shown in Table I. Table II shows that PRIMUS’ approximation function outperforms the

other three methods in more than 98.75% of the simulations. To address the 1.25% of cases,

we have incorporated each of the other methods into PRIMUS, such that when it recognizes

the need to run the approximation function, it will also run each of the other methods and

return the largest unrelated set derived from any of the four methods.

We also compared the performance of each method on weighting for a binary and a

quantitative trait. Similar to the maximum unrelated set identification, PRIMUS always

identifies the largest set of unrelated affected individuals when the approximation function is

not needed. PRIMUS retained up to 75% more affected individuals in the weighted

comparisons between PRIMUS and each of the other methods (Supporting Information

Figures S2A–C).
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HAPMAP3 RESULTS

Finally, we compared the performance of PRIMUS and the other three methods on data

from phase 3 of the Haplotype Mapping Project [Altshuler et al., 2010] and the 1,000

Genomes Project [Consortium, 2010]. For each dataset, PRIMUS obtained the largest set of

unrelated individuals (see Supporting Information Table S1). Given our IBD estimates for

these reference datasets, the maximum sample set in which no pair of individuals have a

coefficient of relatedness (π̂) > 0.1 are listed in Supporting Information Table S1 and a link

to a list of the sample identification numbers can be found at the PRIMUS website (see Web

Resources).

DISCUSSION

Although PRIMUS will identify the largest unrelated set of samples, as shown in Figure 5,

the performance advantage of PRIMUS depends strongly on the amount of connectivity

within the families, the size of the families, and clearly, the presence of family data among

the samples (all methods do equally well when the samples are unrelated). PRIMUS

provides the greatest benefit on large family networks with moderate to high

interrelatedness; however, PRIMUS is useful on all varieties of genetic datasets.

We recommend using PRIMUS to obtain unrelated reference sample sets. For example,

many researchers use HapMap3 and 1,000 Genomes datasets to impute genotypes, estimate

population allele/haplotype frequencies, and run principle component analyses. However,

both datasets contain related samples [Pemberton et al., 2010], and if the interrelatedness is

not removed, then these imputations and estimates will be inaccurate.

Methods exist to account for pedigree structure or interrelatedness when doing association

studies [Kang et al., 2010; Thornton and McPeek, 2010]. However, in the context of large

cohort studies, the power gain would be modest because most samples are not related within

the last few generations, and the minor power gain may not be worth the computational

burden of accounting for the interrelatedness. In such a case, PRIMUS is the best option for

removing relatedness.

We also recommend using PRIMUS’ weighted maximum set selection to optimize your

unrelated set for a desired characteristic. Specific scenarios include selecting for affected

status in a case/control study, selecting for the lowest missingness, or selecting samples in

the tails of a distribution in a quantitative trait study.

PRIMUS allows users to specify the level of relatedness in their dataset. Because PRIMUS

can take any quantitative measure of relatedness, the selected cutoff should be based on the

sensitivity of the tool used to estimate the pairwise relatedness. For example, PLINK is

relatively accurate at estimating relationships up to first cousins but less accurate for more

distant relationships [Huff et al., 2011]. Therefore, a coefficient of relatedness (π̂) cutoff of

0.1 is appropriate. We have found that KING has similar sensitivity as PLINK when

estimating pairwise relationships; however, KING uses the kinship coefficient, π̂/2,

therefore recommended cutoff for KING IBD estimates is 0.05. Other programs [Browning

and Browning, 2010; Huff et al., 2011] are more powerful at accurately detecting more

distant relationships, and the user specified cutoff should be adjusted accordingly.

When statistics assumes independence among samples, stripping datasets of relatedness

observed in the genetic data are a necessary step in quality control and data cleaning. We

have developed an efficient and optimal approach that uses user-generated IBD estimates to

quickly provide a maximum set of unrelated samples to retain in further analyses. Despite

the importance of retaining the largest sample size possible in genetic analyses, we have
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only found a single published analysis that utilizes this concept [Heath et al., 2008] to obtain

a maximum unrelated set of samples. In addition, our approach provides the option to retain

the most informative samples in the resulting dataset (i.e. based on phenotype or data

missingness). Furthermore, as a byproduct, PRIMUS reports all connected family networks

in the data; knowledge of these networks can then be leveraged to improve the power in

some analyses by utilizing this familial information [Ott et ., 2011], or to select the most

distantly related affected individuals within each family for exome or whole genome

sequencing. Finally, PRIMUS is fast; capable of processing thousands of individuals

distributed across hundreds of family networks in minutes or less, making it a practical tool

for even the largest and most complex datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Stepwise selection process of an unrelated set for the three alternative methods and

PRIMUS. In each network, each node represents an individual and an edge represents a

familial relationship between two individuals. The red nodes represent the selected set of

unrelated individuals. (A and B) The numbers represent one possible ordering that the

Pemberton and PLINK methods might use to eliminate individuals from the unrelated set.

(C) The numbers indicate one possible ordering for how the KING method selects

individuals for inclusion in the unrelated set. (D) PRIMUS will always select a maximum set

(n = 3) of the graph and will generate the maximum unrelated set of individuals.
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Fig. 2.
Example family network graph; each node represents an individual in the family network

and each edge shows a relationship between two individuals. A graph like this will be

generated for each family network with more than two people.
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Fig. 3.
PRIMUS run-times on the simulations. The dashed lines show the exponential run-time and

computational infeasibility of the Bron–Kerbosch algorithm for large network sizes. The

solid colored lines show the run-times of PRIMUS. The dashed-solid lines separate when

PRIMUS’ approximation function is used to avoid the exponential run-times.
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Fig. 4.
The diversity of sizes and connectivity levels for family networks in real data. The size and

connectivity of family networks varies within datasets. We are using connectivity as a

measure of how related individuals are within a family network. Connectivity is the number

of pairwise relationships that exist in a dataset divided by the total possible number of

pairwise relationships. Each circle on the plot represents one family network or pedigree

from either the Prostate Cancer Pedigree dataset [Stanford et al., 2009] or the HapMap3

dataset [Altshuler et al., 2010].
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Fig. 5.
A heatmap showing the percent increase in unrelated sample size by PRIMUS compared to

the PLINK method. The vertical axis is the number of edges in the network divided by the

total number of possible edges. The horizontal axis is the size of the simulated network. The

color in each square corresponds to the percent increase in the size of the unrelated sample

set generated by PRIMUS relative to the set generated by PLINK averaged across 30

randomly generated networks.
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TABLE II

Number of simulations in which other methods outperformed PRIMUS’ approximation function

Weighting criteria PLINK Pemberton KING Total percentage (%)

No weighting 1/960 0/960 6/960 0.24

Affected status 51/960 0/960 0/960 1.77

Low quantitative trait 2/960 0/960 19/960 0.73

There were 960 simulations that required PRIMUS to use its approximation function. The table shows out of those 960 simulations how many

simulations did the other methods outperform PRIMUS.
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