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Utilizing Response Times in
Computerized Classification
Testing

Haskell Sie1, Matthew D. Finkelman2, Barth Riley3,
and Niels Smits4

Abstract

A well-known approach in computerized mastery testing is to combine the Sequential
Probability Ratio Test (SPRT) stopping rule with item selection to maximize Fisher information
at the mastery threshold. This article proposes a new approach in which a time limit is defined
for the test and examinees’ response times are considered in both item selection and test ter-
mination. Item selection is performed by maximizing Fisher information per time unit, rather
than Fisher information itself. The test is terminated once the SPRT makes a classification deci-
sion, the time limit is exceeded, or there is no remaining item that has a high enough probability
of being answered before the time limit. In a simulation study, the new procedure showed a
substantial reduction in average testing time while slightly improving classification accuracy com-
pared with the original method. In addition, the new procedure reduced the percentage of
examinees who exceeded the time limit.

Keywords

item response theory, Computerized Classification Testing, response time, lognormal model,
Sequential Probability Ratio Test

Introduction

In Computerized Classification Testing (CCT), examinees are classified into one of multiple

proficiency groups based on their responses to test items. These item responses serve as an indi-

cator of where the examinees’ abilities are on the latent trait continuum relative to the mastery

thresholds of the test. CCT allows the number of test items to differ for each examinee: unless

there is a requirement that the same number of items be given to all examinees, the test for any

particular examinee can be terminated as soon as there is enough evidence to make a
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classification decision. In the particular context of CCT with only one mastery threshold uc and

two proficiency groups (which will be the focus of this article), the test can be terminated and

the examinee passes (or fails) the test if evidence collected based on test responses indicates

that his or her latent ability is above (or below) the threshold for mastery.

In any implementation of CCT, the item selection method and stopping rule play a vital role.

Selection of test items is commonly done based on the maximum Fisher information principle.

Two variations of this framework exist in CCT: choosing items maximizing information at an

interim estimate of the examinee’s ability and choosing items maximizing information at the

mastery threshold. Regarding the choice of a stopping criterion, the Sequential Probability Ratio

Test (SPRT) has received much attention in the literature (Spray, 1993; Thompson, 2011; Wald,

1947; Weissman, 2007). This stopping rule stems from Wald’s (1947) treatise on sequential

analysis, in which the author proposed that inferences be based on a likelihood ratio (LR) statis-

tic that is updated after each observation is obtained. With the SPRT used as the stopping criter-

ion in CCT, Spray and Reckase (1994) compared the performance of an item selection method

that maximizes information at the mastery threshold and one that maximizes information at the

examinee’s true ability. It was found that the former outperformed the latter in terms of Average

Test Length (ATL). While item selection maximizing information at the examinee’s most recent

ability estimate was not used in their study, Spray and Reckase argued that the ATL of said

method is expected to be even longer than that obtained when the examinee’s true ability is

used.

More recent advances in computerized testing have utilized data on the amount of time that

each examinee spends on each test item. Such response time (RT) data provide an additional

useful piece of information regarding the test-takers as well as the test items (van der Linden,

2008). Ample applications of RT modeling have been discussed in the literature. Their applica-

tions in the framework of computerized adaptive testing (CAT) include detection of aberrant

responses (van der Linden & van Krimpen-Stoop, 2003), detection of advanced item knowledge

(Meijer & Sotaridona, 2006), control of speededness (van der Linden, 2009; van der Linden,

Scrams, & Schnipke, 1999; van der Linden & Xiong, 2013), and improvement of item selection

rules (Fan, Wang, Chang, & Douglas, 2012; van der Linden, 2008). In particular, the study by

Fan et al. (2012) showed that by taking into account examinees’ expected RTs when choosing

test items, the average time needed by examinees to complete the test can be substantially

reduced, albeit with a small loss in estimation accuracy. The study, however, did not assess per-

formance of the proposed item selection method in the context of CCT.

The current research aims at extending the work of Fan et al. (2012) by developing a CCT

procedure that is suited to tests with time restrictions. The procedure includes both an item

selection method and a stopping rule that take the element of time into consideration. The goal

of taking RTs into account when choosing test items is to produce a shorter testing time while

maintaining high classification accuracy. Reducing the testing time (as opposed to focusing on

reducing the number of items administered) is desirable in many applications of CCT. For

example, in low-stakes educational tests used for diagnostic purposes, or in health and psycho-

logical assessments, tests that consist of more items with shorter total duration may be prefer-

able to tests that have fewer items but require more total time. Longer test duration might lead

to test-takers becoming less focused or less motivated to answer the items.

In addition to producing a shorter testing time, it is important to take into account the fact

that many tests have a specified time limit, the surpassing of which is undesirable. When such

a time limit has been reached, the assessment can either be halted immediately (in which case

the final item is not completed), or the examinee may be allowed to finish the final item before

examination is ceased. In some testing applications (e.g., low-stakes diagnostic assessments),

the latter rule may be preferable so that the examinee is allowed to complete all items that have
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been presented to him or her. In this case, it is acceptable for some examinees to exceed the

given time limit, as long as a specified percentage of examinees do not exceed it. Motivated by

the need of a stopping rule that takes into account the time limit for the CCT, a modification to

the SPRT that will control the percentage of examinees who fall within the desired time limit is

proposed. In what follows, the modified stopping rule is referred to as the ‘‘time-limited SPRT

stopping rule.’’

The remainder of the article is organized as follows. The next section briefly reviews com-

monly used item response theory (IRT) and RT models, as well as the SPRT. Following that,

the two item selection methods as well as the time-limited SPRT stopping rule used in this arti-

cle are explained. Simulation results are then presented, followed by concluding remarks and

directions for future work.

Theoretical Background

Models for Test Responses and RT

To conduct CCT, it is necessary to formalize the relationship between the latent trait being

measured (which is often referred to as ‘‘ability’’ in educational assessments) and the item

responses. When items are dichotomous, such a relationship is commonly characterized via the

three-parameter logistic (3PL) model (Birnbaum, 1968). Defining Ui as a Bernoulli random

variable that takes the value 1 if item i is answered correctly and 0 otherwise, the probability of

an examinee with ability u answering item i correctly is given by,

Pi uð Þ[P Ui = 1juð Þ= ci +
1� ci

1 + exp �ai u� bið Þf g , ð1Þ

where ai is the discrimination parameter, bi is the difficulty parameter, and ci is the guessing

parameter of item i.

Using the model in Equation 1, the likelihood function upon observing an examinee’s

response to item i is given by

L uijuð Þ= Pi uð Þf gui Qi uð Þf g1�ui , ð2Þ

where Qi(u) = 1� Pi(u) and a lowercase ui is used to denote a realization of the random variable

Ui. The likelihood function upon observing the responses to n test items is,

Ln[L u1, . . . , unjuð Þ=
Yn

i = 1

L uijuð Þ=
Yn

i = 1

Pi uð Þf gui Qi uð Þf g1�ui , ð3Þ

which is a consequence of the assumption that all test responses are independent given u (i.e.,

the local independence assumption).

The likelihood function in Equation 2 can be used to define the Fisher information for item i

as,

FIi uð Þ= �E
∂2

∂u2
log L Uijuð Þf g

� �
=

Qi uð Þ Pi uð Þ � cif g2

Pi uð Þ 1� cið Þ2
a2

i , ð4Þ

and similarly, the Fisher information of a test of n items can be derived from Equation 3 as,
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FI nð Þ uð Þ= �E
∂2

∂u2
log Lnf g

� �
=
Xn

i = 1

FIi uð Þ: ð5Þ

As mentioned earlier, the use of computers in administering tests provides not only data

from examinees’ test responses but also their RT. In this article, the lognormal model of van

der Linden (2006) is adopted in modeling RT data. For an examinee who works at a constant

speed t, the time Ti spent on answering item i is a random variable with probability density

function given by,

f tið Þ[fTi
tijtð Þ= ai

ti
ffiffiffiffiffiffi
2p
p exp �a2

i

2
ln ti � bi � tð Þf g2

� �
, ð6Þ

where ai is the discrimination parameter of item i with respect to speed, bi is the time-intensity para-

meter of item i, and a lowercase ti is used to denote a realization of the random variable Ti. As ai is

inversely proportional to the standard deviation of the RT distribution, a larger value means that the

person’s RT to item i would be less dispersed, if replications were possible. The parameter bi affects

the mean of the RT distribution: The larger the bi, the larger the amount of time an examinee will

spend on item i, on average. Bayesian estimation of all model parameters in Equation 6 can be per-

formed with Markov Chain Monte Carlo (MCMC) as in van der Linden (2007).

If it is of interest to model the correlation between examinee ability (u) and speed (t) in the

population, the more complete modeling framework as in van der Linden (2007) can be used.

This hierarchical framework uses the models in Equations 1 and 6 for test responses and RTs,

respectively. In addition, it specifies that the vector j =
u

t

� �
of person parameters has the

bivariate normal joint distribution, denoted N2; that is,

j;N2 m, Sð Þ, ð7Þ

where the mean vector,

m =
mu

mt

� �
, ð8Þ

and the covariance matrix,

S =
s2

u sut

sut s2
t

� �
: ð9Þ

To obtain identifiability, further constraints need to be imposed on the model, for example,

by setting mu = 0, s2
u = 1, and mt = 0. Hereafter, it will be assumed that sut, s2

t , and all item para-

meters have been estimated with enough precision to be treated as known constants.

The SPRT

To achieve the goal of making efficient classification decisions in CCT, a statistical hypothesis

testing problem of the form H0 : u\uc versus H1 : u � uc is first formulated. If the null hypoth-

esis is rejected, evidence is available based on the examinee’s test responses that his or her abil-

ity is at or beyond the mastery threshold of the test and thus that he or she should pass the test.

In the psychometric literature, the above testing problem is usually modified to the problem of

testing H0 : u � u� versus H1 : u � uþ, where u�, uþð Þ is a small neighborhood around uc,
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called the indifference region. A typical width for the indifference region is usually about 0.4

points on the ability scale; that is, a width of 0.2 in each direction (Eggen, 1999). For examinees

with abilities inside the indifference region, it is assumed that the test administrator is indifferent

as to which proficiency group they are eventually assigned to; their abilities are sufficiently

close to the mastery threshold that neither classification decision is considered a mistake.

Furthermore, to test the above modified composite hypotheses subject to error constraints,

Pu reject H0ð Þ � a for u � u�, ð10Þ

and

Pu not reject H0ð Þ � b for u � uþ, ð11Þ

surrogate hypotheses of the form,

H0 : u = u� versus H1 : u = uþ, ð12Þ

are usually used. Here, a = Pu� reject H0ð Þ denotes the Type I error probability (i.e., the prob-

ability of incorrectly stating that the examinee has mastered the test when he or she has not) and

b = Puþ not reject H0ð Þ denotes the Type II error probabilities (i.e., the probability of incorrectly

stating that the examinee has not mastered the test when he or she has). Note that in the notation,

a and b (the Type I and Type II error rates) are distinguished from ai and bi in Equation 6 (the

discrimination parameter with respect to speed and the time-intensity parameter) by the sub-

scripts of the latter.

For the simple hypotheses in Equation 12, the SPRT is used to determine when a classifica-

tion decision in favor of either H0 or H1 can be made, at which point, the CCT can be termi-

nated. The stopping time can be mathematically formulated as,

j= inf m � 1jlm � B or lm � Af g, ð13Þ

where inf() denotes the infimum of a set, A and B are stopping boundaries with

0\B\1\A\‘, and

lm =
L u1, . . . , umjuþð Þ
L u1, . . . , umju�ð Þ , ð14Þ

is a LR statistic computed after the mth item is answered. When stopping occurs, the null

hypothesis in Equation 12 will be rejected if lj � A, and not rejected if lj � B. The choice of

the stopping boundaries A and B is determined by the desired Type I and Type II error probabil-

ities defined earlier. Wald (1947) proposed using A = 1�b

a
and B = b

1�a
to approximately achieve

the desired a and b values. In the usual application of SPRT in CCT, a maximum number of

test items, say nmax, is used as a constraint. When a forced truncation occurs after nmax test

items are administered, the SPRT’s classification decision is that the examinee passes the test if

and only if lnmax
� C, where C, the crossing boundary at truncation, is commonly set at 1 if H0

and H1 are to be treated symmetrically (Spray & Reckase, 1996).

Using RT to Modify Item Selection Criteria in CCT

When test items are selected based on the maximum Fisher information principle, the goal is to

maximize the Fisher item information in Equation 4 in the current context of tests measuring

only a unidimensional ability. Suppose that k � 1 test items have been administered from a pool
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of N items, and that Sk�1 and Rk�1 = 1, . . . , Nf g \ SC
k�1 denote the collection of test items that

have and have not been administered, respectively (here, AC means the complement of the set

A). Then, maximizing Fisher item information at an interim ability estimate ûk�1 implies that

the kth test item is chosen according to

ik = arg max
j2Rk�1

FIj ûk�1

� �
: ð15Þ

However, maximizing Fisher item information at the mastery threshold implies that the kth

test item will be chosen according to

ik = arg max
j2Rk�1

FIj ucð Þ: ð16Þ

Recently, Fan et al. (2012) introduced a CAT item selection method that chose items having

the ‘‘maximum information per time unit.’’ Specifically, they proposed choosing the kth test

item to be

ik = arg max
j2Rk�1

FIj ûk�1

� �
E Tjjt̂k�1

� � , ð17Þ

where ûk�1 and t̂k�1 are any interim estimates of the examinee’s ability and speed parameters,

respectively, and E(Tjjt̂k�1) = exp bj � t̂k�1 + 1
2a2

j

� �
following the lognormal model in

Equation 6 for the distribution of Tj (Fan et al., 2012). Using maximum likelihood to estimate

both u and t, Fan et al. showed that estimation accuracy only differed slightly between the orig-

inal maximum information criterion in Equation 15 and that in Equation 17, but that using the

latter substantially reduced the average time needed by examinees to complete the test.

For the current study, the ‘‘maximum information per time unit’’ framework introduced by

Fan et al. (2012) is extended to the current context of CCT. It is seen in Equation 17 that the

numerator of the item selection criterion is evaluated at an interim ability estimate ûk�1, which,

for CCT, results in higher ATL than Fisher information at the mastery threshold (Spray &

Reckase, 1994). Therefore, the new item selection method combines the use of Fisher item

information at the mastery threshold and the use of expected RT, leading to the following item

selection method: Choose the kth test item to be

ik = arg max
j2Rk�1

FIj ucð Þ
E Tjjt̂k�1

� � : ð18Þ

Given that the item selection method in Equation 18 takes RT into account, it should be

coupled with a stopping rule that also considers RT. To this end, the time-limited SPRT stop-

ping rule is introduced.

Using RT to Modify the SPRT Stopping Rule in Low-Stakes CCT

In ‘‘The SPRT’’ section, the SPRT was introduced as a stopping criterion in CCT. It was men-

tioned that the SPRT is typically truncated when a certain maximum number of test items nmax

has been reached. In this section, another truncation procedure will be introduced for situations

in which there is a desired time limit tmax that is imposed on the test. To the best of the authors’

knowledge, the issue of a timed CCT has never been discussed in the literature. Nearly all of the
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literature on CCT has discussed termination procedures with regard to early stopping and/or the

use of a maximum test length that is set as a constraint. Although setting a maximum test length

seems to be the approach taken by most studies on CCT in the literature, it might not always be

the most practical approach. If testing times are not considered, an unduly high percentage of

examinees could exceed the desired time limit. This in turn would require more resources for

that particular testing window, such as availability of computer stations. In addition, for many

applications in clinical settings, it is desired that the respondent burden be minimized (Lohr,

2002). With such considerations in mind, it becomes clear that sound procedures are currently

still needed for effective administration of a timed CCT.

In a timed CCT, an automated termination procedure must be available that can be readily

invoked when the specified time limit is reached. The following modification has been proposed

to the regular SPRT: After the kth test item is administered (using one of the methods given in

Equation 15, 16, 17, or 18) and answered, define lk , A, and B as in ‘‘The SPRT’’ section, and

t�k = tmax �
Pk
i = 1

ti. Stop testing if

lk � A or lk � B, ð19Þ

if

B\lk \A and t�k � 0, ð20Þ

or if

B\lk \A, t�k.0 and Ek =˘, ð21Þ

where Ek = j 2 Rk jP Tj.t�k
� �

� g
	 


is the collection of test items that have not yet been admi-

nistered and have a probability smaller than g of requiring more time to be answered than there

is time remaining. Equation 19 is the regular ‘‘early stopping’’ condition of the SPRT: The test

is terminated when a classification decision can already be made with enough certainty based

on the specified Type I and Type II error probabilities. Equation 20 truncates the SPRT by ter-

minating the test if the time limit has been met or exceeded following the most recent item, even

though a classification decision based solely on the value of lk cannot yet be made. Equation 21

attempts to prevent the examinee from exceeding the time limit: It terminates the test if all

unused items in the pool have probability greater than a specified constant (namely, g) of requir-

ing more time than remains in the test. A similar approach to choose test items with expected

RT not exceeding the remaining time limit was used in van der Linden (2009) for CAT that

reports an estimate of examinee’s ability instead of a classification decision. It should be noted

that the stopping criteria in Equations 19 to 21 do not guarantee that no examinee will exceed

the time limit. There could be instances whereby the set Ek is not empty, but that the selected

item from Ek takes a longer time to be answered than the remaining time, a consequence of the

examinee’s RT being a random variable. However, because the percentage of examinees who

exceed the time limit depends on the value of g, this percentage can be controlled through a

judicious choice of the constant. A note has been made that when Equations 19 to 21 are used as

a stopping rule, it is desired that the test item to be administered next will not require more time

than remains. Therefore, in the item selection, the set of possible items to come from the set Ek

instead of Rk has been restricted.

In Equation 21, it is to be evaluated whether each unused item j 2 Rk is eligible to be

included in the set Ek by means of whether P(Tj.t�k ) � g. This probability can be computed
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conditioning on the previous RTs up to and including the kth item. Letting tk = t1, . . . , tkð Þ, we

have,

P Tj.t�k jtk

� �
=

ð
P Tj.t�k jt
� �

f tjtkð Þdt: ð22Þ

In Equation 22, the first term in the integrand can be evaluated using the cumulative distribu-

tion function of Tj based on the lognormal model in Equation 6, whereas the second term is the

Bayesian posterior distribution of t given by,

f tjtkð Þ;N

s�2
t mt +

Pk
i = 1

a2
i bi � ln tið Þ

s�2
t +

Pk
i = 1

a2
i

,
1

s�2
t +

Pk
i = 1

a2
i

0
BBB@

1
CCCA, ð23Þ

for a prior mean mt and a prior variance s2
t of t (van der Linden, 2008). Here and in what fol-

lows, the notation N(m, s2) is used to denote the normal distribution with mean m and variance

s2. The integral in Equation 22 can then be evaluated using any integration package in standard

statistical software. In particular, in the simulation, the integrate() function in R was used, set-

ting 24 and + 4 as the upper and lower integration bounds, respectively, which reflects the

common range of t values.

Next, the question of how to make a classification decision using the time-limited SPRT

stopping rule is addressed. If the test is terminated due to a classification decision being made

early (see Equation 19), the usual SPRT decision is employed at the occurrence of early stop-

ping; that is, the null hypothesis in Equation 12 will be rejected if lj � A, and not rejected if

lj � B. However, if the test is terminated due to a time consideration (see Equation 20 or 21),

an examinee passes the test if and only if ln� � C, where n� is the last item answered by the

examinee before the test is terminated and C is the crossing boundary at truncation.

A step-by-step guide regarding the implementation of the procedure is given in the online

appendix.

Simulation

The previous section described motivation for utilizing additional information obtained from

examinees’ RTs to modify both the maximum information item selection method and the SPRT

stopping rule in CCT. In this section, results of a simulation study are presented that illustrate

relative performance of the item selection methods in Equations 16 and 18 under the time-

limited SPRT stopping rule. In addition, these methods are compared with the standard practice

in CCT that combines the item selection method in Equation 16 and the regular SPRT.

Design

Following Fan et al. (2012), the 3PL model was used in the simulation with an item pool con-

sisting of 500 items with IRT a parameters from the U(1.0, 2.5) distribution, where U(a, b)

denotes the uniform distribution in (a, b), b parameters from N(0, 1), and c parameters from

b(2, 10). The discrimination parameters with respect to speed (i.e., a) were generated from the

U(1, 3) distribution whereas the time-intensity parameters were generated in two different

ways: (i) assuming no correlation with IRT b parameters, the b parameters were generated from

the U(3, 5) distribution (van der Linden, 2008) and (ii) assuming a 0.65 correlation with IRT b
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parameters (van der Linden et al., 1999), the b parameters were generated by sampling a sepa-

rate value from its conditional distribution given b; that is, N (mb + rbbsb=

sb(b� mb), s2
b � r2

bbs2
b, , under the assumption of a bivariate normal joint distribution for

b

b

� �
, similar to Equations 7 to 9 with u replaced by b and t replaced by b. For approach (ii),

mb = 4 and s2
b = 1=3 were used to give the same mean and variance of the b parameters as in

approach (i).

Five hundred examinees were simulated at each of 25 evenly spaced true ability values from

�3:0 to + 3:0 with an increment of 0.25. Similar to the time-intensity parameters, examinees’

speed parameters were also generated in two different ways: (i) assuming no correlation with u,

the t parameters were generated from the N(0, 0.242) distribution and (ii) assuming a 0.59 corre-

lation with u (van der Linden, 1999), the t parameters were generated by sampling a separate

value from its conditional distribution given u; that is, N (mt + rutst=su(u� mu), s2
t � r2

uts2
t ,

under the assumption of a bivariate normal joint distribution for
u

t

� �
, as in Equations 7 to 9.

For approach (ii), mt = 0 and s2
t = 0:242 were used to give the same mean and variance of the t

parameters as in approach (i). The two approaches for generating b parameters as well as t para-

meters led to four correlation structures.

Similar to Spray and Reckase (1994), three locations of the mastery threshold were used

(uc = � 1, uc = 0, and uc = 1). Regardless of location of the mastery threshold, an indifference

region of width = 0.4 was constructed (i.e., a width of 0.2 in each direction), similar to one

simulation in Eggen (1999). The three locations of the mastery threshold and four correlation

structures were crossed, leading to 12 study conditions. For the time-limited SPRT stopping

rule, tmax = 900 s was set as the time limit. In addition, both the nominal Type I and Type II

error probabilities were set at 0:05, leading to crossing boundaries A = 19 and B = 1=19. The

crossing boundary at truncation was set at C = 1, and the constant g was set at 0.05. For the reg-

ular SPRT stopping rule, the maximum number of test items to be administered before trunca-

tion was chosen such that the resulting proportion of correct decision (PCD) was as close as

possible to those from other simulations herein that used the time-limited SPRT stopping rule.

Test items were selected to either maximize information or information per time unit at the

mastery threshold following Equation 16 or 18, respectively. To avoid having to compute the

Fisher information multiple times for each item, an information matrix was constructed prior to

the simulation. This information matrix contained the Fisher information of each item at each of

the three mastery thresholds. To standardize results across methods, the same response and RT

were used whenever more than one method administered the same item to the same examinee.

This was done by constructing two matrices prior to the simulation, one containing each exami-

nee’s response to each item and another containing each examinee’s RT to each item, both ran-

domly generated according to the models in Equations 1 and 6, respectively.

Results

In what follows, the item selection method that maximizes information at the mastery threshold

(see Equation 16) will be referred as M1 and another that maximizes information per time unit

at the mastery threshold (see Equation 18) as M2. The two item selection methods are first com-

pared based on their ATL. Figure 1 displays the ATL in all study conditions by means of a 4 3

3 plot. Different columns represent different locations of the mastery threshold (uc = � 1 in the

first column, uc = 0 in the second column, and uc = 1 in the third column), whereas different
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Figure 1. ATL comparison between M1 under the regular SPRT (dotted line), M1 under the time-
limited SPRT (solid line), and M2 under the time-limited SPRT (dashed line).
Note. Different columns represent different locations of the mastery threshold (uc = � 1, 0, 1 in the first, second, and

third columns, respectively). Different rows represent different correlation structures (from the first to the fourth

row: rut = 0 and rbb = 0, rut = 0 and rbb = 0:65, rut = 0:59 and rbb = 0, rut = 0:59 and rbb = 0:65). ATL = Average Test

Length; SPRT = Sequential Probability Ratio Test.
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rows represent different correlation structures: The first row displays results when rut = 0 and

rbb = 0, the second row when rut = 0 and rbb = 0:65, the third row when rut = 0:59 and rbb = 0,

and the fourth row when rut = 0:59 and rbb = 0:65. In all of the plots, the dotted line represents

results when M1 was used with the regular SPRT stopping rule, the solid line represents results

when M1 was used with the time-limited SPRT stopping rule, and the dashed line represents

results when M2 was used with the time-limited SPRT stopping rule. For M1 coupled with the

regular SPRT stopping rule, the maximum number of administered items before truncation was

set at 25 items when uc = � 1, at 29 items when uc = 0, and 26 items when uc = 1. As mentioned

earlier, these maximum numbers of test items were chosen in order that the resulting PCDs be

as close as possible to those obtained when M1 was coupled with the time-limited SPRT stop-

ping rule.

In general, Figure 1 shows that across all 12 conditions, the test administered under M2 had a

higher ATL than tests administered under M1. When the item selection method M1 was coupled

with the time-limited SPRT stopping rule, it had a significantly lower ATL than the correspond-

ing test administered under M2 coupled with the same stopping rule, especially around the mas-

tery threshold. The standard practice in CCT that uses M1 to select test items coupled with the

regular SPRT stopping rule generally yielded ATL slightly lower than those for tests adminis-

tered using item selection method M2 coupled with the time-limited SPRT stopping rule, but

higher than those for tests with the same item selection method M1 but with the time-limited

SPRT stopping rule. This shows that, controlling for the same item selection method M1, the

time-limited SPRT stopping rule yielded lower ATL than the regular SPRT stopping rule.

It is also seen in Figure 1 that the correlation between item b and b parameters affected ATL

more than the correlation between person u and t parameters did, especially when the time-

limited SPRT stopping rule was used. With this stopping rule, similar ATL was observed for

each item selection method and for each ability level when rbb was held constant but rut varied.

When rut was held constant but rbb varied, however, the observed ATL was different at many

ability levels within a given item selection method. For example, with uc = � 1 and rut = 0,

ATL for M1 with the time-limited SPRT stopping rule ranged from 7.27 to 12.13 items when

rbb = 0, but the range was 7.61 to 21.29 items when rbb = 0:65. When coupled with the time-

limited SPRT stopping rule, the item selection method M2 generally had a higher ATL than M1.

Due to the method by which the maximum number of items was chosen, PCDs of tests that

selected items based on the method M1 coupled with the regular SPRT stopping rule matched

those of tests with the same item selection method coupled with the time-limited SPRT stop-

ping rule. Therefore, only PCDs of tests, where the time-limited SPRT stopping rule was used,

will be discussed. Results pertaining to PCD under the time-limited SPRT stopping rule are pre-

sented in Table 1 for conditions, where rut = rbb = 0. PCD results for other conditions are avail-

able in Tables 3 to 5 in the online appendix. When rut = rbb = 0, PCDs of tests administered

under M2 were generally higher than those under M1. When the mastery threshold was

uc = � 1, there were some ability levels at which the PCD of M1 was higher than that of M2,

but the difference never exceeded 1.2% regardless of the values of rut and rbb. For most ability

levels, M2 had higher PCD than M1, with a PCD advantage up to 5.4%. When the mastery

threshold was uc = 0 and rut = rbb = 0, the PCD of M1 was higher than that of M2 at only one

ability level (u = � 1:5) by 0.2%. For all other ability values and correlation structures, the

PCD of M2 was always higher than that of M1, with a difference of up to 9.6%. In addition,

the PCD of M2 was greater than or equal to that of M1 for all ability levels when uc = 1.

Depending on rut and rbb, the PCD difference between M1 and M2 ranged from 0% to 4.4%

in favor of M2.

From Table 1, the Type I and Type II error probabilities in the simulation can also be

observed. Based on the ability values used in the study, it is seen that the error rates under both
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item selection methods are higher than the nominal values only at ability points inside the indif-

ference region as well as those closest to both ends of the indifference region. At all other abil-

ity points under study, the error rates are either very close to or lower than the nominal values.

When uc = � 1, the indifference region ranges from �1.2 to �0.8. For an ability of �1.25, the

Type I error rate is higher than the nominal value (0.218 vs. 0.050) under M1. In addition, the

Type II error rate is higher than the nominal value for an ability of �0.75 (0.184 vs. 0.050).

When uc = 0, the indifference region ranges from �0.2 to + 0.2. It is seen that the Type I error

rate is higher than the nominal value for an ability of �0.25 (0.218 vs. 0.050) and that the Type

II error rate is higher than the nominal value for an ability of + 0.25 (0.160 vs. 0.050). When

uc = 1, the indifference region ranges from + 0.8 to + 1.2. For this condition, the Type I error

rate is higher than the nominal value for an ability of + 0.75 (0.180 vs. 0.050) and the Type II

error rate is higher than the nominal value for an ability of + 1.25 (0.150 vs. 0.050). These

numbers are based on the item selection method M1 but similar results were observed under

M2. Such results are expected due to the nature of the stopping rule. It is well known in the

sequential testing literature that error rates will increase if the test is truncated. In previous stud-

ies where truncation occurs after a certain number of test items has been administered, the

Type I and Type II error rates were also higher than the nominal values (Finkelman, 2008;

Thompson, 2011). In the present study, truncation occurred based on a time consideration, but

the same phenomenon of increased error rates was observed.

Table 1. PCD Under M1 and M2 With the Time-Limited SPRT Stopping Rule, Given at Various Ability
Levels When rut = rbb = 0.

Ability

uc = � 1 uc = 0 uc = 1

M1 M2 M1 M2 M1 M2

23.00 1.000 1.000 1.000 1.000 1.000 1.000
22.75 1.000 1.000 1.000 1.000 1.000 1.000
22.50 1.000 1.000 1.000 1.000 1.000 1.000
22.25 1.000 1.000 1.000 1.000 1.000 1.000
22.00 0.998 1.000 1.000 1.000 1.000 1.000
21.75 0.990 0.996 1.000 1.000 1.000 1.000
21.50 0.942 0.974 1.000 0.998 1.000 1.000
21.25 0.782 0.836 0.998 1.000 1.000 1.000
21.00 0.510 0.502 0.998 1.000 1.000 1.000
20.75 0.816 0.834 0.990 1.000 1.000 1.000
20.50 0.944 0.974 0.964 0.988 1.000 1.000
20.25 0.994 0.996 0.782 0.878 1.000 1.000

0.00 0.998 1.000 0.516 0.530 1.000 1.000
0.25 1.000 1.000 0.840 0.884 0.994 0.998
0.50 1.000 1.000 0.968 0.984 0.960 0.994
0.75 1.000 1.000 0.990 1.000 0.820 0.840
1.00 1.000 1.000 0.998 1.000 0.502 0.512
1.25 1.000 1.000 1.000 1.000 0.850 0.894
1.50 1.000 1.000 1.000 1.000 0.968 0.990
1.75 1.000 1.000 1.000 1.000 0.994 0.998
2.00 1.000 1.000 1.000 1.000 0.998 1.000
2.25 1.000 1.000 1.000 1.000 1.000 1.000
2.50 1.000 1.000 1.000 1.000 1.000 1.000
2.75 1.000 1.000 1.000 1.000 1.000 1.000
3.00 1.000 1.000 1.000 1.000 1.000 1.000

Note. PCD = proportion of correct decision; SPRT = Sequential Probability Ratio Test.
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Next, average testing time for the tests is discussed. Figure 2 indicates that in general, using

the time-limited SPRT stopping rule significantly reduced testing time from the standard prac-

tice in CCT where the regular SPRT stopping rule is used in conjunction with the item selection

method M1. With the time-limited SPRT stopping rule, modifying the item selection method

from M1 to M2 provides further reduction to testing time, especially at the two tails of the abil-

ity distributions. This was a pattern consistent regardless of the location of the mastery threshold

or the correlation structure between item parameters or person parameters. In most conditions

considered, testing time for examinees with abilities near the mastery threshold was at least

twice as long under the standard practice in CCT as when the time-limited SPRT stopping rule

was used, whether it was coupled with the item selection method M1 or M2. The results in

Figure 2 are displayed with the same arrangement as in Figure 1.

Under the time-limited SPRT stopping rule, it is seen in Figure 2 that reduction in testing

time obtained by using the item selection method M2 instead of M1 was largest when rbb = 0.

For example, when uc = � 1 and rut = rbb = 0, testing time was reduced by an average of 5.24

min across all ability levels. For the same location of mastery threshold and the same value of

rut but with rbb = 0:65, the reduction in testing time averaged at 2.11 min across all ability lev-

els. In addition, it is seen that testing time for examinees with abilities near the mastery thresh-

old was also shorter under M2 than under M1.

To illustrate the ability of the time-limited SPRT stopping rule to control the percentage of

examinees who exceed the time limit, Table 2 presents those percentages when item selection

method M1 was coupled with the regular SPRT stopping rule, when item selection method M1

was coupled with the time-limited SPRT stopping rule, as well as when item selection method

M2 was coupled with the time-limited SPRT stopping rule. For each combination of item selec-

tion method and stopping rule, results are displayed for all values of uc, rut, and rbb. Each entry

in Table 2 was calculated as a weighted average of the percentages of examinees who exceeded

the time limit within each ability level, using weights proportional to the frequency of occur-

rence of each ability level under the assumption that u;N (0, 1).

It is seen in Table 2 that across all conditions, the time-limited SPRT stopping rule was gen-

erally able to control the percentage of examinees who exceed the time limit to be below 5%,

except under item selection method M1 when uc = 1 and rbb = 0:65. In addition, the percentage

of examinees who exceeded the time limit was smaller under M2 than under M1 when both

item selection methods were coupled with the time-limited SPRT stopping rule. This is consis-

tent with the fact that tests administered under M2 required less time to be completed than

those under M1. When the regular SPRT was used as a stopping rule in conjunction with item

selection method M1, more than 40% of examinees took longer than 900 s to complete the tests

in nearly all conditions studied. For this most commonly used combination of stopping rule and

item selection method in CCT, the percentage of examinees whose testing time exceeded 900 s

was lowest when uc = � 1 with (rut, rbb) = (0, 0:65) and highest when uc = 1 with

(rut, rbb) = (0:59, 0:65), but even the lowest percentage was higher than 18%.

Summary and Discussion

One purpose of this article is to use RT modeling to improve the maximum information item

selection method commonly used in CCT. Instead of minimizing the number of administered

items, improvement is sought by shortening the duration of the test without unduly compromis-

ing classification accuracy. Previous research (Fan et al., 2012) had demonstrated the success

of the ‘‘maximum information per time unit’’ framework in reducing test duration in the con-

text of CAT, where the goal is to estimate examinees’ latent abilities. However, no previous

research had applied the framework in the context of CCT, which is commonly used in many
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Figure 2. Time comparison between M1 under the regular SPRT (dotted line), M1 under the time-
limited SPRT (solid line), and M2 under the time-limited SPRT (dashed line).
Note. Different columns represent different locations of the mastery threshold (uc = � 1, 0, 1 in the first, second, and

third columns, respectively). Different rows represent different correlation structures (from the first to the fourth

row: rut = 0 and rbb = 0, rut = 0 and rbb = 0:65, rut = 0:59 and rbb = 0, rut = 0:59 and rbb = 0:65). SPRT = Sequential

Probability Ratio Test.
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certification or licensure tests as well as health and psychological assessments. Another purpose

of this article is to use RT modeling to improve the SPRT stopping rule for CCT with a time

constraint. The proposed stopping rule attempts to control the percentage of examinees who

exceed the specified time limit for the test.

Results of the simulation study showed that taking into account the expected time spent by

an examinee on an item substantially reduced testing time regardless of the location of the mas-

tery threshold or the correlation structure between item parameters and between person para-

meters. By assessing the ATL, PCD, and average testing time, as well as the percentage of

examinees who exceed the time limit, it was seen that the current standard in CCT that com-

bines the item selection method M1 with the regular SPRT stopping rule is suboptimal from

the perspective of testing time. An item selection method that considers testing time such as

M2, coupled with a stopping rule that attempts to control the percentage of examinees who

exceed a given time limit, may substantially reduce testing time without unduly sacrificing clas-

sification accuracy. In particular, the item selection method M2 not only reduced testing time

but also generally had higher PCD than M1 when both were coupled with the time-limited

SPRT stopping rule. Because the PCD of tests under item selection method M1 and the regular

SPRT stopping rule was made as close as possible to those of tests where M1 was coupled with

the time-limited SPRT stopping rule, the previous observation in turn implies that tests admi-

nistered under the item selection method M2 coupled with the time-limited SPRT stopping rule

had higher PCD than the standard practice in CCT.

Another simulation, the results of which are not presented herein, was performed to assess

the performance of the method of Fan et al. (2012) in the current context of CCT. Noting that

choosing test items that maximize information per time unit at an interim ability estimate com-

bined with a fixed-information stopping rule is not the standard practice in CCT (nor is it

designed for that testing situation), the results showed that the method resulted in tests with

lower ATL as well as average testing time, and thus also a lower percentage of examinees who

exceed the time limit.

As mentioned in the ‘‘Introduction’’ section, the definition of an efficient test is one that cou-

ples a high PCD with a short duration, not necessarily one with a small number of items. This

makes M2 a suitable item selection method for CCT used in low-stakes educational tests or in

health and psychological assessment, where there is little concern about item exposure. In these

applications of CCT, it may be more important that the test be completed in a short period of

Table 2. Percentage of Examinees Who Exceeded a Time Limit of 900 s.

uc (rut, rbb) M1, regular SPRT M1, time-limited SPRT M2, time-limited SPRT

21 (0, 0) 48.58 4.60 1.36
21 (0, 0.65) 18.97 2.34 0.82
21 (0.59, 0) 47.07 4.23 1.44
21 (0.59, 0.65) 20.92 2.22 0.88
0 (0, 0) 48.62 4.90 1.75
0 (0, 0.65) 45.27 4.90 1.58
0 (0.59, 0) 47.79 4.79 1.67
0 (0.59, 0.65) 43.98 4.54 1.47
1 (0, 0) 45.41 3.94 1.17
1 (0, 0.65) 63.35 6.63 1.93
1 (0.59, 0) 45.65 3.28 0.88
1 (0.59, 0.65) 64.66 6.32 1.73

Note. SPRT = Sequential Probability Ratio Test.
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time, before the test-takers experience fatigue, become less focused or less motivated to com-

plete the test. Moreover, in such contexts, it is in the test-takers’ interest to find as much infor-

mation as possible about themselves and thus they have little incentive to manipulate the system

by simply waiting until the time limit is reached after correctly answering one item (after which

their LR statistic is above the mastery threshold, when using C = 1).

In this article, the authors focused on evaluating the performance of the item selection meth-

ods as well as the proposed stopping rule in CCT with only one mastery threshold and two pro-

ficiency groups. With evidence suggesting the usefulness of choosing test items that maximize

information per time unit to reduce testing time, as well as the usefulness of the stopping rule

in controlling the percentage of examinees who exceed the given time limit, a possible direction

for future research is to extend the methods to CCT with more than one mastery threshold. In

addition, performance of the methods also needs to be further investigated under different struc-

tures of item pools, with different time limits, and under the presence of test constraints such as

content balancing and item exposure control.
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