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Abstract 

The benefits of applying optimization to 
computational models are well known, but their range of 
widespread application to date has been limited. This 
effort attempts to extend the disciplinary areas to which 
optimization algorithms may be readily applied through 
the development and application of advanced 
optimization strategies capable of handling the 
computational difficulties associated with complex 
simulation codes. Towards this goal, a flexible software 
framework is under continued development for the 
application of optimization techniques to broad classes 
of engineering applications, including those with high 
computational expense and nonsmooth, nonconvex 
design space features. Object-oriented software design 
with C++ has been employed as a tool in providing a 
flexible, extensible, and robust multidisciplinary toolkit 
that establishes the protocol for interfacing optimization 
with computationally-intensive simulations. In this 

paper, demonstrations of advanced optimization 
Strategies using the software are presented in the 
hybridization and parallel processing research areas. 
Performance of the advanced strategies is compared 
with a benchmark nonlinear programming optimization. 
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Introduction O S T I  
Computational methods developed in fluid 

mechanics, structural dynamics, heat transfer, nonlinear 
large-deformation mechanics, manufacturing and 
material processes, and many other fields of engineering 
can be an enormous aid to understanding the complex 
physical systems they simulate. Often, it is desired to 
utilize these simulations as virtual prototypes to improve 
or optimize the design of a particular system. The 
optimization effort at Sandia National Laboratories 
seeks to enhance the utility of this broad class of 
computational methods by enabling their use as design 
tools, so that simulations may be used not just for 
single-point predictions, but also for improving system 
performance in an automated fashion. System 
performance objectives can be formulated to minimize 
weight or defects or to maximize performance, 
reliabfity, throughput, reconfigurability, agility, or 
design robustness (insensitivity to off-nominal 
parameter values). A systematic, rapid method of 
determining these optimal solutions will lead to better 
designs and improved system performance and will 
reduce dependence on hardware and testing, which will 
shorten the design cycle and reduce development costs. 

Towards these ends, this optimization effort has 
targeted the needs of a broad class of computational 
methods in order to provide a general optimization 
capability. Much work to date in the optimization 
community has focused on applying either gradient- 
based techniques to smooth, convex, potentially 
expensive problems' or global techniques to nonconvex 

but inexpensive problems2. When the difficulties of high 
computational expense and nonsmooth, nonconvex 
design spaces are coupled together, standard 
techniques may be ineffective and advanced strategies 
may be required. Moreover, since the challenges of each 
application are frequently very different, generality and 
flexibility of the advanced strategies are key concerns. 

The coupling of optimization with complex 
computational methods is difficult, and optimization 
algorithms often fail to converge efficiently, if at all. The 
difficulties arise from the following traits, shared by 
many computational methods: 
1. The time required to complete a single function eval- 
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uation with one parameter set is large. Hence, mini- 
mization of the number of function evaluations is 
vital. 

2. Analytic derivatives (with respect to the parameters) 
of the objective and constraint functions are fre- 
quently unavailable. Hence, sensitivity-based opti- 

~ - -  I ,@tion methods depend upon numerically 
gene&ted gradients which require additional func- 
tion evaluations for each scalar parameter. 

3. The parameters may be either continuous or discrete, 
or a combination of the two. 

4. The objective and constraint functions may not be 
smooth or well-behaved; Le., the response surfaces 
can be severely nonlinear, discontinuous, or even 
undefined in some regions of the parameter space. 
The existence of several local extrema (multi-modal- 
ity) is common. 

5. Convergence tolerances in embedded iteration 
schemes introduce nonsmoothness (noise) in the 
function evaluation response surface, which can 
result in inaccurate numerical gradients. 

6. Each function evaluation may require an “initial 
guess.” Function evaluation dependence on the ini- 
tial guess can cause additional nonsmoothness in the 
response surface. Moreover, a solution may not be 
attainable for an inadequate initial guess, which can 
restrict the size of the allowable parameter changes. 

To be effective in addressing these technical issues, one 
must minimize the computational expense associated 
with repeated function evaluations (efficiency) and 
maximize the likelihood of successful navigation to the 
desired optimum (robusmess). Imporrant research areas 
for achieving these goals are fundamental algorithm 
research, algorithm hybridization, function 
approximation, parallel processing, and automatic 
differentiation. Research activities are ongoing in each 
of these areas at Sandia National Laboratories. The two 
research areas of central interest in this paper are: 

hybridization of optimization techniques exploits the 
strengths of different approaches and avoids their 
weaknesses. In a nonconvex design space, for example, 
one might initially employ a genetic algorithm to 
identify regions of high potential, and then switch to 
nonlinear programming techniques to quickly converge 
on the local extrema. Through hybridization, the 
optimization strategy can be tailored to suit the specific 
characteristics of a problem. 

Parallelprocessing: The iterative nature of 
optimization lends itself to parallel computing 
environments. Since the simulation calls are 
independent for methods such as genetic algorithms and 
coordinate pattern search and for the finite difference 

- -_ 

Hybrid optimizulion techniques: The 

gradient calculations of a nonlinear programming 
algorithm, parallelkation can be achieved for single 
processor simulation codes by simultaneously executing 
many simulations, one per processor. Alternatively, 
parallel efficiencies can be gained through the 
interfacing of sequential optimization with parallel (i.e. 
multi-processor) simulations. More advanced strategies 
involve multi-level parallelism, in which parallel 
optimization strategies coordinate multiple 
simultaneous simulations of multi-processor codes. 

Software Design 

The DAKOTA @sign Analysis Kit for 
O p T i i t i o n )  toolkit utilizes object-oriented design 
with C+k3 to achieve a flexible, extensible interface 
between analysis codes and system-level iteration 
methods. This interface is intended to be very general, 
encompassing broad classes of numerical methods 
which have in common the need for repeated execution 
of simulation codes. The scope of iteration methods 
available in the DAKOTA system currently includes a 
variety of optimization, nondeterministic simulation, 
and parameter study methods. The breadth of algorithms 
reflects the belief that no one approach is a “silver 
bullet,” in that different problems can have vastly 
different feature making some approaches more 
amenable than others. Likewise, there is breadth in the 
analysis codes which may be interfaced. Currently, 
simulator programs in the disciplines of nonlinear solid 
mechanics, structural dynamics, fluid mechanics, and 
heat transfer have been utilized. The system, as will be 
demonstrated in this paper, also provides a platform for 
research and development of advanced methodologies. 

Accomplishing the interface between analysis 
codes and iteration methods in a sufficiently general 
manner poses a difficult software design problem. These 
conceptual design issues are being resolved through the 
use of object-oriented programming techniques. In 
mating an iterator with an analysis code, generic 
interfaces have been built such that the individual 
specifics of each iterator and each analysis code are 
hidden. In this way, different iterator methods may be 
easily interchanged and different simulator programs 
may be quickly substituted without affecting the internal 
operation of the software. This isolation of complexity 
through the development of generic interfaces is a 
cornerstone of object-oriented design, and is required 
for the desired generality and flexibility of advanced 
strategies (e.g., hybrid algoriihms and sequential 
approximate optimization). 

The Application Interface (Figure 1) isolates 
application specifics from an iterator method by 
providing a generic interface for the mapping of a set of 
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parameters (e.g., a vector of design variables) into a set 
of responses (e.g., an objective function, constraints, 
and sensitivities). Housed within the Application 
Interface are three pieces of software. The input filter 
program (“IFilter”) provides a communication link 
which transforms the set of input parameters into input 
files for the simulator program. The simulator program 
reads the input files and generates results in the form of 
output files or databases (a driver program/script is 
optional and is used to accomplish nontrivial command 
syntax and/or progress monitoring for adaptive 
simulation strategies). Finally, the output filter program 
(“OFilter”) provides another communication link 
through the recovery of data from the output files and 
the computation of the desired response data set. 

Optimizer iterators are part of a larger “iterator” 
hierarchy in the DAKOTA system. In addition to 
optimization algorithms, the DAKOTA system is 
designed to accommodate nondeterministic simulation 
and parameter study iterators. These three iterator 
classes fiequently work together in a project: (1) 
parameter study is used to investigate local design space 
issues in order to help select the appropriate optimizer 
and optimizer controls, (2) optimization is used to find a 
best design, and (3) nondeterministic simulation is used 
to assess the affects of parameter uncertainty on the 
performance of the optimal design (a future extension 
will be to allow for optimization under conditions of 
uncertainty). Other classes of iterator methods may be 
added as they are envisioned, which “leverages” the 
utility of the Application Interface development. For 
example, software effort in coordinating multiple 
instances of parallel simulations on a massively parallel 
computer is reusable among all of the iterators in the 
DAKOTA system. The inheritance hierarchy of these 
iterators is shown in Figure 2. Inheritance enables direct 
hierarchical classification of iterators and exploits their 
commonality by limiting the individual coding which 

Optimizer 

must be done to only those features which make each 
iterator unique. 

Several optimization algorithm libraries and 
strategies are inherited from the Optimizer base class. 

D W ,  NPSOL5, OPT+-#, and SGOPFa have been 
incorporated in this framework as libraries of stand- 
alone optimizers. Additionally, the “Hybrid” and “S AO” 
optimization strategies are combination strategies which 
have been defined. In the Hybrid iterator, two or more 
stand-alone optimizers are combined in a hybrid 
strategy. Effective switching metrics are an important 
research issue. In the SA0 iterator, stand-alone 
optimizers are interfaced with a separate function 
approximation toolbox in the setting of sequential 

approximate optimizationg (SAO). Here, the accuracy 
and expense of the approximate subproblems, the 
mechanisms by which the approximations are updated, 
and the mechanisms of move limit enforcement are 
important research issues. 

4 

Application Descriptions 

The breadth of application of the DAKOTA toolkit 
has been demonstrated previously in the disciplines of 
nonlinear solid mechanics, heat transfer, fluid mechan- 

ics, and structural dynamics’O. These application investi- 
gations have uncovered challenges commonly 
encountered in real-world problems. It can be difficult to 
duplicate these challenges with suites of inexpensive 
test functions. Thus, the research investigations pre- 
sented herein have focused on authentic engineering 
applications with the hopes that the performance obser- 
vations will be pertinent to real-world problems, rather 
than merely being artifacts of the assumptions made in 
approximating with inexpensive test functions. For the 
purposes of demonstrating the advanced strategy devel- 
opments, then, the focus will be placed on fire surety 
and chemical vapor deposition reactor applications. 

Applicationhterface f 

Parameters milter 

----- -I@ 
Optional I 

Analysis Driver 
I--,,,J 1 

Figure 1. Application interface conceptualization. 
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Approximation 
Toolbox .. .................................... 

Figure 2. Iterator hierarchy showing broad iteration capabilities: 
A) ParamStudy: for mapping response variations with respect to model parameters. 
B) Optimizer: for numerical optimization studies. 
C) Nondeterministic: for assessing the effect of modeling uncertainties on responses. 

Heat Transfer: Determination of Worst Case Fire 
Environments 

Problem Description. In thermal science 
simulations, parameter sets are sought which produce 
worst-case credible fire environment(s) for which 
structures and systems (such as aircraft, weapons, or 
petrochemical processing plants) must be designed. 
These inverse problems can be solved within an 
optimization framework. In this application, 
optimization techniques have been applied to determine 

the vulnerability of a safing device to a “smart fire7”I. 
The optimization parameters consist of the location and 
diameter of a circular spot fire impinging on the device. 
The temperature of the fire is constant, though the heat 
flux it imparts to the device varies in time and space 
coupled to the response of the device. Function 
evaluations involved transient simulations using a 
nonlinear QTRANl2 thermal model with radiative and 
conductive heat transfer. The finite element model used 
in the analysis is shown with typical temperature 
contours in Figure 3. Each simulation required between 
8 and 60 CPU minutes to solve on an IBM SP2 node, 
depending upon the error tolerance levels specified. 

The components of the safing device must work 
together to prevent the device from operating except 
under the intended conditions. It is a weaklink/ 
stronglink design: the weaklink is designed to fail under 
adverse conditions, which renders a potential stronglink 
failure incapable of harm. The weaklink is a Mylar-and- 
foil capacitor winding mounted on the outside of the 
safing device and the stronglink is a stainless steel plate 
mounted inside a cavity and offset right of center as 

shown in Figure 3. The time lag between failure of the 
stronglink and failure of the weaklink is the safety 
margin for the device and varies with the fire exposure 
pattern on the device surface. Hence, to validate the 
design of the safing system, the worst-case fire exposure 
pattern is sought by using optimization to minimize this 
safety margin for selective exposure to a 1000° C black 
body heat source. 

Typical critical node temperature histories are 
shown in Figure 4 for a 20 hour fire exposure, where the 
critical nodes of the weaklink and stronglink are those 
which reach their failure temperatures earliest. The 
safety margin shown graphically is the objective 
function that the optimizer minimizes with respect to the 
design parameters of fire spot-radius (r) and fire center 
location (x), subject to simple bounds (0.5 I r I 5.8, -2.9 
I x S 2.9). Early optimization studies solved this 2 
parameter problem; later studies added the y degree of 
fieedom in f i e  location as a third parameter (0.0 I y I 
2.9). The specific techniques used in input filtering, 
adaptive simulation termination, and output filtering are 
discussed in a separate paperlo. 

application is challenging due to the nonsmoothness and 
nonconvexity of the design space. In Figures 5 and 6, 
one-dimensional parameter studies show evidence of 
multimodality (Figure 6) and of slope-discontinuity at 
the minimum (Figures 5 and 6). The slope-discontinuity 
in the figures is caused by switching of the critical 
weakIink node between geometric extremes. Figure 5 
shows negative curvature near the discontinuity 
(nonconvexity), whereas the discontinuity in Figure 6 is 

., 

2-Parameter Optimization Results. This 
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Figure 3. Finite element model and typical temperature distribution (9. 
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Figure 4. Temperature histones of critical stronglink and weaklink nodes. 
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more difficult to discern due to the positive curvature 
near the discontinuity. 

These two parameter studies also provide insight 
into the mechanics of the problem. In Figure 5, the 
offset of the lowest safety margin from x=O (the center 
of the device) backs up engineering intuition in that the 
stronglink is also offset right of center. That is, a fire 
centered roughly over the stronglink preferentially heats 
the stronglink and causes a lower safety margin. Figure 
6 shows a less intuitive result, in which it is evident that 
the lowest safety margin is not achieved with either a 
large fire or a small fie. Rather, there exists an 
insidious, medium sized fire which is not so small that 
the heating rate is insufficient and which is not so large 
that it prevents selective heating. 

Figure 7 is a detail of Figure 5 and shows evidence 
of small-scale nonsmoothness, which was reduced 
through the tightening of QTRAN convergence 
tolerances at the cost of approximately an order of 

-0 0.5 1 1.5 2 2 5  E 

Figure 5. Objective function variation with respect 
to ik-e center location (x) for ~ 1 . 8 9 .  

x (fire Center location in inches) 

. -4 

1 
1 1.5 2 25. 3 3.5 4 

r (fire radius in inches) 

Figure 6. Objective function variation with 
respect to fire radius (r) for ~ 4 . 8 .  

magnitude greater computational time per analysis. 
EPSIT and EPSIT2 are absoIute convergence tolerances 
in degrees which govern time step completion and node 
inclusion in nonlinear iterations, respectively. The 
additional computational expense per analysis was 
wananted in this case since none of the nonlinear 
programming algorithms could successfully navigate 
the design space without reducing the nonsmoothness 
(even with large finite difference step sizes). 

0.5 0.51 0.52 0.53 0.54 0.55 
x (fire center location In inches) 

Figure 7. Detail of Figure 5 showing effect of Q"4 
convergence toIemces on design space nonsmoothness. 

Performance comparisons of nonlinear 
programming (NLP) algorithms are detailed in a 
previous paperlo. In summary, Newton-based optimizers 
performed poorly due to the nonconvexity of the design 
space (a quadratic approximation is a poor 
representation); conjugate gradient (CG) methods were 
much more successful. Choice of finite difference step 
size O S S )  for computation of numerical gradients 
proved to be important. FDSS should be as small as 
possible to allow for effective convergence to a 
minimum, but still large enough that small-scale 
nonsmoothness does not cause erroneous gradients. 
Lastly, for nonsmooth applications, a robust line search 
(as opposed to an aggressive search tuned for smooth 
applications) was. shown to be essential in enabling 
reliable navigation to the optimum fiom different 
starting points. The lowest objective function value 
found for the 2 parameter problem was 2.531 minutes 
(-1.620, ~4.7820)  at tight tolerances (EpSIT=104, 
EPSI'J2=10a) which, when compared to stronglink and 
weaklink failure times of 62.743 and 60.212 minutes 
respectively, corresponds to a safety margin of just 4%. 

3-Parameter Optimization Results. In more recent 
studies, the fire parameterization was extended to 3 
parameters (y degree of freedom in fire location added) 
in order to investigate if fires centered off the line of 
symmetry (see Figure 3) could result in lower safety 
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margins. It should be noted that fires centered off the 
l i e  of symmetry (i.e., y d )  are mirrored by the 
symmetry condition; that is, there is an identical fire 
exposure in the y<O half-plane. A typical parameter 
study for objective function variation with respect to y is 
shown in Figure 8. This study shows that the addition of 
the y parameter is unlikely to result in additional 
reduction of the safety margin. This is intuitive since 
fires located off the symmetry line will not be as 
successful in preferentially heating the stronglink. The 
detail insert shows additional small-scale 
nonsmoothness in the vicinity of y=O. In contrast with 
Figure 7, tightening the EPSIT tolerances does not result 
in significant smoothness improvements. Thus, this 
nonsmoothness is believed to be geometry related and 
not an artifact of finite numerics. 

For the 3 parameter problem, performance of 
coordinate pattern search (CPS) optimizers from the 
SGOPT package has been compared with that of NLP 
(DOT’S Fletcher-Reeves CG). Figure 9 shows the 
optimization wall clock history for serial CPS and two 
NLP studies. The two M9 studies both employ 0.1% 
FDSS, but differ in the EPSIT tolerances employed in 

the simulations. For lo4) EPSIT tolerances, NLP 
terminates prematurely and the 2.5 minute minimum 
safety margin is never reached. This is a clear indication 
of smoothness levels which are insufficient to allow 
effective navigation of the optimizer for the chosen 
FDSS. At these tolerance levels, each simulation 
requires approximately 20 CPU minutes to solve. 

Tightening the EPSIT tolerances to the (lo4, lo6) level 
increases the individual simulation expense to 
approximately 60 CPU minutes, but allows for effective 
navigation to a 2.537 minute safety margin in 96 wall- 

Parameter study: f vs. y 

y (fire center location) 

Figure 8. Objective function variation with respect 
to fire location Q for ~ 1 . 6 2 0 4  and x=0.78205. 
Detail shows local nonsmoothness for OIy<O.l 

clock hours on a dedicated machine (this 3-parameter 
result is slightly less optimal than the 2.531 minute 2- 
parameter result because the same level of optimization 
convergence was not enforced). 

Since CPS is less sensitive to small-scale 
nonsmoothness than gradient-based techniques, looser 
EPSIT tolerances can be employed which lowers the 
individual fire simulation expense considerably, to 
approximately 8 CPU minutes each. Figure 9 shows 
rapid convergence of CPS to the vicinity of the 
minimum and final convergence to a safety margin of 
2.504 minutes in 28.5 wall-clock hours. While the 
number of function evaluations required by CPS is 
greater than gradient-based optimization (220 compared 
to 96 in Figure 9), the lower individual simulation 
expense more than compensates, making the overall 
computational expense of the CPS optimization more 
than 3 times lower than that of the gradient-based 
optimization. 

However, evaluation of the CPS optimal point with 

tight tolerances (EPSIT=104, EPSJ.T2=10-6, reveals a 
tight-tolerance safety margin of 2.649 minutes, which is 
4.4% less optimal than the NLP result. This highlights 
the weakness of using CPS with inexpensive function 
evaluations: convergence is not as exact. This is intuitive 
since, as CPS progresses towards convergence, the step 
size decreases and the substantial nonsmoothness 
present with loose tolerances becomes more of a 
hindrance. If the NLP optimization was terminated 
when this level of optimality was achieved, the NLP run 
time reduces to 73.3 wall-clock hours and the efficiency 
gains measured with CPS reduce accordingly. 

Global optimization issues have also been 
investigated with this application. The studies in Figure 
9 started from a good initial guess of (r,x,y,)=(1.4, 0.5, 

Opbnization eHidency mrrpariscn: O b j d v e  function vs. l ime 

+ NLP w/FDss = 0.1%, 
EPSIT = lo4, EPSIT2 = 

3 

250 10 20 30 40 50 60 70 80 90 100 
Wall-ckdttime (hwn) 

Figure 9. Optimization history comparison: Best 
objective function value vs. wall-clock time in hours 



0.0) with an initial objective function of 7.25 minutes. 
Starting from a different initial guess of (1.9, 2.1, 0.0) 
with an initial objective function of 69.4 minutes, Figure 
10 shows the relative performance of CPS, NLP, and an 
exploratory real-valued GA. Two shorter GA runs of 15 
generations each were performed rather than one long 
30 generation search, because some research indicates 
that several short searches usually outperform a single 

long search13. The 2 GA studies differ only in the initial 
random population seed and the best run of the two is 
shown in the Figure. The GA can employ very loose 

tolerances (EPSIT = lo’, EPSm = lo-’), and the 
selected settings are nonaveraging 2-point crossover, 
population size of 15, elitist retention of the 2 best 
individuals in the population, and uniform mutation at a 
40% rate. This is a difficult problem for the GA, since 
the size of the region containing the 2.5 minute global 
minimum safety margin is a relatively small portion of 
the total design space. A Monte Carlo simulation of 120 
random points (not shown) found only 2 fires with 
safety margins lower than the “big fire7, safety margin of 
approximately 10 minutes, and both of these points were 
only slightly better with objective functions of 7.45 and 
7.76 minutes. Thus, Snding the global minimum region 
in an initial population of a GA is unlikely, and the GA 
must rely primarily on mutation to search for this 
region. In addition, the region is small and steep and the 
topography in that vicinity contains mostly large 
objective functions, and these unfit population members 
tend to push the GA population away from this region. 
Moreover, the GA is naturally attracted to the “big fire” 
solution, since this solution makes up a large portion of 
the design space and its objective function of 
approximately 10 minutes is a “strong base of 
attraction,” meaning that the population members with 

Gptlmizatbn effdency mmpahn:  Objective function vs. Time 
25 

--8. GA With EPSJT = lo’, EPSlT2 = lo-’ 

I I 
‘0 2 4 6 8 10 12 14 16 18 

WalCdoh time (hours) 

Figure 10. Optimization history for GA runs compared 
with CPS andNLP starting from (r,x,y)=(1.9, 2.1,O.O). 

these values are more fit than most other members. To 
combat this behavior, mutation was set at a relatively 
high 40% and the r upper bound was reduced to 2.9 
(which still allows for a €dl face fire but restricts its 
dominance in the initial population). With these 
adjustments, it is evident in Figure 10 that the GA is 
better suited for handling multimodality than CPS or 
NLP and is successful in locating a promising region for 
local search. The CPS and NLP approaches both 
become trapped in the “big fie7, local minimum with an 
objective function of approximately 10 minutes. The 
best GA solution of approximately 7 minutes will be 
used as the first pass in several hybridization studies. 

The pertinent observations in efficiency 
comparisons between CPS, GAS, and N L P  are 
summarized as: 

CPS can be an efficient alternative to NLP, espe- 

cially if local design space smoothness is tied to 
simulation expense, since CPS is less sensitive to 
nonsmoothness and can navigate effectively using 
inexpensive simulations. NLP is betfer, however, at 
precise convergence. This points to potential in a 
hybrid C P S W  strategy in which CPS is used to 
“get close” and NLP provides final convergence to 
the precise minimum. 
Gradient-based optimizers put substantial faith in 
the accuracy of the computed search direction, and 
in nonsmooth applications, this level of faith may 
not be justified since the gradients used to calculate 
the search direction have questionable accuracy. 
CPS optimizes do not conhe themselves to a sin- 
gle search direction, but rather search multiple 
directions simultaneously. As a result, they can be 
more robust in nonsmooth applications. Further- 
more, these multiple searches are independent, 
which provides easily-exploitable coarse-grained 
parallelism. CPS is, however, susceptible to the 
‘‘curse of dimensionality,” meaning that the method 
is most competitive in efficiency when the number 
of design variables is small. 
Genetic algorithms are good techniques for global 
design space feature extraction and location of 
promising regions for refined searches. Since they 
are zero-order techniques, inexpensive models may 
be used for the evaluations. In addition, they have 
very exploitable parallelism since each evaluation 
in a population cycle is entirely independent. How- 
ever, GAS are not infallible. For problems with iso- 
lated minima lacking exploitable design space 
structure, Monte Carlo samplhg or grid search may 
be the most effective global identification approach. 
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Chemically Reacting Flows: CVD Reactor Design 

Problem Description. There are many choices 
associated with the design and operation of Chemical 
Vapor Deposition (CVD) reactors including geometry, 
inlet concentrations, temperature and velocities, disk 
temperature and spin rate, etc. Ultimately, one wishes to 
maximize profit in the deposition process by producing 
crystals with a high degree of uniformity and purity at 
the lowest possible manufacturing costs. Since building 
and experimenting with actual reactors is an expensive 
($lOOO/hour) and often hazardous process, virtual proto- 
typing through the use of numerical simulations and 
optimization techniques can help reduce the cost and 
risk associated with reactor design. 

A horizontal CVD reactor for the growth of Gal- 
lium Arsenide (GaAs) from arsine and trimethylgallium 

(TMG)14 is of interest in this study (Figure 11). The 
reactants flow through a horizontal vessel with a tilted 
base which is heated to the temperature at which deposi- 
tion occurs. In the middle of the heated region is a rotat- 
ing disk on which uniform growth can occur. Figure 11 
also illustrates the simulation of the reactor using 
MpSalsa, a chemically reacting flow finite-element code 
developed at Sandia National Laboratories for use on 

Massively Parallel (h@) MIMD computers15*16, by 

showing the path of fluid through the reactor and asym- 
metric surface contours of the main reactant. Figure 12 
shows a deposition profile of GaAs on the reactive sur- 
face where the circular outline is the spinning disk 
boundary. Also in Figure 12 is a graph of the spin-aver- 
aged deposition on the disk as a function of radial posi- 
tion. Ideal operation of the reactor would consist of an 
average growth rate of 10-20 Angstroms/second and a 
perfectly uniform deposition proiile. 

As reactors and processes can vary, so do the rele- 
vant-design parameters. For this problem, we have cho- 
sen to optimize an objective function which includes the 
operating and material costs of the reactor less the gain 
in value of the resulting wafer. A quadratic penalty term 
is added to restrict the growth rate from too large a 
value, which would lead to poor crystal quality. This 
objective function models some of the trade-offs faced 
by reactor operators: growth rate vs. product uniformity 
and materials costs vs. growth rate. It has units of $/hour 
and takes into account both costs and revenue, so that 
the further negative the objective function value, the 
more profit the process is making. An optimal configu- 
ration is sought by varying 3 operating parameters: the 
inlet concentration of trimethylgallium, the inlet flow 
rate, and the rotation rate of the reacting disk. The capa- 
bility of performing geometric optimization has recently 

Figure 11. Deposition of Gallium Arsenide in a horizontal CVD reactor with tilted susceptor. 
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Figure 12. Contours of the deposition rate of GaAs over the entire reactive surface (left) and time-averaged 
deposition rate over the spinning disk (right). Attempting to maximize the growth rate while maintaining 
required uniformity over the disk is a major component of the optimization of this reactor. 

been added by representing the tilt-angle of the reactor 
as an additional parameter. 

Optimizution Results. For this problem, two h i t e  
element meshes of the reactor geometry pigure 11) 
were used: a coarse mesh for quick investigation of the 
parameter space and verification of the methodology, 
and a fine mesh for more accurate results. This was done 
to expedite the optimization process and to make the 
best use of the Paragon resources. The coarse mesh was 
comprised of 8504 hexahedral elements and 10188 
nodes while the fhe mesh had 36720 hexahedral ele- 
ments and 40720 nodes. At each node in the mesh there 
are 9 unknowns (three velocity component, pressure, 
temperature and four species mass-fractions) resulting 
in a total problem sizes of 91692 and 366480 unknowns, 
respectively, for the coarse and fine meshes. The coarse 
mesh has been used as an approximation by first linding 
an optimum on the coarse mesh and then using these 
parameter values to start the more expensive line mesh 
calculations. 

The first coarse mesh run optimized the solution 
over 3 operating parameters: the inlet reactant concen- 
tration, the inlet flow velocity, and the disk spin rate. 
DOT'S conjugate gradient algorithm was selected as the 
optimizer. After 34 function evaluations (including h i t e  
difference gradient calculations) and 4 iterations of the 
conjugate gradient technique, an optimum was found. 
Figure 13 shows the value of the objective function for 

each function evaluation. 
A second optimization run on the come mesh was 

performed by adding in the tilt-angle of the reactor base 
as a fourth parameter. This run started at the optimum 
from the previous run, and decreased the objective func- 
tion a little further from -1178.8 to -1226.0, while 
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Figure 13. Objective function history for a 3 
parameter optimization of a CVD reactor on a 
coarse mesh. Each conjugate gradient iteration 
began with a gradient calculation as marked. 
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Figure 14. Objective function history for CVD reac- 
tor optimization on the fine mesh with initial guess 
from the coarse mesh converged solution. Each 
function evaluation required the solution of 366480 
unknowns, which were solved on 512 processors of 
the Intel Paragon in 5-8 minutes each. 

increasing the tilt angle from 9 degrees up to 11, which 
was set as the upper bound. 

Finally, a 3-parameter optimization run using the 
fine mesh was initiated with the optimal parameter val- 
ues from the first coarse mesh run. As can be seen in 
Figure 14, the optimization run converged after 35 func- 
tion evaluations, although it was nearly converged much 
sooner. The objective function decreased from -1144.0 
(corresponding to the coarse mesh objective of -1178.8) 
down to -1250.1. The initial guess provided by the 
coarse mesh proved to be a good approximation to the 
fine mesh, as one parameter changed by about 10% 
while the others were less than 2% from the optimum. 
The use of a coarse mesh to rapidly identify promising 
areas of parameter space for more expensive fine mesh 
runs can be an important resource-saving methodology. 

Parallel Processing 

Strategy Dkcusswn. High performance computing 
is an essential technology in optimization research. For 
GAS, CPS methods, and the finite difference gradient 
calculations of an NLP algorithm, many simulations are 
entirely independent, making it possible to achieve 
“embarrassingly parallel” strategies using a coarse- 
grained approach (i.e., simultaneously executing many 
single-processor simulations, one per node). The other 
amactive location for parallelism is in the simulation 
code itself, and Sandia has been a leader in developing 

massively parallel (MP) simulation capabilities. Thus, a 
second approach to parallel efficiency is that of mating 
an efficient, sequential optimizer (i.e. NLP) with an M P  
simulation code. 

Two parallel optimization studies have been per- 
formed. The fireset application uses a parallel optimiza- 
tion algorithm which invokes multiple independent 
simulations of singleprocessor codes. The CVD reactor 
design study achieves parallel efficiency through 
sequential optimization with M P  simulation codes. 

Heat Wansfer: Determination of Worst Case Fire 
Environments 

Parallel CPS from the SGOPT package has been 
used for improving efficiency in optimization of fire 
surety simulations. Individual thermal simulations exe- 
cute on nodes of the IBM SI% using the native loadlev- 
eler software to select lightly loaded nodes, and multiple 
simulations execute simultaneously. 

CPS executes 2 simulations in each of n parameter 
directions during an iteration. The end of an iteration is 
a synchronization point for the parallel algorithm; thus, 
2n simulations at most may be performed in parallel. 
Then, the maximum possible parallel speedup for the 3 
parameter iire surety application using single-processor 
analyses is 6. In practice, observed parallel speedup was 
limited by the, availability of only 3 commercial 
QTRAN licenses. 

Figure 15 shows the optimization wall clock history 
for serial CPS, parallel CPS limited by 3 commercial 
QTRAN licenses (observed performance), and parallel 
CPS with unlimited QTRAN licenses (potential perfor- 
mance as limited by algorithm rather than by licenses). 
Reductions in wall-clock time of a factor of 10 for the 
CPS optimization are observed over that of the NLP 

Cptirrization efiaency comparison: C4jecbile function vs. Time 
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Parallel CPS with 
+ 

3 QTRAN licenses 

1; ParallelCPSwith 
unlimited QTRAN licenses - 

84.5 .&. . eedtsp of factor 
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Figure 15. Optimization history comparison: Best 
objective function value vs. wall-clock time in hours 
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optimization (see Figure 9), and‘a factor of 20 savings 
would be possible with additional QTRAN licenses. As 
stated previously, however, the CPS results are slightly 
less optimal, from which the utility of a CPS/NLP 
hybrid can be inferred. 

Parallel genetic algorithms are also under investiga- 
tion (results not available at time of printing). More par- 
allelism is possible with GAS than with CPS in this 
problem, since the number of possible simultaneous 
analyses for the GA is determined by population sue 
(15 used in Figure lo), compared with 6 possible simul- 
taneous analyses (2n where n = 3) for parallel CPS. In 
addition, some research suggests that employing multi- 
ple independent GA populations in paraUel can be an 
effective technique, and thii removes this population 
size speedup limit. However, in this problem, observed 
performance will still be limited by the 3 available 
licenses. 

Chemically Reacting Flows: CVD Reactor Design 

Massively parallel simulations have been employed 
in NLJ? optimization studies to allow for expeditious 
analysis of high fidelity models of the chemically react- 
ing flows within a CVD reactor. M P  SALSA simula- 
tions execute on a partition of nodes on Sandia’s 1840 
node Intel Paragon. 

For each set of parameters given by DAKOTA 
(either 3 or 4 parameters), a steady state problem is 
solved by MPSalsa from which a single objective func- 
tion is calculated. Each function evaluation on the 
coarse mesh takes 2-3 minutes on 256 Intel Paragonpro- 
cessors, while a function evaluation on the fine mesh 
requires 5-8 minutes on 512 processors. For each prob- 
lem size, there is a trade-off between computational 
speed-up and interprocessor communication overhead 
and these numbers of processors achieve an effective 
balance for these problem sizes. 

Through the use of the M P  computer, the relatively 
short objective function evaluation times are enaljling us 
to optimize this and larger design problems of interest to 
the CVD processing industry. The total CPU time used 
for the coarse mesh optimization study was approxi- 
mately 80 minutes on each of 256 Paragon processors, 
and the total CPU time for the fine mesh optimization 
study was around 6 hours on each of 512 Paragon pro- 
cessors, including time for 110. 

Code Modificatwrp and Operation. An input filter 
script has been generated to control and pass informa- 
tion to the MPSalsa program. Also, MPSalsa has been 
modified to take this information from DAKOTA and 
generate the returned objective function value. This 
modification also allows MPSalsa to stay resident on the 
parallel machines and thus deviates the need for re-ini- 

tialization for every objective function evaluation. Fur- 
ther, MPSalsa can use the previous solution as an initial 
guess for each evaluation. With these two time saving 
measures, we have cut the total CPU time by a factor of 
2-10 (depending largely on the mesh size) over the 
option of re-launching MPSalsa for every function eval- 
uation. Since the SUNMOS operating system on the 
Paragon only supports a single process at a time, only 
MPSalsa will be run on the Paragon. Thus, the 
DAKOTA and the filter script communicate (from a 
fiont-end machine) with MPSalsa via parameter and 
other control files on a common disk system. 

Obsentations. Through the use of massively paral- 
lel computing, accurate simulation of complicated engi- 
neering systems such as CVD reactors is possible and 
relatively rapid. With this capability comes the opportu- 
nity to use optimization algorithms to locate improve- 
ments in operation and design. As a proof-of-concept, 
optimal values of three key operating parameters have 
been located for the CVD growth of Gallium Arsenide 
semiconductor crystals, with respect to an objective 
function that takes into account materials costs, growth 
rate, and the uniformity of deposition. The resulting 
solution was better than any previously simulated and is 
believed to be a global optimum. Initial simulations add- 
ing in a fourth design parameter have already shown that 
changes in the reactor coniiguration can be made to 
improve the profitability of the reactor. It has been 
shown that using a coarse mesh for initial optimization 
studies can efficiently locate promising areas of parame- 
ter space for the accurate fine mesh. 

Given the heavy use Sandia’s M P  computers 
receive, it is imperative that efficient use is made of 
these resources. To this end, it is planned to augment the 
DAKOTA/MPSalsa scheme in order to provide a two- 
level paralIelization scheme. This would allow indepen- 
dent objective function calculations to be done concur- 
rently, even while these calculations are themselves 
parallel. Typically, the most efficient number of proces- 
sor on which to run a problem is the minimum required 
(owing to communication costs). Thus, .by evaluating 
the objective functions on the minimum number of pro- 
cessors and by performing several of these in parallel, 
on can achieve nearly linear speedup and optimal effi- 
ciency as shown in 17. For gradient methods, this second 
level of parallelbation is limited to the number of opti- 
mization parameters (within a finite difference gradient 
calculation) but will remain more effective than simply 
increasing the number of processors used for a particu- 
lar objective function solution. 
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Algorithm Hybridization 

Strategy Discussion. Hybrid optimization algo- 
rithms seek to enhance the overall robustness and effi- 
ciency of an optimization approach by tailoring 
algorithm strengths to different parts of the optimization 
process. For example, in an optimization problem whose 
design space may contain multiple minima, the initial 
stages of an optimization process should be character- 
ized by an identification of promising design space 
regions. Algorithms suited for this (e.g., genetic algo- 
rithms) are often expensive since they usuaUy require 
many function evaluations. Thus, these algorithms 
should only be used long enough to serve their identifi- 
cation purpose. Once promising regions have been 
located, an efficient local technique (e.g., NLP) can be 
used to converge on precise minima. An important asso- 
ciated technique is that of variable complexity 

modeling1s, in which analysis “~omplexity’~ (e.g., mesh 
density, convergence criteria) is tailored to meet the 
needs of the current algorithm or optimization phase. In 
the example cited above, it is clearly attractive to use 
loose convergence tolerances in the initial identification 
phase (since a genetic algorithm approach does not 
require smooth differentiability of the response surface), 
followed by appropriately tight tolerances in the local 
convergence phase. 

Global/local hybrids are not the only example. It. 
has been shown previously that CPS and NLP have dif- 
fering performance in the presence of local nonsmooth- 
ness. Thus, an efficient local strategy would combine 
CPS using inexpensive function evaluations in the initial 
optimization phase with NLP using expensive evalua- 
tions in the linal convergence phase. 

An important point of research is the development 
of appropriate algorithm switching metrics. In the stud- 
ies investigated below, the approach employed is that of 
staying with an algorithm as long as it is making 
progress. When an algorithm’s progress slows or when 
it’s function evaluation budget has been spent, the 
hybrid strategy switches to the next algorithm and con- 
tinues. 

Heat Transfer: Determination of Worst Case Fire 
Environments 

GAINLP and GAICPS two-pass hybrids with vari- 
able complexity modeling. The GA initial phase uses 

inexpensive function evaluations (EPSIT = IO‘, E P S ~  

= lo-’) to stochastically identify promising design space 
regions. As shown in Figure 10, the GA performs 15 
population cycles and identifies a promising region with 
an objective functions of 6.930. In the hybridization 
study, the best point found after 10 population cycles 

-0- GA w/EPSlT = lo’, EPSIT2 = 

+ NLP w/FDss = 0.1%, 
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Figure 16. Optimization history comparison for hybrid 
GA/NLP and GA/CPS strategies: Best objective 

function value vs. wall-clock time in hours 

(7.005 minutes) is handed off to CPS and NLP 
approaches for local convergence. The CPS second 
phase uses slightly tighter tolerance evaluations (EPSIT 

= loo, EPSIT2 = whereas the NLP second phase 
requires tight tolerance, expensive evaluations (EPSIT = 

lo4, EPSm = 10-9. Figure 16 shows the optimization 
history and relative performance of the GA/NLP and 
GA/CPS hybrids. It is evident that the starting point for 
the CPS and NLP second phase studies is not s a -  
ciently close to the global minimum since both 
approaches become trapped in a local minimum with an 
objective function slightly less than 7 minutes. The GA/ 
CPS hybrid converges on this local minimum in approx- 
imately half the total time required for the GA/NLP 
hybrid to converge. Evaluating the CPS best point with 
tight tolerances yields an objective function of 6.657, 
which when compared to the best tight tolerance NLP 
result of 6.891 minutes, shows that the converged results 
of the two hybrids are of comparable quality. Research 
is ongoing in improving the reliability of GA global 
identification for these hybridization studies. 

CPSINLP two-pass hybrid wifh variable complex- 
ity modeling. This study uses the (1.4, 0.5, 0.0) good 
initial guess for comparison of a C P S W  hybrid with 
CPS and NLP single-algorithm performance from Fig- 
ure 9. In the hybrid, the CPS initial phase uses inexpen- 
sive function evaluations, while the NLP final phase 
uses tight tolerance, expensive evaluations. Figure 17 
shows the optimization history comparison for the CPS/ 
NLP hybrid compared with the benchmark NLP perfor- 
mance. The history jump at he algorithm switch is 
caused by the change in EPSIT tolerances, which causes 
an increase in the objective function value at that set of 
parameter d u e s  (from 2.580 at loose tolerances to 
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Figure 17. Optimization history comparison of NLP 
and CPS/NLP hybrid: Best objective function value 
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2.670 at tight tolerances). Given that the CPS/NLp 
hybrid achieves an acceptable minimum of 2.560 min- 

utes at tight tolerances, it is observed that wall clock 
time is reduced by a factor of 2. However, the result 
achieved is 1% less optimal than the benchmark NLP 
result of 2.537, which is attributable to the nonsmooth- 
ness in the y direction (see Figure 8) in that the hybrid 
NLP phase gets trapped in the vicinity of ~ 4 . 0 4 .  The 
hybrid strategy result is still a considerable improve- 
ment over the best CPS result of 2.649 (at tight toler- 
ances). This validates the hybridization strategy in that a 
more optimal result was computed than was achievable 
with CPS, and it was achieved in half the time required 
by NLP. 

GMCPSINLP three-pass h y b d  with variubIe 
complexity modeling. Given the results of the GA/CPS, 
GA/NLJ?, and CPS/NLP hybridization studies, it appears 
to be desirable to combine the GA/CPS and CPS/NLP 
approaches into a three-pass hybrid and address both the 
global minimum identification problem and the issue of 
robustness and efficiency to a local minimum. However, 
the GA global identification performance must first be 
improved. 

Conclusions 

Object-oriented software design has been shown to 
be an effective tool for the generic integration of 
advanced optimization techniques with broad classes of 
simulation codes. In a separate paper, applications in 
nonlinear solid mechanics, heat transfer, fluid 
mechanics, and structural dynamics were interfaced 
with existing optimization algorithms via the DAKOTA 
toolkitlO. In this paper, fire surety and CVD reactor 
applications have been employed as benchmarks for 

demonsmion of advanced optimization strategies in 
algorithm hybridization and parallel processing. These 
strategies have been designed to be general-purpose and 
flexible, as enabled by the implementation of generic 
interfaces in C t t .  This collection of various algorithms 
and strategies in the DAKOTA system has allowed for 
straightforward assessments of relative performance. 

In the parallel optimization investigations, 
significant decreases in wall-clock time have been 
enabled through the use of parallel computing 
methodologies. Parallel optimization of single- 
processor simulations and sequential optimization of 
massively parallel analyses have been demonstrated in 
the fire surety and CVD reactor design applications. 
Peak performance in the fire surety application was 
prevented by the availability of only 3 commercial 
QTRAN licenses. In the CVD application, performance 
was limited by the execution of only one MPSalsa 
simulation at a time. Since the MPSalsa speed-up tapers 
off past a certain number of processors, a practical limit 
is placed on the number of processors per analysis 
which limits the potential speed-up in this parallel 
optimization strategy. This points clearly to the need for 
multiple MPSalsa evaluations running simultaneously in 
order to achieve peak performance. 

In the hybridization investigations, GA/NLP, GA/ 
CPS, and CPS/NLP hybrids have been investigated on 
the fireset application. In the GA/NLP and GA/CPS 
hybrids, GA/CPS was shown to be more computation- 
ally efficient than GA/NLP in converging to a local min- 
imum, although neither method was successful in 
navigating to the global minimum due to the dSficult 
global identiiication problem with the fireset applica- 
tion. More investigation on global identification is 
needed. Both of these hybrids, however, outperform 
CPS and NLP single-algorithm performance when these 
single algorithms are started from an initial guess out- 
side of the global minim& region (Figures 10 and 16). 
The CPS/NLp hybrid is shown to be an efficient and 
accurate local convergence technique since a more opti- 
mal result was computed than was achievable with CPS 
alone, and it was achieved in half the time required by 
NLP alone. Once the global identification problem is 
better understood, three-pass GA/CPS/I%P hybrids 
hold promise for combining the performance of the best 
two-pass approaches. 

The overall goal of these research activities is to 
develop a broadly useful optimization capability with 
the flexibility and extensibility tQ easily accommodate 
broad classes of optimizers, a wide disciplinary range of 
simulation capabilities, and advanced strategies which 
seek to enhance robustness and efficiency beyond that 
which is currently available. 
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