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Abstract Knowledge in the magnitude and historical

trends in land use and land cover (LULC) is needed to

understand the changing status of the key elements of the

landscape and to better target management efforts.

However, this information is not easily available before

the start of satellite campaign missions. Scanned historical

maps are a valuable but underused source of LULC

information. As a case study, we used U-Net to

automatically extract fields, mires, roads, watercourses,

and water bodies from scanned historical maps, dated

1965, 1984 and 1985 for our 900 km2 study area in

Southern Finland. We then used these data, along with the

topographic databases from 2005 and 2022, to quantify the

LULC changes for the past 57 years. For example, the total

area of fields decreased by around 27 km2, and the total

length of watercourses increased by around 2250 km in our

study area.

Keywords Historical maps � Land use and land cover

change � Semantic segmentation � U-net

INTRODUCTION

Anthropogenic land change is a significant threat to natural

habitats and ecosystem functioning. In European boreal

forests, major land cover transitions and following

ecosystem disturbances arise mainly from transformation

of forests to other land cover types (Ruckstuhl et al. 2008).

In addition to the major areal land changes, intensification

of human activities also increases linear infrastructure,

such as roads, ditches, and powerlines in the landscapes.

These features have numerous direct and indirect impacts

on the surrounding ecosystems through, for example,

habitat fragmentation, alteration of biophysical properties

of environment, edge effects, and general increase of other

human disturbances (Trombulak and Frissell 2000; Benı́-

tez-López et al. 2010).

To quantify and understand the extent and magnitude of

environmental changes, robust information of both current and

past conditions is needed (Barnosky et al. 2012; Zu Ermgassen

et al. 2012). In practice, the baseline, or the starting point of

comparisons, is set on the basis of available data (Börjeson

2009). Areal land cover changes of forests, due to drainage of

mires or transition from arable land, can be efficiently mapped

using worldwide satellite remote sensing techniques over the

past three to four decades (Hansen et al. 2013; Belward and

Skøien 2015), and historical aerial photographs provide infor-

mation even from earlier decades. However, the coarse spatial

resolution of old satellite images and the inability to detect

features below the canopy layer in satellite and aerial images

limit their utilization in mapping linear features (Bhattacharjee

et al. 2021).

The availability of digital historical maps has increased,

which provides new opportunities to study land use chan-

ges over various time scales (Fuchs et al. 2015; Kaim et al.

2016). For example, Bičı́k et al. (2001) examined major

land use changes and their drivers over 150 years using old

cadastral maps; Skaloš et al. (2011) used old military sur-

vey maps and orthophotograph maps to analyze long-term

land cover dynamics in the Czech Republic; and Cousins

et al. (2015) utilized old cadastral maps to study land cover

changes in southern Sweden during the 20th century. Long-

term studies on the evolution of linear features in the

landscape are generally scarce (Uhl et al. 2022). As a rare

example, Bürgi et al. (2015) analyzed road and drainage

networks in Swiss lowlands based on historical maps.

There has been a wide array of methods used to extract

information from digitized historical maps, ranging from

simple color clustering to morphological operations,
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k-means clustering and, most recently, deep learning

methods (Jiao et al. 2021). For instance, Chiang and

Knoblock (2010) extracted road pixels based on their color

and used k-means clustering to merge similar colors into

the same classes. Uhl et al. (2022) utilized recent road

network data and compared them with historical maps,

outputting the current road segments that most likely

existed in the historical maps. In the past few years, U-Net

(Ronneberger et al. 2015), a deep learning architecture

originally developed for medical image segmentation, has

been widely adapted to other domains, including process-

ing and vectorization of historical maps. For instance Ekim

et al. (2021) used it to segment various road types from

World War II maps; Petitpierre et al. (2021) used U-Net to

segment historical maps from two different map corpora;

and in the IDCAR 2021 Competition of Historical Map

Segmentation, U-Net-based solutions were used by the

winning teams for building block extraction and map

content segmentation (Chazalon et al. 2021).

In this work, we utilized U-Net to derive land use and

land cover information from old, printed maps and created

a time series from 1965 to 2022 for our study area in

southern Finland. These data were then used to evaluate the

changes in the land cover of fields, mires, and water bodies

as well as networks of motorways and watercourses. We

evaluated the suitability of deep learning-based workflow

in obtaining long-term information on land use and land

cover changes. Based on the findings, we assessed how to

apply this methodology in analyzing landscape changes

from old historical maps.

MATERIALS AND METHODS

Study area and materials

The study area consists of nine map sheets, each covering

an area of 10 � 10 km. The study area covers altogether

900 km2 in Evo, Hämeenlinna, Southern Finland (Fig. 1).

The area represents a southern boreal forest type, including

valuable protected old-growth forests and commercial

forest areas, also included in the proposal as Evo Science

National Park. Historical maps used in this work were

acquired from the National Land Survey of Finland (NLS),

which provide around 11 000 scanned basic map sheets

with the scale of 1:20 000, originally published between

1949 and 1998. For our study area, the oldest available

basic map sheets to cover the whole area were from 1965.

For the 1980s, six of the map sheets were originally printed

in 1984, and three were printed in 1985. The ground con-

trol points for georeferencing the maps were acquired from

https://vanhatkartat.fi by Shingle Oy. For the land use and

land cover data from 2005 and 2022, we used the topo-

graphical database of Finland by the NLS. After georef-

erencing, the spatial resolution of the maps was around 1.7

m per pixel.

We manually annotated all the classes of interest from

both 1965 and 1984 map sheets with ID 213405 (the south-

east corner of our study area) as raster data to use as ref-

erence data. In this study, we used five target classes to

demonstrate what kind of information is possible to extract

from the historical maps: ‘‘Fields’’, ‘‘Mires’’, ‘‘Roads’’,

‘‘Watercourses’’, and ’’Water bodies’’ (Table 1; Fig. 2).

Some of these classes, such as ‘‘Mires’’ and ‘‘Roads’’

contained multiple related subclasses that had slightly

different markings but were similar for our purposes.

‘‘Mires’’ contained the classes from the topographical

database that have a peat layer of 0.3 m or more, which

excludes the subclass ‘‘Paludified area’’ from these ana-

lyzes. ‘‘Roads’’ consisted of the road types that have a

width of more than 3 m that are marked with wide red lines

on the maps. ‘‘Watercourses’’ did not contain the roadside

ditches, as they were not included in any of the reference

databases.

Pre-processing steps

As the maps contained a lot of redundant information, such

as ticks for coordinates and a legend for map symbols, the

first step was to crop the images to only contain the rele-

vant information. Also, to ensure that the each map sheet

had similar color balance, we adjusted the white balance of

the map sheets based on the white reference patch extracted

from the edge of the map sheet. These color balance dif-

ferences were especially seen from the 1965 maps in Fig. 1,

as some of the maps had either yellow or reddish tint

compared to the well-preserved maps. The colors were

adjusted with the following equation:

Luminance ¼ ðRref þ Gref þ BrefÞ
3

R ¼ Rim � luminance

Rref

G ¼ Gim � luminance

Gref

B ¼ Bim � luminance

Bref

ð1Þ

where Rref , Gref , and Bref are the mean color values for each

color band of the reference white patch, and Rim, Gim, and

Bim are the color bands of the unprocessed map sheet. The

final processed image was constructed from the R, G, and

B values, clipped between 0 and 255, and converted to

unsigned integer. The different steps of the pre-processing

chain are shown in Fig. 3.
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We evaluated the scanning and rectification errors for

the map sheets by scattering 20 control points on each of

the map sheets, using corners of the parcel boundaries as

the reference locations. As the reference locations, we used

forest stand boundaries from 2022. One of the map sheets

from 1965 did not contain the boundary information, so it

was omitted from dislocation error analyzes. We then

calculated the deviation from 2022 data by the Root Mean

Squared Error (RMSE), so that

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

1

x2
i þ y2

i

s

ð2Þ

where n is the number of control points (160 for 1965

maps, 180 for 1980s maps), and xi and yi are the residuals

compared to 2022 data. The maps from 1965 had an RMSE

of 12.01 m and the maps from the 1980s had an RMSE of

10.8 m.

Segmentation methods

The simplest way to extract information from old map

sheets is by selecting areas with certain color and using

them as masks for land cover classes, such as light orange

for fields and blue for water. The main advantage of this

method is that it does not require any training data, as the

color thresholds are determined by humans, and it has light

computation costs. Of course, this method requires anno-

tated validation data to evaluate the results and annotation

takes time. However, this type of approach has difficulties

with uncommon situations. For example, brooks and dit-

ches running through fields remain undetected by seg-

menting blue areas because they appear green or brown.

Moreover, some colors can mark multiple unrelated clas-

ses, like red, which is used to mark both motorways and

municipality borders. Finally, some land cover classes,

Fig. 1 The location of the study area in Finland and the basic maps from 1965 and 1984–1985 covering the area
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Table 1 Derivation of the target classes for automatic segmentation, along with their equivalents in topographical database

Target class Basic maps Topographical database

Fields Arable land Field

Mires Marsh, easy to traverse, open Open bog, easy to traverse, treeless

Marsh, easy to traverse, forested Bog, easy to traverse, forested

Marsh, difficult to traverse, open Open fen, difficult to traverse, treeless

Marsh, insurmountable, open Fen, difficult to traverse, forested

Roads Ia class motorway Motorway Ia

Ib class motorway Motorway Ib

IIa–IIb class motorway Motorway IIa

IIIa–IIIb class motorway Motorway IIb

Motorway under construction Motorway IIIa

Motorway IIIb

Watercourses River, width 20–5 m Watercourse area

Brook, width 5–2 m Watercourse, 2–5 m

Brook or ditch, width under 2 m Watercourse, width under 2 m

Water bodies Water area Lake water

Fig. 2 Legends for fields, mires, roads, and water bodies in the historical maps, along with example map scenes containing them. Class ‘‘Niitty’’

(Meadows) was not included in our analyzes. There was no separate legend symbol for water bodies
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such as mires, are marked with texture instead of color,

making them impossible to find by only extracting colors.

We used U-Net (Ronneberger et al. 2015), with pre-

trained ResNet152 as the backbone for our encoder as our

segmentation model. For data augmentation, we used ran-

dom brightness, contrast and saturation modifications,

random horizontal flips, random rotations with a maximum

of 5 degrees, and random erasing. We used fastai library

version 2.7.8. (Howard and Gugger 2020) and PyTorch

version 1.10.1 (Paszke et al. 2019) to train the model, using

a single Nvidia V100 GPGPU with 32GB of RAM. The

model was trained for 1 frozen epoch and 10 unfrozen

epochs, with Adam optimizer and a maximum learning rate

of 0.0001 with one cycle scheduling.

We split our reference data so that the training data con-

tained 75% of the map data and test data contained the

remaining 25%. Both map sheets (1965 and 1984) were split

so that the training and testing data contain the same

Fig. 3 Different steps of basic map pre-processing
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geographical area. Also, during the training, we used 25% of

the training data as the validation data to monitor the training

process. These data were also split such a way that no tiles

from validation or test data sets overlapped with the training

data set. All data were tiled into 256 � 256 pixel tiles without

overlap, so that the training data set contained 576 tiles, the

validation set contained 192 tiles, and the test set contained

384 tiles. Examples of training data are shown in Fig. 4.

We used Focal loss (Lin et al. 2018) as the loss function

for our model, and Precision (Pre), Recall (Rec), and multi-

class versions of Dice and Jaccard coefficients as the

evaluation metrics. Precision is the ratio between correctly

predicted instances and all predictions, whereas recall is

the ratio between true positives and all ground truths. Dice

coefficient, also known as F1-score, is defined as twice the

area of overlap between predictions and targets, divided by

the total number of pixels, whereas the Jaccard coefficient,

also known as IoU, is the area of intersection between

predictions and targets, divided by the area of union. Both

metrics were computed for each class separately, excluding

the background class, and then averaged with the number

of classes (macro averages).

Fig. 4 Example 256 � 256 pixel (around 435 � 435 m) patches from training data
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All analyzes and the full workflow for this study are

available on https://github.com/mayrajeo/historical-maps.

Post-processing steps for full map tiles

While producing the land cover maps for all of the full map

sheets, we mosaicked them into 256 � 256 pixel tiles with

a 128 pixel overlap, and afterwards de-mosaicked the

predictions to cover the full map sheet. As the models

made most of the mistakes near the edges of the tile, we

discarded the predictions near the edges so that each 256 �
256 pixel tile produced a 192 � 192 pixel prediction mask.

This step resulted in a single band raster for each map

sheet, where each pixel had a value between 0 and 5 cor-

responding to a single class, with 0 being a background

pixel.

In order to improve the quality of predictions and reduce

noise, such as singular pixels of a single class scattered or

remnants of letters within the predictions, we applied a set

of morphological operations for each class separately. For

water bodies, we ran a morphological opening (erosion

followed by dilation) with an 11 � 11 kernel and low-pass

filter with a 7 � 7 kernel. For roads and watercourses, we

applied a morphological closing (dilation followed by

erosion) with a 7 � 7 kernel and low-pass filter with a 5 �
5 kernel. Because fields and mires should not be split by a

brook or a ditch into several smaller segments, field and

mire predictions first included watercourses as well.

Watercourses outside fields or mires were eliminated by

eroding the layers with an 11 � 11 cross shaped kernel,

which was then followed by dilation with an 11 � 11

rectangular kernel and a low-pass filter with a 7 � 7 kernel.

Finally, fields and mires were clipped with processed roads

and water bodies. The final result after post-processing was

a five-band raster with a spatial resolution of around 1.7 m,

where each band corresponded to a binary mask for a

single class.

The final post-processing step was to convert roads and

watercourses into line geometries. The post-processed

raster data for these classes were first skeletonized into

one-pixel-wide representations and then converted into

polygons. These polygons were then buffered with 10 m,

all intersecting polygons were merged together, and the

resulting polygons were eroded with 10 m. Finally, we

used centerline library (Todic 2022) to convert these

polygons into line geometries.

Evaluating the land use and land cover change

As the georeferenced map sheets were not perfectly

aligned, we examined the changes in land use and land

cover by aggregating the data from different time periods

into a 500 � 500 m regular grid and computed the changes

based on total area or total length within the grid cell. This

was done to make it easier to find the areas with the most

drastic changes and to mitigate the slight location errors

between the data from different years and sources. In

addition, for watercourses, we derived the total length

within mires and fields in order to better analyze the change

types.

RESULTS

Model evaluation

Our model achieved excellent results (Table 2), as the

overall Dice score for the test set was around 0.92 and the

Jaccard score around 0.83. The easiest classes to predict

were fields and water bodies, which both had near-perfect

results. Watercourses were the most difficult class to

segment, as in some cases they were undetected when

passing through either fields or mires, and in other cases,

dark lines, such place-name letters, were misidentified as

watercourses (Fig. 5). The most common error-prone sit-

uations for the model were those in which either a road or

a watercourse was surrounded by fields, and those when

paludified areas were misidentified as mires when located

Table 2 Validation and test set results for land cover predictions, for 256 � 256 pixel image patches

Validation Test

Pre Rec F1 IoU Pre Rec F1 IoU

Fields 0.972 0.974 0.973 0.948 0.962 0.978 0.970 0.941

Mires 0.884 0.898 0.891 0.804 0.872 0.925 0.898 0.815

Roads 0.853 0.902 0.877 0.781 0.846 0.920 0.882 0.788

Watercourses 0.747 0.799 0.772 0.629 0.783 0.819 0.801 0.668

Water bodies 0.991 0.995 0.993 0.986 0.987 0.992 0.989 0.979

Overall 0.890 0.914 0.915 0.829 0.890 0.927 0.920 0.838
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next to each other. Mires went also unidentified by the

model in the pixels where place-name, numbers, or forest

type markings prevented the occurrence of mire markings

(Fig. 5). In some cases, the model did not detect the

dotted lines that mark the shape of the mire area and

inflated these areas.

From the patch predictions before the post-processing

chain, it could be seen that the predicted fields and mires

Fig. 5 Example predictions from the test set for 256 � 256 pixel (around 435 � 435 m) patches
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were blurred and there were less distinct edges than in the

target masks; and overall, the predictions were most inac-

curate near the edges of each image. These factors showed

the need for a post-processing chain to discard the edge

predictions. Results for the full test area are presented in

Table 3, both before and after the post-processing chain.

The most notable differences between image patches and

the full area can be seen for mires and waterways, as both

metrics are clearly lower for collated predictions, both

before and after post-processing. Roads benefited the most

from the post-processing chain, as their Dice and Jaccard

scores improved by 0.037 and 0.054 respectively; the only

class with no improvement was fields. Overall, results for

the 1965 map sheet were slightly better than for 1984.

We also computed the error of the total areas and

lengths for the test set. For fields, the total area based on

predictions was almost equal, with 0.03 km2 (1.4 % of total

annotated area) less fields predicted for 1965 maps and

0.02 km2 (1.1 %) less for 1984 maps. For mires, the dif-

ferences were also small: 0.129 km2 (2.2 %) less for 1965

maps and 0.2 km2 (3.3 %) less for 1984 maps. The pre-

dictions underestimated the total length of roads by

0.15 km (0.9 %) for 1965 maps and by 0.63 km (3.9 %) for

1984 maps. Watercourses were the only class where the

predictions overestimated the amount for both years, as the

total length was overestimated by 3.5 km (5.8 %) for 1965

maps and 4.3 km (2.6 %) for 1984 maps. Water bodies

were predicted almost perfectly, as the total area was

0.01 km2 (0.4 %) more for 1965 maps and almost equal

(0.07 % less) for 1984 maps.

Land use and land cover change in the study area

The arable land area clearly changed during the study

period, as the total area classified as fields decreased from

98.92 km2 in 1965 to 71.75 km2 in 2022 (Table 4). The

total area classified as mires fluctuated with a gain of about

10 km2 between 1965 and 1985, a loss of about 7 km2

between 1985 and 2005, and a gain of 7 km2 between 2005

and 2022. Local fluctuations in mire areas were even

Table 3 Full area results for 30 km2 test set before and after post-processing

Fields Mires Roads Watercourses Water bodies Overall

Before post-processing

1965 Pre 0.928 0.827 0.832 0.713 0.987 0.857

Rec 0.954 0.902 0.830 0.706 0.988 0.876

F1 0.941 0.863 0.831 0.709 0.987 0.866

IoU 0.888 0.759 0.711 0.550 0.988 0.777

1984 Pre 0.931 0.767 0.734 0.673 0.980 0.817

Rec 0.952 0.843 0.830 0.703 0.988 0.863

F1 0.941 0.803 0.779 0.688 0.984 0.839

IoU 0.889 0.671 0.638 0.524 0.969 0.738

All Pre 0.929 0.797 0.783 0.693 0.984 0.837

Rec 0.953 0.873 0.830 0.704 0.988 0.870

F1 0.941 0.833 0.805 0.699 0.986 0.853

IoU 0.889 0.715 0.674 0.537 0.972 0.757

After post-processing

1965 Pre 0.909 0.867 0.817 0.691 0.992 0.855

Rec 0.955 0.889 0.926 0.832 0.983 0.917

F1 0.931 0.878 0.868 0.755 0.988 0.884

IoU 0.872 0.783 0.767 0.607 0.975 0.801

1984 Pre 0.914 0.835 0.718 0.650 0.986 0.821

Rec 0.955 0.810 0.945 0.864 0.984 0.911

F1 0.934 0.823 0.816 0.742 0.985 0.860

IoU 0.876 0.699 0.689 0.590 0.971 0.765

All Pre 0.912 0.851 0.767 0.671 0.989 0.838

Rec 0.955 0.850 0.935 0.848 0.984 0.914

F1 0.933 0.842 0.842 0.749 0.986 0.872

IoU 0.874 0.728 0.728 0.598 0.973 0.783
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greater than that, with appearances and disappearances of

the mires within the 20 year intervals between the

mappings.

The total length of motorways increased about 90 km

during the observed 57 years. In particular, the increase

was highest between 1965 and 1985. Towards 2022, the

increase in motorway network was restrained. The most

drastic change during the study period occurred for

watercourses between 1965 and 1985, as their total length

more than doubled, with a gain of 1385 km in that time

frame. Nowadays, the total length of watercourses is

around three times what it was in 1965. Most of this

increase occurred in mires, where the total length of

watercourses quadrupled between 1965 and 2022. In con-

trast, in fields, the total length of watercourses clearly

decreased between 1985 and 2005, and still more between

2005 and 2022. Water bodies remained more or less the

same during the whole study period, with spatially limited

small-scale changes.

In addition to acquiring the extent of overall changes for

our study area, our results enabled detecting and posi-

tioning significant local changes between 1965 and 2022.

For example, Fig. 6 shows the 500 � 500 m grid cells with

the most extreme changes from 1965 to 2022 for each

class, along with the corresponding map patches or aerial

images from the archives of NLS Finland.

DISCUSSION

Historical maps offered an opportunity to explore the land

use and land cover development in the study area since

1965, whereas currently the earliest comparison point for

Finland is usually in the early 2000s (Corine Land Cover

2000 or the earliest available topographical database). All

maps utilized here were produced using the same mapping

methods and the level of detail, which provides a robust

baseline for comparisons. The methodological approach

used in this study showed high accuracy for analyzing

fields and water bodies, and was highly promising for

mires, motorways, and watercourses. The map symbols and

color palettes employed in historical maps affect the

automatized and manual class identification. The symbol

system differs among regions, countries, and years. Thus, a

single method is not likely to be applicable across different

mapping systems, used in different countries or through

years, but the methodological principles remain the same.

The feature classes in this study were selected to include

Table 4 Summary of land use and land cover changes for the study area

1965 1985 2005 2022

Fields

Total area 98.92 km2 87.04 km2 75.45 km2 71.75 km2

Gain – 2.32 km2 1.27 km2 1.81 km2

Loss – 14.20 km2 12.85 km2 5.51 km2

Change – �11.87 km2 �11.57 km2 �3.70 km2

Mires

Total area 80.91 km2 90.83 km2 83.82 km2 90.71 km2

Gain – 15.86 km2 1.74 km2 8.04 km2

Loss – 5.92 km2 8.72 km2 1.14 km2

Change – 9.95 km2 �6.98 km2 6.89 km2

Roads

Total length 355.27 km 399.26 km 435.57 km 444.13 km

Change – 43.99 km 36.31 km 8.56 km

Watercourses

Total length 1168.24 km 2553.05 km 3147.48 km 3321.15 km

Gain – 1473.98 km 689.11 km 281.52 km

Loss – 89.17 km 94.68 km 107.85 km

Change – 1384.81 km 594.43 km 173.67 km

Total length in fields 266.62 km 273.78 km 194.06 km 166.73 km

Total length in mires 447.12 km 1604.50 km 1925.36 km 2104.92 km

Water bodies

Total area 170.78 km2 169.78 km2 171.01 km2 171.21 km2
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Fig. 6 500 � 500 m patches with the most drastic changes for each land cover class
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those for which maps can be considered a reliable source of

information and some more difficult ones. Arable land is a

land use class with consistent presentation in Finnish basic

maps (Vuorela et al. 2002), water bodies represent con-

sistent single-level hydrology features, and motorways

marked in red are also easily distinguished in the maps.

Watercourses marked in blue and mires outlined with

dotted lines represented challenges that we wanted to

tackle using an automated method.

Performance of the proposed method

In this study, U-Net proved to be a suitable method for

processing historical maps, achieving an overall F1-score

of 0.872, and an overall IoU of 0.783. The differences

between the predicted total areas and lengths were minor,

with the largest error being around 5 percentages for

watercourses in 1984 maps. The most accurately seg-

mented classes were those that cover larger areas (fields,

mires, and water bodies), and the linear classes had slightly

worse segmentation results. This was expected, because

segmentation metrics were measured based on the overlap

between predictions and annotations. Especially waterways

are narrow and only a few pixels wide, so a small offset

between predictions and annotations can have a larger

impact on the evaluation metrics compared to classes

covering larger areas. U-Net was also able to distinguish

between paludified area and mire, where the difference in

map markings were for the most part only in the higher or

lower density of the horizontal lines. In the future, adding

paludified areas as one of the classes might improve the

results and usability even further.

One advantage of U-Net over rule-based methods, such

as color thresholding or morphological operations, is that

given enough training data, U-Net can learn to ignore

textures that are not of interest, such as written text,

property and municipal boundaries, and height contours.

Our model, for the most part, ignored these features, with

only minor difficulties with thicker black and red letters,

which were classified as waterways and roads respectively.

Likewise, it is possible to train a model to detect only these

types of features. For instance, Ekim et al. (2021) used a

similar U-Net-based method for detecting and classifying

different types of road lines from German World War II

maps, and classifying past road network from historical

Finnish maps is a possible future research topic.

There are, of course, disadvantages of using deep

learning methods. The main disadvantage is the amount of

required training data and computational costs. Processing

maps using morphological operations or color thresholding

is fast and does not require heavy computing resources, and

the methods do not require external training data, as the

parameters are defined by the researchers. Deep learning

methods require accurate training data, and creating it is

time-consuming. Training the model is also more time-

consuming and requires suitable hardware. As for inference

time, our model classified one map sheet in around seven

minutes, and the most time-consuming part of the pre-

sented workflow was actually converting predictions for

roads and waterways to line geometries. No matter which

method is used, some amount of human annotated valida-

tion data is required to validate the results.

Land use and land cover changes

The clear decrease in arable land area, particularly between

1965 and 1985, is in line with the general trend that

occurred in Finland. The area of arable land started to

increase rapidly in the end of the 19th century, and this

development continued until the 1960s. During the past

decades, the afforestation subsidies and the declining

number of farms have contributed to the afforestation of

set-aside or abandoned agricultural land (Tiainen et al.

2004). The decline of arable land and grasslands in

southern Finland during the past decades has been reported,

for example by Ruuska and Helenius (1996) and Pitkänen

et al. (2014). Countrywide, agricultural land area was 2.7

million ha in the 1960s, with a decrease after that to 2.2

million hectares in 2021 (Natural Resources Institute Fin-

land (Luke) 2022). Likewise, in Norway, the abandonment

of agricultural grassland has led into the transition of

heathland and grassland into woodland between 1964 and

1989 (Olsson et al. 2000). In the Swiss countryside, his-

torical maps showed an increase in arable land before the

1930s due to the strong promotion of intensive agriculture,

and a decrease after that (Bürgi et al. 2015).

Historically, the transformation of mires to agricultural

and forestry lands started already in the 1700s in

Fennoscandia (Enbuske and Ruuskanen 2021). In Finland,

agriculture was the main driver of the draining of mires

until the 1950s, and since then, mires have been drained for

forestry (Turunen 2008). Forestry drainage aims at

increasing timber growth in established waterlogged

woodlands, and has also been utilized to enable the

afforestation of open or sparsely wooded mires, to promote

reforestation on sites experiencing secondary paludification

after timber harvesting, and to stabilize forest roads

(Lõhmus et al. 2015). In Finland, Estonia, and Sweden, 55,

30, and 14% of the total mire area has been drained for

forestry, respectively (Vasander et al. 2003).

The strong increase in watercourses between 1965 and

1985 in the study area, and in whole Finland is a well-

known phenomenon due to the intensive drainage con-

tributed by state subsidies, including some regional dif-

ferences in the intensity of drainage. The rather strong

increase in watercourses in the study area, from 1985 to
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2005 and even from 2005 to 2022, is surprising, as the peak

for draining was generally reached in the 1960s and 1970s

(Peltomaa 2007). In contrast to the mire ditching, in fields,

the total drainage network length decreased after 1985. The

decrease was much more drastic than the one in the total

area of fields, which implies that the decrease was mostly

due to the shift from open ditches to sub-surface drainage

systems. In this study, the watercourses also included

natural streams. As the length of the natural streams can be

considered stable, this method is well-suited for examining

the increase of the length of the drainage network.

The strong fluctuations in the results of the mire area

were surprising and are probably related to changes in

mapping practices during the 60 years of the study period.

The definition of mire has not changed during the years,

but in practice, large areas were defined as paludified areas

in 1965 and as mires in 1985. This can be due to varying

interpretations of the vegetation in the field, misclassifi-

cations by the model, and it is likely that some of the

paludified areas have turned into mires during the 20 years.

The decrease of mire area from 1985 to 2005 may largely

be due to a change in vegetation of drained mires to

resemble forest vegetation, which has led to their classifi-

cation as forests in the field survey, as noted by Turunen

(2008). The observed increase in mire area between 2005

and 2022 was probably artificial, i.e., classification related,

since environmental restoration of mires has hardly been

executed in the study area. These changes were not due to

our methods, as data from 2005 and 2022 were taken from

the topographical database by NLS Finland. Currently, and

in the coming years, mire restoration projects are executed

in Finland on confined areas. Mire restoration, by filling the

ditches, has been shown to successfully enable increased

water table and increasing mire vegetation (Maanavilja

et al. 2015; Menberu et al. 2016).

The total length of the motorway network increased

between every time interval examined, with the biggest

increase between 1965 and 1985. The increasing trend in

man-made road networks is generally known, but their

timings vary between regions. In a case study in Switzer-

land, in an agricultural lowland landscape, roads were

mostly built between 1749 and 1882, and between 1939

and 1943 (Bürgi et al. 2015). In the urban city area of

Albany in New York, the number of roads increased more

between 1900 and 1930 than between 1930 and 1950 (Uhl

et al. 2022). In this study, the roadside ditches on both sides

of the roads also play a role in the water drainage system,

even though they are not marked as being part of the

watercourses, and thus they have an influence on hydrology

that is not always recognized.

The decrease in the area of water bodies between 1965

and 1985 can be mostly explained with the decrease of

water level in the Tervajärvi lake due to the added drainage

system (Fig. 6). Additionally, the model classified some

wide rivers as water bodies instead of watercourses. Some

minor changes in mapping methods also occurred between

1965 and 1985. Otherwise, the extent of water bodies is

high, as typical to Finland.

It is worth noting that there are several potential sources

of error when using scanned historical maps for LULC

analysis. First, and the most obvious, are the inaccuracies

due to survey methods in the past. We observed a slight

misalignment between map sheets of different years, which

may be due to cartography methods advancing during the

study period. The misalignment issues, and the inaccura-

cies due to this, can be partially addressed by downsam-

pling the resolution to be coarser than the dislocation error

(Geri et al. 2010). In this study, we addressed these errors

by analyzing land cover changes within 500 � 500 m grid

cells instead of overlaying the results from different years.

Impacts on biodiversity and carbon storage

In general, the replacement of arable vegetation by forest

vegetation is a slow process, and the outcome depends on

the afforestation site, tree species, and forest management,

and also the ecological impacts of afforestation depend on

site characteristics (Rey Benayas et al. 2007). The infor-

mation of past agricultural use is important for floodplain

forest conservation, as floodplain forests afforested in for-

mer arable land do not have as high biodiversity compared

to those in a natural state (Brown et al. 1997). Further,

information of agricultural land use history can be utilized

in evaluating the quality of traditional rural biotopes that

significantly contribute to biodiversity in the boreal region

(Raatikainen et al. 2017).

Ditching has major impacts on terrestrial and aquatic

ecosystems through alterations in soil conditions, hydrol-

ogy, and tree cover (Holopainen and Lehikoinen 2022).

However, drainage is often overlooked as an ecosystem

modifier, as it changes the ecosystem slowly and the

impacts can be difficult to observe. The impacts of forest

drainage on biodiversity and threatened species during the

different phases of post-drainage succession are particu-

larly poorly known (Lõhmus et al. 2015).

The effect of drainage-network increase in mires has

clearly had consequences on carbon sequestration and

storage in mires. Previously, drainage was considered to

increase the carbon sink of mire vegetation due to

increased growth, even though the uncertainty of the esti-

mates was also acknowledged (Turunen 2008). However,

the carbon storage of peat decreases after drainage, and

drained mires become carbon sources (Simola et al. 2012).

Expanded drainage systems affect the water quality, for

example by elevated pH and increased organic nitrogen

content (Prévost et al. 1999). On biodiversity, mire
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drainage has had a strong negative impact due to loss of

mire vegetation and increased similarity to forest vegeta-

tion (Ojanen et al. 2020). On the other hand, the ditch-

network increase in fields, particularly before 1965 and

maybe also between 1965 and 1985, had a positive effect

on biodiversity, because it created diverse, small-scale

traditional farmland habitats, and open ditches were bio-

diversity-supporting habitats for many plant and insect

species (Jauni and Helenius 2008). The development of

sub-surface drainage since 1985 has had a negative impact

on biodiversity, because the landscape has become more

monotonous with the decreasing number of open ditches

that has led to growth of field parcels (Hietala-Koivu et al.

2004).

For road networks, our case study included only the

motorways with map markings in red. Further analysis

should also include the development of forest road net-

work, which is a challenge with the Finnish mapping

symbol system due to the black color being used for

multiple item classes. From the perspective of biodiversity,

the development of forest road networks has an evidently

high impact due to the fragmentation effect on forest

landscapes. Thus, for accessibility of forest areas, forest

road mapping would be needed, whereas the motorway

network development analyzed in this study mainly affects

the mobility of people.

Future challenges

Our study area covered 900 km2 to test the workflow, but

in many cases, it is reasonable to expand the analyzes to a

larger scale in order to support the information needs of the

administrative units. For example, for a river catchment

level hydrology analysis, the knowledge of watercourse

network expansion, both downstream and upstream, is

needed (Bhattacharjee et al. 2021). Such knowledge of

drainage systems is also of importance for the assessment

of maintenance needs or candidate mires for restoration

(Hasselquist et al. 2018). To include older maps than 1965

would be of great value, but it also introduces availability

and comparability issues, such as geometric distortion,

number of ground control points available, differences in

landscape categories used, distinctiveness of symbol rep-

resentation, and thematic consistency of each feature class

(Vuorela et al. 2002). In practice, even with 1965 as the

oldest source map, the analysis of extended areas with a

larger number of feature classes would be highly influential

to the understanding of historical land use in Finland.

Workflow development needs to be continued to include

more land cover classes besides those in this study.

Methodologically, of course, challenges with a higher risk

of misinterpretation are created when the number of classes

is increased, because of matching colors used for multiple

classes and difficulties in outlining the new classes. Par-

ticularly forest classes (deciduous, coniferous, and mixed

forests) in Finnish maps have ambiguous outlines with no

clear border markings. Forest classes would nevertheless

be especially of interest for further study. This exercise

showed that deep learning methods can highly accurately

deal even with relatively vague classes, such as mires.

CONCLUSIONS

In this study, we demonstrated how to utilize modern

computer vision methods to derive georeferenced infor-

mation from scanned historical maps. We used U-Net to

detect five classes of interest from scanned basic maps

from 1965 and the mid-1980 s, and the proposed method

proved to perform well. The results were used to analyze

land cover and land use changes in the study area between

1965 and 2022. The analysis showed the increase with road

and ditch networks and the change in area of agricultural

fields and mires. The observed land cover changes are in

line with the known development in forestry and

agriculture.

Efficient utilization and digitization of historical maps

can greatly improve the knowledge of past land use and

land cover changes; as for example, in Finland, the

archives of the NLS contain over 10 000 map sheets, dated

between 1949 and 1997. In the future, we aim to further

develop our method both by increasing the study area and

by including more classes.
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23–49. Helsinki: Suomen ympäristökeskus. (In Finnish) .

Jiao, C., M. Heitzler, and L. Hurni. 2021. A survey of road feature

extraction methods from raster maps. Transactions in GIS 25:

2734–2763. https://doi.org/10.1111/tgis.12812.

Kaim, D., J. Kozak, N. Kolecka, E. Ziółkowska, K. Ostafin, K.
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