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Abstract

The cAnt-Miner algorithm is an Ant Colony Optimization (ACO) based
technique for classification rule discovery in problem domains which include
continuous attributes. In this paper, we propose several extensions to cAnt-
Miner. The main extension is based on the use of multiple pheromone types,
one for each class value to be predicted. In the proposed µcAnt-Miner al-
gorithm, an ant first selects a class value to be the consequent of a rule
and the terms in the antecedent are selected based on the pheromone levels
of the selected class value; pheromone update occurs on the corresponding
pheromone type of the class value. The pre-selection of a class value also
allows the use of more precise measures for the heuristic function and the
dynamic discretization of continuous attributes, and further allows for the
use of a rule quality measure that directly takes into account the confidence
of the rule. Experimental results on 20 benchmark datasets show that our
proposed extension improves classification accuracy to a statistically signifi-
cant extent compared to cAnt-Miner, and has classification accuracy similar
to the well-known Ripper and PART rule induction algorithms.

1. Introduction

Ant Colony Optimization (ACO) [5] is a meta-heuristic for solving com-
binatorial optimization problems, inspired by observations of the behavior of
ant colonies in nature. Classification rule discovery is an active area of re-
search in data mining, and there has been considerable interest in the use of



ACO-based algorithms in classification rule discovery, as reviewed in [8, 15].
Ant-Miner, proposed by Parpinelli et al. [18], is the first ACO algorithm for
discovering classification rules of the form:

IF <Term-1> AND <Term-2> AND . . . THEN<Class> ,
where each term is represented as an (attribute = value) pair, and the con-
sequent of a rule corresponds to the class value to be predicted. Ant-Miner
has been shown to be competitive with well-known classification algorithms,
such as C4.5 [19] and CN2 [2]. There has been an increasing interest in
improving the Ant-Miner algorithm, resulting in several extensions of the
algorithm proposed in the literature [1, 9, 12, 13, 14, 22, 24]. The Ant-
Miner algorithm has an important limitation of only being able to process
nominal attributes, whilst in practice most real-world classification problems
involve both nominal and continuous attributes. Recently, Otero et al. [16]
presented an extension, called cAnt-Miner, that handles continuous-valued
attributes through the creation of discrete intervals dynamically during the
rule construction process.

In this paper, we present an extension of cAnt-Miner, called µcAnt-Miner,
based on the use of multiple pheromone types, one for each class value to be
predicted. An ant first selects a class value to be the consequent of a rule and
the antecedent terms are selected based on the pheromone levels associated
with the selected class value; pheromone update occurs on the corresponding
pheromone type of the class value.

This paper builds on earlier work [20, 21] in which the use of multiple
pheromone types was introduced in the context of the original Ant-Miner
algorithm. In this paper, we introduce the µcAnt-Miner algorithm which
incorporates the idea of multiple pheromone types in the cAnt-Miner algo-
rithm, the first ACO classification algorithm able to cope with both nominal
and continuous attributes during the rule contruction process. Another new
component of µcAnt-Miner is a heuristic function which measures the pre-
dictive power of a candidate term to be added to the rule antecedent in the
context of the preselected class. This is more precise than the entropy-based
heuristic function used in the original cAnt-Miner. Furthermore, we propose
a new method for locating the best threshold value of a continuous attribute
when selecting the next term to be added to the rule consequent. Again, this
method takes advantage of the preselected class in the rule consequent, which
leads to a better selection of that threshold value. In addition, we propose a
new rule quality evaluation function which aims to give higher preference to
rules for which confidence is much higher than support.
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The rest of the paper is organized as follows. In Section 2 we present a
brief overview of the original Ant-Miner algorithm, followed by an overview
of related work on Ant-Miner variations in Section 3 and then a review of
the cAnt-Miner algorithm in Section 4. We then describe µcAnt-Miner in
Section 5. Sections 6 and 7 discuss our experimental methodology and re-
sults, respectively. Finally, conclusions and some future work suggestions are
presented in Section 8.

2. Overview of the Ant-Miner Algorithm

Algorithm 1 Pseudo-code of Ant-Miner.

Begin Ant-Miner
training set← all training examples;
discovered rule set← φ;
while |training set| > max uncovered examples do

InitializePheromoneAmounts();
CalculateHeuristicV alues();
Rbest ← φ;
i← 0;
repeat

anti ← Initialize();
ConstructRuleAntecedent(anti);
ComputeRuleClass(anti);
Rcurrent ← PruneRule(anti);
Qcurrent ← CalculateRuleQuality(Rcurrent);
UpdatePheromone(Rcurrent);
if Qcurrent > Qbest then

Rbest ← Rcurrent;
end if

i← i+ 1;
until max iterations OR Convergence()
discovered rule set← discovered rule set +Rbest;
training set← training set−Examples(Rbest);

end while

End

The goal of Ant-Miner is to discover an ordered list of classification rules,
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where rules are created by an ACO-based procedure. The decision com-
ponents in the construction graph of Ant-Miner are the available predictor
attribute-value pairs representing terms in the form of (attribute, operator, value)
to be used to create the antecedents of rules. As the Ant-Miner algorithm
only works with nominal attributes, the only available operator is “=” (equal-
ity operator)—although the use of a logical negation operator in the an-
tecedents of rules was explored in the Ant-Miner extension proposed in [20].
Continuous attributes, if present, must be discretized in a preprocessing step.
A high-level pseudo-code of Ant-Miner is shown in Algorithm 1.

In essence, Ant-Miner consists of two nested loops: an outer loop (while
loop) where a single rule per iteration is added to the discovered list of rules—
which is initialized empty—and an inner loop (repeat − until loop) where
an ACO-based procedure is used to create a rule. In the rule construction
process, each ant in the colony attempts to create a rule by selecting the terms
for its antecedent probabilistically according to the following state transition
function:

Pij =
ηij · τij

∑a

r=1

∑br
s=1 (ηrs · τrs)

, (1)

where Pij is the probability of selecting the term (attributei = valuej) (de-
noted termij), a is the total number of attributes, and br is the number of
values in the domain of the r-th attribute. As shown in Eq. (1), the prob-
ability of choosing termij depends on two factors: 1) the value ηij , which is
the value of a problem-dependent heuristic function; 2) the value τij , which
is the amount of pheromone deposited on termij. The value of the heuristic
function η involves information gain of the term [19] and is computed as
follows:

ηij =
log2(m)− entropy(Tij)

∑a

r=1

∑br
s=1 (log2(k)− entropy(Trs))

, (2)

where the measure of entropy for termij is calculated as:

entropy(Tij) = −
m∑

k=1

(

|T k
ij|

|Tij|

)

· log2

(

|T k
ij|

|Tij|

)

, (3)

where a is the total number of attributes, br is the number of values in the
domain of the r-th attribute, m is the number of classes, |Tij| is the total
number of examples in the training set in which attribute i is set to value j
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(which we will refer to as training set partition Tij), and |Tw
ij | is the number

of examples in partition Tij that have class w.
An ant continues to add terms to the current rule until all the attributes

have been used—given that the antecedent of a rule cannot have more than
one term of the same attribute—or until adding any of the remaining terms
would make the rule cover less than min examples per rule training exam-
ples. Then, the consequent of the rule is chosen by computing the class value
with the maximum number of occurrences in the set of training examples
satisfying the antecedent of the rule. Finally, the quality of the rule is cal-
culated and the pheromone value of each term belonging to the antecedent
of the rule is increased according to the quality of the rule. The evaluation
function used in Ant-Miner to measure the quality of a rule is [11]:

Q =
TP

TP + FN
︸ ︷︷ ︸

sensitivity

×
TN

TN + FP
︸ ︷︷ ︸

specificity

(4)

where TP (true positives) is the number of cases covered by the rule and
labeled by the class predicted by the rule, FP (false positives) is the number
of cases covered by the rule and labeled by a class different from the class
predicted by the rule, FN (false negatives) is the number of cases that are
not covered by the rule but are labeled by the class predicted by the rule,
and TN (true negatives) is the number of cases that are not covered by the
rule and are not labeled by the class predicted by the rule.

After updating the pheromone values for used terms, all pheromone values
are normalized to simulate pheromone evaporation. The best rule created by
the ACO-based procedure, according to the quality measure, is then added
to the list of discovered rules, and the examples covered by that rule are
removed from the training set.

The aforementioned set of steps is considered an iteration of the outer
loop and is repeated until the number of examples remaining in the training
set becomes less than or equal to a user-defined max uncovered examples

parameter value. A default rule (with no antecedent) is added at the end to
simply predict the majority class in the set of uncovered training examples—
that is, the set of examples that are not covered by any discovered rule.

For further details about the original Ant-Miner algorithm, the reader is
referred to [18].
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3. Related Work

In [1], Chan and Freitas proposed a new rule pruning procedure for Ant-
Miner that led to the discovery of simpler (shorter) rules and improved the
computational time in datasets with a large number of attributes, although in
some datasets this led to a smaller predictive accuracy. Liu et al. presented
two extensions: AntMiner2 [12] and AntMiner3 [13]. AntMiner2 [12] employs
a density-based heuristic function for calculating the heuristic value for a
term, while AntMiner3 [13] is based on a new state transition approach. A
pseudorandom proportional transition rule was investigated by Wang in [26].

Smaldon and Freitas [22] introduced the idea of selecting the rule con-
sequent class before rule construction — this idea is the inspiration for our
multi-pheromone approach — and producing an unordered rule set. Their
approach was based on constructing rules for each class separately: an ex-
tra For-Each (class value) loop is added as an outer loop for the original
algorithm. The consequent of the rule is known by the ant during rule con-
struction and does not change. An ant tries to choose terms that improve the
accuracy for a rule predicting the class value in the current iteration of the
For-Each loop. This approach tends to generate better rules in comparison
with the original Ant-Miner, where a term is chosen for a rule in order to
decrease entropy in the class distribution of cases matching the rule under
construction. However, the entire execution (with the complete training set)
is repeated separately for each class value until the number of positive cases
(belonging to the current class) remaining in the dataset that have not been
covered by the discovered rules is less than or equal to max uncovered cases.

Martens et. al [14] introduced AntMiner+, an Ant-Miner extension which
employs pheromone initialization and update procedures based on MAX -
MIN Ant System [23]. In AntMiner+, edges in the construction graph are
considered the decision components, and the α and β parameters are also in-
cluded as nodes in the construction graph, so that their values are selected,
and adapted automatically during the algorithm’s run, not statically set be-
fore execution. Moreover, AntMiner+ includes special handling of discrete
attributes having ordered values (as opposed to nominal attributes having
unordered attributes such as “male” and “female”). Instead of creating a
pair 〈attribute = value〉 for each value of an ordinal attribute, AntMiner+
creates two types of bounds that represent the intervals of values to be cho-
sen by the ants, allowing for interval rules to be constructed. In addition, an
extra vertex group is added at the start of the construction graph containing
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class values to allow the selection of class first. This is similar to considering
the class as another variable. Rules with different classes can be constructed
in the same iteration. Different heuristic values are applied according to the
selected class in order to choose the terms that are relevant to the prediction
of the selected class. However, pheromone information is shared by all ants
constructing rules with different consequents. Like Ant-Miner, AntMiner+
cannot directly process datasets with continuous attributes; such datasets
must first be discretized in a pre-processing step.

Galea and Chen [9] presented an ACO approach for the induction of fuzzy
rules, named FRANTIC-SRL, which runs several ACO algorithm instances
in parallel, each one generates rules for a particular class. Swaminathan [24]
proposed an extension to Ant-Miner which enables interval conditions in the
rules. For each discrete interval, a node is added to the construction graph
and the pheromone value associated to the node is calculated using a mixed
kernel probability density function (PDF).

The reader is referred to [15] for a recent survey of swarm intelligence
approaches to data mining.

4. How does cAnt-Miner Handle Continuous Attributes?

The cAnt-Miner algorithm was introduced by Otero et al. [16] as an
extension of Ant-Miner that can deal with continuous attributes without a
discretization preprocessing step. cAnt-Miner creates thresholds on continu-
ous attributes’ domain values during the rule construction process, producing
terms of the form (ai < v) or (ai ≥ v), where ai is a continuous attribute and
v is a threshold value dynamically generated using binary discretization [6].
This is accomplished by applying the following extensions to the Ant-Miner
algorithm.

In the construction graph of Ant-Miner, nodes represent terms in the
form (attributei = valueij) to be selected to create the antecedent of a rule
(where valueij is the j-th value of the i-th nominal attribute). In cAnt-
Miner, nodes for each continuous attribute are added to the construction
graph and connected to all other nodes. Note that continuous attribute nodes
do not represent valid terms, as they do not have a relational operator and
an associated value. Both operator and value are determined dynamically
when an ant selects a continuous attribute node as the next term to be added
to the antecedent of a rule.
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In order to calculate the heuristic value for a continuous attribute ai
based on its entropy, as in Eq. (2), it is necessary to select a threshold value
v from its domain to dynamically partition the continuous attribute ai into
two intervals: ai < v and ai ≥ v. A threshold value is one of the boundary
points of ai. As defined in [6], a value T in the range of ai is a boundary
point if in the sequence of examples sorted by the value of ai, there exist two
examples e1, e2 ∈ S having different classes (where S is the set of examples
in the training set), such that ai(e1) < T < ai(e2); and there exists no other
example è ∈ S such that ai(e1) < ai(è) < ai(e2). The best threshold value is
the boundary point v that minimizes the entropy of the partition, given by:

entropy(ai, v) =
|Sai<v|

|S|
· entropy(Sai<v) +

|Sai≥v|

|S|
· entropy(Sai≥v) , (5)

where |Sai<v| is the number of examples in the partition ai < v of the training
set, |Sai≥v| is the number of examples in the partition ai ≥ v of the training
set and |S| is the size of the training set. The values entropy(Sai<v) and
entropy(Sai≥v) are computed as in Eq. (3). When the best threshold value
vbest is located, the heuristic value to be associated with the continuous at-
tribute ai corresponds to the minimum entropy value of the two generated
partitions (ai < vbest) and (ai ≥ vbest).

Accordingly, when an ant is to select a continuous attribute to add as a
term in the current partial rule, the relational operator and the value of this
term are computed as described above; the threshold value is selected and
the relational operator is selected according to the interval with the lowest
entropy. However, it is important to note that only examples covered by
the current partial rule are considered in the evaluation of threshold values.
Therefore, this procedure is repeated each time a new term is added to the
current partial rule. This makes the discretization dynamic as the choice of
a threshold value is tailored to the current candidate rule [16].

As for pheromone update, pheromone values are associated with the nodes
representing continuous attributes, regardless of the operator or threshold
values, while with categorical attributes, the pheromone values are associated
with the attribute values.

5. The New Multi-Pheromone Based cAnt-Miner

The use of multiple pheromones types was first explored in [20] in the
context of the original Ant-Miner algorithm. The motivation behind using
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multiple pheromones types is the hypothesis that the selection of terms that
are relevant to the prediction of a specific class value leads to better rules
than selecting terms simply to reduce the entropy value, which is calculated
taking into account all class values. In addition, sharing pheromone between
ants constructing rules predicting different class values can negatively affect
the quality of the constructed rules, as the terms that lead to constructing a
good rule predicting the class value Cx do not necessarily lead to constructing
a good rule predicting the class value Cy. In this paper, we present a multi-
pheromone extension of the cAnt-Miner algorithm, which we call µcAnt-
Miner. The following describes how our µcAnt-Miner algorithm differs from
cAnt-Miner, and a high-level pseudocode description of the µcAnt-Miner
algorithm is presented in Algorithm 2.

5.1. Multiple Pheromone Types

First, the rule consequent class is chosen before constructing the rule
antecedent, so that terms to be chosen in further steps for the rule antecedent
would be relevant to classification of the current consequent. Class values
are treated as decision components in the construction graph and they are
selected probabilistically according to the pheromone amount and heuristic
value associated with them. The heuristic value ηk associated with class k is
calculated as below:

ηk =
freq(k)

|TrainingSet|
, (6)

where freq(k) denotes the number of occurrences of class k in the current
training set.

In addition, we allow each ant to drop and detect multiple types of
pheromone, one for each class value. An ant is only influenced by the
amount of pheromone deposited for the class value predicted by its rule
under construction—i.e., pheromone is not shared between ants construct-
ing rules predicting different class values. This allows choosing terms that
are only relevant to the previously selected class. This is implemented by
replacing the two-dimensional pheromone structure (attribute, value) by a
three-dimensional structure (attribute, value, class) for nominal attributes.
Therefore, the amount of pheromone type k deposited on termij (τij,k) is
a representation of the quality of termij in the prediction of class k. For
continuous attributes, since their nodes in the construction graph represent
only the attributes not the attribute-value pairs, the pheromone structure
will be a two-dimensional structure (attribute, class). Similarly, the amount
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of pheromone type k deposited on continuous attribute ai (τi,k) relates to the
quality of the attribute ai in the prediction of class k.

5.2. Heuristic Function

In µcAnt-Miner, we use a heuristic function which directly reflects the
predictive power of a given term to the current pre-selected rule class, rather
than seeking to reduce the entropy associated with the entire class distri-
bution as in the original cAnt-Miner algorithm. This is obtained by using
Laplace-corrected confidence as a heuristic function for term selection, as
follows:

ηij,k =
|termij,k|+ 1

|termij |+ m
, (7)

where ηij,k is the heuristic for termij given that class k is selected, |termij,k|
is the number of training examples which include termij and the current
selected class k, |termij | is the number of training examples having termij

and m is the number of classes. The Laplace-corrected confidence is used
for both nominal and continuous attributes. However, an interval (using a
threshold value and an operator) should be specified to compute the heuristic
value using Eq. (7) for a continuous attribute, as described below.

As shown in Algorithm 2, the selection of the class to be predicted by
a rule takes place before antecedent construction. At the beginning of the
execution of the algorithm, pheromone levels for every class value are initial-
ized. Then, the algorithm enters an iterative (while) loop, where heuristic
values are calculated for both attribute and class values in the construction
graph and a rule is created by the ACO-based rule construction process. As
in cAnt-Miner, the best rule is added to the list of discovered rules and the
examples covered by that rule are removed from the training set. Finally,
the pheromone levels of the class value predicted by the best rule are re-
initialized. The re-initialization does not affect pheromone levels associated
with other class values. This iterative process is performed until the num-
ber of examples in the training set is less than or equal to a user-defined
maximum number of uncovered examples.

In the rule construction process (repeat− until loop), an ant constructs
a rule as follows. First, the class value to be predicted by the rule is selected
probabilistically according to pheromone and heuristic information (Eq. (6))
associated with the different class values. Then, the antecedent of the rule
is constructed by selecting terms based on pheromone and heuristic informa-
tion (Eq. (7)) associated with the previously selected class value. When a
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Algorithm 2 Pseudo-code of µcAnt-Miner.

Begin µcAnt-Miner
training set← all training examples;
discovered rule set← φ;
InitializePheromoneAmounts();
while |training set| > max uncovered examples do

CalculateHeuristicV alues();
Rbest ← φ;
i← 0;
repeat

anti ← Initialize();
SelectRuleClass(anti);
ConstructRuleAntecedent(anti);
Rcurrent ← PruneRule(anti);
Qcurrent ← CalculateRuleQuality(Rcurrent);
UpdatePheromone(Rcurrent);
if Qcurrent > Qbest then

Rbest ← Rcurrent;
end if

i← i+ 1;
until max iterations OR Convergence()
discovered rule set← discovered rule set +Rbest;
training set← training set−Examples(Rbest);
ReinitializePheromoneAmounts(Class(Rbest));

end while

End
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continuous attributes is selected, a term should be constructed in the form
of (ai < v) or (ai ≥ v) by dynamically generating the threshold v.

5.3. Dynamic Discretization of Continuous Attributes

In µcAnt-Miner, we propose a new method for locating a threshold value
in the continuous attribute domain. Taking advantage of the preselected
class value, we aim to select a threshold value that generates partitions with
more relevance for predicting that class. This is in contrast to the original
version of cAnt-Miner, where the threshold value is selected only to minimize
the entropy among the classes. In essence, we calculate a “discrimination”
value for each value v in the boundary points of the continuous attribute ai
given class k, as follows:

disc(ai, v, k) = |Q(Sai<v, k)−Q(Sai≥v, k)|, (8)

where Q(Sai<v, k) and Q(Sai≥v, k) represent the quality of intervals Sai<v and
Sai≥v respectively with respect to the pre-selected class k, and are calculated
as follows:

Q(Sai<v, k) = supp(Sai<v, k)× conf(Sai<v, k) , (9)

Q(Sai≥v, k) = supp(Sai≥v, k)× conf(Sai≥v, k) , (10)

where supp(Sai<v, k) and conf(Sai<v, k) denote the support and confidence,
respectively, of the interval (ai < v) in the context of class k. More precisely,
supp(Sai<v, k) represents the ratio of the number of examples where the at-
tribute ai has a value less than v and is labeled by class k to the total number
of examples in the current training set, conf(Sai<v, k) represents the ratio of
the number of examples where the attribute ai has a value less than v and
is labeled by class k to the number of examples having attribute ai less than
v. The idea behind Equations (9-10) is that the quality of an interval should
be proportional to its support, and also proportional to its confidence.

As shown in Eq. (8), we calculate the absolute difference in quality (mea-
sured in terms of support and confidence) between the upper and the lower
intervals of the candidate value vi. The idea is to select the threshold value
vbest that maximizes the quality discrimination—with respect to the current
selected class value—between the two intervals. After the threshold that
produces the highest quality discrimination value is located, we select the
relational operator that produces the interval with the higher confidence,
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i.e. if conf(Sai<vbest , k) > conf(Sai≥vbest , k), then the generated term would
be (ai < vbest), else it would be (ai ≥ vbest). Finally, the Laplace-corrected
confidence is computed for the interval with the higher confidence, so that a
heuristic value is produced for continuous attribute node ai in the construc-
tion graph.

Table 1: Threshold Selection Calculations Example in µcAnt-Miner.

vi k supp conf supp conf disc

∈ a (Sa<vi) (Sa<vi) (Sa≥vi) (Sa≥vi) (a, vi, c1)

v1 c1 0/10 0 6/10 6/10 −

v2 c2 1/10 1/1 5/10 5/9 0.18

v3 c1 1/10 1/2 5/10 5/8 0.26

v4 c1 2/10 2/3 4/10 4/7 −

v5 c1 3/10 3/4 3/10 3/6 −

v6 c1 4/10 4/5 2/10 2/5 −

v7 c2 5/10 5/6 1/10 1/4 0.39

v8 c2 5/10 5/7 1/10 1/3 −

v9 c2 5/10 5/8 1/10 1/2 −

v10 c1 5/10 5/9 1/10 1/1 0.18

Example. For illustration, Table 1 shows a numerical example of the
calculations needed to locate the best threshold for continuous attribute a.
Assume that the current partial rule covers the ten examples in the table.
The class of each example is indicated in the column labeled k. The class
value c1 is selected for the current rule consequent. In order to locate the
best threshold vbest for attribute a, we sort the examples by the value of
attribute a. Then we calculate the quality discrimination value for each
boundary point, using Eq. (8). In this example, the boundary values are
{v2, v3, v7, v10}. Since v7 has the highest discrimination value (0.39), it is
selected as a threshold. Further, since the confidence value of interval Sa<v7

is higher than the confidence value of interval Sa≥v6 , the generated term would
be (a < v7). Figure 1 illustrates this process: v7 has the best discrimination
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Figure 1: Example illustrating the dynamic discretization process, based on the values
shown in Table 1. The array of shaded and unshaded squares represents the 10 training
examples of Table 1 sorted ascendingly by the value of attribute a. The shaded squares are
the examples labeled by the class c1 and the unshaded squares are labeled by c2. As can
be seen from the figure, Sa<v7

has the highest concentration of shaded squares (examples
labeled by c1) while Sa≥v7

has the lowest concentration of shaded squares. This makes
v7 the best discrimination value and it would be selected as a threshold for dynamic
discretization according to Equation (8).

value for attribute a and it would be selected as a threshold for dynamic
discretization according to Equation (8). �

We note that the number of boundary points for selecting the threshold
in µcAnt-Miner is generally less than or equal to the number of boundary
points in cAnt-Miner. In µcAnt-Miner, we are only interested in a boundary
point T in the range of ai, given that class k is selected, if in the sequence of
examples sorted by the value of ai, there are two examples e1, e2 ∈ S having
different classes, such that ai(e1) < T < ai(e2) and one of these two classes
is k. Therefore, the time needed for locating the threshold vbest is reduced,
since fewer candidate boundary points need to be evaluated.

5.4. Rule Pruning

In µcAnt-Miner, some alterations were made to the rule pruning process
take advantage of the pre-selection of the rule consequent class and the use
of multiple pheromone types. Rule pruning involves speculatively removing
each term in turn and evaluating the quality of the rule without that term,
then considering the rule with the removed terms having the largest increase
in rule quality. This process is repeated until there is no increase in rule qual-
ity. In cAnt-Miner, a new consequent – the class with the highest occurrence
among all cases covered by the rule – is assigned to the rule after each term is
speculatively removed. In contrast, in µcAnt-Miner, the consequent remains
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unchanged during the pruning processing, and so the rule pruning procedure
is simplified. After each term is removed, there is no need to compute the
class with the highest occurrence among all cases covered by the reduced
rule. This is because all the terms in the rule antecedent are selected based
on the consequent class, so it is certain that the current class produces the
highest quality with the current terms compared to other classes.

5.5. Rule Quality Evaluation Function

In µcAnt-Miner, instead of cAnt-Miner’s rule quality evaluation function
(Eq. (4)), we would like to use an evaluation function that takes advantage of
the pre-selection of class value and directly takes into account the confidence
of the rule. In addition to favoring high-confidence rules, we would also like
to favor rules with high support, in order to avoid over-fitting. We might
consider the following evaluation function (first used in AntMiner+ [14]):

Q(Rt) = supp(Rt) + conf(Rt) , (11)

where supp(Rt) represents the ratio of the number of examples that match
Rt’s antecedent and are labeled by its class to the total number of examples in
the training set, and conf(Rt) represents the ratio of the number of examples
that match rule Rt’s antecedent and are labeled by its class to the total
number of examples that match Rt’s antecedent.

However, instead of using the evaluation function in Eq. (11), we use the
following conditional evaluation function, that aims to attach higher quality
to rules in which confidence is much higher than support.

Q(Rt) =

{
supp(Rt) + conf(Rt) if conf(Rt) ≥ 3 supp(Rt)

or conf(Rt) = 1 [case 1]
0.5 supp(Rt) + conf(Rt) otherwise if conf(Rt) ≥ 2 supp(Rt) [case 2]
conf(Rt) otherwise [case 3]

(12)

The motivation behind the evaluation function of Equation (12) is the
following. The evaluation function of Equation (11) assigns equal quality to
a rule R1 with a support of 0.2 and a confidence of 0.7, and a rule R2 with
a support of 0.7 and a confidence of 0.2. But, in fact, R2 is quite poor: its
antecedent is satisfied by 70% of the training set, but its misclassification
rate is 80%—which means that is misclassifies a majority of the training
set. Meanwhile, R1 only covers 20% of the training set, but it has a correct
classification rate of 70% for this small portion of the dataset that it covers.
Thus, the idea behind our proposed evaluation function is that we would like
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to promote rules whose confidence is significantly higher than their support—
ideally at least three times higher.

Therefore, case 1 of Equation (12) includes the case where confidence is
three times or more higher than the support, or where the confidence is 100%
regardless of support. In case 2, the ratio of confidence to support is higher
than 2 but lower than 3. This is not an ideal rule—therefore, we attach a
coefficient of one-half to support so that a rule R3 with a support of 0.7 and
a confidence of 0.25 will have a lower quality evaluation than a rule R4 with
a support of 0.25 and a confidence of 0.7. In addition, the maximum quality
evaluation for a case 2 rule is 1.5 while a case 1 rule can have an evaluation as
high as 2. Finally, case 3 includes rules that are not preferred—rules in which
the ratio of confidence to support is less than 2. In case 3, the evaluation
function does not include support and is based entirely on confidence (which
means the maximum quality evaluation would be 1). A rule that is evaluated
under case 3 is likely to have a relatively poor evaluation compared to other
rules.

Note that the rule quality Q(Rt) computed via Eq. (12) is the amount of
pheromone to be deposited on the class label and the terms of the rule Rt.

6. Experimental Methodology

The performance of µcAnt-Miner was evaluated using twenty well-known
publicly-available datasets from the UCI dataset repository [25]. We compare
the performance of µcAnt-Miner against the original version of cAnt-Miner
(proposed in [16]) as well as two well-known classification algorithms from
the Weka workbench [27], namely JRip (Weka’s RIPPER [3] implementation)
and PART [7].

The main characteristics of the datasets used in the experiments are
shown in Table 2. Some of the selected datasets only contain continuous
attributes, while others contain a combination of nominal and continuous
attributes. Nine of the used datasets have more than two values in the do-
main of the class attribute, while the remainder have a binary-valued class
attribute.

Ten-fold cross validation was used in all experiments by splitting the
dataset into 10 stratified folds of approximately the same size (10% of the
examples in each fold), with roughly the same distribution of classes in each
fold. Then, for JRip and PART, which are deterministic algorithms, each
algorithm is run 10 times, each time with a different pair of training and
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Table 2: Description of Datasets Used in Experiments.

Dataset Attributes Classes Examples
Nominal Continuous

annealing 29 9 6 896

automobile 10 15 7 205

blood transfusion 0 5 2 748

breast cancer-w 0 30 2 569

credit-a 8 6 2 690

credit-g 13 7 2 1,000

cylinder bands 16 19 2 540

ecoli 0 8 8 366

glass 0 9 7 213

heart-c 6 7 5 303

heart-h 6 7 5 294

hepatitis 13 6 2 155

horse colic 15 7 2 365

ionosphere 0 34 2 350

iris 0 4 3 150

parkinsons 0 22 2 195

pima diabetes 0 8 2 768

s-heart 6 7 2 270

segmentation 0 19 7 2,269

wine 0 13 3 178
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Table 3: Algorithm Parameters Used in Experiments.

Parameter Value

number of ants 60

max uncovered examples (percentage remaining of training set) 2%

min examples per rule 5

no rules converg 10

max trails per iteration 1,500

max iterations 30

testing sets, i.e, each time a different fold is used as the testing set and the
other nine folds are merged and used as the training set. Since the ant colony
algorithms are non-deterministic, each of those two algorithms was run 15
times per each training/testing set pair—using different random seeds—and
the average was taken. Thus, for the ant colony algorithms, the total number
of runs for each dataset is 150 (10 training/testing set pairs, each used 15
times). The number of rules generated (which represents a measure of the
simplicity of the output), as well as the predictive accuracy of the generated
rules were recorded to evaluate the quality of the produced classification
models. The parameter settings used in the experiments are shown in Table
3.

7. Experimental Results

Tables 4 and 5 show the experimental results for predictive accuracy
and model size (represented by the number of generated rules), respectively,
for cAnt-Miner, µcAnt-Miner, JRip, and PART. For each dataset, each ta-
ble shows the mean and standard deviation (mean ± std. deviation) of the
achieved performance measure (predictive accuracy in Table 4, and model
size in Table 5). In addition, an entry is underlined if, for the corresponding
dataset, the value obtained by the corresponding algorithm is the best among
the four evaluated algorithms.

As Table 4 indicates, µcAnt-Miner outperformed cAnt-Miner in the pre-
dictive accuracy of the generated classification rule model in all but 4 datasets,
namely cylinder, ecoli, horse, and heart-h. In addition, µcAnt-Miner
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Table 4: Predictive Accuracy Results.

Dataset cAnt-Miner µcAnt-Miner JRip PART

ann 89.32 ± 1.04 92.84 ± 0.56 94.87 ± 0.59 94.63 ± 0.68

auto 67.52 ± 2.57 71.04 ± 1.52 68.69 ± 2.45 76.64 ± 3.08

bld-t 73.36 ± 0.67 74.93 ± 1.72 77.63 ± 3.95 77.89 ± 3.13

bc-w 93.26 ± 0.65 94.11 ± 0.61 94.20 ± 0.98 95.08 ± 1.00

crd-a 85.30 ± 0.93 86.70 ± 0.84 85.51 ± 1.46 84.35 ± 1.08

crd-g 70.66 ± 1.00 71.11 ± 0.20 72.20 ± 1.46 70.40 ± 1.60

cyl 71.30 ± 0.76 70.51 ± 1.15 64.29 ± 2.29 74.51 ± 1.72

ecoli 79.40 ± 1.79 78.61 ± 1.86 82.12 ± 4.76 83.62 ± 3.75

glass 67.44 ± 3.08 68.23 ± 2.37 66.54 ± 2.94 65.62 ± 3.01

hrt-c 55.99 ± 1.42 56.29 ± 0.97 54.48 ± 1.59 53.52 ± 2.37

hrt-h 62.91 ± 1.60 60.41 ± 1.83 63.72 ± 0.80 64.64 ± 3.16

hepat 76.84 ± 3.13 80.27 ± 2.04 78.13 ± 2.66 83.25 ± 3.47

horse 80.45 ± 2.58 70.23 ± 2.16 83.54 ± 1.87 82.39 ± 2.10

iono 87.08 ± 1.49 93.89 ± 1.43 90.24 ± 1.23 90.23 ± 1.44

iris 94.21 ± 0.99 95.65 ± 3.27 93.50 ± 3.84 93.02 ± 3.55

park 87.40 ± 1.83 90.00 ± 1.21 88.76 ± 2.37 86.18 ± 2.02

pima 72.96 ± 1.13 73.43 ± 1.30 74.71 ± 2.34 73.35 ± 2.51

s-hrt 77.88 ± 2.23 79.79 ± 1.38 78.52 ± 2.33 75.93 ± 1.93

seg 93.72 ± 0.38 94.64 ± 0.42 94.58 ± 0.51 95.61 ± 0.32

wine 91.38 ± 1.72 93.82 ± 1.69 92.19 ± 2.22 92.75 ± 1.44
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Table 5: Model Size Results.

Dataset cAnt-Miner µcAnt-Miner JRip PART

ann 9.51 ± 0.11 12.80 ± 0.12 11.50 ± 0.31 28.70 ± 1.11

auto 8.19 ± 0.09 16.94 ± 0.88 12.10 ± 0.67 19.60 ± 0.73

bld-t 5.80 ± 0.39 18.02 ± 0.53 2.93 ± 0.59 4.41 ± 0.77

bc-w 5.03 ± 0.04 7.92 ± 0.23 4.70 ± 0.21 7.30 ± 0.34

crd-a 7.07 ± 0.19 17.42 ± 0.31 4.10 ± 0.64 31.90 ± 2.93

crd-g 8.58 ± 0.06 30.00 ± 0.00 4.90 ± 0.41 68.70 ± 1.99

cyl 6.54 ± 0.10 17.76 ± 0.74 6.00 ± 0.91 33.30 ± 0.63

ecoli 7.69 ± 0.14 17.77 ± 1.20 9.10 ± 1.36 13.36 ± 1.11

glass 8.22 ± 0.12 18.22 ± 0.67 7.60 ± 0.50 16.20 ± 0.36

hrt-c 8.59 ± 0.12 28.83 ± 1.09 3.30 ± 0.37 42.30 ± 1.09

hrt-h 7.08 ± 0.15 24.84 ± 1.21 3.50 ± 0.45 24.10 ± 0.89

hepat 4.91 ± 0.11 7.80 ± 0.36 2.70 ± 0.21 8.40 ± 0.34

horse 7.27 ± 0.21 14.57 ± 0.82 3.70 ± 0.34 9.60 ± 0.45

iono 5.50 ± 0.08 8.09 ± 0.61 5.90 ± 0.61 7.50 ± 0.52

iris 4.00 ± 0.00 8.40 ± 0.61 3.58 ± 0.31 3.79 ± 1.20

park 4.95 ± 0.04 6.30 ± 0.08 3.90 ± 0.23 7.00 ± 0.33

pima 6.87 ± 0.12 29.89 ± 0.02 3.71 ± 0.31 7.77 ± 1.53

s-hrt 6.07 ± 0.04 12.55 ± 0.26 4.30 ± 0.40 18.20 ± 0.81

seg 12.22 ± 0.09 16.13 ± 1.73 17.20 ± 0.83 27.90 ± 0.92

wine 4.01 ± 0.01 4.07 ± 0.25 4.00 ± 0.15 4.60 ± 0.16
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Table 6: Statistical test results according to the non-parametric Friedman test with the
Holm’s post-hoc test for α = 0.05.

Algorithm average rank p Holm

(i) Predictive Accuracy

µcAnt-Miner (control) 2.10 – –

JRip 2.25 0.713 0.050

PART 2.40 0.462 0.025

cAnt-Miner 3.25 0.004 0.016

(ii) Model Size

JRip (control) 1.30 – –

cAnt-Miner 1.85 0.178 0.05

µcAnt-Miner 3.40 2.69E-7 0.025

PART 3.45 1.39E-7 0.016

was the overall winner (out of the four algorithms in Table 4) in 8 datasets,
whilst PART was the winner in 8 datasets, JRip in just 4 and the original
cAnt-Miner was not the winner in any dataset.

As Table 5 indicates, the original cAnt-Miner had the smallest number
of rules in 6 datasets, JRip had the smallest number of rules in 13 datasets,
and neither µcAnt-Miner nor PART had the smallest model size in any of
the datasets.

Table 6 shows the results of the statistical tests according to the non-
parametric Friedman test with the Holm’s post-hoc test [4, 10], for both
predictive accuracy and model size. For each algorithm, the first column
shows its average rank (the lower the average rank the better its perfor-
mance), the second column shows the p-value of the statistical test when its
average rank is compared to the average rank of the control algorithm (the
algorithm with the best rank) and the third column shows Holm’s critical
value. Statistically significant differences at the 5% level (corresponding to
the cases where the p value is lower than the critical value) between the ranks
of an algorithm and the control algorithm are tabulated in bold face.

As can be observed in Table 6, µcAnt-Miner obtained the best overall rank
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based on predictive accuracy among the four algorithms being compared. On
the other hand, in terms of model size, µcAnt-Miner ranked behind JRip and
cAnt-Miner, and only slightly better than PART.

The larger models of µcAnt-Miner can be attributed to the quality con-
trast intensifier strategy employed by µcAnt-Miner, which tends to prefer
rules whose confidence is much higher than their support. As was discussed
in Section 5.5, a rule R1 with a confidence of 70% and 20% support will be
preferred to another rule R2 with the same confidence but 30% support, and
both will be preferred to a third rule R3 with the same confidence and 40%
support. The intuition behind this, as discussed in Section 5.5, was that if
R3 is included in the constructed rule set, it would guarantee that 12% of
the training set would be misclassified, while R2 would misclassify 9% of the
training set, and R1 would misclassify 6% of the training set. Of course, the
other side of the coin is that R1 would leave 80% of the training set that
would have to be covered by other rules, while R2 and R3 would only leave
70% and 60%, respectively, to be covered by other rules. Thus, a side-effect
of this approach is that larger, but more reliable, rule sets will generally be
generated.

The size of the discovered model also has an effect on µcAnt-Miner’s run-
time; on most datasets, µcAnt-Miner tends to have a higher run-time com-
pared to cAnt-Miner. The reason for this is that, in addition to discovering
a greater number of rules, µcAnt-Miner carries out more iterations before
converging on a single rule to be added to the discovered rule list as a result
of the class-base structure used for the pheromone matrix, which increases
its overall run-time. On the other hand, the discretization process tends to
take less time in µcAnt-Miner, because a smaller number of cut points need
to be evaluated (as discussed in Section 5.3). Table 7 shows the run-time
results for µcAnt-Miner and cAnt-Miner. For each dataset, the table shows
the following: the average ratio of the total run-time of µcAnt-Miner to the
total run-time of cAnt-Miner, the ratio of the average time spent within a
single call of the dynamic discretization process for µcAnt-Miner to that of
cAnt-Miner, and the ratio of the average number of iterations per generated
rule for µcAnt-Miner to that of cAnt-Miner. The last row of the table shows
the average of each column over all datasets. We observe that, on average,
the dynamic discretization process takes about 20% less time per call, how-
ever, the number of iterations per generated rule is 3.9 times larger, and the
total run-time is 4.5 times larger.
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Table 7: Execution time results: column 2 shows the ratio of the total execution time of
µcAnt-Miner to the total execution time of cAnt-Miner, column 3 shows the ratio of the
execution time spent within a single call of the dynamic discretization process for µcAnt-
Miner to that for cAnt-Miner, and column 4 shows the ratio of the number of iterations
per generated rule for µcAnt-Miner to that for cAnt-Miner.

Dataset Overall Time Discretization Iterations
Ratio Time Ratio Ratio

ann 1.2 0.4 0.8
auto 1.4 0.2 0.9
bld-t 7.1 1.4 6.5
bc-w 1.4 1.3 4.1
crd-a 2.3 1.4 1.5
crd-g 7.5 0.8 2.7
cyl 3.1 1.2 4.0
ecoli 9.3 0.2 8.3
glass 7.2 0.2 8.1
hrt-c 8.4 0.3 9.1
hrt-h 7.8 0.2 5.4
hepat 1.5 0.6 1.5
horse 10.1 1.4 3.8
iono 2.2 0.9 7.8
iris 1.6 1.5 0.5
park 1.0 1.8 0.7
pima 7.4 0.4 6.1
s-hrt 4.8 0.8 3.5
seg 0.2 0.0 0.5
win 4.9 0.4 2.3

Average 4.5 0.8 3.9
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8. Conclusions and Future Work Directions

In this paper, we have proposed a multi-pheromone extension of the cAnt-
Miner ACO-based classification algorithm. Our approach allows for multiple
pheromone types, one for each class value to be predicted. An ant first selects
a class value to be the consequent of a rule and the terms to be added to its
antecedent are selected based on the pheromone levels of the selected class
value; pheromone update occurs on the correspondent pheromone type of the
class value. Furthermore, we propose a new method for threshold selection for
the domain of continuous attributes based on quality discrimination between
generated intervals, which focuses on the predictive power of the generated
term with respect to the selected class. We found, in experimental results on
a number of datasets, that the predictive accuracy of our proposed method
is better than that of the original cAnt-Miner, to a statistically significant
extent. Furthermore, although there is no statistically significant difference
in predictive accuracy between our method and Ripper and PART (two state-
of-the-art rule induction algorithms), our proposed multi-pheromone version
of cAntMiner achieved overall the best predictive accuracy among the four
algorithms compared in our experiments.

Otero et al. [17] have recently found that the use of a Minimum De-
scription Length (MDL) based discretization scheme combined with using
pheromone on the edges of the construction graph can improve the perfor-
mance of cAnt-Miner. In future work, we would like to explore combining
µcAnt-Miner with the approaches proposed by Otero et al. [17].
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