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Utilizing object-object and object-scene context

when planning to find things

Thomas Kollar and Nicholas Roy

Abstract— In this paper, our goal is to search for a novel
object, where we have a prior map of the environment and
knowledge of some of the objects in it, but no information about
the location of the specific novel object. We develop a proba-
bilistic model over possible object locations that utilizes object-
object and object-scene context. This model can be queried for
any of over 25,000 naturally occurring objects in the world
and is trained from labeled data acquired from the captions of
photos on the Flickr website. We show that these simple models
based on object co-occurrences perform surprisingly well at
localizing arbitrary objects in an office setting. In addition, we
show how to compute paths that minimize the expected distance
to the query object and show that this approach performs better
than a greedy approach. Finally, we give preliminary results for
grounding our approach in object classifiers.

I. INTRODUCTION

The goal of this work is to understand natural language
interactions where a person asks the robot to find a novel
object, and the robot must search through the environment in
order to find the object. In principle, the novel object can be
any of thousands of types and could be located in hundreds of
places in a given environment. Reasoning about the location
of objects usually relies on specialized object detectors that
perform well at detecting the goal object. In order to find
the object, the robot might search through the environment
using a chosen exploration strategy, building a map as it
goes. At the same time, the robot passively or actively uses
an object detector until it finds the object. Finally, it might
register the location of the query object to a global map of
the environment.

However, a search that does not take into account the
structure of natural environments will be inefficient and
arbitrary. Instead of having a single object detector, if the
robot has an array of detectors for different objects, it can
utilize the fact that some objects tend to co-occur, or reside in
certain kinds of places in the environment but not in others.
For example, given that the robot has detected a sofa, this
may make a remote control much more likely, and vice-
versa. Similarly, given that the robot has detected a sofa and
a remote control, this increases the likelihood that the scene
is a living room, which in turn increases the likelihood of
detecting a television. We use the term “scene” to denote the
type of an environment, such as a kitchen, a living room,
etc. Using this idea, we can use a set of object detectors in
order to recognize scenes and predict the location of objects
that the robot has never encountered before.
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In this work, we will assume access to a number of object
detectors. Given these detectors, we will show how to use
object-object and object-scene context in order to localize
any of the 25,000+ objects scenes in the English language in
natural environments1. We will show both simulated and real-
world experiments that use just a small subset of detectable
objects and scenes in order to robustly predict the location
of a significant number of goal objects. We will additionally
show preliminary results that use category-level visual object
detectors instead of simulated ones. Finally, we will propose
a method to search for a novel object by minimizing the
expected length of the path to a goal object.

The contribution of this work is twofold. First, we will
show that by using object-object and object-scene context
learned from captions attached to photos on Flickr, we can
robustly predict the locations of a wide variety of other
objects and scenes. Secondly, incorporating these predictions
into the search process and choosing paths that minimize the
expected length to the goal object, we are able to find the
object more quickly than a greedy approach. Throughout this
paper, our primary thesis is that strong positive or negative
correlations between objects in an environment give strong
priors on the locations of other objects.

The paper is organized as follows. In section II we will
give an overview of our approach to finding novel objects.
In section III, we formalize the problem of inferring object
location and describe a probabilistic model that utilizes
context in order to predict the existence of novel objects.
In section IV, we formalize the problem of searching for an
object and show how to optimize the path of the robot in
order to find this object. In section V, we show the results
from a number of experiments, both simulated and using
real-world data. Finally, in sections VI and VII, we will give
the related work, conclusions and future work.

II. OVERVIEW OF APPROACH

Our proposed approach is to utilize objects and scenes that
the robot knows about in order to predict the existence of new
objects. Our underlying assumptions are that we have a robot
that is taking odometry measurements, laser measurements
and camera images as it travels through its environment. Our
proposed algorithm is given in figure 1.

In step 1, the robot will build a map and using the
associated object detections at each location in its trajectory,
it will place annotations in the map where each object was

1The number of objects was computed by taking all scenes, objects, and
animals from the WordNet database [8]. In [1], the authors estimate one
to two thousand of concrete nouns, but this does not take into account
any ambiguity in the way people communicate. Although this ambiguity
might be resolved with a carefully constructed semantic network, we expect
unstructured queries where this resolution may not be possible.
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(a) Step 1: Build a map (b) Step 2: Recognize ob-
jects

(c) Step 3: Medial-axis
transform

(d) Step 4: Likelihood map (e) Step 5: Plan a path

Fig. 1. This figure illustrates the proposed algorithm. In step 1 and step 2 a map is built of the environment and objects are registered in it (alternatively,
a person labels the of the objects). In step 3 the map is skeletonized using the medial-axis transform. In step 4, for each gridcell in this skeletonized map,
the likelihood of finding the query object is computed. Finally, in step 5, the likelihood map is used along with a start location in order to plan a path to
the goal object. In this map, the labeled objects include: stairs, desk, kayaks, door, printer, couch, bike, whiteboard, fish, computer, secretary, workarea,
trashcan, coffeemug, stapler, pencil, book, wine, keyboard, helicopter, chair, drill, espresso, coffeemaker, sink, trash, microwave, tv, paper, towel, cellphone,
robot, copier, plant, remotecontrol, refrigerator, soap, solder.

observed (step 2). Given a query object, in step 3 the robot
will compute a skeleton of the map using the medial-axis
transform to reduce the size of the inference and planning
problems. In step 4, the likelihood of finding the object at
each location in the skeletonized map is computed using
the labeled locations of the known objects. Finally, in step
5, given a starting location, a breadth-first search can be
performed in order to search for the best path to the query
object.

Due to space limitations, we leave out the details of steps
1-3. An interested reader should refer to [12] and [16]. In the
next section we will formalize how to compute the likelihood
map (step 4) and in section IV we will describe our path-
planning objective and breadth-first search algorithm (step
5).

III. INFERRING OBJECT LOCATIONS

In order to compute the object likelihood function over
the map (i.e., the likelihood map), we propose to use the
object-object and object-scene relationships inherent in the
environment. For a location on the map skeleton, we want to
compute the probability that a novel query object is visible
given our object detections. Formally, given a location l on
the map skeleton, we can compute a distribution over the
existence os,l of the novel object s at location l given the
detections of objects ci,l, that is,

p(os,j |c1,1, . . . cM,1, . . . c1,N . . . cM,N ), (1)

where i indexes the M detectable objects and l indexes the
N locations on the skeleton.

A. Inferring object locations

In this section we will describe how to compute equa-
tion 1, which corresponds to step four in figure 1. For the
purposes of this work, we make the simplifying assumption

that other locations l
′

have no effect on whether object os is
visible from the current location. By making this simplifying
assumption, we have the following distribution, which we
call the Markov Random Field (MRF) model:

p(os,l|c1,l . . . cn,l)=
∑

i

p(os,l, o1,l, . . . , om,l|c1,l . . . cn,l) (2)

In order to define the distribution in the sum, we want
to take into account noisy measurements and contextual

relationships. Thus, we have:

p(os,l, o1,l, . . . , om,l|c1,l . . .cn,l) = (3)

1

Z

∏

i,j

ψ(oi,l, oj,l)
∏

i

φ(oi,l, ci,l)

The local MRF can be seen graphically in figure 2. In the first
term ψ, we have the likelihood of two objects co-occurring
while in the second term φ, we have the likelihood of an
object detector being correct. Note that there are two types
of “objects”: those that we can observe directly and those
which are latent, e.g., scene variables. In the case of all our
experiments, some subset of these variables will be observed
based on the categories that we are able to obtain. However,
there are nevertheless latent variables that are not observed,
but which have an effect on the solution.

We have also explored a simpler model that does not
take into account the fact that classifiers are noisy. Here,
we assume that the classifiers are always correct, and we can
therefore take them as observations of the objects themselves,
in which case, equation 1 becomes:

p(os,l|c1,l . . . cn,l) = p(os,l|o1,l . . . on,l) (4)

=
1

Z

∏

j

ψ(os,l, oj,l), (5)

which is a Naive-Bayes model. While the compatibility
matrices currently only utilize two objects, in the future we
plan to use models of higher order.

In the experiments presented in section V, loopy belief
propagation was used in order to perform the inference. Thus,
the next challenge is to determine the compatibility matrices
ψ(oi,l, os,l) for objects o1,l, . . . , on,l and the query oi,l.

B. Learning the compatibility matrices

In order to learn the functions ψ and φ, we use co-
occurrence statistics ni,j , that is, the count for how often
object oi occurs with object oj . Assuming that we have these
statistics, we learn these functions as:
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N

os,l

oj,l

(a) Naive Bayes model

. . .

. . .

o1,l o2,l ok,l

ok+1,l ok+2,l oN,l

ck+1,l ck+2,l cN,l

(b) Local Markov Random Field

Fig. 2. The two models we have used in our experiments.

ψ(os = T, oi = T ) =
ns,i

∑

j ns,j

(6)

ψ(os = F, oi = T ) =

∑

m 6=s nn,i
∑

m 6=s nm

(7)

ψ(os = T, oi = F ) =1−p(os =T, oi =T) (8)

ψ(os = F, oi = F ) =1−p(os =F, oi =T) (9)

In the first term we have in the numerator the frequency
for how often object s and object i co-occurred together and
in the denominator is the sum of the counts in category s. In
the second term the numerator has the sum over all the times
that object oi has been seen in any other category divided
by the sum of the elements in all the other categories.

C. Large co-occurrence databases

In order to determine the co-occurrence counts nij , we
require a large database of information about which objects
tend to be spatially co-located, and which objects tend to
occur in which scenes. The specific database we use is Flickr,
which has image data as well as tags that have been given
to the images by millions of users. Our insight in using a
photo database is that the captions generally describe objects
in the image, and objects in the same image are in the same
location. While there is some amount of bias in the dataset
(or irrelevant tags), the words that people use to describe their
images often actually do correspond to the object classes
present in the image (e.g. computer, desk, keyboard... etc.).
We can see the co-occurrence counts in figure 3 for the desk

and the mac classes. On the vertical axis are the top 20
object classes that co-occur with the base category and on the
horizontal axis are the frequency with which they co-occur.
Near the top of the list for desk are computer, keyboard,

mouse, printer, lamp, all things that humans would expect to
find with a desk. In addition, we are not limited to a strict
vocabulary. This can be seen by looking at mac in figure 3(b).
Mac refers to a Macintosh computer, and as expected we find
that it co-occurs with desks, computers, chairs, printers, etc.

Instead of hard-coding the set of objects that we can
query, we perform a dense sampling of images over all the
locations that exist in the English language (e.g. hallway,
office... etc.). In other words, we use all of the objects, scenes

and animals defined in the WordNet database and search for
images on the Flickr photosharing site. For the top 1000
hits, we download these images and use the associated tags
to derive co-occurrence counts from these images.

IV. PLANNING TO FIND OBJECTS

We want to be able to compute a path through the
environment that minimizes the expected travel distance to
the object (step 5 of figure 1). Here we again leverage the
medial-axis transform in order to reduce the search space.
Using breadth-first search, we expand locations on the medial
axis to the immediate connected neighbors (of which there
are at most 4). The goal is to find an object as soon as
possible, which means that we want to minimize the expected
length of the path to the object E[Lp]. The expectation is
taken with respect to the distribution over objects,

argmin
p∈paths

E[Lp] = (10)

M
∑

l=1

p(os,l=T, os,l−1=F . . . os,1=F|c1,1 . . . cM,N )× l.

Here, p(os,l = T, os,l−1 = F . . . os,1 =
F |c1,1 . . . cM,1 . . . cM,N ) is the likelihood of finding
object s along the path up to the current location given the
likelihood of finding object (or not) along the way and the
classifications derived from the map.

Given a start location in the map, we retract the start
location onto the medial axis and perform a breadth-first
search from there. Thus, at each node, we will expand the
node as follows, recursively computing the expected length
of the path:

E[Ln] = E[Ln−1]+

[

n−1
∏

l=1

p(os,l = F |c1,l . . . cM,l)

]

(11)

× p(os,n = T |c1,l . . . cM,l) × n

It is straightforward to keep track of the expected length of
the path as well as the probability that the robot did not see
the object at any previous location on the path. In addition,
we can compute the likelihood of having found the object
after n timesteps as:

p(os,n = T or os,n−1 = T . . . or os,1 = T ) (12)

=
k

∑

l=1

p(os,l = T, os,l−1 = F . . . os,1 = F |c1,1 . . . cM,N )

We perform a breadth-first search out to a specified
horizon. We then determine which paths have a likelihood of
finding the object greater than threshold t (equation 12), and
we sort these paths by their expected length (equation 11),
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(a) desk (b) mac

Fig. 3. We can see on the x-axis above are the raw counts for the number of times desk or mac appeared with the categories on the y-axis in the Flickr
dataset. In (a) we can see that a desk is often in an office, with a chair, a laptop, a lamp, etc. In (b) we can see the flexibility of our approach. Here we are
able to query mac (a computer made by Apple), which are often found near desks, screens, keyboards, etc., as one might expect in natural environments.

picking the minimal expected length. For the purposes of
our search, we allow backtracking only when the robot has
explored to an end point of the medial axis. Also, the path is
only allowed to traverse a particular location twice, and all
paths are constrained to have equal length. After computing
the path, the robot will then execute this path and search out
the object, utilizing either classifiers to find the object once
it is in high-likelihood areas or using a human to close the
loop.

V. RESULTS

In this section, we show that our model robustly predicts
the location of novel objects. In addition, we show that the
proposed solution to the planning problem results in shorter
expected paths than a greedy strategy.

A. The effect of context

Let us first assume that we have a perfect object detector:
when an object is in view it will be seen. We will perform a
simulated experiment where we take a map of the third floor
of a building at MIT and by walking around the environment
label all the locations of a limited number of objects in this
environment (for a partial list of the objects see figure 1). We
remove one object type from this list and let the other objects
predict the location of this query object. In this particular
environment, we labeled approximately one hundred object
types. Based on the labels already present in the Flickr
dataset, we can query any of the 25,000 object and scene
types in the English language.

In figure 4, we can see queries for a number of semantic
categories. Of particular note is that we can query many types
of objects (even ones that are not labeled in the map). For
example, in figure 4 we can see the mac object. Also, we can
see that there is almost zero likelihood of finding a cow in
the environment, as expected. However, zebra shows a slight
likelihood of appearing in the lounge because a zebra couch
is apparently a somewhat popular type of striped couch.

We can also use our approach to compute the most likely
scene (e.g. office, hallway, conference room... etc.). Referring
to figure 5, we find the most likely place to find a kitchen is
near the refrigerators, toaster ovens, and espresso machine.
There are three kitchen areas and in each of these, we can see
that the soap appears next to the sink and refrigerator. The
most likely places to find offices are away from any hallways
and near desks, computers, and monitors. Of particular note
is that the monitor, desk, computer, and all occur at similar
areas, indicating that they tend to occur together in office
environments. Exits are most likely near the stairs and in

hallway areas and there is likelihood for the existence of
a lounge near the television. Overall, the places with high
likelihood match our intuitions.

In order to quantitatively evaluate the performance of
the object inference, we divided the likelihood maps from
figures 4 and 5 into 21 topological regions. Treating the
likelihood map as a classifier, if the probability of seeing an
object anywhere in this region was over a threshold t, then
we classified this region as having the object in it, otherwise
we classified it as not having the object present.

With t = 0.7, we have a precision of 82% of the objects
in figure 4, with a recall of 93% . With t = 0.99, then
a precision of 95% was attained, with a recall of 87%.
On a per-class basis, most objects were predicted well,
with the exception of the bottle class, which we believe
to be because bottles can appear many places, leading to
a moderate likelihood over the entire environment.

B. Application to real-world data

In addition to the simulated experiment, we evaluated our
techniques on another floor of a building at MIT using a
real object detector from [3]. We detected three objects as the
robot moved around the floor: chairs, bicycles, and monitors.
Some examples of the classifier output are shown in figure 6.
We added the object detections to the map, according to
where the robot was located as shown in figure 7(a). Out
of a trajectory of approximately 5000 images, there were
13 false positives, and 64 true positives. The chair detector
incorrectly detected 13 chairs, while the bicycle detector
missed no bicycles (there were two in the environment) and
the monitor detector falsely detected no monitors (there were
two detections).

Based on these three detectors alone, we were able to
predict the location of a number of objects. The predicted
location was qualitatively reasonable for a number of cat-
egories. In figure 7(a) we can see the locations where a
monitor is known to be visible based on the object detections
and in figure 7(b) we can see the resulting search path for
a novel object, specifically a computer; the path goes past
locations where the monitor is likely to be. Thus, we have
demonstrated the feasibility of applying our approach to real-
world data and plan to include more comprehensive results
in the future.

C. Path optimization results

Finally, we did a study in order to optimize the path from
a random location to a number of query objects (e.g. the
ones from figure 4). To perform this experiment, we used
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Fig. 4. Above are the likelihoods of finding objects over the entire environment. White is higher likelihood, darker is lower likelihood and these are
computed according to equation 4. In addition, we have labeled some salient scene types by highlighting them.

Fig. 5. Above are the likelihoods for various locations over the entire environment. White is higher likelihood, darker is lower likelihood and these are
computed according to equation 4. Note that the circled areas correspond to the actual location of each scene in the environment.

a baseline approach where the path was generated to the
nearest location with a probability over the threshold t of
having the object visible (this is the greedy approach). We
compared this solution to the paths generated according to
our objective function. In order to normalize for length,
we extended the greedy path through a series of locations
selected according to the greedy strategy.

In our experiments, we computed 30 random start lo-
cations in the map. Over these locations, we found that
our approach had a shorter expected length to the object
from 13% (for desks) to 68% (for refrigerators) of the
time. In the rest of the cases the greedy approach and our
approach had equal objective values due to the fact that the
greedy approach would go through the same location as our
approach.

VI. RELATED WORK

There has been considerable interest in utilizing the struc-
ture of the environment when interacting with humans. By
characterizing space as a hierarchy of elements [4], [2],
[15] are able to capture the relationships of scenes and
objects and communicate with humans. In contrast to our
approach, each of these works utilizes ontologies that have
been created by hand and are deterministic. In [4], the
authors additionally propose a means by which to learn these
semantic representations from sensor data.

In terms of communicating about tasks semantic level,
[11], [6] use local commands and extract spatial relationships

from maps. In [6], the authors describe a robotic wheelchair
that can follow directions over an extended period but do not
perform a systematic evaluation of their assertions. In [9], the
authors describe directing a semi-autonomous wheelchair,
where commands take the form of ”enter right door” and
”follow corridor.” There has also been work on utilizing an
object-based representation of the environment, although the
extent to which the authors have applied this to real-world
problems is unclear [14]. Our work, in contrast to these
approaches utilizes the notion of object-object and object-

scene context in order to reason about the environment.

From the scene understanding community context is used
in order to perform object detection or localization [13], [5],
[10], [7]. Probably the most related to our work is [13],
where the authors use a hidden Markov model to estimate
the scene type (e.g. hallway or office) and then use this as a
prior for improving object detection. In contrast, we include
object and scene types in the same framework, and are able
to use the geometric structure of the environment. In [7],
the authors utilize viewpoint and image geometry in order
improve classification accuracy, which is complementary to
our approach and a cue that we believe could be useful.

Finally, there is the Semantic Robot Vision Challenge
(SRVC), where competitors use keywords to download im-
ages from the Internet, train a model of an object and find
it in a competition arena using a robot. Most approaches
to this competition use active vision to search locally for
the objects and map candidate locations. Our approach is
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(a) True positive (Monitor) (b) True positive (Monitor) (c) True positive (Chair) (d) False positive (Chair)

Fig. 6. Using the approach in [3], we classify a number of categories in the an office building on MIT. Above are some of the images classified correctly
and one instance of a false positive. In (a/b) are the two locations where a monitor was detected in the environment. In (c) is a true positive of a chair
while in (d) is a false positive of a chair.

(a) Location of objects registered to the map (b) Planned path for a computer

Fig. 7. In (a) we can see the location of the detected objects registered to the map. The two locations where monitors were detected are highlighted in
red. In (b) we can see the path to follow in order to find a computer. The path passes a cluster of computers and goes to an office where a computer
resides in the real environment, passing by a number of the query objects in the process. Note that the green circle is the start location and the red circle
is the destination.

different from these in that we are looking at the structure of
the environment in order to predict the location of objects,
while the SRVC is using a local search in order to find a
query object.

VII. CONCLUSIONS AND FUTURE WORK

In conclusion, we have developed a model that accurately
predicts novel objects in the scene based on context. In order
to improve this model’s accuracy and robustness, we plan to
incorporate smoothing terms that will allow the inferences
to be propagated across space as well. In addition, we also
plan to incorporate information other than co-occurrence
information, such as object size, height above the ground,
disparity in depth, and others in order to improve our
inference.

We have also demonstrated that given a limited amount of
prior information, we can compute the best path to find this
novel object. One future direction we would like to explore
is viewpoint planning so that when the robot arrives at a
location likely to contain a novel object, we might use weaker
object detectors in order to search for the novel object by
planning its viewpoint.
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