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Utilizing Multiple Subpixel Shifted Images in
Subpixel Mapping With Image Interpolation

Qunming Wang and Wenzhong Shi

Abstract—In this letter, multiple subpixel shifted images (MSIs)
were utilized to increase the accuracy of subpixel mapping (SPM),
based on the fast bilinear and bicubic interpolation. First, each
coarse spatial resolution image of MSI is soft classified to obtain
class fraction images. Using bilinear or bicubic interpolation, all
fraction images of MSI are upsampled to the desired fine spatial
resolution. The multiple fine spatial resolution images for each
class are then integrated. Finally, the integrated fine spatial res-
olution images are used to allocate hard class labels to subpixels.
Experiments on two remote sensing images showed that, with MSI,
both bilinear and bicubic interpolation-based SPMs are more
accurate. The new methods are fast and do not need any prior
spatial structure information.

Index Terms—Image interpolation, remote sensing, sub-
pixel mapping (SPM), subpixel shifted images, superresolution
mapping.

I. INTRODUCTION

LAND cover mapping from remote sensing images is al-
ways accomplished by classification. The conventional

hard classification assigns each pixel to a single land cover
class. However, this is insufficient for interpretation of mixed
pixels, which contain more than one class. Mixed pixels are a
common phenomenon in remote sensing images. Soft classi-
fication has been developed to estimate the fractions of classes
within mixed pixels but fails to predict the spatial distribution of
classes. Subpixel mapping (SPM; also termed superresolution
mapping or downscaling in remote sensing) is a technique to
extract land cover information at the subpixel scale [1] by
transforming the outputs of soft classification (i.e., fractions of
classes) to finer resolution maps. The fractions are used as a
constraint in the SPM problem.

SPM is usually performed based on spatial dependence
theory; compared with more distant pixels, neighboring pixels
are more likely to be of the same class. Over the past decade,
various algorithms have been developed to tackle the SPM
problem, such as pixel swapping algorithm (PSA) [2]–[5], ge-
netic algorithms [6], Hopfield neural network [7], [8], Markov
random field [9]–[12], back-propagation neural network [13],
and indicator cokriging [14], [15]. Some of them are time-
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consuming as they require several iterations to approach satis-
factory SPM results (e.g., genetic algorithms, Hopfield neural
network, and Markov random field), while other algorithms
need prior spatial structure information to build models for
classes (e.g., back-propagation neural network and indicator
cokriging).

SPM can be achieved simply by estimating soft class at-
tribute values (between 0 and 1 for each class) at a desired
fine spatial resolution first and then hardening the values to fine
class labels (0 or 1 for each class) [16], [17]. The soft class
attribute values indicate the probabilities of class occurrence at
subpixels. The prediction of those values is a critical step in
SPM, which is the core idea of some existing SPM algorithms,
including the Hopfield neural network, back-propagation neural
network, and indicator cokriging. The critical step can also be
realized by some image superresolution algorithms, and in this
letter, the classical bilinear and bicubic interpolation algorithms
are used for this purpose. The advantages of bilinear and
bicubic interpolation are that both of them are nonparametric,
noniterative, and fast algorithms. Moreover, they do not need
prior spatial structure information on classes.

SPM is widely known as an underdetermined problem. The
performances of many SPM approaches are limited by the
inherent uncertainty in SPM. Recently, additional information
from auxiliary data sets has been applied to decrease the
uncertainty in SPM and to increase the SPM accuracy [18]–
[23]. In this letter, multiple subpixel shifted images (MSIs)
are used as auxiliary data sets. These images can be captured
by sensors that cover the same area periodically. This type
of data set has been used for enhancement of SPM in [20]–
[23]. Unlike the methods in [20]–[23] which are iteration based
or need prior information, the methods studied in this letter
inherit the aforementioned advantages of bilinear and bicubic
interpolation.

The remainder of this letter is organized as follows. In
Section II, the principles of the bilinear and bicubic
interpolation-based SPM methods are introduced, followed by
details of utilizing MSI in them. Section III gives the experi-
mental results, and the conclusion is drawn in Section IV.

II. METHODS

Suppose that the soft classification results of a coarse spa-
tial resolution image are K (K is the number of land cover
classes) fraction images F1,F2, . . . ,FK , and each coarse pixel
is divided into S × S subpixels. Let Pj (j = 1, 2, . . . ,M,M
is the number of pixels in the coarse image) be a coarse pixel,
pi(i = 1, 2, . . . ,MS2) be a subpixel, and Fk(Pj) is the fraction
of the kth class for pixel Pj .
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Fig. 1. Flowchart of the bilinear and bicubic interpolation-based SPMs.

A. Bilinear and Bicubic Interpolation-Based SPMs

Let Zk(pi) be the soft attribute value for the kth class at
subpixel pi. Taking the fraction images F1,F2, . . . ,FK as
inputs, both bilinear and bicubic interpolation can produce
superresolution images Z1,Z2, . . . ,ZK quickly, each of which
are composed of MS2 soft attribute values.

In the SPM problem, the fractions and zoom factor S are used
to determine the number of subpixels belonging to each class.
More specifically, within each coarse pixel Pj , the number of
subpixels for the kth class NCk(Pj) is

NCk(Pj) = round
(
Fk(Pj)S

2
)

(1)

where round (•) is a function that takes the integer nearest to •.
Along with the constraints in (1), Z1, Z2, . . . , ZK are used

to allocate hard class labels to subpixels. In this letter, a class
allocation method in [17] is employed, with which subpixels
for each class are allocated in turn. For each class, subpixels
with larger soft attribute values are allocated before those with
smaller ones. Using this method, the autocorrelation for each
class can be maximized. The visiting order of all classes can
be decided by comparing Moran’s I [3] of K classes, and
the classes with higher indices are visited first. Fig. 1 is the
flowchart describing the bilinear and bicubic interpolation-
based SPM methods.

B. Using MSI in Bilinear and Bicubic
Interpolation-Based SPMs

MSI can be acquired by a satellite taking images over the
same area at different times. The images usually have the same
spatial resolution. Due to the slight relative translations between
the satellite and Earth, these images will not be completely
identical and will usually be shifted from each other. In this
letter, the MSIs are assumed to be translated horizontally and
vertically at the subpixel level.

Suppose that the number of MSI is R, and the subpixel shift
between the rth (r = 1, 2, . . . , R) and the first coarse image
is (xr, yr), which indicates that the rightward and downward
shifts are xr and yr subpixels. If the coordinate of a subpixel,
e.g., pi, in the first image is (am, bm), the coordinate of its
corresponding subpixel pri in the rth coarse image should be
(am − xr, bm − yr). An example is given in Fig. 2 to illustrate
the subpixel shifts. There are two 3 × 3 coarse images A (black)
and B (red). Suppose that each coarse pixel in the two images is

Fig. 2. Two coarse images A and B with subpixel shift (1, 1).

divided into 2× 2 subpixels (S = 2). The subpixel shift from
A to B is (1, 1). If a subpixel, labeled in blue in the figure, is at
(3, 3) in A, then it should be at (2, 2) in B.

In the proposed bilinear and bicubic interpolation-based
SPMs with MSI, the soft attribute value for the kth class at
subpixel pi is determined by integration of R attribute values

Zk(pi) =
1

R

R∑

r=1

Zk (p
r
i ) (2)

where Zk(p
r
i ) indicates the soft attribute value for the kth

class at pi’s corresponding subpixel pri in the rth coarse image.
Zk(p

r
i ) is estimated by bilinear or bicubic interpolation, taking

the kth class fraction image for the rth coarse image as input.

C. Implementation of the Proposed Methods

The implementation of the bilinear and bicubic interpolation-
based SPMs with MSI includes five steps.

Step 1) Estimation of subpixel shifts (xr, yr) (r = 1, 2, . . . ,
R). Many existing algorithms can be applied to
estimate the subpixel shift, such as phase correlation
and cross-correlation matching.

Step 2) Soft classification of MSI. All R coarse images are
soft classified. The results for each coarse image
are K class fraction images. Correspondingly, there
are R fraction images for each class.

Step 3) Image interpolation of fraction images. With bilinear
or bicubic interpolation, all RK coarse images are
superresolved to the desired fine spatial resolution.
The outputs are RK superresolution images.

Step 4) Integration of interpolated images. For each class, its
R interpolated superresolution images are integrated
[see (2)]. In this way, K fine spatial resolution
images will be generated.

Step 5) Class allocation for each subpixel. Under the con-
straints in (1), K fine spatial resolution images gen-
erated in step 4 are used for allocation of hard class
labels, and subpixels for each class are allocated in
turn. Details of the class allocation method can be
found in [17].

In this letter, the method for utilizing MSI for enhancement
of SPM is different from that in [20]–[22]. In [20]–[22], addi-
tional information from MSI is used at coarse spatial resolution.
Specifically, R (the number of MSI) constraints at original
coarse pixel scale, such as those in terms of class fraction
[20], [22] or spectral reflectance of the coarse pixel [21], are
incorporated into the relevant SPM models. In the SPM process,
each subpixel corresponds to R coarse pixels in MSI and has to
satisfy R constraints when its class attribute is predicted. As
the class attribute of each subpixel varies after each prediction,
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iterations are required to approach optimal SPM results. The
whole process is always time-consuming. In the proposed meth-
ods, however, information from MSI is exploited at subpixel
scale by upsampling all fraction images of MSI to the desired
fine spatial resolution in advance (see step 3). The interpolated
images for MSI are then straightforwardly integrated, which is
a noniterative and very fast scheme.

Superresolution for each image of MSI is accomplished by
bilinear or bicubic interpolation. The two interpolation algo-
rithms are well known for their simplicity and high compu-
tational efficiency. They are nonparametric and noniterative
and can process coarse spatial resolution images without prior
spatial structure information. Based on bilinear and bicubic
interpolation, therefore, the new SPM methods inherit all their
advantages, and MSI data are utilized efficiently.

III. EXPERIMENTS

Experiments on two remote sensing images were carried out
to validate the proposed SPM methods. Five SPM methods
were tested and compared: PSA, bilinear, bicubic, bilinear with
MSI, and bicubic with MSI. All experiments were tested on an
Intel Core 2 Processor (1.80-GHz Duo central processing unit,
2.00-GB random access memory) with MATLAB 7.1 version.

For supervised assessment of SPM methods, fine spatial
resolution images were degraded via a mean filter to simulate
coarse images. The task of SPM was to restore the fine spatial
resolution map. Since many algorithms can be used for image
registration of MSI, the estimation of subpixel shifts is beyond
the scope of this letter. To solely concentrate on the perfor-
mance of the proposed SPM methods, in each experiment, the
fine spatial resolution image was first shifted and then degraded
to generate the MSI. In experiment 1 and experiment 2, four
shifted images were considered, and the subpixel shifts were
assumed to be (0, 0), (0.5, 0), (0, 0.5), and (0.5, 0.5) coarse
pixel. The number of MSI is further discussed in Section III-C.

The accuracy of SPM was evaluated quantitatively by the
overall accuracy in terms of the percentage of correctly clas-
sified pixels (PCC). McNemar’s test was also applied to de-
termine whether the difference between the SPM results is
statistically significant. Using the 95% degree of confidence
level, the difference is considered to be statistically significant
if the calculated z-value is greater than 1.96.

A. Experiment 1

In the first experiment, an aerial image covering an area in
Bath, U.K., was used for the test. Fig. 3(a) shows the image,
while Fig. 3(b) shows the reference land cover map, which was
provided by Dr. A. J. Tatem. The image has 360 × 360 pixels,
with a pixel size of 0.6 m × 0.6 m, and covers four classes:
road, tree, building, and grass. The reference map in Fig. 3(b)
was degraded with a 10 × 10 mean filter to generate fraction
images for classes, each of which has 36 × 36 coarse pixels.

The SPM results of bilinear, bicubic, bilinear with MSI, and
bicubic with MSI are shown in Fig. 3(c)–(f). As can be seen
in Fig. 3(c) and (d), with respect to the restoration of the road
class, there are obvious disconnected shapes; as for trees and
buildings, many burrs occur on their boundaries, which seem
rough. With the aid of MSI, the performances of both bilinear
and bicubic interpolation-based SPM methods are noticeably

Fig. 3. SPM results for the aerial image. (a) Aerial image. (b) Reference land
cover map. (c) Bilinear result. (d) Bicubic result. (e) Bilinear with MSI result.
(f) Bicubic with MSI result.

TABLE I
ACCURACY (IN PERCENT) OF SPM METHODS

FOR THE AERIAL IMAGE (S = 10)

improved. In Fig. 3(e) and (f), the spatial continuity of each
class is greater, the boundaries of the classes are smoother, and
the results are closer to the reference map in Fig. 3(b).

Table I gives the accuracy of each class and the overall
accuracy in terms of PCC for five SPM methods. In this experi-
ment, the nonmixed pixels were not considered in the accuracy
statistics because these pixels will only increase the accuracy
without providing any useful information on the performance
of the SPM methods [5], [6]. As shown in Table I, PSA pro-
duces a greater PCC than both bilinear and bicubic methods in
experiment 1. Comparing the accuracy of the four interpolation-
based methods, using MSI, the SPM accuracy of bilinear and
bicubic methods is evidently enhanced and also higher than
that for PSA. For the proposed two methods with MSI, the
SPM accuracy of road, tree, building, and grass increases by
around 2.5%, 1.5%, 3%, and 2%, respectively, when compared
to the bilinear and bicubic methods. For the two classes, road
and building, they are regularly distributed and mainly appear
within objects which have straight lines and right angles in the
studied area. Hence, increases in the accuracy with which they
are predicted are more obvious than those for the other two
classes. The PCC of the bilinear method increases from 90.44%
to 92.96% when MSIs are used, and for the bicubic method, the
PCC increases from 90.87% to 93.27% when MSIs are used.
The McNemar’s test indicates that the PCCs of both bilinear
with MSI and bicubic with MSI are significantly higher than
those for the PSA, bilinear, and bicubic methods. In addition,
bicubic with MSI achieves significantly higher accuracy than
the other four SPM methods.
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Fig. 4. SPM results for the ROSIS image. (a) Three-band color image of the
ROSIS hyperspectral data set (bands 102, 56, and 31 as RGB). (b) Reference
land cover map. (c) Bilinear result. (d) Bicubic result. (e) Bilinear with MSI
result. (f) Bicubic with MSI result.

TABLE II
CC OF SOFT CLASSIFICATION RESULTS FOR

THE DEGRADED 10-m ROSIS IMAGE

B. Experiment 2

In this experiment, a hyperspectral image was studied. The
image was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor during a flight campaign over
Pavia, northern Italy. It has a spatial resolution of 1.3 m with
102 bands. The tested region has 384 × 384 pixels and mainly
covers six classes: shadow, water, road, tree, grass, and roof.
The false color image is shown in Fig. 4(a). Fig. 4(b) gives the
reference land cover map of the 1.3-m hyperspectral image,
which was obtained with the tensor discriminative locality
alignment-based classifier in [24]. A 10-m spatial resolution
image was created by degrading the original 1.3-m hyperspec-
tral image band by band via an 8 × 8 mean filter. The fine spatial
resolution land cover map in Fig. 4(b) was used for both visual
and quantitative assessments, which has an overall accuracy of
96.42% for 5343 test samples and provides a reliable reference
data set.

Soft classification was implemented on the 10-m coarse
image first to obtain the fraction images. Fully constrained least
squares linear spectral mixture analysis [25] was employed for
soft classification, considering its simple physical meaning and
convenience in application. The predicted fraction is compared
to the reference fraction by means of the correlation coefficient
(CC), as exhibited in Table II. The reference fraction data were
acquired by degrading Fig. 4(b) with an 8 × 8 pixel mean
filter. We can observe that the water, tree, and roof classes have
higher CCs than the other three classes, suggesting that the soft
classification of water, tree, and roof is more accurate.

The bilinear, bicubic, bilinear with MSI, and bicubic with
MSI methods were applied to the predicted fraction images,
with S = 8, generating the 1.3-m land cover maps shown in
Fig. 4(c)–(f). It can be observed that many linear artifacts exist

TABLE III
ACCURACY (IN PERCENT) OF SPM METHODS

FOR THE ROSIS IMAGE (S = 8)

TABLE IV
SUBPIXEL SHIFTS FOR DISCUSSION ON THE NUMBER OF MSI

in the bilinear and bicubic results. Using MSI, the phenomenon
is alleviated, and the SPM results are more in agreement with
the reference map in Fig. 4(b). The SPM accuracy of the four
methods as well as PSA is listed in Table III. Due to the
low soft classification accuracy of shadow, road, and grass,
as seen in Table II, the SPM accuracy of these three classes
is relatively lower in comparison with the other three classes.
When compared to the SPM accuracy in the first experiment,
the accuracy of all five methods is much lower in this experi-
ment. This is attributed to the errors from soft classification as
well as the more complex spatial pattern in the studied area.
Intercomparison of the values in Table III reveals that, with
MSI, both bilinear and bicubic methods achieve higher SPM
accuracy for all six classes than the PSA, bilinear, and bicubic
methods. The McNemar’s test suggests that bilinear with MSI
and bicubic with MSI methods have significantly higher PCCs
than the PSA, bilinear, and bicubic methods.

In experiment 1, the bilinear and bicubic methods took
around 2 s, while the proposed methods took less than 5 s. In
experiment 2, the bilinear and bicubic methods took less than
4 s, whereas the proposed methods took less than 8 s. For PSA
running with 20 iterations, however, it took 90 and 138 s in
experiment 1 and experiment 2.

C. Analysis of the Number of MSI

The proposed SPM methods were tested with different num-
bers of MSI. We discussed four numbers: 2, 4, 6, and 9. The
corresponding subpixel shifts are shown in Table IV. Note
that, when four images were discussed here, the subpixel shifts
are different from those in the previous two experiments. The
impact of the number of MSI can be seen in Fig. 5. For both
aerial and ROSIS images, when the number of MSI increases
from 1 to 9, the PCCs of both the bilinear and bicubic methods
increase. Moreover, the bicubic method consistently obtains a
higher PCC than the bilinear method.
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Fig. 5. Influence of the number of subpixel shifted images for bilinear and
bicubic interpolation-based SPMs.

IV. CONCLUSION

SPM is always an underdetermined problem. In this letter,
MSIs were used as additional information to enhance SPM,
which is achieved by fast and simple bilinear and bicubic
interpolation. The MSIs were subpixel shifted from each other,
situation replicated by sensors taking images over the same
area at different times. Similar to original bilinear and bicubic
interpolation-based SPMs, the proposed methods are free of
iteration and very fast, and do not need prior spatial structure
information.

Two remote sensing images were tested in the experiments
for validation of the proposed SPM methods. Both visual and
quantitative assessments showed that the new methods can
noticeably increase the accuracy of conventional bilinear and
bicubic interpolation-based SPMs. The SPM results of the
new methods are visually more continuous and smoother than
those obtained without MSI. The PCCs of the new methods
are significantly higher than those of conventional methods.
Furthermore, the proposed SPM methods took only several
seconds for the two studied images. The considerably low
computational burden fully indicates that the proposed methods
are fast methods to utilize MSI in SPM. Therefore, the proposed
methods show their great potential in real-time applications and
in cases where prior spatial structure information is unavailable.
In the future research, additional information from other auxil-
iary data sets will be utilized in image interpolation-based SPM.

ACKNOWLEDGMENT

The authors would like to thank Prof. P. M. Atkinson of the
University of Southampton, Southampton, U.K., for his careful
proofreading as well as helpful suggestions, Dr. A. J. Tatem of
the University of Southampton for providing the aerial image
and its land cover map, Prof. P. Gamba of the University of
Pavia, Pavia, Italy, for providing the ROSIS data, Dr. L. Zhang
of Wuhan University, Wuhan, China, for providing the land
cover map of the ROSIS data, and the handling editor and
anonymous reviewers for their valuable comments.

REFERENCES

[1] P. M. Atkinson, “Downscaling in remote sensing,” Int. J. Appl. Earth
Observ. Geoinf., vol. 22, pp. 106–114, Jun. 2013.

[2] P. M. Atkinson, “Sub-pixel target mapping from soft-classified, remotely
sensed imagery,” Photogramm. Eng. Remote Sens., vol. 71, no. 7, pp. 839–
846, Jul. 2005.

[3] Y. Makido, A. Shortridge, and J. P. Messina, “Assessing alternatives
for modeling the spatial distribution of multiple land-cover classes at

sub-pixel scales,” Photogramm. Eng. Remote Sens., vol. 73, no. 8,
pp. 935–943, Aug. 2007.

[4] A. Villa, J. Chanussot, J. A. Benediktsson, C. Jutten, and R. Dambreville,
“Unsupervised methods for the classification of hyperspectral images with
low spatial resolution,” Pattern Recognit., vol. 46, no. 6, pp. 1556–1568,
Jun. 2013.

[5] Q. Wang, L. Wang, and D. Liu, “Particle swarm optimization-based sub-
pixel mapping for remote-sensing imagery,” Int. J. Remote Sens., vol. 33,
no. 20, pp. 6480–6496, Oct. 2012.

[6] K. C. Mertens, L. P. C. Verbeke, E. I. Ducheyne, and R. De Wulf, “Using
genetic algorithms in sub-pixel mapping,” Int. J. Remote Sens., vol. 24,
no. 21, pp. 4241–4247, Nov. 2003.

[7] A. J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, “Super-
resolution target identification from remotely sensed images using a
Hopfield neural network,” IEEE Trans. Geosci. Remote Sens., vol. 39,
no. 4, pp. 781–796, Apr. 2001.

[8] A. M. Muad and G. M. Foody, “Impact of land cover patch size on
the accuracy of patch area representation in HNN-based super resolution
mapping,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5,
no. 5, pp. 1418–1427, Oct. 2012.

[9] T. Kasetkasem, M. K. Arora, and P. K. Varshney, “Super-resolution land-
cover mapping using a Markov random field based approach,” Remote
Sens. Environ., vol. 96, no. 3/4, pp. 302–314, Jun. 2005.

[10] V. A. Tolpekin and A. Stein, “Quantification of the effects of land-cover-
class spectral separability on the accuracy of Markov-random-field based
superresolution mapping,” IEEE Trans. Geosci. Remote Sens., vol. 47,
no. 9, pp. 3283–3297, Sep. 2009.

[11] J. P. Ardila, V. A. Tolpekin, W. Bijker, and A. Stein, “Markov-random-
field-based super-resolution mapping for identification of urban trees in
VHR images,” ISPRS J. Photogramm. Remote Sens., vol. 66, no. 6,
pp. 762–775, Nov. 2011.

[12] X. Li, Y. Du, and F. Ling, “Spatially adaptive smoothing parameter selec-
tion for Markov random field based sub-pixel mapping of remotely sensed
images,” Int. J. Remote Sens., vol. 33, no. 24, pp. 7886–7901, Dec. 2012.

[13] D. Nigussie, R. Zurita-Milla, and J. G. P. W. Clevers, “Possibilities and
limitations of artificial neural networks for subpixel mapping of land
cover,” Int. J. Remote Sens., vol. 32, no. 22, pp. 7203–7226, Nov. 2011.

[14] A. Boucher, P. C. Kyriakidis, and C. Cronkite-Ratcliff, “Geostatistical
solutions for super-resolution land cover mapping,” IEEE Trans. Geosci.
Remote Sens., vol. 46, no. 1, pp. 272–283, Jan. 2008.

[15] H. Jin, G. Mountrakis, and P. Li, “A super-resolution mapping method
using local indicator variograms,” Int. J. Remote Sens., vol. 33, no. 24,
pp. 7747–7773, Dec. 2012.

[16] F. Ling, Y. Du, X. Li, W. Li, F. Xiao, and Y. Zhang, “Interpolation-based
super-resolution land cover mapping,” Remote Sens. Lett., vol. 4, no. 7,
pp. 629–638, Jul. 2013.

[17] Q. Wang, W. Shi, and L. Wang, “Allocating classes for soft-then-hard sub-
pixel mapping algorithms in units of class,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 5, pp. 2940–2952, May 2014.

[18] G. M. Foody, “Sharpening fuzzy classification output to refine the rep-
resentation of sub-pixel land cover distribution,” Int. J. Remote Sens.,
vol. 19, no. 13, pp. 2593–2599, Sep. 1998.

[19] M. Q. Nguyen, P. M. Atkinson, and H. G. Lewis, “Super-resolution map-
ping using Hopfield neural network with panchromatic imagery,” Int. J.
Remote Sens., vol. 32, no. 21, pp. 6149–6176, Nov. 2011.

[20] F. Ling, Y. Du, F. Xiao, H. Xue, and S. Wu, “Super-resolution land-cover
mapping using multiple sub-pixel shifted remotely sensed images,” Int. J.
Remote Sens., vol. 31, no. 19, pp. 5023–5040, Oct. 2010.

[21] L. Wang and Q. Wang, “Subpixel mapping using Markov random field
with multiple spectral constraints from subpixel shifted remote sensing
images,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 3, pp. 598–602,
May 2013.

[22] X. Xu, Y. Zhong, L. Zhang, and H. Zhang, “Sub-pixel mapping based
on a MAP model with multiple shifted hyperspectral imagery,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 580–593,
Apr. 2013.

[23] Q. Wang, W. Shi, and L. Wang, “Indicator cokriging-based subpixel land
cover mapping with shifted images,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 1, pp. 327–339, Jan. 2014.

[24] L. Zhang, L. Zhang, D. Tao, and X. Huang, “Tensor discriminative locality
alignment for hyperspectral image spectral–spatial feature extraction,”
IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 242–256, Jan. 2013.

[25] L. Wang, D. Liu, and Q. Wang, “Geometric method of fully constrained
least squares linear spectral mixture analysis,” IEEE Trans. Geosci. Re-
mote Sens., vol. 51, no. 6, pp. 3558–3566, Jun. 2013.


