The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE

Utilizing Prior Information to Enhance Self-Supervised Aerial Image
Analysis for Extracting Parking Lot Structures

Young-Woo Seo
Robotics Institute
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213, USA

young-woo.seol@ri.cmu.edu

Abstract— Road network information (RNI) simplifies au-
tonomous driving by providing strong priors about driving
environments. Its usefulness has been demonstrated in the
DARPA Urban Challenge. However, the need to manually
generate RNI prevents us from fully exploiting its benefits.
We envision an aerial image analysis system that automatically
generates RNI for a route between two urban locations. As a
step toward this goal, we present an algorithm that extracts
the structure of a parking lot visible in an aerial image. We
formulate this task as a problem of parking spot detection
because extracting parking lot structures is closely related
to detecting all of the parking spots. To minimize human
intervention in use of aerial imagery, we devise a self-supervised
learning algorithm that automatically obtains a set of canonical
parking spot templates to learn the appearance of a parking lot
and estimates the structure of the parking lot from the learned
model. The data set extracted from a single image alone is too
small to sufficiently learn an accurate parking spot model. To
remedy this insufficient positive data problem, we utilize self-
supervised parking spots obtained from other aerial images as
prior information and a regularization technique to avoid an
overfitting solution.

I. INTRODUCTION

Road network information (RNI) is an essential compo-
nent for the recent successful autonomous robotic vehicles
[17]. In our case, RNI is a topological feature map of
an urban environment that informs an autonomous robotic
vehicle where it can drive, models of what can be expected,
and contextual cues that influence driving behaviors. Figure 1
shows road network information describing the starting chute
of the DARPA Urban Challenge site with a corresponding
aerial image. This information enables our robotic vehicle
to anticipate information about upcoming intersections (e.g.,
that the first intersection labeled as “I14135” after leaving the
staring chute is a yield-intersection) and other fixed rules of
the road (e.g., the speed limit is 30 miles per hour).

To navigate, our vehicle chooses a globally optimal route
to the goal using the RNI and executes an autonomous
driving loop: it initiates behaviors based on available RNI
(e.g., handle_ intersection or drive_down_lane); it analyzes
onboard sensors’ outputs to interpret its surroundings (e.g.,
estimating the current pose or perceiving static and dynamic
obstacles on drivable regions); it executes motions to achieve
the goal of the current behaviors (e.g., arriving at a particular
waypoint by driving on a road lane). In this loop of actions,
RNI simplifies autonomous driving in that it allows a robotic
vehicle to focus its attention on drivable regions which
require a detailed analysis, neglecting less important regions
[17].

Road network information is currently manually generated
using a combination of GPS survey and aerial imagery.
These techniques for converting digital imagery into road
network information are labor intensive and error-prone. To

339

Chris Urmson
Robotics Institute
Carnegie Mellon University
5000 Forbes Ave, Pittsburgh PA 15213, USA

curmson@ri.cmu.edu

Way points

Intersection 14135,

- Type: Yield

- Entry waypoint: 131
- Exit waypoint: 83

Fig. 1. An example of the road network information used in the 2007
DARPA Urban Challenge. RNI represents an urban environment as a graph

that is comprised of a set of vertices (i.e, waypoints marked by “x” and

checkpoints marked by “*”) and their connections. An intersection is a
region that includes a subset of waypoints between entry and exit points.

fully exploit the benefits of road network information, these
processes should be automated.

We envision an aerial image analysis system that auto-
matically generates RNI for a route. In this paper, as a
step toward this goal, we present an aerial image analysis
algorithm that extracts the structure of parking lots. Without
representing this structure, our motion planner has to super-
impose virtual structures onto parking lots and evaluate all
the feasible patches over the structures [6]. This two step
process (create virtual structure and apply nominal motion
planning algorithms) is computationally expensive and can
be avoided by generating the structure offline, a priori.

Although parking lot structures in aerial images are readily
recognizable, automatically extracting structures is challeng-
ing because their shapes are only approximately regular
and aerial image acquisition process is noisy. Specifically,
shapes of parking lots in images look similar, but they
are slightly different. Thus, the structure of each individual
parking lot needs to be analyzed separately. Noise in the
images makes parking spots inconsistent in appearance due
to vehicle occupancy, occlusions by other structures such as
trees and adjacent buildings, or differing illuminations (e.g.,
under the shade of buildings.)

In order to handle these problems effectively, we propose
a hierarchical approach to generating and filtering candidate
hypotheses. To minimize human intervention in the use of
aerial imagery, we devise a self-supervised learning algo-
rithm that automatically generates a set of parking spot tem-
plates to learn the appearance of a parking lot and estimates
the structure of the parking lot from the learned model.
The low-level layer, which extracts and compiles geometrical
meta-information for easy-to-find parking spots, is highly

accurate and serves as a prime source of examples for self-
supervised training. The high-level layer uses outputs from
the low-level layer to predict plausible candidate hypotheses
for more difficult parking spot locations and then filters
these hypotheses using self-trained learners. Our method is
described in detail in Section III.

II. RELATED WORK

Overhead aerial images have been utilized to provide
prior information about environments for outdoor naviga-
tion robots. Despite issues with age, aerial image analysis
provides an alternative, but important structural overview of
operational environments that enables robots to plan globally
to achieve their goals. In combination with other onboard
sensors such as vision sensors and range finders, aerial
images have been used for generating cost maps for long-
range traversal [13], [14], global localization [3], building
and maintenance of robots’ world model [12], [17], and
mapping [11].

Overhead imagery has thus been used as a complement to
onboard sensor data to guide outdoor robot navigation. To
the best of our knowledge, there is no work in automatically
generating road network information from overhead aerial
images.

There are two similar works in the realm of parking
structure analysis. Wang and Hanson propose an algorithm
that uses multiple aerial images to extract the structure of
a parking lot for simulation and visualization of parking
lot activities [18]. Multiple images from different angles
are used to build a 2.5 dimensional elevation map of a
parking lot. This usage of multiple images makes it difficult
to generalize their method because it is not easy to obtain
such images on the same geographic location from publicly
available imagery. Dolgov and Thrun present algorithms that
build a lane-network graph of a parking lot from sensor
readings [4]. They first build a grid map of static obstacles
from range measurements of a parking lot and use a Markov
Random Field to infer a topological graph that most likely
fits the grid map. This work is very close to ours in that
they building a road network for their robotic vehicle, but
different in that they need to drive the robot to collect range
measurements, which are the sole input to their mapping
algorithm.

Most prior work in parking spot extraction [5], [7],
[19] focused primarily on detecting empty parking spots in
surveillance footage when the overall geometrical structure
of the parking lot is known. Our work addresses the more
general problem of extracting the entire parking lot structure
from overhead imagery. A similarity between our work and
these works on empty parking spot detection lies in the fact
that we utilize coherent structural patterns over entire image
region.

The problem of how best to frame self-supervised learning
problems has recently attracted attention from the robot
learning community since it requires no (or substantially
less) human involvement for carrying out learning tasks. This
framework is highly desirable for robot learning because
it is usually hard to collect large quantities of high-quality
human-labeled data from any real world robotic application
domain.

Self-supervised learning frameworks typically utilize the
most precise data source to label other data sources that are
complementary, but unlabeled. For example, a conventional
laser range finder provides quite accurate distance estimates
between a robot and surrounding objects, but their ranges
are limited. Sofman et al use those local range estimations

340

as self-labeled examples to learn relations between the char-
acteristics of local terrain and corresponding regions in aerial
images [14]. These learned relations were used to map aerial
images to long range estimates of traversability over regions
that a robot is going to explore. Similarly, Stavens and Thrun
utilize laser range measurements to predict terrain roughness
[15]. They first analyze the associations between inertial data
and laser readings on the same terrain and use the learned
rules to predict possible high shock areas of upcoming
terrains. Lieb et al devised a self-supervised approach to
road following that analyzes image characteristics of pre-
viously traversed roads and extracts templates for detecting
boundaries of upcoming roads [10]. In our algorithms, the
low-level analysis phase extracts lines forming parking lot
lane markings, resulting in a collection of canonical parking
spot image patches which can be used as training examples.
We additionally use these initial parking spots to guide a
random selection of negative examples.

III. AERIAL IMAGES ANALYSIS FOR EXTRACTING
PARKING LOT STRUCTURES

The structure of a parking lot in an aerial image is
characterized by the layout of a set of parking blocks and
their parking spots. Figure 2 illustrates how a parking lot is
represented in this paper. Our algorithm parameterizes each
individual parking spot by its height, width, orientation, and
centroid location in image coordinates. We define a parking
block as a row of parking spots all oriented in the same
direction. Each parking block is characterized by the distance
between neighboring parking spots in the block (i.e., “D1”
in figure 2). Parking blocks are related to each other by two
distance measures: the distance between conjugate parking
spots (i.e., “D2”) and the distance between blocks (i.e., “D3”
in figure 2).

Open-end
direction

g
Parking Spot

Peer parking spots

Fig. 2. This illustration depicts the parking spot and parking block
representations used throughout this work.

If the image locations of all visible parking spots are
known, it would be trivial to estimate the alignment and
block parameters shown in the figure 2. However, in practice
we must estimate these parameters from a given image to
determine the parking lot structure. In what follows, we
describe in detail our hierarchical approach to detecting
parking spots. Section III-A presents the multiple image
processing steps involved in the low-level image analysis
layer. This layer accurately extracts a set of easily found
parking spots from the image. Section III-B details the
high-level processing layer which then extrapolates and
interpolates the spots found by the low-level analysis to
hypothesize the locations of the remaining parking spots. We
then discuss our self-supervised hypothesis filtering approach
in Section I1I-B.2, which removes erroneous hypotheses from
the collection.

(a) Results of a line extraction.

(b) Results of a line clustering and
filtering.

Fig. 3.

A. Low-Level Analysis: Detecting Canonical Parking Spots

Geometrical and image characteristics differ between park-
ing lots. Most overhead aerial parking lot images contain a
number of well-illuminated empty parking spots. Our low-
level analysis extracts these easy-to-find spots to be used by
the high-level analysis as “seeds” for additional hypothesis
generation and by the final filtering stage as canonical
self-supervised training examples to adapt the filter to this
particular image. The low-level layer carries out multiple
image processing steps: line extraction, line clustering, and
(parking) block prediction.

Straight lines are important to understanding the shape of
a parking lot. We extract lines using the approach proposed
by [8]. This approach computes image derivatives to obtain
intensity gradients at each pixel and quantizes the gradient
directions over predefined ranges. A connected component
algorithm is then used to group pixels assigned the same
direction to form line supporting regions. The first principal
eigenvector of a line supporting region determines the direc-
tion of the line. Figure 3(a) shows an illustrative example
image with a set of extracted lines.

Although a majority of extracted lines may align with lane
markings of the underlying parking lot, some of them come
from other image regions such as road lanes or contours of
other adjacent buildings. Since we only need the lines aligned
with the line-markings of the parking lot, it is necessary to
remove lines that do not represent parking lot structure. To
this end, we group the extracted lines into clusters based
on their orientations and remove lines that are either too
short or too long from the cluster with the largest member.
Figure 3(b) shows a set of candidate lines used for parameter
estimation.

For the parameter estimation, we first estimate the nominal
height of parking spot by computing the mode of each
line in the selected cluster. We next build a Euclidean
distance matrix across all possible line pairs, quantize the
distances and compute the mode to obtain the width and
height of parking spots within a lot. Finally, we quantize the
orientations of lines and compute the mode again to estimate
the orientation of each parking spots’ open-end.

The completion of these image processing steps results
in generating few, but highly accurate initial estimations of
true parking spots. Figure 3(c) shows the image location of
parking spots found using this low-level analysis.

This low-level analysis is then extended to additionally
identify entire parking blocks. To achieve this, we project the
centroids of all the initial parking spots onto a virtual line
whose orientation is the mean of the initial parking spots’ ori-
entations. This projection returns distances of centroids from
the origin, p; = ¢; , cos(6;)+c¢; , sin(6;), where ¢; , and ¢; ,
are image coordinates of a parking spot centroid and 6; is the
open-end orientation of the sth parking spot. After projection,
boundaries between parking blocks are clearly visible and the

341

(c) Results of the initial parking spot (d) Results of parking block discov-
estimates. ery.

From the left, these figures present a sequential order of image processing steps in the low-level image analysis.

distance between peer parking spots (i.e. D1 in the Figure
2) is used to determine boundaries between parking blocks.
Figure 3(d) shows seven distinct parking blocks discovered
by this analysis. From the discovered parking blocks, we
finish the parameter estimation by computing three distances
between parking blocks (i.e. D1, D2, and D3 in the Figure
2).

B. High-Level Analysis: Interpolation, Extrapolation, Block
Prediction, and Filtering

The high-level layer is intended to detect all the visible
parking spots in an image. To this end, it first hypothesizes
the parking spot locations based on the parameters estimated
by the low-level layer. It then filters these hypotheses by
classifying the rectangular image patches around these hy-
potheses using self-supervised classifiers.

1) Parking Spot Interpolation and Extrapolation: A park-
ing spot hypothesis represents an image location that indi-
cates the centroid of a potential parking spot. A rectangular
image patch around the hypothesis is evaluated to determine
if a local characteristic of the image is similar to that of
a true parking spot. To cover the set of image regions
that possibly contain true parking spots, we use the image
coordinates of centroids of the initial parking spots as the
starting points in each of the discovered parking blocks. We
then generate parking spot hypotheses by selecting image
locations through three processes: interpolation (Figure 4(a)),
extrapolation (Figure 4(b)), and block prediction (Figure
4(c)). The interpolation procedure chooses image regions
within a parking block, whereas the extrapolation proce-
dure extends hypotheses beyond estimated parking block
boundaries. Finally, block prediction aims at discovering
the missing parking blocks. We use the estimated parking
block distances and select image regions to test existence of
parking blocks.

2) Self-supervised Hypothesis Filtering: The hypothesis
generation process produces n parking spot hypotheses rep-
resented by the corresponding number of image patches,
g1, ---, gn. Figure 4(d) shows a complete set of the generated
parking spot hypotheses. Each of parking spot hypotheses is
evaluated to determine if it is a parking spot. We formulate
this decision problem as binary classification for assigning
a label, y; € {—1,+1}, to a given patch vector, g;, where
g; is an m = |height x width|-dimensional column vector.
Because raw intensity values of grayscale image patches are
inconsistent, even in the same class, we use three different
pieces of information to inject invariance into parking spot
representation: intensity statistics of a patch such as mean,
variance, skewness, smoothness, uniformity, and entropy;
responses of Radon transform; local histograms of oriented
gradients (HOG) [2].

Our experiments compare four machine learning tech-
niques for this binary classification task: Support Vector Ma-

(b) Results of extrapolation.

(a) Results of interpolation.

P EEEEEEEEE BB E E B
ETETTETR G R e e R & 8 8 &
R R s e ETE e R YRR TE
EEEEE EE EE EE E S E B
EEE AR EE R R e e e .
®EEEE EE e E e e EEEE
EEEEEEE B B E B B B B2 8
ETETETRTE R R TE e s 8 s e e s
EETETER G OW M G M @ @ 8w
ETEETE EE R E E R 5 R @ B B
BERYE R D R S B 8 5 5 = = 85
BTETETETETETETR G TR R @ W R TE
BETRTETETETETE R B R R E OE R
ATETETETETE R e e a

(c) Results of block prediction.

(d) There are 206 parking pots hy-
potheses generated.

Fig. 4. From the left, these figures show a sequence of hypothesis generation procedure.

chines (SVMs), Eigenspots, Markov Random Fields (MRFs),
and Bayesian Linear Regression (BLR).

Support Vector Machine. SVMs are the de facto supervised
learning algorithm for binary classification. They seek to
find the hyperplane that is maximizing a notion of margin
between each class [1]. Linear SVMs are fast, have publicly
available implementations, and handle high-dimensional fea-
ture spaces well.

Eigenspots. Since processing these high-dimensional im-
age patches is computationally expensive, we reduce the
dimensionality of our vector space by using principal com-
ponent analysis (PCA) [1] to find the principal subspace
of the initial canonical parking spots found by the low-
level analysis; we retain the top & < m dimensions of
the space. In homage to Turk and Pentland [16], we call
the eigenvectors of the parking spot space extracted by this
method the “Eigenspots” of the space.

We use this new space in two ways. Our first technique
simply measures the distance from a candidate patch to the
center of the space (i.e. the mean canonical parking spot,
W). Given a new image patch g, we compute, T(g) =
||D_1/2ET(g—\II)||2 where ¥ = m Zl gi,
D is a diagonal matrix containing eigenvalues A1, ...\x, and
E is a matrix whose columns are the eigenvectors of the
covariance matrix used in the PCA computation. T'(g) is also
known as the Mahalanobis distance [1] from the origin of
the Eigenspot space. If this distance is less than a threshold,
we classify the new image patch as a parking spot. Our
second usage simply pushes the examples through the PCA
transformation before training a SVM classifier. Specifically,
we transform each example as g = D~ 1/2ET (g — W),

Pairwise Markov Random Fields. Because SVMs and
Eigenspots only consider the local characteristics of an image
patch to perform the binary classification, their performances
are limited by the distribution of the training data. Thus it is
useful to investigate neighboring image patches around the
patch of interest as well as to look at the local characteristics
of the image patch. To implement this idea, we use a pairwise
Markov Random Fields (MRFs) [9]. A pairwise MRF H is
an undirected graphical model that factorizes the underlying
joint probability distribution P(Y,G) by a set of pairwise
cliques. ! H is comprised of a set of nodes and their edges
where a node models a random variable and an edge between
nodes represents dependence between them.

In this work, there are two different types of nodes: ob-
served and unobserved nodes. An observed node corresponds
to an image patch whereas an unobserved node is the true
label of the observed node. Although we observe the value
of a node (G = gy), the true label of the node (Y = yi, €

IThere may be bigger cliques in the graph, but the pairwise MRF only
consider pairwise cliques.

342

{—1,+41}) is not observed. The task is then to compute the
most likely values of Y (i.e. whether a hypothesis (g;) is
parking spot (y; = 1) or not) given the structure of the
undirected graph, H, and characteristics of image patches,
G. The joint probability distribution is modeled as

| N

P(Y.G) = [[2GnY)] w(vi.y))
=1 JEN(i)

where ®(G;,Y;) is a node potential, ¥(Y;,Y;) is an edge
potential, Z is the partition function that ensures a probability
density of this model, N (i) is the set of nodes in the
neighborhood of the ith node. Our implementation of MRFs
consider first-order neighbors.

As we assume that candidate parking spots are generated
from a mixture of multivariate Gaussian distributions, we
estimate the node potentials using a Gaussian Mixture model
(GMM) [1]. Due to the possibility of two class labels, each
node has two potentials: a potential being a parking spot,
®(G;,Yj—41) and the other potential being not a parking
spot, ®(G;, Y;=_1). The edge potential is computed by Potts
model [9]. For inferencing the most likely labels of individual
parking spot hypotheses in a given aerial image, we use loopy
belief propagation because it is easy to implement [20].

Bayesian Linear Regression Our self-supervised canonical
parking spots are highly accurate, but the quantity is often too
few to generalize over unseen image patches. To remedy this
insufficient number of positive examples, we use canonical
parking spots previously obtained from other aerial images.
As we will show its benefit in the experimental results,
this certainly helps our hypothesis filters improve their
performances. However, naively consuming all the available
data might result in an overfitted solution. To effectively
utilize data, we employ a Bayesian linear regression (BLR).
BLR provides a theoretical way of incorporating previously
obtained parking spot templates as a prior information for the
optimal weight vector learning. The optimal weight vector,
w*, is obtained by

p(w"|G) oc arg max p(G|w)p(w)

where the likelihood function is modeled by p(G|w) =
TLZ p((gs i) [w) o< exp {55 ,(y: — w'g:)?} and the
prior distribution is given as a zero-mean Gaussian, p(w) o
exp{—%wEilw + uTEflw}. The final form of BLR is
a regularized linear regression where the parameters of the
resulting conditional Gaussian distribution of w* given data
D is

Swp = (GGT A1)

pwp = (GGT + (V1) YG

where A is a regularizing term that controls contributions of
the weight prior. We classify an image patch g; as;

h(gi) =21 [y(g:) > ¢ — 1,6 € R.

where y(g;) is the output of BLR and I [y(g;) > d] is an
indicator function that returns 1 if y(g;) is greater than J,
otherwise 0.

IV. EXPERIMENTAL RESULTS

The goal of this work is to extract the structure of a parking
lot that is visible in an aerial image. The knowledge of the
image coordinates of parking spots facilitates estimation of
parameters that describe the structure of the parking lot. Thus
the purpose of our experiments is to verify how well our
methods perform in detecting all the visible parking spots in
an aerial image.

| fn fr acc
elf-supervised Parking Spots . . .
Generated Hypotheses 0.1123 0.3812 0.7399
TABLE I

ACCURACY COMPARISON OF PARKING SPOT HYPOTHESES GENERATED
BY THE LOW-LEVEL AND HIGH-LEVEL ANALYSIS LAYERS IS MEASURED
BY FOUR DIFFERENT PERFORMANCE METRICS. THESE METRICS
INCLUDE “FALSE NEGATIVE (fin),” “FALSE POSITIVE (fp),” AND
“ACCURACY (acc).”

We use thirteen aerial images collected from Google > map
service. There are on average 147 visible parking spots in
each individual images and a total of 1,912 parking spots
across all aerial images.

Table I shows the micro-averaged accuracy of the self-
supervised canonical parking spots and the hypothesis gen-
eration. This micro-averaged performance is computed by
merging contingency tables across the thirteen different
images and then using the merged table to compute per-
formance measures. Since the self-supervised examples has
a very low false positive rate (2.98%), its parking spot
estimates are used as positive examples for training all
filtering methods. An equal number of negative examples
are randomly generated.

A false positive is a non-parking-spot example that is
classified as a parking spot. A false positive output is quite
risky for autonomous robot driving; in the worst case, a
false positive output might make a robotic vehicle drive
somewhere that the robot should not drive. Despite having
nearly zero false positives, the self-supervised parking spots
obtained by the low-level analysis cover only 37.65% of the
true parking spots (720 out of 1,912 true parking spots.) This
high false negative rate 3> may cause additional problems for
autonomous driving: an autonomous robotic vehicle won’t
be able to park itself even if there are plenty of parking
spots available. By using information provided by the low-
level analysis, the high-level hypothesis generation analysis
reduces the false negative rate from 63.73% to 11.23%.
However, it increases the false positive rate to 38.12% as
well. The filtering stage then corrects this shift in false
positive rate by removing erroneous hypotheses. Importantly,
as we will see in the results, this technique cannot recover
from false negatives in the hypothesis generation. However,

Zhttp://map.google.com
3A false negative is a parking-spot example that is classified as a non-
parking-spot example.

343

the false negative rate in the hypothesis generation phase
of the high-level analysis is generally low and does not
significantly detract from the accuracy.

Table II compares the performance of self-trained filtering
methods. The parking spot hypotheses generated by the
high-level layer were labeled by hand for testing. Hyper-
parameters of SVMs were determined by 10-fold cross val-
idation.* Eigenspots are computed using positive examples.
For the MRF inference, we build a mesh from the estimated
layout of parking spot hypotheses where a node in the grid
corresponds to an image patch. We again use positive and
negative examples to obtain GMM and use the obtained
GMM to estimate node potentials. We observe the results
by varying 3 in the range 0 to 10 with steps of size 2.’ For
BLR, we found that the best results is obtained when A is 5
and use .5 as a threshold for binary classification.

In the table II, there are three blocks of rows describing
three different experimental scenarios. In the first scenario,
we trained the filtering methods using a self-supervised set
of examples from the image under analysis consisting of
the self-labeled positive examples and randomly generated
negative examples. In the second scenario, we trained these
methods using self-supervised examples from all other im-
ages not including the target image. Finally, in the last sce-
nario we trained the methods using self-supervised examples
from all images. The randomly generated negative examples
were sampled while running each of these scenarios. Due
to this randomness in negative examples, we averaged our
results over 5 separate runs for each scenario. Each cell in
the table displays the mean and standard deviation.

In addition, we manually generated 1,079 parking spot
patches across all thirteen images (averaging 83 parking
spots per image). We re-ran the above experiments using
these human-extracted parking spot patches. The numbers
in parentheses indicates the performance difference between
self-supervised and supervised parking spot hypothesis fil-
tering tasks. Positive values in the accuracy indicate im-
provements of self-supervised learning over supervised learn-
ing whereas negative values in false positive and negative
columns indicate improvements. Surprisingly, the algorithm
performed slightly worse at times when trained using the
more accurately generated manual examples. This likely
occurs because the the test distribution is that created by
our hypothesis generation approach.

Ideally, the method with the lowest false positive and
negative rates would be the best, but in practice it is hard
to achieve both of them simultaneously. For our autonomous
driving application, we prefer the method with the lowest
false positive to the one with lowest false negative because
a false positive is more risky than a false negative. In
general, the performances of hypothesis filters are improved
as the number of training data is increased. Linear SVMs
performed surprisingly well, particularly in terms of false
positives and accuracy. Additionally, training an SVM using
the subspace generated by the Eigenspots analysis performs
only marginally better than simply using the Eigenspot
distant measure computation. This performance difference
can potentially be decreased by statistically fitting the thresh-
old value used during distance measure classification. As
discussed in Section III-B.2, MRFs utilize higher-level inter-
actions to improve prediction accuracy. However, estimating

“For SVM implementation, we use libsvm which is publicly available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

SWe fit our Gaussian Mixture model using the publicly available GMM-
Bayes from http://www.it.lut.fi/project/gmmbayes/

|

false negative

false positive

accuracy

0.182T £ 0.0104 (0.0397)
0.5745 (-0.1240)
0.2385 £ 0.0296 (0.0785)
0.2366 £ 0.0328 (0.0490)
0.5861 £ 0.0169 (0.1756)

0.6523 £ 0.0115 (0.1436)
0.6019 (0.0271)
0.6313 £ 0.0093 (0.0930)
0.6298 £ 0.0247 (0.1420)
0.6242 £ 0.0073 (0.0632)

0.1197 (0.0429)
0.0158 = 0.0001 (0.0044)
0.0187 = 0.0024 (0.0090)
0.0728 =+ 0.0029 (0.0439)

0.8701 (-0.0372)
0.8724 & 0.0001 (-0.0031)
0.8744 & 0.0002 (-0.0007)
0.8927 & 0.0022 (-0.0070)

0.0176 £ 0.0000 (0.0080)
0.1115 (0.0375)
0.0208 £ 0.0013 (0.0083)
0.0216 £ 0.0012 (0.0111)

SVMs 0.4370 £ 0.014T (-0.2385)
Eigenspots 0.2861 (0.0145)

Only self-supervised examples ~SVMs w/ Eigenspots | 0.4382 + 0.0102 (-0.2200)
MRFs w/ GMM 0.4493 £ 0.0162 (-0.2533)
BLR 0.1882 £ 0.0060 (-0.2715)
SVMs 0.5364 £ 0.0050 (-0.1894) 0.011T £ 0.
Eigenspots 0.1763 (-0.0122)

Only prior SVMs w/ Eigenspots | 0.6324 £ 0.0094 (-0.1730)
MRFs w/ GMM 0.6112 £ 0.0206 (-0.2071)
BLR 0.2631 £ 0.0216 (-0.2668)
SVMs 0.4130 £ 0.004T (-0.2522)
Eigenspots 0.1757 (-0.0112)

Self-supervised + prior SVM w/ Eigenspots 0.5278 £ 0.00081 (-0.2360)
MRFs w/ GMM 0.4974 £ 0.0098 (-0.2888)
BLR 0.2014 £ 0.0039 (-0.3021)

0.0892 £ 0.0083 (0.0618)

0.9153 £ 0.0016 (0.0121)
0.8776 (-0.0334)
0.8931 £ 0.0010 (0.0051)
0.8976 £ 0.0003 (0.0113)
0.8918 £ 0.0063 (-0.0175)

TABLE II
RESULTS COMPARING DIFFERENT FILTERING METHODS.

the GMM requires a substantial amount of data; the per-
formance degradation in the first row of the table indicates
that the canonical parking spots extracted by the low-level
analysis alone were too few to accurately this fit this model.
Finally, BLR demonstrates its strength of utilizing prior
information when more data is used for training; it shows
a lower rates across all three performance metrics.

V. CONCLUSIONS

This work proposes a two layer hierarchical algorithm for
analyzing the structure of parking lots visible in overhead
aerial images. The low-level analysis layer extracts a set
of easily detected canonical parking spots and estimates
parking blocks using line detection and clustering techniques.
The high-level analysis then extends those spots using geo-
metrical characteristics of typical parking lot structures to
interpolate and extrapolate new hypotheses and uses self-
supervised state-of-the-art machine learning techniques to
filter out false positives in the proposed hypotheses. Our
experiments show that training the classifiers using the self-
supervised set of canonical parking spots extracted by the
low-level analysis successfully adapts the filter stage to the
particular characteristics of the image under analysis.

Our experiments additionally demonstrate that additional
data from prior parking spot data collected across multiple
additional overhead parking lot images offer the learner
useful information resulting in increased performance. These
examples provide the learner with important demonstrations
of occlusions and illumination variations not found in the
canonical parking spots extracted by the low-level analysis.
However, simply adding more examples to the training set
results in a data-overfitted solution. By employing Bayesian
linear regression, we show an effective technique to utilize
the prior information.

In future work we will consider parking lots with more
complex geometries.

VI. ACKNOWLEDGMENTS

This work is funded by the GM-Carnegie Mellon Au-
tonomous Driving Collaborative Research Laboratory (CRL).
The authors thank Nathan Ratliff for many helpful and
insightful comments.

REFERENCES

[1] Christopher M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

[2] Navneet Dalal and Bill Triggs, Histograms of oriented gradients for
human detection, In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pp. 886-893, 2005.

344

(3]

(4]

(5]

(6]

(71

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

C.U. Dogruer, B. Koku, and M. Dolen, Global urban localization
of outdoor mobile robots using satellite images, In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3927-3932, 2008.

Dmitri Dolgov and Sebastian Thrun, Autonomous driving in semi-
structured environments: Mapping and planning, In Proceedings of
IEEE International Conference on Robotics and Automation, pp. 3407-
3414, 2009.

Tomas Fabian, An algorithm for parking lot occupation detection, In
Proceedings of IEEE Computer Information Systems and Industrial
Management Applications, pp. 165-170, 2008.

David Ferguson, Tom M. Howard, and Maxim Likhachev, Motion
planning in urban environments: Part II, In Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1070-
1076, 2008.

Ching-Chun Huang and Sheng-Jyh Wang and Yao-Jen Chang and
Tsuhan Chen, A Bayesian hierarchical detection framework for park-
ing space detection, In Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, pp. 2097-2100,
2008.

P. Kahn, L. Kitchen, and E.M. Riseman, A fast line finder for vision-
guided robot navigation, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 12, No. 11, pp. 1098-1102, 1990.

Stan Z. Li, Markov Random Fields Modeling in Computer Vision,
Springer-Verlag, 2000.

David Lieb, Andrew Lookingbill, and Sebastian Thrun, Adaptive road
following using self-supervised learning and reverse optical flow, In
Proceedings of Robotics Science and Systems, 2005.

Martin Persson, Tom Duckett, and Achim Lilienthal, Improved map-
ping and image segmentation by using semantic information to
link aerial images and ground-level information, Recent Progress in
Robotics, pp. 157-169, 2008.

Chris Scrapper, Ayako Takeuchi, Tommy Chang, Tsai Hong, and
Michael Shneier, Using a priori data for prediction and object recog-
nition in an autonomous mobile vehicle, In Proceedings of the SPIE
Aerosense Conference, 2003.

David Silver, Boris Sofman, Nicolas Vandapel, J. Andrew Bagnell, and
Anthony Stentz, Experimental analysis of overhead data processing to
support long range navigation, In Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 2443-2450,
2006.

Boris Sofman, Ellie Lin, J. Andrew Bagnell, Nicolas Vandapel, and
Anthony Stentz, Improving robot navigation through self-supervised
online learing, In Proceedings of Robotics Science and Systems, 2006.
David Stavens and Sebastian Thrun, A self-supervised terrain rough-
ness estimator for off-road autonomous driving, In Proceedings of
Conference in Uncertainty in Artificial Intelligence, 2006.

Matthew Turk and Alex Pentland, Eigenfaces for recognition, Journal
of Cognitive Neuroscience, Vol. 3, No. 1, pp. 71-86, 1991.

Chris Urmson et al., Autonomous driving in urban environments: Boss
and the Urban Challenge, Journal of Field Robotics: Special Issues
on the 2007 DARPA Urban Challenge, pp. 425-466, 2008.
Xiaoguang Wang and Allen R. Hanson, Parking lot analysis and
visualization from aerial images, In Proceedings of the IEEE Workshop
on Applications of Computer Vision, pp. 36-41, 1998.

Qi Wu, Chingchun Huang, Shih-yu Wang, Wei-chen Chiu, and Tsuhan
Chen, Robust parking space detection considering inter-space correla-
tion, In Proceedings of IEEE International Conference on Multimedia
and Expo, pp. 659-662, 2007.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss, Under-
standing belief propagation and its generalizations, Mitsubishi Electric
Research Laboratories, TR2001-022, 2002.

