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Abstract—For the first time, real-time high-fidelity spa-
tiotemporal data on transportation networks of major cities
have become available. This gold mine of data can be uti-
lized to learn about traffic behavior at different times and
locations, potentially resulting in major savings in time and
fuel, the two important commodities of the 21st century. As a
first step towards the utilization of this data, in this paper,
we study the real-world data collected from Los Angeles
County transportation network in order to incorporate the
data’s intrinsic behavior into a time-series mining technique
to enhance its accuracy for traffic prediction. In particular,
we utilized the spatiotemporal behaviors of rush hours and
events to perform a more accurate prediction of both short-
term and long-term average speed on road-segments, even in
the presence of infrequent events (e.g., accidents). Our result
shows that taking historical rush-hour behavior we can improve
the accuracy of traditional predictors by up to 67% and 78% in
short-term and long-term predictions, respectively. Moreover,
we can incorporate the impact of an accident to improve the
prediction accuracy by up to 91%.

Keywords-traffic prediction, event impact analysis, time-
series mining, transportation data

I. INTRODUCTION

The two most important commodities of the 21st cen-

tury are time and energy; traffic congestion wastes both.

Several disciplines, such as in transportation science, civil

engineering, policy planning, and operations research have

studied the traffic congestion problem through mathematical

models, simulation studies and field surveys. However, due

to the recent sensor instrumentations of road networks in

major cities as well as the vast availability of auxiliary

commodity sensors form which traffic information can be

derived (e.g., CCTV cameras, GPS devices), for the first time

a large volume of real-time traffic data at very high spatial

and temporal resolutions has become available. While this

is a gold mine of data, the most popular utilization of this

data is to simply visualize and utilize the current real-time

traffic congestion on online maps, car navigation systems,

sig-alerts, or mobile applications. However, the most useful

application of this data is to predict the traffic ahead of you

during the course of a commute. This predictive information

can be either used by a driver directly to avoid potential

gridlocks or consumed by a smart route-planning algorithm

(e.g., [6]) to ensure a driver picks the best route from the

start. According to a study by McKinsey Global Institute

[1], using traffic information that avoids congestion can save

consumers $600 billion annually by 2020.

In the past, several statistics, machine learning and data

mining approaches have been applied to traffic data for

prediction purposes, such as auto-regression [12], neural net

[21] and smoothing [22] techniques. However, in this paper,

we took a very pragmatic approach to evaluate and then

enhance these techniques by intensely studying a very large-

scale and high-resolution spatiotemporal transportation data

from LA County road network. This dataset includes traffic

flows recorded by under-pavement loop detectors as well as

police reports on accidents and events. Our current system

acquires these datasets in real time from various agen-

cies such as Caltrans, City of Los Angeles Department of

Transportation (LADOT), California Highway Patrol (CHP),

Long Beach Transit (LBT), Foothill Transit (FHT) and

LA Metro. In particular, for this paper, our main source

includes approximately 8000 traffic loop-detectors located

on the highways and arterial streets of Los Angeles County

(covering 3420 miles, cumulatively) collecting several main

traffic parameters such as occupancy, volume, and speed. 1

Working with real-world data, we have identified certain

characteristics of traffic data, such as temporal patterns of

rush hours or the spatial impacts of accidents, which can be

incorporated into a data-mining technique to make it much

more accurate. For example, for generic time-series, the

observations made in the immediate past are usually a good

indication of the short-term future. However, for traffic time-

series, this is not true at the edges of the rush hours. In that

case, the historical observations (perhaps for that same day,

time, and location) are better predictors of future. Hence,

an auto-regression algorithm such as ARIMA [3], which

by itself cannot capture sudden changes at the temporal

boundaries of rush hours, can be enhanced by incorporating

historical patterns.

While predicting short-term future has many applications,

for example in fixing the errors of sig-alerts during rush-

hours, it is not useful for smart path-planning where some-

1Even though this paper focuses on the sensor data collected from
the loop detectors, our proposed techniques can be applied to other data
collection approaches. For example, we can use the approaches proposed
by [24] to aggregate the GPS data between regions, and consider the links
between regions as sensors in our case.



times we need to know the traffic of a road-segment ahead

of us by 30 minutes in advance. Again, historical data can

improve long-term predictions because most probably the

traffic behavior in 30 minutes at the desired location is

similar to (say) yesterday’s traffic at the same time and

location. In this case, again ARIMA alone cannot be as

effective since it only looks at immediate past and not the

right subset of the historical patterns.
Unfortunately, even an enhanced ARIMA cannot predict

accidents. However, if we know, from police event streams,

that there is an accident (say, 30 minutes) ahead of us, we

may be able to predict its delays and account for it. Again,

historical data can be used to identify similar accidents,

i.e., with similar severity, similar location and during the

similar time, so that we can use their impact on average

speed changes and backlog to predict the behavior of the

accident in front of us. For example, our study shows that

an accident that may happen between 4:00PM and 8:00PM

on a particular segment of I-5 will cause 5.5 miles of average

backlog ahead of the accident location. On the other hand,

if the same accident happens between 8:00PM and midnight

the backlog will be 2.5 miles.
The main challenge is how to properly incorporate all

the knowledge from historical and real-time data into an

appropriate time-series mining technique. This is exactly

what we accomplished in this paper by enhancing ARIMA.

Our experimental results with real-world LA data show that

our enhanced ARIMA outperforms ARIMA by 78% when

there is no unexpected events, and over 91% in the presence

of events. In addition, we compared our enhanced approach

with other competitor techniques for traffic prediction (e.g.,

[25] and [22]) and showed the superiority of our approach.
The main contributions of our work are:

• We analyze traditional prediction approaches based on

real-world dataset, and discover their limitations at

boundaries of rush hours, or in long term prediction.

To overcome such limitations, we propose H-ARIMA

approach which utilizes both historical traffic patterns

and current traffic speed for prediction.

• We propose feature selection model to analyze the

correlations between meta-attributes of traffic incidents

(from event reports) and their impact areas (from traffic

data). Later, we incorporate this model into our hybrid

traffic prediction approach termed H-ARIMA+ to pre-

dict traffic in the presence of incidents.

• We evaluate our approaches with real-world traffic

data, and event reports collected from transportation

agencies, showing remarkable improvement in terms of

prediction accuracy as compared with traditional traffic

prediction approaches, especially at the boundaries of

rush hours and at the beginning of unexpected traffic

events, and for long term prediction.

The rest of this paper is organized as follows: Section II

and III discuss related work and preliminaries, respectively.

Section IV explains our enhanced ARIMA prediction ap-

proach. Section V describes our novel model to incorporate

the impact of events in order to improve the prediction

accuracy in the presence of events. Section VI reports our

experiment results. Section VII, concludes the paper and

discusses future plans.

II. RELATED WORK

In this section, we review the related work on traffic

prediction and event analysis techniques.

A. Traffic Prediction

The previous traffic prediction approaches can be grouped

in two main categories: Simulation Models and Data Mining

Techniques.

1) Simulation Models: The traffic prediction techniques

developed in the first category use surveys and/or simulation

models. In [5], Clark proposes a non-parametric regression

model to predict traffic based on the observed traffic data. In

[7] and [2], authors use microscopic models upon trajectories

of individual vehicles to simulate overall traffic data and

further conduct prediction. In [24], Yuan at el. estimate the

traffic flow of a road segment by analyzing taxi trajectories.

The major limitation of such studies is that they rely on

sporadic observations and are often restricted to synthetic

or simplified data for simulations.

2) Data Mining Techniques: The increase in the avail-

ability of real-time traffic allowed researchers to develop

and apply data mining techniques to forecast traffic based

on the real-world datasets. Since early 1980s, univariate

time series models, mainly Box-Jenkins Auto-Regressive

Integrated Moving Average (ARIMA) [3] and Holt-Winters

Exponential Smoothing (ES) models [15], [22], have been

widely used in traffic prediction. In the last decade, Neural

Network (NNet) models also has been extensively used in

forecasting of various traffic parameters, including speed

[23], [10], travel time[21], and traffic flow [19], [17]. Nowa-

days, ARIMA, ES and NNet models are used as bench-

marking methods for short-term traffic prediction [17], [16].

However, these approaches consider traffic flow as a simple

time-series data and ignore phenomenons that particularly

happen to traffic data. For example, for generic time-series,

the observations made in the immediate past are usually a

good indication of the short-term future. However, for traffic

time-series, this is not true at the edges of the rush hours,

due to sudden speed changes.

B. Traffic Event Analysis

The effect of events on traffic prediction has also been

studied in the fields of data mining and transportation

engineering. The majority of these studies focused on real-

time event/outlier detection using probabilistic or rule-based

approaches (e.g., [14], [9], [13]). There are also several

studies that mainly concern the cause of the events, aiming



at how to design the network or re-direct the traffic flows to

avoid the delay of events (e.g., [4], [20]). However, none

of these studies incorporate events into traffic prediction

techniques, and hence fail to provide realistic estimations

in the presence of events. The focus of our study, on the

other hand, is to integrate the impact of various events into

forecasting models. The most relevant work to our study is

the model proposed by Kwon and Varajya[11]. Their model

utilizes a nearest-neighbor technique to detect cumulative

delays and impact regions caused by traffic incidents. The

impact regions are defined with fixed thresholds. However,

the impact of events on traffic congestion varies based

on space and time. For example, the impact region of an

accident occuring during rush hour is usually more severe.

Similarly, an accident at an inter-state street has a different

impact region than that of a surface street. In this study, we

consider such spatiotemporal characteristics of traffic events

in training our models.

III. PRELIMINARIES

A. Problem Definition

Consider a set of road segments comprising n traffic

sensors (e.g., loop detectors). We assume that at given

time interval t (e.g., every minute), each sensor provides a

traffic data reading, e.g., speed v[t]. We formulate the speed

prediction problem as follows:

Definition 1: Given a set of observed speed readings V ={
vi(j), i = 1,...,n; j= 1,...,t}, where i and j denotes a sensor

and continuous time increments, respectively. The prediction

problem is to find the set V ={vi(j), j = t+1, t+2,...t+h} for

each sensor i, where h denotes the prediction horizon. For

example, h=1 refers to predicting the value of speed at t+1,

where t represents the current time.

Definition 2: Short-term prediction and long-term predic-

tion refer to prediction of speed when h = 1 and h > 1,

respectively.

B. Baseline Approaches

In this subsection, we introduce two techniques that

comprise the baseline of our prediction model, namely

Auto-Regressive Integrated Moving Average (ARIMA) and

Historical Average Model (HAM).

1) Auto-Regressive Integrated Moving Average (ARIMA):

This model [3] is a generalization of autoregressive moving

average model with an initial differencing step applied to

remove the non-stationarity of the data. The model can be

formulated as

Yt+1 =
∑p

i=1
αiYt−i+1 +

∑q

i=1
βiεt−i+1 + εt+1 (1)

where {Yt} refers to a time series data (e.g., the sequence

of speed readings). In the autoregressive component of this

model (
∑p

i=1 αiYt−i+1), a linear weighted combination of

previous data is calculated, where p refers to the order of this

model and αi refers to the weight of (t− i+ 1)-th reading.

In the second part (
∑q

i=1 βiεt−i+1), the sum of weighted

noise from the moving average model is calculated, where

ε denotes the noise, q refers to its order and βi represents

the weight of (t− i+ 1)-th noise.

As shown in Equation (1), the predicted value mainly

relies on the linear combination of the data that occurred

before time t. This model can be directly used to predict

the traffic speed data, when prediction horizon h=1. When

h >1, we can iterate the prediction process h times by using

the predicted value as the input to predict the next value.
2) Historical Average Model: Our rigorous analysis on

real-world traffic sensor data reveals that there is a strong

correlation (both temporally and spatially) present among

the measurements of the single and multiple traffic sensor(s)

on road networks. For example, the traffic condition of

a particular road segment on Monday 8:30AM can be

estimated based the average of last four sensor readings for

the same road segment at 8:30AM in the past four Mondays.

Therefore, we introduce Historical average model (HAM)

that uses the average of previous readings for the same time

and location to forecast the future data. We formulate HAM

as follows:

v(td,w + h) =
1

|V (d, w)|

∑
s∈V (d,w)

v(s) (2)

where V (d, w) refers to the subset of past observations that

happened at the same time d on the same day w. Specifically,

d captures the daily effects (i.e., the traffic observations at

the same time of the day are correlated), while w captures

the weekly effects (i.e., the traffic observations at the same

day of the week are correlated). For example, if the traffic

data to be predicted is next Monday at 8:00AM, d refers to

”8:00AM”, and w = Mon. Thereby V (d, w) refers to the set

of traffic data happens on previous Mondays at 8:00AM. In

fact, the selection of historical observations is also relevant

with seasonal effects. For example, the historical observa-

tions on Mondays during winter is probably different with

that on Mondays during summer. Here, we eliminate the

seasonal effects by only using the data collected in one

season. Also, as shown in the formula, the function to select

past observations and calculating the average are indifferent

to the value of the prediction horizon h.

C. Case Studies

One can use either ARIMA or HAM for traffic prediction

in road networks. Here, we explain the limitations of both

techniques based on our observations derived from real-

world traffic datasets. Towards that end we present two

case studies using different prediction horizons and temporal

scales (i.e., rush hour boundaries).
1) Effect of Prediction Horizon (h): In the this case

study, we would like to compare the prediction accuracy of

ARIMA and HAM for different prediction horizons using

real-world traffic data. (see Section VI for details of the

real-world dataset and experimental setup). Note that the



aggregation level for this data set is 5 mins. Our intuition

is that ARIMA relies on the very recent traffic data, which

are usually a good indication of the near future. On the

other hand, HAM uses the average of historical data for

prediction, and hence HAM is more accurate in long-term

prediction and its accuracy is independent of the prediction

horizon. Our hypothesis can be summarized as follows:

Hypothesis 1: The prediction horizon has no noticeable

effect on the prediction accuracy of HAM. However, as

the prediction horizon increases, the prediction accuracy of

ARIMA decreases.

The result of comparison using real data is presented in

Figure 1, which measures the average mean absolute per-

centage error of prediction (y-axis) with respect to prediction

horizon (x-axis). As shown in Figure 1, ARIMA yields better

prediction than that of HAM when h < 6 (i.e., less than 30-

min in advance prediction). However, as h increases to the

values larger than 6, HAM starts to yield better prediction.

This result not only verifies hypothesis 1, but also reveals

that ARIMA is not ideal for long-term predictions (i.e., more

than 30-min in advance prediction).
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Figure 1. Effect of prediction horizon (h)

2) Effect of Rush Hour Boundaries: The intuition here

is that the observations made in the immediate past are

usually a good indication of the short-term future. Therefore

ARIMA is excepted to yield accurate prediction in the short-

term. However, the speed change at rush-hour boundaries is

sudden and there is no indication (i.e., trend) of such change

before it happens. In such cases, ARIMA cannot capture the

speed changes at the very beginning, but adjust itself shortly

after it takes the changed speed into account. On the other

hand, since rush hours happen at almost same time of that

particular day, HAM can predict the sudden speed changes at

the boundary of rush hours. Our intuition can be summarized

with the following hypothesis:

Hypothesis 2: HAM can efficiently predict the sudden

speed changes at the boundaries (i.e., beginning and end)

of rush hours. On the other hand, ARIMA has a delayed

reaction on the boundaries.

In this case study, we fix the prediction horizon (i.e., h=6)

and compare the prediction accuracy of both approaches

over time using real-world traffic speed data. The experi-

mental results are depicted in Figure 2, which represents the

actual speed data and predicted values from two models for

a specific sensor at different times of a particular weekday.

As shown, in the morning rush hour around 6:50AM, HAM

predicts the beginning of congestion with a very small error

rate and ARIMA’s prediction is shifted (with respect to

actual speed) a few timestamps. Similarly, at the vanish-

ing point of the rush hour congestions around 9:05AM,

HAM still accurately predicts the after-congestion speed and

ARIMA shifts a few timestamps. The results show that at

the boundaries of rush hours, HAM yields higher prediction

accuracy than that of ARIMA. Hence, the Hypothesis 2 is

verified.
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IV. HYBRID FORECASTING MODEL

In this section, we propose a hybrid forecasting model

named Historical ARIMA (H-ARIMA) that selects in real-

time between ARIMA or HAM based on their accuracy. In

particular, as the traffic data streams arrive we compare the

accuracy of ARIMA and HAM, and select the one that yields

low prediction error. As we discussed ARIMA relies on the

very recent traffic data, and hence in some circumstances

(i.e., in the long-term when h ≥ 6 and at the boundaries

of rush hours) its prediction accuracy degrades significantly.

On the other hand, HAM uses past observations to predict

future traffic conditions. While HAM yields better prediction

for long-term, it is not ideal for short-term predictions.

Therefore, the main idea behind our hybrid approach is to

distinguish the circumstances when a specific approach is

better. Towards that end we train a decision-tree model that

selects between ARIMA and HAM to forecast the speed at

individual time stamps. In this model, the decision parameter

and threshold are denoted as λ and φ, respectively. For

each time stamp t, we choose between ARIMA and HAM

based on the trained value of λt. If λt ≤ φ, we choose

ARIMA, otherwise, we choose HAM. The value of λt

is calculated based on the rate of overall prediction error

between HAM and ARIMA at t. The detailed approach is

described in Algorithm 1, given the entire training dataset

{v(j)} (j=1...t), together with the value of d and w.

In Line 1 of Algorithm 1, we initialize dataset S with

all the historical data observed on day w, at time d. For

example, if w = Mon and d = 8:00AM, the set of S refers

to all the traffic speed readings on Mondays at 8:00AM

within the training dataset. In Line 4-9, we utilize ARIMA

and HAM to predict speed reading vi in S and compute



Algorithm 1 Get λ({v(j)}, d, w)

Output: λ

1: Let S = {V ({v(j)}, d, w)}
2: Let ErrARIMA = 0; ErrHAM = 0
3: Initialize ARIMA model with training dataset {v(j)}
4: vHAM= Average(V{d,w});

5: for all vi ∈ S do

6: vARIMA = ARIMA(i);

7: ErrARIMA = ErrARIMA+ RMSE(vi, vARIMA);

8: ErrHAM = ErrHAM+ RMSE(vi, vHAM);

9: end for

10: λ = ErrARIMA / (ErrARIMA+ErrHAM)

11: Return λ.

their prediction error. In Line 10, λ is calculated as the

ratio of the prediction error from ARIMA versus the sum

of prediction errors from two approaches. Based on the

calculation strategy of λ in Algorithm 1, we observe that

if λ <0.5, the total prediction error from ARIMA is less

than that of HAM, which means ARIMA is better for this

particular time stamp (i.e., time d on day w). Otherwise,

HAM is better. Thereby, we set threshold φ as 0.5.

To further explain the robustness of H-ARIMA, we

present the training results for λ in the following two main

cases.

First, we study the effect of d on λ. Figure 3 shows the

effect of d with respect to the average λ from all sensors

for two different prediction horizons: h=1 and h=6. Here,

the day parameter w is fixed as Wed. Figure 3(a) indicates

that in short-term prediction (i.e., h=1), the ARIMA yields

better performance, because most average λ values are less

than 0.5. Figure 3(b) shows that when h=6, there are more

time instances with λ > 0.5. This indicates that HAM

starts to provide better prediction accuracy in the long term

(Hypothesis 1). In addition, both charts in Figure 3 show that

during the morning and afternoon rush hours (i.e., 6:00AM

to 9:00AM, 4:00PM to 7:00PM), the accuracy of HAM is

not as good as compared to non-rush hours, reflecting that

the average λ declines during the rush-hour interval. One

possible explanation is that during rush hours, the impact

of the unexpected events (e.g., accident) is more significant

than that of non-rush hours. Since the effects of traffic

accidents are offset by averaging the entire history, HAM

cannot capture such effects. We will address this problem in

Section V.

Second, based on the Hypothesis 2, we plan to examine

behaviour of λ at the boundaries of rush hours, thereby we

focus on the values of λ for a particular sensor. In Figure

4(a), we plot individual λ value for a single sensor over

all daily time stamps(d). To analyze the behavior of λ over

time, the historical average speed sequence is also plotted

in Figure 4(b). Here, the prediction horizon is fixed to h=1,
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Figure 4. Effects of rush-hour boundaries over λ

In Figure 4(a), there are three time instances where

λ > 0.5 (i.e., 6:35AM, 8:55AM and 4:35PM). As shown

in Figure 4(b), those three time instances are exactly at the

boundaries of rush hours. As indicated in Observation 2,

at beginning and ending of the rush hours, HAM model

outperforms ARIMA, even though the prediction horizon is

only 1.

V. EVENT IMPACT ANALYSIS

Traffic events include non-recurring incidents (e.g., acci-

dent, vehicle breakdown, and unscheduled road construction)

which result in traffic congestion or disruption. In addition,

we can consider social events such as a music concert at

LA Live or Lakers basketball game at Staples Center. In

this section, we study the effect of events on traffic con-

gestions, especially in upstream direction. In particular, we

incorporate event information in to H-ARIMA to enhance

the prediction accuracy of our model. Towards this end,

we exploit our historical event reports and the associated

traffic speed nearby at the time of the events to model the

correlation between event attributes and traffic congestion.



Note that even though our model is built offline by using the

past data, we use it online for better traffic prediction. That

is, in real-time using the current event reports as input, we

match the event’s attributes to find similar events happened

in the past to predict speed delays and backlogs, caused by

the current event.
As discussed in Section III, HAM can hardly react to

unexpected traffic events as it eliminates the influence of

events by averaging historical observations. ARIMA, due to

its delayed reaction, is not an ideal method to use in the

case of events which cause sudden changes in the time-

series data. To illustrate the prediction accuracy of ARIMA

and HAM in the presence of an event, consider Figure 5

that shows the speed prediction of both techniques for a

traffic accident that happened on freeway CA-91 at 10:53AM

Dec. 5th, 2011 with prediction horizon h =6. As shown, the

prediction accuracy of both techniques are significantly low

as compared with the actual speed.
Hence, we discuss our Event Impact Area (EIA) model

that addresses traffic prediction problem in the presence of

events.
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Figure 5. Impact of an accident on ARIMA and HAM

A. Event Impact Area Model

With our approach we assume that event data is an input

to our algorithm and includes but not limited to the following

meta-data: 1) event date, 2) event start-time, 3) event location

(i.e., latitude, longitude), 4) event type (e.g., traffic collision,

road construction), 5) type of vehicles involved if incident

is an accident, 6) number of affected lanes. In addition, we

introduce a parameter, namely impact post-mile, to represent

the spatial upstream span of an event.
Definition 3: Impact post-mile is the distance between the

location of an event and its last influenced sensor on the

opposite direction of vehicle flow, as shown in Figure 6.

Impact Post Mile

Vehicle Flow Direction

Traffic

Accident

Influenced sensor

Non-influenced

sensor

Figure 6. Definition of event impact post-mile

The influenced sensors are the sensors whose speed read-

ing show an anomalous decline compared with the historical

average speed2.

2We detect the anomalous decline using the traffic event detection
algorithm proposed in [13].

Table I
AVERAGE IMPACT POST-MILE ON EVENT META-ATTRIBUTES

(a) Traffic collision event, affected lanes = 0

Location D S0,4 S4,8 S8,12 S12,16 S16,20 S20,24

I-405 N 2.07 2.93 3.68 2.92 3.33 1.51
I-405 S 0.14 3.37 2.61 3.63 4.37 2.03
I-5 N 0.10 3.32 4.12 4.45 5.51 2.56
I-5 S 1.17 3.66 3.41 2.43 3.73 1.34

(b) Traffic collision event, affected lanes = 1

Location D S0,4 S4,8 S8,12 S12,16 S16,20 S20,24

I-405 N N/A N/A 4.74 3.57 3.52 0.46
I-405 S N/A N/A N/A N/A 4.78 1.75
I-5 N N/A N/A 2.02 N/A 6.11 N/A
I-5 S 0.10 N/A N/A N/A N/A N/A

(c) Road construction event, affected lanes = 1

Location D S0,4 S4,8 S8,12 S12,16 S16,20 S20,24

I-405 N 0.96 N/A 9.35 5.02 N/A 1.25
I-405 S 1.73 N/A N/A N/A N/A 0.19
I-5 N N/A N/A 4.70 5.80 5.70 6.50
I-5 S N/A N/A N/A N/A N/A N/A

Based on our analysis of real-world data, we observe

that impact post-mile varies across events with different

attributes. Let us consider one of the attributes ”start time”

as an example. The impact post-mile of events that hap-

pen during day-time may be large compared with events

happening at midnight, due to higher traffic flow during

the day-time. Thereby, the key to investigate the correla-

tion between event attributes and impact post-mile is to

decide which attributes are correlated with impact post-

mile. It is likely that some event attributes are irrelevant

or redundant for inferring impact post-mile. In order to

identify the most correlated subset, we first process the

event attributes as normalized features and impact post-

mile as numerical classes, and then apply the Correlation

based Feature Selection (CFS) algorithm[8] on top of this

normalized data to select correlated features. From the result

obtained from this procedure, we observe that the following

event attributes are the most relevant:{Start time, Location,

Direction, Type, Affected Lanes}. We use the selected at-

tributes to classify the impact post-mile values, and utilize

the average value of each class to represent the impact of

an event with corresponding attributes. Table I shows some

selected classification results where the impact post-mile

under different Start-time is aggregated into 4-hour interval

denoted as Sstart-hour,end-hour and ”N/A” means that there is

no such event happening with the attributes specified in our

experimental dataset3. The dataset used to train this model

includes the events happened in weekdays, when rush-hour

is considered as 6:00AM to 9:00AM and 4:00PM to 7:00PM.

From the results shown in Table I, we make the following

observations.

• First, from Table I(a), we observe that for the events

3The number of affected lanes equals zero indicates that no lanes are
blocked as the involved vehicles moved to the shoulder of the road after
the accident.



happening during rush hours, the impact post-mile is

larger than that of non-rush hours. This is expected

because when an accident happens during rush hours

on a high occupancy road, the impact of that event is

more severe than on roads without traffic.

• Second, comparing Table I(a) and I(b), we infer that for

the events happening at similar time, same location, the

impact post-mile is generally larger when the number

of affected lanes is more. Obviously, since the affected

number of lanes reflects the number of lanes which

are blocked by the events, the more lanes blocked,

the slower the traffic flow. However, for accidents that

occur at midnight, since the traffic is free-flow at that

time, the higher number of affected lanes does not

necessarily indicate longer impact post-mile.

• Third, in Table I(c), we observe that for the road con-

struction events, if they happen at day time, especially

at rush hours, their impact on traffic is severe, some-

times exceptionally larger than that of traffic collisions

happening at the same time. On the other hand, if they

happen at night, their impact is not that significant.

B. Event Impact Prediction

In addition to impact post-mile, the speed change (speed-

impact) caused by events is also very important for traffic

prediction. To estimate the speed-impact, we introduce two

factors: influenced speed decrease (∆v) and influenced time

shift (∆t). We estimate ∆v based on the correlated attributes

(similar to impact post-mile).

Definition 4: For sensor i, its influence speed decrease

∆vi for event e is defined as the average speed changes for

all events that share the same correlated attributes (i.e., Start-

time, Location, Direction, Type and Affected Lanes) with e,

and affected sensor i in the past.

Once we find the influenced speed decrease, the next

step is to determine the exact time stamps we need to

apply the change on sensors. When an event occurs, the

sensors located at different locations might be influenced at

different time stamps. Therefore, we propose the concept of

influenced time shift (∆t) to estimate the period of time that

a sensor will be affected after an event.

Definition 5: For sensor i, its influenced time shift (∆ti)

for event e is defined as the distance between the sensor i

and event e divided by the average traffic speed between

them, which can be represented as follows:

∆ti(e) =
dist(i, e)

avg({vj})
where p(i) ≤ p(j) ≤ p(e) (3)

where p(i) refers to the post-mile of sensor i. The set of

{vj} refers to all the speed readings presented at the sensors

located between sensor i and event e.

Below we summarize our procedure to predict traffic in

case of events:

Table II
DATASET DESCRIPTION

duration Nov. 1st - Dec. 7th, 2011

Sensor Data

# of sensors 2028
spatial span 3420 miles
sensor sampling rate 1 reading per 30 secs
temporal aggregation interval 5 mins
spatial resolution 1 sensor

Event Data
# of events 3255
# of event attributes 43

1) When an event e occurs at time t, all the relevant event

features(i.e., {Start-time,Location, Direction, Type, Af-

fected Lanes}) are incorporated in the EIA model to

determine the impact post-mile of e.

2) Using the impact post-mile and the location of e, the

set of all influenced sensors are identified as set {si}.

3) For each sensor si, during [t+∆ti(e), t+∆ti(e)+h], the

predicted value is calculated as (vi(t) −∆vi), where

h is the prediction horizon.

4) After time t+∆ti(e)+h, ARIMA is used to predict the

rest until the event e is cleared.

VI. PERFORMANCES EVALUATION

A. Experimental Setup

1) Traffic Dataset: In our research center, we maintain

a very large-scale and high resolution (both spatial and

temporal) traffic loop detector dataset collected from entire

LA County highways and arterial streets. We also collect

and store traffic event data from City of Los Angeles De-

partment of Transportation and California Highway Patrol.

The detailed description of this dataset is shown in Table II.

2) Baseline Approaches:

• ARIMA: We implement ARIMA [3] starting with sta-

tionary verification, followed by the iterations of 1 to

10 for Auto Regressive model and 1 to 10 for Moving

Average model to reach the best combination under

Bayesian information criteria [18]. We use the trained

model for one-step (h = 1) forecasting. When h > 1
(i.e., long-term forecasting), we iterate the prediction

procedure for h times by using predicted value as

previously observed value.

• ES: We implement Exponential Smoothing(ES) method

as a special case of ARIMA model, with the order

auto-regressive model set to zero, and the order moving

average model set to 2.

• NNet: We implement Neural Network (NNet) model

as multilayer perceptron (MLP). The architecture of

MLP is as follows: 10 neurons in the input layer, single

hidden layer with 4 neurons and h output neuron, where

h refers to the prediction horizon. For example, in one-

step forecasting, there is 1 output neuron. The input

neurons include {v(k), k = t − 9, ..., t}, while the

output neuron is {v(t+1)...v(t+h)}, where t represents

the current time. Tangent sigmoid function and linear

transfer function are used for activation function in the



hidden layer and output layer, respectively. This model

is trained using back-propagation algorithm over the

training dataset.

3) Fitness Measurements: We use mean absolute percent

error (MAPE) and root mean square error (RMSE) to

quantify the accuracy of traffic prediction.

MAPE = ( 1
N

N∑
i=1

|yi−ŷi|
yi

)× 100

RMSE =

√
1
N

N∑
i=1

(yi − ŷi)
2

(4)

where yi and ŷi represent actual and predicted traffic speed

respectively, and n represents the number of predictions.

B. Predictions Without Event Information

In this set of experiments, we use the traffic dataset

collected from Nov. 1 to Nov. 30 as the training set. The

dataset from Dec. 1 to Dec. 7 is used as testing set.

1) Short-term Prediction: In this experiment, we evaluate

the short-term prediction (i.e., h = 1) accuracy of H-ARIMA

with respect to baseline approaches. Figure 7 plots the

average one-step prediction accuracy over all sensors on a

weekday, 7(a) and 7(b) correspond to rush hour time interval

and non-rush hour time interval, respectively. As shown, the

accuracy of all prediction approaches during rush hour are

lower than that of non-rush hours.

2

2.5

3

3.5

4

4.5

R
M

S
E

 (
m

p
h

)

t

ES ARIMA NNet H-ARIMA

(a) Rush hour

2

2.5

3

3.5

4

4.5

R
M

S
E

 (
m

p
h

)

t

ES ARIMA NNet H-ARIMA

(b) Non-rush hour

Figure 7. Overall RMSE (h=1)

Though H-ARIMA outperforms baseline approaches in

general, it does not show clear advantages over them ac-

cording to the aggregated results (over 2028 sensors). How-

ever, shown with the following experiment, H-ARIMA does

have significantly better prediction accuracy than baseline

approaches in the boundaries of rush hours. Figure 8 and

9 show the actual speed and MAPE of the prediction

on two different road segments of I-5 and I-10. In 8(a),

we observe that there is a sudden speed decrease around

14:00. Consequently, as shown in 8(b) at 14:15, we observe

a significant increase in the prediction error of baseline

approaches. This is because the baseline approaches cannot

detect the sudden speed decrease in advance. On the other

hand, H-ARIMA can estimate the beginning of congestion

from historical pattern and yields better prediction by im-

proving the baseline approaches up to 67.0% (at 14:15).

Similarly, as shown in Figure 9(a) and Figure 9(b), the

morning rush hour of I-10 starts around 7:00AM and H-

ARIMA outperforms baseline approaches up to 61% (at

7:25AM). We note that this set of experiments focus on one-

step forecasting where the baseline approaches can adjust

themselves by utilizing the decreased speed, thereby their

prediction accuracy recovers shortly.
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Figure 8. Case study on I-5 S. segment from Downtown
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Figure 9. Case study on I-10 W. segment to West-LA

2) Long-term Prediction: In this set of experiments, we

compare the prediction accuracy of H-ARIMA with baseline

approaches for h > 1. Figure 10 plots the average six-

step (i.e. h = 6) prediction accuracy over all sensors on a

same weekday. Figure 10 shows that when prediction hori-

zon increases, the prediction errors of baseline approaches

increase, especially during rush hours (see Figure 10(a)).

In Figure 10(a), we observe that H-ARIMA yields better

prediction accuracy than that of baseline approaches. Similar

to one-step prediction, in the next set of experiment we

present the performance of H-ARIMA based on a road

segment with rush hour congestion.
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Figure 10. Overall RMSE (h=6)

Figure 11 illustrates the actual speed and MAPE of the

prediction on road segments of I-10. As shown in Figure

11(a), around 7:00AM, the speed decreases from 65 mph

to 5 mph within a very short time. The baseline approaches

can only sense this change with 30 minutes delay, and hence

their MAPE is considerably high (see Figure 11(b)). On

the other hand, H-ARIMA utilizes the historical congestion

information to predict the traffic and hence its MAPE is

fairly low as compared to baseline approaches. In particular,

H-ARIMA improves the best baseline approach 78% (at

7:10AM).
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Figure 11. Case study on I-10 E. segment to Downtown

Table III
RELEVANT EVENT ATTRIBUTES

Event ID Start time No. of Affected Lanes Dist(e,s)

350 06:31 0 0.58
2116 16:06 0 0.10
2621 18:26 0 0.11

C. Predictions with Event Information

In this set of experiments, we evaluate the prediction accu-

racy of our proposed approach in the case of events, dubbed

H-ARIMA+ (see Section V). We compare H-ARIMA+ with

H-ARIMA, and the best baseline approach in multi-step

prediction (i.e., NNet). We set the prediction horizon of all

approaches to 6, which indicates that our algorithm is set to

predict speed information 30-minute in advance.

Figure 12 shows the result for a sample sensor located on

east bound of CA-91 affected by three traffic collision events

on Dec. 7, 2011. Figure 12(a) illustrates the actual speed on

that day and the historical average (for that weekday) of

the selected sensor. The historical average indicates that the

rush hour intervals for this sensor are [7:00AM-8:00AM],

and [3:00PM-7:00PM]. Figure 12(b) plots the prediction

error for H-ARIMA+, H-ARIMA, NNet correspondingly.

Table III shows the relevant attributes for each event, where

Dist(e,s) refers to the distance between the sensor and corre-

sponding event location. The number of affected lanes equals

zero indicates that no lanes are blocked as the involved

vehicles moved to the shoulder of the road after the accident.

As shown in Figure 12(a), the first two events (i.e., Event

350 and Event 2116) happened at the beginning of morning

and afternoon rush hours, and the last event (i.e., Event

2621) happened near the end of the afternoon rush hour.

As illustrated in Figure 12(b), the prediction accuracy of H-

ARIMA+ improves the prediction accuracy of H-ARIMA,

NNet by up to 45% and 67%, respectively. We observe that

though H-ARIMA can capture the sudden speed changes at

rush hours, it cannot predict traffic in case of events. This is

because the effect of traffic events are smoothed in historical

averages.

We also study the effect of road construction events on

our prediction model. Figure 13 shows the effect of a 6-

hour long road construction event which happened in I-405

on a specific sensor. There is one lane affected by this event

and the distance between this event and the selected sensor

is 0.23 mile. As shown in Figure 13(a), the traffic speed

deviates sharply especially in the first hour of the event.
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Figure 12. Case study on traffic collision events

Similar to traffic collision events, since ARIMA cannot han-

dle sudden speed changes, and HAM cannot react to traffic

dynamics such as events, the prediction accuracy of H-

ARIMA (which selects between ARIMA and HAM) is very

low at the beginning half an hour. However, H-ARIMA+

utilizes the event information, and yields significantly better

prediction at the beginning of this event by improving H-

ARIMA and NNet by up to 91% (see Figure 13(b)).
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Figure 13. Case study on a road construction event

We summarize our findings in Table IV showing the

overall precision of predictions on all sensors aggregated

through all time stamps in terms of RMSE. As shown,

H-ARIMA outperforms the baseline approaches in both

prediction horizons. Moreover, when h=6 (i.e. 30 mins in

advance prediction), H-ARIMA+ improves the accuracy of

H-ARIMA by incorporating event information.

VII. CONCLUSION

In this paper we study a traffic prediction technique that

uses real-world spatiotemporal traffic sensor data on road

networks. We show that the traditional prediction approaches



Table IV
RMSE OF ALL SENSOR PREDICTION ON WEEKDAYS

ES ARIMA NNet H-ARIMA H-ARIMA+

h=1 3.389 3.235 3.315 3.208 N/A
h=6 5.518 4.545 4.154 4.079 3.937

that treat traffic data streams as generic time series fail to

forecast traffic during traffic peak hours and in the case

of events such as accidents and road constructions. Our

proposed algorithm significantly improves the prediction ac-

curacy of existing approaches by incorporating the historical

traffic data into the prediction model as well as correlating

the event attributes with traffic congestion. In this paper, we

studied the prediction problem for each sensor individually.

In future, we plan to consider the spatial correlations be-

tween sensors to improve the prediction accuracy.
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