
Utilizing Symmetry when Model Checking under
Fairness Assumptions: An Automata-theoretic Approach

E. A. Emerson 1 and A. P. Sistla 2

1 Department of Computer Science, University of Texas at Austin, Austin, TX 78712 USA.
2 Department of ElectricalEngineering and Computer Science, University of Illinois at Chicago,

Chicago, IL 60680 USA.

Abstract: One useful technique for combating the state explosion problem is to
exploit symmetry [ID93, CFJ93, ES93] when performing temporal logic model checking
ICE81, CES86]. In [CFJ93] [ES93] it is shown how, using some basic notions of group
theory, symmetry may be exploited for the full range of correctness properties expressible
in the very expressive temporal logic CTL*. Surprisingly, while fairness properties are
readily expressible in CTL*, these methods are not powerful enough to admit any
amelioration of state explosion, when fairness assumptions are involved. We show that
it is nonetheless possible to handle fairness efficiently by trading some group theory for
automata theory. Our automata-theoretic approach [VW86] depends on detecting fair
paths subtly encoded in a permutation annotated quotient structure, using a threaded
structure to 'physically reflect coordinate permutations.

I Introduction

Recently there has been much interest in using various techniques to combat the state
explosion problem in the automatic verification of finite state concurrent systems [C193,
DGG93]. One valuable technique (cf. [ID93, CFJ93, ES93]) is to exploit the symmetry
inherent in systems with many similar processes or subcomponents when performing
temporal logic model checking ICE81, CES86]. In [ID93] the focus is on reasoning about
a simple but basic type of correctness, viz., safety properties expressible in the temporal
logic CTL by an assertion of the form AG-~error. The works of Clarke, Filkorn, & Jha
[CFJ93] and Emerson & Sistla [ES93] show how, using some basic notions of group
theory, symmetry may be exploited for the full range of correctness properties expressible
in the very expressive temporal logic CTL*. Surprisingly, while fairness properties are
readily expressible in C'IL*, the methods of [CFJ93] and [ES93] are not powerful enough
to admit any amelioration of state explosion, when fairness assumptions are involved.

Fairness is necessary for faithfully modeling concurrency with the usual interleaving
semantics. Here, concurrent execution of multiple sequential processes is treated as the
nondeterministic interleaving of the execution of sufficiently small atomic steps of the
individual processes. In order to reflect the basic requirement that each process should
be running at some positive but indefinite speed, fairness in its simplest form amounts to
assuming that each process is scheduled infinitely often. Much work in the literature has
been devoted to the topic of reasoning under fairness constraints (cf. [Fr86]), because of
its importance in proving liveness and progress properties.

In this paper, we will explain why fairness is unexpectedly problematic. We will
then present a solution that permits us to efficiently handle the full range of fairness
properties, including strong fairness, weak fairness, and unconditional fairness.

1 This author's research is supported in part by NSF grant CCR-9415496 and Semiconductor
Research Corporation Contract 94-DP-388.

2 This author's research is supported in part by NSF grant CCR-9212183.

310

In [CFJ93, ES93] model checking a CTL* specification f over a large structure M is

reduced to model checking f over a (usually) smaller quotient structure M. The structure
M is potentially intractably large, of size exponential in that of the underlying program

whose state graph it represents. The quotient structure M is often exponentially smaller
than M.

M is derived from (the program defining) M and f by identifying "G-symmetric"
states, where ~ is a subgroup of permutations on process indices. For example, states
(N1, C2) and (C1, N2) might be identified in a solution to the Critical section problem.
The group ~ reflects the global symmetry of M but must also respect the internal
symmetry of the specification f. The latter requirement of so respecting f is crucial but
is also the source of the problem (as explained in detail in Section 2.6).

Interestingly, our solution depends on trading some group theory for automata the-
ory. We give a new automata-theoretic method (cf. [VW86]) that offers the additional

advantage of allowing use of a single quotient structure M that depends only on M and
and that can be used with any specification f. Moreover, the dependence of M on f
in the "purely group-theoretic" approaches of [CFJ93] and [ES93] only serves to limit
the amount of compression obtained. We can now exploit all the symmetry inherent in
M, irrespective of f . An earlier automata-theoretic approach to exploit symmetry was
described in [ES93]. But that earlier method could not handle fairness efficiently.

Let �9 be a fairness constraint. The crux of our new, automata-theoretic method is
showing how to efficiently detect the existence of fair paths in the large global state

graph M, i.e., testing M, so ~ bT#, using an annotated quotient structure M defined
with respect to a group ~ that respects the symmetry of M but does not depend on

#. In the annotated M arcs are labeled by permutations indicating how the meaning

of coordinates shift as M is uncompressed to obtain M. These permutations are what

make it possible for M to succinctly encode M and yet provide enough information to
model check over M (even though M does not respect the symmetry of the specification
f or #). But they also scramble the meaning of the propositional labeling of states in
M making it difficult to check for the existence of fair paths. Nonetheless, we show

how to efficiently search M for any possible "subtly fair" strongly connected subgraphs

of M that can be unwound into strongly connected subgraphs C of M that contain
a path satisfying #. To facilitate this search process, we effectively resolve M into a

threaded structure M* which in essence physically reflects the coordinate shifts in M
caused by the permutations on arcs. When we find the appropriate "plainly fair" strongly
connected subgraphs of M* then we can conclude that M, so ~ E~. We can now check
whether M, so ~ E(4iA f) where f is a linear time formula using the automata-theoretic
approach of [ES93]. This m turn makes it possible to efficiently model check M, s ~ #
where g is a Fair Indexed CTL* formula.

This paper is organized as follows. Section 2 presents preliminaries. The main results
are described in Section 3. Some concluding remarks are given in Section 4. Technical
proofs of the main lemmas and theorems are given in the Appendix.

2 Preliminaries

2.1 Systems and Structures. Let I - [1 : n l be a set of n process indices. We have a
system ~ =//iEiKi of r~ processes Ki running in parallel, and using a set V of (local
and/or shared) variables including location counters, and other data objects. We assume
also that there is a set AP of atomic propositions, which amount to boolean variables.
Letting V' = VUAP, then a globalstate s of the system isan assignment of values (over
appropriate domains) to each variable in V'. We write s(v') for the value of variable v'
in state s.

311

We assume that all the variables u, v , . . . in V are indexed, and the indices of each
variable indicate the processes that share the variable For example, ui,' denotes a variable

�9 �9 . " , , 7 �9 ~

shared between processes ~ and 3, whereas v~ is a local vartable of process ~. In practice,
the local variables can be used to denote "location counters" of processes. For example,
in a solution to the mutual exclusion problem we may have a state of the form (C1, T2)
indicating that process 1 is in its critcal section while process 2 is in its trying region, if

The formal semantics of such a system is given by a structure M = (S, R, L, So)
where S is the set of global states, R is a (total) binary transition relation specifying
single steps of the system, L(s) = {P E A P : s(P) =true} is the labeling of each state
s with true propositions, and So is the set of initial states.

2.2 Automorphisms. Let Sym I be the set of all permutations 7r on I. S y m I forms
a group with functional composition (o) being the group operation. Our convention is
that ~rb o ~r~ is evaluated right-to-left: first apply %, then ~rb. Let Id denote the identity

permutation and 7r- 1 the inverse of ~r.
For any indexed object b, such as a state, a variable, or a formula, whose definition

depends on I, we can define the notion of permutation r acting on b, by simultaneously
replacing each occurrence of index i E I by rr(i) in b to get the result 7r(b).

For a structure M, the set of (permutations on I defining graph) automorphisms of
M, i sAu t M = {Tr E Syrn I : 7r(M) = M}.Less tersely, thismeans that 7r E Aut M
precisely when (a) the mapping 7r : S > S : s ~-4 r(s) is one-one and onto; (b)
s-->t E R iff r(s)--->Tr(t) E R; and (c)for each s, s E So iff 7r(s) E $0.

For example, in Figure 1, Aut M = {Id, Flip} where Flip is the transposition of 1
and 2. For state (C1, T2), we have Flip((C1, T2)) = (T1, C2).

Aut M forms a subgroup of Sgm 1. Let G be any subgroup of Aut M. Two states
s and t in S are G-equivalent, written s =o t iffthere exists a r E ~ such that t = 7r(s).
Since G is a group, - 0 is an equivalence relation�9

2.3 Quotients. Given structure M = (S, R, L, So) and subgroup ~ of Aut M, an

annotated quotient structure for M modulo G, M = M/F, is a structure of the form

(S, R, L, So) where

- S - is a set of designated representative states, exactly one representativeg for each
G-equivalence class Is] of states in S,

- R - is a set of triples ~ -~ ~ denoting edges between representative states annotated

with permutations from ~. To define R formally, with each state s E S, we associate
_ _ 7 r - 1

a canonical permutation 7r, such that % (s) = ~. Now, we define R = {~ 2+ t :
~-~t E R}. Intuitively, the edge ~-4t in M is represented by the annotated edge

7 r - 1

~ ,

- L(~) = L(~) for each ~ E S, and

- S0 - the set of represe_ ntatives of states in So.

The intuition is that M encodes M, often succinctly. 3 M itself maybe recovered by

"unwinding" M. (See Figure 2, the annotated quotient of Figure I .) M can be constructed
incrementally from the program text in essentially the same fashion as that discussed in
[ES93, CFJ93, ID93] for the unannotated quotient�9 4

3 ~ can have an exponentially reduced number of states and transitions than M, but it may also
have multiple edges with different permutation annotations between the same pair of nodes. This
multiplicity of edges between the same pair of nodes can be limited as follows. If the underlying
program defining M is the parallel composition of n sequential (or deterministic) processes,

I r - 1

then the maximal outdegree of each node in M is n. As each annotated edge ~ 2+ t E M is
induced by some edge~ --4 t E M, there can be at most n distinct edges in Mfrom] to L

4 The incremental algorithm needs to checkif the next generated state is equivalent to a previously

312

2.4 Temporal Logics. PLTL is the standard propositionallinear temporal logic built
up from atomic propositions, boolean connectives, and the usual linear time operators
G (always), F (sometime), X (next time), and U (until). CTL* extends PLTL by also
allowing the path quantifiers A (for all fullpaths) and E (for some fullpath) to also be
used. The basic modalities of CTL* are formulae of the form E f where f is a pure
PLTL formula. All CTL* formulae can be obtained by taking boolean combinations and
nestings of the basic modalities (e.g., AGEF P has basic modalities of the form AG and
EF). CTL is a restricted version of CTL* with basic modalities of the form: A or /? ,
followed by a single F,G, X, or U.

Indexed CTL* is built up from basic modalities of the form ViEfi and AiEfi where
fi is a PLTL formula that uses only singly indexed local atomic propositions such as
Pi for i E I and/or global propositional formulas q.S The latter are unindexed (global)
atomic propositions such as Q, or propositional formulae of the form ViPi, AiPi, Vi#jPi,j,
Ai#jPi,j. Here, Vi,/xi act as existential and universal process quantifiers ranging over all
individual process indices, Vi;~j, Ai#j range over all distinct pairs of process indess, pi is
a propositional formula involving only global atomic propositions and local propositions
of index i, and p; j is a propositional formula involving only global atomic propositions
and local propositions of index i and/or j. Formulas of Indexed CTL* are inductively
built up from the basic modalities using boolean connectives and nesting (an Indexed
CTL* formula may be substituted for a global proposition in another Indexed CTL*
formula). 6 The logic can specify that each (or some) individual processes satisfies a
local property such absence of individual starvation, and also specify many important
global properties, such as mutual exclusion, by using global propositional formulas
appropriately (see [CFJ93]).

Fair Indexed CTL* is just like Indexed CTL* but uses the path quantifiers E , and
A , where path quantification ranges only over fair paths [EL87]. Thus AiE , fi means
that, for each i E [, the CTL* formula E(#Afi) holds, where # is (expanded to be) a
fairness constraint as (specified in PLTL) below.

The formal semantics of these logics is defined in the usual way [Em90] and we
write, e.g., M, s ~ # to mean that in structure M at state s formula # holds true. Observe
that for any ~r E Auf M and any s E S, M, s ~ q iff M, zr(s) ~ q for global q, while
M, s ~ Pl iff M, 7r(s) ~ P,r(i).

2.5 Fairness. We use special local propositions, eni and exi, for each i E I. Propo-
sition eni holds in state s iff process i is enabled in s; proposition exi holds in state s iff
all transitions leading to s are due to the execution of a single step of process i. Plainly,
for any rr E Aut M, M, s ~ ezi iff M, ,r(s) ~ ez~(i), and similarly for eni.

An infinite path z of M is stronglyfair if it satisfies # = Ai= l...n (G F eni =r G F ezi),
meaning that each process that is enabled infinitely often is executed infinitely often.
Similarly a path x is weakly fair if it satisfies # = Ai=I ~(FGeni ~ GFezi)meaning
that any process that is continuously enabled is ex~uted infinitely often. A path is
unconditionally fair if it satisfies # = AI=I. ' , ,GFezi , meaning simply that each process
is executed infinitely often.

For example, Figure 1 is the global state graph of a two process solution to the
mutual exclusion problem. Each process cycles from its Noncritical to its Trying to
its Critical region and back. It is free from individual starvation under strong fairness,

generated state under the group of permutations ~. The complexity of performing this check
depends on the group ~. It is, in general, as hard as graph isomorphism [CFJ93], a problem
for which there is no known polynomial time algorithm, but which is not typically viewed
as intractable in practice. Moreover, for many commonly occurring 0 associated with real
systems such as full symmetry or rotational symmetry, it can be done very simply and efficiently
[ES93, CFJ93, ID93].

5 We assume fi, fj, etc. are isomorphic up to reindexing.
This formulation of Indexed CTL* is slightly different from ICTL* in [CGB89].

313

satisfying, e.g., AiA, (G(7~ ~ FCi)); but not under pure nondeterministic scheduling,
i.e., violating AiA(G(Ti ~ FCi)). Mutual exclusion is maintained, so it also satisfies
AiA~G(Ai#,i ",(CiACj)).

2.6 Background. In [ES93] and [CFJ93] it is shown that

(*) M, So ~ f aft M, ~o ~ f

where f is any CTL* formula and M is the (unannotated) quotient M/G - provided

is a subgroup of Aut M f3 Auto f , where Auto f is the group of permutations 7 that
leave semantically invariant all maximal propositional subformulas of f . For example,
if I = [1:4] and f = E(GFexlAGFez~), then Auto f consists of those permutations
that leave fixed both 1 and 2.

If we consider f = E4~ = E(GFexlA . . .AGFexn) where I = [1 : n], then
Auto f is the set of permutations leaving invariant each of e x l , . . . , ex~. The only such

permutation is the identity ld. Hence, Auto f = ~ = {Id}, and M = M. Thus, no

compression is possible under fairness. Since the uncompressed M = M is in general
of size exponential in n, the "purely group-theoretic" methods of [CFJ931 and [ES931
are not adequate for dealing with fairness.

3 Checking Correctness under Fairness Assumptions

In this section we give efficient algorithms for model checking formulas of Fair Indexed
CTL* under strong fairness assumption �9 = Ai=l...n(GFeni ~ GFezi). This also
permits us to handle unconditional and weak fairness since they are special cases of
strong fairness [EL87].

The crucial step in the model checking problem is to handle the basic modalities
[EL87]. We will describe in detail how to handle Vi E~fi and AiEafi. By the following
lemma, it is therefore enough to check satisfaction of such basic modalities at represen-
tative states. The proof of the lemma depends on the "top-level" symmetry inherent in
Fair Indexed CTL* formulas due to the process quantifiers.

Lemma 3.1. Two (~-)equivalent states in M satisfy the same set of Fair Indexed
CTL* formulas.

We initially consider the formula E , fi, abbreviating the CTL* formula E (# Af i) .
The classical automata-theoretic approach [VW86] to model checking can be used. Apply
the usual tableau construction to form the (Buchi) w-string automaton .,4 equivalent to
fi which accepts an infinite sequence of (labels of) states of M by guessing a run
which goes through GREEN (accepting) automaton states infinitely often. Next construct
essentially the product graph (automaton) /3 of the structure M with automaton A,

7 For the interested reader, we explain in detail the crucial role played by Auto f in the proof
of (*). (We also emphasize that Auto f is required, rather than Aut f, despite 3 typo's near
the beginning of [ES93].) Assume that M, s0 ~ f, where f = E(GFexl AGFex2). We wish
to show that M,'~o ~ f. Then there is a path x = so,sl,s2 in M such that M,x
GFez 1AGFex2. Moreover, there is (it turns out) a corresponding path z --- so, s 1, s2,. . , in
M such that, for each i, si _=a ~i. Thus, si and ~i are not in generalidentical, but they do match
up to a permutation in ft. Since si ~ ~i and in particular since G is a subgroup of Auto f,

it follows fi:om the definitions that M, si ~ p iff M, ~i ~ p for the maximal propositional
subformulas ezl and ez2. Intuitively, this means that the indexing of the representatives in
preserves the truth of exl and ex2. Hence, E will be "decorated" with exl and ex2 exactly as

is x. We conclude M, E ~ GFexlAGFex2 and M,~0 ~ f.
If it happened that G did not leave invariant some such propositional p, the proof would break

down. For example, if representatives had been chosen so that in M index 1 were uniformly
replaced by 3, say, then M,-~o ~ E(GFextAGFex2) since 1 does not even appear in the
quotient. This problem is, in general, unavoidable.

314

which, intuitively, guesses a path through M that is also accepted by .,4. Then test B
for nonemptiness by finding reachable and accepting strongly connected components in
the transition graph of B. Using complemented pairs acceptance for B [St81], we get
the standard result (Theorem 3.2) below, which effectively solves our problem in time
O (I M I �9 I .al �9 n ~) (cf. [LP85], [EL87]). But it requires construction of the global state
graph M, which may very well be prohibitively large, and is often of size exponential in
the size of the original program text.

Definition. Given a graph B', an scsg C' of B' is a nonempty set of nodes of B' such
that the subgraph of B' induced by C' is strongly connected and total. An mscsg C' of
graph B' is a maximal scsg, i.e., an scsg such that no proper superset is an scsg of B'. s

Definition. An scsg C of B is obviously fair provided that, for each j E [1: n] and
each node s of C, if s is labeled with enj then there is some node t in C labeled with
exj. An scsg C is green iff it contains a n-ode with automaton component in the GREEN
accepting set for the Buchi automaton .4.

Theorem 3,2. M -go ~ E(~ A fi) iff
B contains an obviously fair, green scsg C reachable from its start state.

We now develop a method to work with the annotated quotient structure M, which
is typically much smaller than M. An automata-theoretic approach based on annotated
quotients - that cannot handle fairness efficiently - was described in [ES93]. 9 The idea

is that, to check (the "unfair") M, so ~ Efi, we form a product graph (automaton) B

of the form M • .A • I that succinctly encodes B, just as M encodes M. (In particular,

each node u of B has a representative node ~ in B; the technical definition of B is

given in the Appendix.) Intuitively, B guesses a path ~ through M and simulates the
automaton `4 for formula fi along the path x in M obtained by "unwinding" ~, using
the permutations along ~ to kee__p track of the ~hifting position of index i. M, -go ~ Efi

iff the language accepted by B is nonempty-, ~ e can test nonemptiness of B in time

O (I B I) - - O (I M I �9 1`41 �9 n) . W e thus have an efficient model checking algorithm that
avoids construction of the global state graph M.

This approach can be easily extended to check M, 20 ~ Eg, where g is any linear
time formula in which k process indices hi,. �9 hk are used. Construct the automaton

/~ of the form M • .4 • I k, where .4 is the w-automaton for g. Each state of/~ is of the

form (-g, q, j l , . . . , jk) where ~ E M, q E .4, and jx, �9 �9 Jk E [store a list of"current

values" for indices h i , . . . , hk, respectively./) is nonempty iff M, so ~ Eg. We can test

nonemptiness. . of/3 in time. 0([3) - - O(--M ...4 �9 n k). However, when g = �9 Af i ,
since the fairness constraint ~ revolves n coordinates, we have that k = rt and the state

space of 1/31 is of size exponential in n. As M itself is typically of size exponential in n,
this approach defeats our purpose. It is, thus, not possible to efficiently handle fairness
by applying the automata-theoretic approach of [ES93] directly.

We now present a nontrivial generalization of the automata-theoretic approach that
does efficiently cater for fairness. We use the key result (Theorem 3.3) below which will
ultimately lead to an efficient algorithm for E(~ Afi) , based on the notion of a "subtly"

fair scsg C of B that encodes an obviously fair scsg C of B.

Definition. An scsg C of B is subtly fair provided that, for each j E [1 : n]

and ~ E C, if ~ is labeled with enj, then there is a path in C starting at ~0 = ~,

x = u0 -~ ~1 . . . L~ ~k , such that ~k is labeled with ex,~_~(j), where 7r~ = 7rl o . . . o 7rk

(and ~k there by represents a reachable state labeled with exj). An scsg C is green iff

its automaton component is in the set GREEN.

s Such mscsgs C' are total, maximal, strongly connected components of B', which will facilitate
their calculation.

9 This is in addition to the "purely" group-theoretic approach shown not to work in Section 2.

315

Theorem 3.3. M,7o ~ E(OA fi) iff

B contains a subtly fair, green scsg C reachable from start state (~0, q0, i).
The proof of Theorem 3.3 depends on establishing precise correspondences between

B and B, and between their respective scsgs.

Lemma 3.4. (Correspondence of paths in B and B)

Let N be a nonempty subgraph of B, and N the subgraph of B induced by the represen-
tatives of N.
(a) If z = Uo EA ~1 E_$ ~ . . . is a path in ~ , then the path obtained by unwinding ~,

unwind('~) d e f - - u o - . - + T r t ~ u l) - + T r 1 o 7 r s (~ 2) . . .

is a path in B.

(b) If z = -ao~Ut---ru2... is a path in N starting at representative node ~o, then there

exists an path in N
_ d e f _ lr _
z = u0 54~1 :~ u s . . .

such that z = unwind(-~).

Definit ion. If C is an scsg of B and ~is any node of C, then the subgraph of B induced

by exhaustively unwinding Cstarting at ~is called unwind(-C, -~). It is technically defined
to be the set of nodes in B appearing along paths of the form unwind(-~) where "~ is a

path in C starting at ~.

Lemma 3.5. If C is an obviously fair, green scsg of B, then the subgraph of B

induced by the representatives of nodes in C, C, is a subtly fair, green scsg of B.

Lemma 3.6. If C is a subtly fair, green scsg of B and ~ is any node of C, then
unwind(-C,-~) is an obviously fair, green scsg of B.

At this point, we have, by Theorem 3.3, reduced the problem to that of detecting

subtly fair scsgs C of B, which may not be straightforward due to their scrambled nature.
However, by resolving C into a "threaded" subgraph C* which physically realizes the
permutation annotations, the difficulty is overcome easily. See Figures 3 and 4.

Definition. The threaded graph associated with (the subgraph of B induced by) scsg

= V,* R* is the graph C* (c, c, L'c) where

= j) : c and j [1: .]},
R;. = {(g, j)--+(~, k): g 4 ~ e C and k = 7r-l(j)), and
Lb((g, j)) contains en (respectively, ex) provided enj (respectively, exj) is in the

label of ~.
Note. 7r is the "decoding" function, while r - t is the "encoding" function. In un-

winding or decoding M to get M we use 7r, while encoding C into C* requires ~r- ~.
Definition. Threaded graph C* is plainly fair provided that, for each node (7, j) in

C*, if (7, j) is labeled with en, then there is in C* a path to some node (~, k) labeled
with ex. Threaded graph C* is green iffit contains a node whose automaton component
is in the GREEN set of automaton states.

Lemma 3.7. (Correspondence of paths in C and C*)

Let C be a scsg of B and C* the threaded graph associated with C.

(a) If x = u0 L~ ~x ~ u s . . . is a path in C, then for each j ~ [1 : n], the path

(U 0 , j) - ' - ~ (U l , 7 r l l (j)) ' - ~ (~ 2 , r r 2 1 o ~ r l 1 (j)) . . .

is a corresponding thread in C .
(b) If z* = (~o, Jo)--+(~, Ja)-~(~s, J~). . . is a thread in C*, then there is a core-

sponding path in C

z = u0 54 ~ -~ ~ s . . . one of whose threads is x*.

316

Using this correspondence we can now prove the following crucial lemma relating

subtle fairness of C to plain fairness of C*.

Lemma 3.8. Let C be a scsg of B and C* the threaded graph associated with C.
Then,
C is subtly fair and green iff C* is plainly fair and green.

Putting it all together, we can get an efficient algorithm that determines ("marks") all
representative states ~ such that M, ~ ~ E(#Afi) . We assume that an earlier algorithm

has constructed the annotated quotient structure M.

Algorithm.

1. Construct the automaton A corresponding to the formula f;. Construct B from M

and A. Save a copy of B as the graph H.
2. Repeat the following procedure n + 1 times:

Compute the mscsgs of B

For each mscsg C of B

Check if C is subtly fair:

Resolve C into C*
Check if C* is plainly fair

if so, mark all nodes of C
if not, delete from B each node ~ of C for which some node (~, j) in

C* is "bad", meaning that it is labelled with en,
but it cannot reach in C* a node labeled ex

3. Using H, propagate the marking to all nodes that can reach an already marked node.

Theorem 3.9. The above algorithm correctly marks exactly those representative

states ~ such that M, ~ ~ E(~Afi) . It runs in time O(IBI "n 2) = O(IMI �9 IA[" na) -
Note that the above claim actually applies to any index i ~ [1 : n] and that the states

o f B include (~, qo, i) for all i E [1 : n]. Thus, the above algorithm is, in effect, checking
simultaneously correctness of all n formulas E(#Af l) , . . . , E (#Aft,), yielding trivially
an algorithm for the basic modalities:

Corollary 3,10. (Model checking for basic modalities Ai Eofi and ViEofi)
(a) M,~ ~ AiE~fi iffall n states (~, q0, 1), . . . , (~, q0, n) are marked.
(b) M,-g ~ ViEo fi iff one or more of the n states (~, q0, 1) , . . . , (~, q0, n) are marked.

Theorem 3.11. (Model Checking for Fair Indexed CTL*) The above procedure
provides an algorithm which checks M, ~0 ~ g for any Fair Indexed CTL* formula

9 under strong fairness, in time O(IM I �9 n a - tgl " a) where [M[is the size o f T , n =
III is the number of processes, IgJ is the length of g, and a is the maximum size of the
automaton A for any basic modallty of g.

It is interesting to compare the complexity bound of O([M[�9 n 3 , Igl �9 a) for our
algorithm with the complexity bound of the traditional algorithm that works directly on
the original structure M, which can be shown to be O(IMI. n z I g I" a) in the terminology
of theorem 3.11.1~ Thus, the complexity bounds for our algorithm and the traditional
algorithm have the same form except that our bound is over the likely succinct annotated

quotient M, while that of the traditional algorithm is over the entire structure M which
may be intractably large. The "Litchtenstein-Pnueli Thesis" [LP85] suggests that it is

lo This is seen by noting that for any fixed i, the complexity of the traditional algorithm for model
checking the formula E~fi on M is O(IM[IAIn 2) where A is the automaton referred to in
theorem 3.9. The complexity when we use this algorithm for model checking a basic modality
^~E,~f~ is O(IMIIAIn3), since we need to repeat the previous step for each i = 1, ..., n. The
claimed bound follows by noting that there are at most [g[basic modalities in g.

317

the linear complexity in the structure size that is most important for applications, since
structures tend to be extremely large while correctness properties tend to be short.

For Fair Indexed CTL the factor a is a small constant and the bound simplifies to

O([M{. n a. Ig[). Moreover, under weak and unconditional fairness, it turns out that there
is no need to perform the iteration in step 2 of the core algorithm. Hence, the bound

simplifies to O (I M I �9 n 2" lal" a) for Fair Indexed CTL* and O (I M I �9 n 2" lal) for Fair
Indexed CTL.

4 C o n c l u s i o n s

Symmetry reduction has previously been shown to be a powerful tool for reasoning
about reactive systems in a number of contexts. For example, there has been a good
deal of work in the Petri-net community using symmetry reduction to ameliorate state
explosion when reasoning about reachability, boundedness and other Petri-net related
properties (cf. [JR91], [Je94]). Symmetry reduction has been successfully applied to
facilitate protocol verification in [APS83] and [Ku86] (cf. [Ku94]), and to facilitate
hardware verification in [ID93]. These works did not cater for the full range of temporal
correctness properties, but symmetry reduction techniques for arbitrary CTL* properties
were developed in [CFJ93] and [ES93]. Unfortunately, as explained in sections 2.6 and
3 of this paper, these techniques are, in effect, inapplicable when trying to reason under
fairness assumptions.

Our contribution here is to broaden the range of applicability of symmetry reduction
techniques by showing how to efficiently handle Fair Indexed CTL* formulas. This
permits efficient reasoning about many important liveness properties that depend on
fairness assumptions. It is also worth noting that this could not be done using the
essentially group-theoretic approaches of [CFJ93, ES93], but depends crucially on the
automata-theoretic framework. This seems to testify to the power of automata [VW84,
VW861 (cf. [Ku94]).

Finally, it would be interesting to compare the symmetry reduction approach of

collapsing M according to symmetry group G to get quotient M and the approach of

computing 2Q, the quotient of M modulo its "coarsest bisimulation". Actually, there are
several unsettled points regarding this latter notion. First, a precise definition of "the"
coarsest bisimulation in this context must be given; it would seem to inherently involve
itself in some group-theoretic considerations relating to symmetries, considering that,
for example, states (T1, N2) and (NI, T2) should be bisimilar. Thus, such a bisimulation
would itself be a type of symmetry reduction. Another, more important, problem may be
computation of the coarsest bisimulation incrementally. Although there are some recent
results for incremental computation of the standard coarsest bisimulation [BFHRR92,
LY92], they require symbolic representation of equivalence classes and "oracles" for
performing certain operations on these equivalence classes efficiently. As a consequence,
they are of uncertain general applicability, and matters seem even less certain for the
notion of a symmetry based bisimulation. In any event, this is a topic that might merit
further attention.

References

[APS83]

[BFHRR921

Aggarwal S., Kurshan R. P., Sabnani K. K., "A Calculus for Protocol Specification
and Validation", in Protocol Specification, Testing and Verification HI, H. Ruden,
C. West (ed's), North-Holland 1983, 19-34.
Bouajjani, A., Fernandez, J, Halbwichs, N., Raymond, P., and Ratel, C., Minimal
State Graph Generation, Science of Computer Programming, 1992.

318

[CE81]

ICES86]

[CFJ931

[CGB88]

[CGB89]

[C193]

[DGG93]

[EL87]

[ES93]

[Em90]

[Fr86]
[GS921

[nY931
[Je94]

[JR91]

[Ku86]

[Ku94]

[LY92]

[LP851

IMP92]

[SG87]

[St81]

[VW84]

[VW86]

Clarke, E. M., and Emerson, E. A., Design and Verification of Synchronization
Skeletons using Branching Time Temporal Logic, Logics of Programs Workshop
1981, Springer LNCS no. 131.
Clarke, E. M., Emerson, E. A., and Sistla, A. P., Automatic Verification of Finite
State Concurrent Programs using Temporal Logic: A Practical Approach, ACM
TOPLAS, April 1986
Clarke, E. M., Filkom, T., Jha, S. Exploiting Symmetry in Temporal Logic Model
Checking, 5th International Conference on Computer Aided Verification, Crete,
Greece, June 1993.
Clarke, E. M., Grumberg, O., and Brown, M., Characterizing Kripke Structures in
Temporal Logic, Theor. Comp. Sci., 1988
Clarke, E. M., Grumberg, O., and Brown, M., Reasoning about Many Identical
Processes, Inform. and Comp., 1989
Cleaveland, R., Analyzing Concurrent Systems using the Concurrency Workbench,
Functional Programming, Concurrency, Simulation, and Automated Reasoning
Springer LNCS no. 693, pp. 129-144, 1993.
Dams, D., Grumberg, O., and Gerth, R., Generation of Reduced Models for checking
fxagments of CTL, CAV93, Springer LNCS no. 697, 1993.
Emerson, E. A. and Lei, C.-L., Modalities for Model Checking: branching Time
Strikes Back, Science of Computer Programming, v. 8, pp. 275-306, 1987
Emerson, E. A., and Sistla, A. P., Symmetry and Model Checking, 5th International
Conference on Computer Aided Verification, Crete, Greece, June 1993
Emerson, E. A., Temporal and Modal Logic, in Handbook of Theoretical Computer
Science, (J. van Leeuwen, ed.), Elsevier/North-Holland, 199I.
Francez, N., Fairness, Springer-Verlag, New York, 1986
German, S. M. and Sistla, A. P. Reasoning about Systems with many Processes,
Journal of the ACM, July 1992, Vo139, No 3, pp 675-735.
Ip, C-W. N., Dill, D, L., Better Verification through Symmetry, CHDL, April 1993.
Jensen, K., Colored Petri Nets: Basic Concepts, Analysis Methods, and Practical
Use, vol. 2: Analysis Methods, EATCS Monographs, Springer-Verlag, 1994.
Jensen, K., and Rozenberg, G. (eds.), High-level Petri Nets: Theory and Application,
Springer-Verlag, 1991.
Kurshan, R. P., "Testing Containment of omega-regular Languages", Bell Labs Tech.
Report 1121-861010-33 (1986); conference version in R. P. Kurshan, "Reducibility
in Analysis of Coordination", LNCIS 103 (1987) Springer-Verlag 19-39.
Kurshan, R. P., Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach Princeton University Press, Princeton, New Jersey
1994.
Lee. D., and Yannakakis, M., On-Line Minimization of Transition Systems,
STOC92.
Litchtenstein, O., and Pnueli, A., Checking That Finite State Concurrent Programs
Satisfy Their Linear Specifications, POPL85
Manna, Z. and Pnueli, A., Temporal Logic of Reactive and Concurrent Systems:
Specification, Springer-Verlag, 1992
Sisfla, A. P. and German, S. M., Reasoning with many Processes, Proceedings of
the Symposium on Logic in Computer Science, Ithaca, NewYork, 1987
Streett, R., Propositional Dynamic Logic of Looping and Converse, PhD Thesis,
MIT, 1981.
Vardi, M., and Wolper, P., An Automata-Theoretic Framework for Modal Logics of
Programs, STOC84
Vardi, M., and Wolper, P., An Automata-Theoretic Framework for Automatic Pro-
gram Verification, LICS86.

319

X

N1 N2

k-

FIG 1 : Global Transition Graph

-(

. NI N2]

FIG 2 : The Reduced Graph

213>

Id

�9 / I " x

! l

(s, 2)I i (~_, 2)
! !

0," ? 0 (~, 3) \ : ,' ([3)

FIG 3 : A scsg ~" FIG 4 : The threaded graph C*

320

5 Appendix

In this appendix, we summarize the formal definitions and proofs omitted from the main
sections.

Lemma 3.1 Two (~-)equivalent states in M satisfy the same set of Fair Indexed
CTL* formulas.

Proof. We can argue by induction on formula structure that for any formula f of Fair
Indexed CTL*, and any permutation lr in Svm I, f and a-(f) are equivalent, i.e. express
the same property. Now, assume s - o t so that t = 7r(s) for some ~" E ~. We have
M, s ~ f iff M, rr(s) ~ ~r(f) (since 7rE ~ C Aut M) iff M, t ~ f (since t = 7r(s)
and rr(f) is equivalent to f). - []

For each i E I there is a Buchi automaton Ai corresponding to fi, which has input
symbols that are sets of global propositions Q and local propositions of the form Pi. All
of these various ̀ 4i are isomorphic upto reindexing as are the fi. Hence, it is convenient
to define a single, generic automaton .4 which is, intuitively, the same as any .4i but the
indexes have been stripped off the local propositions P~.. Technically, there is a transition
from state q to state r in .4 on input {Q , . . . , Q', P , . . . , P '} iff there is a transition from
q to r in .41 on input {Q , . . . , Q', Pi, . . . , P[} (any i will do). The generic automaton
,4 can used for any coordinate j , in lieu of `4j, using the operator slj which, in effect,
projects the label of state s onto coordinate j and then strips off the subscripts. Note that

does not act on the unindexed .4.
We will now define the product graph B to be essentially M x .4 x I, which will be

used in the proof but is not actually constructed by the algorithm. Intuitively, B denotes
the simulation of the automaton .4 on the execution of different processes indicated by
the process index j in each node. It is to be noted that all edges in B are between nodes
with the same process index.

Definition: Formally, B = (VB,EB) where VB = S x Q x I i s theset of nodes
(s, q, j) and EB is the set of edges of B; edge (s, q, j)) (s', q', j ') E EB iff j = j ' ,
(s, s') E 1L and q' E J.4(q, slj) (i. e., there is a transition of the automaton Aj from
state q to the state q' on the input symbol comprised of the local propositions of index j
as well as the global propositions that label state ~.)

For any permutation ~r on I and any node (s,q,j) in V, r((s,q,j)) is the node
(Tr(s),q, lr(j)).Forevery~r E Aut M, wehave(s,q,j) --+ (t , r , j) E Bifflr((s,q,j)) --+
~r((t, r, j)) E B. Hence every ~r E Aut M is also an autom0iphism of B.

We now define the annotated product graph B which is of the form M x ,4 x I ;

however, it is the product of the annotated quotient structure M with the automaton `4

for permuted process indices. Thus, in general, the edges in B can be between nodes
with different process indices, while this is not the case in B. 11

Definition: Formally, B = (V, E), where V = S x Q • I is the set of nodes

(~, q, j) , and E is the set of edges. Each edge is of the form (x, 7r, y), also denoted x -~ y,
�9 ~ - ~ " ~ - 1 " where a:, y E V, and ~r E ~; edge (~, q, 3) ~ (t, r, k) E E lff~ ---> t E M, Ir- (j) = k,

and r E ~.4(q, ~lJ) (i.e., there is a transition of the automaton .4~. from state q to state
r on the input symbol comprised of the local propositions of index j and the global
propositions that label state ~.)

Recall that for any state s E S, ~ denotes the unique representative of the - 0 -
equivalence class containing s. We extend the notion of representative to nodes of B.

11 ~ would be built by a straightforward implementation of the algorithm. The space requirements
may be reduced by constructing the threaded graph B* directly, rather than "~. The idea is

that (the salient information from the) collection of annotated edges {~ -~ ~ , . . . , ~ -~ ~}
from "~ to ~ in B is represented by a collection of at most n 2 edges in B* of the form
{(~, i) -~ (V, ~r-~(i)) : i ~ I and ~r ranges over ~r ~rc }.

321

Definition: For any node u = (s, q, j) ~ V~, let ~ denote the representative node

(~, q, rr, (j)) where 7r, is the designated permutation, associated with M, that maps s to

~, i.e. rr,(s) = ~. For any set of nodes C C Vn, l e tC = {~ : u G C}. The subgraph of

induced by C has C as its set of nodes and {~ ~ d : c, d fi C and ~ -~ d ~ En } as
its set of edges.

Definition: For any finite path ~ in B, we define rr~ to be the product of permutations

appearing on the path from left to right. Let C be a scsg in B and let ~ be a node in C. We

define the subgraph of B, denoted by unwind(-C, -d), obtained by unwinding C starting

from ~ as follows. The set of nodes in unwind(C,'6) is exactly the set of nodes ~-~(~)

where ~ is a path (entirely) in (the subgraph induced by) C starting from ~ to a node ~.

The set of edges are of the form (7r~(~), ny(V)) where �9 and ~ are paths starting in
starting from ~ and ending with ~ and V respectively, and such that ~ is an extension of
u by a single edge from ~ to V in ~ .

Theorem 3.2 M,70 ~ E (~ Af l) iff
B contains an obviously fair, green scsg C reachable starting from node (~o, qo, i) where
q0 is the start state of the automaton .A.

Proof. To prove the forward direction, assume that M, 7o ~ E (# A fi). Then there
is an infinite path p = 70, sl, s2 , . . , in M starting from the state 70, which satisfies
the fairness constraint ~ and the formula fi. Hence, there exists an accepting run p
= qo, ql, q2,.. �9 of the automaton A along the input string obtained by projecting the
path p onto coordinate i. When we combine p with this run p, we get an infinite path
(~o, q0, i), (sl, ql, i), (s2, q~, i) , . . , in B and the set of nodes appearing infinitely often
on this path defines an obviously fair green scsg C reachable from (~0, q0, i).

To prove the reverse direction, assume that an obviously fair green scsg C is reachable
from (~0, q0, i) in B. >From this we can ~et a path in B starting from (~0, qo, i) and
visiting each node of C infinitely often; th~s path satisfies the fairness constraint ~ and
contains an accepting node of A infinitely often. This path, when projected on to the state
components of M, gives us a path p in M starting from ~o which satisfies the formula fl
and the fairness constraint ~. []

Theorem 3.3 M,'go ~ E(~ A fi) iff
contains a subtly fair, green scsg C reachable starting from node (70, q0, i).

Proof. To prove the forward direction, assume that M, ~0 ~ E (~/i h fl). By theorem
3.2, we see that B contains an obviously fair, green scsg C reachable from (~o, q0, i).

Using lemma 3.5 below, we see that C is a subtly fair, green scsg of B. Furthermore,

using lemma 3.4 below, we see that there is apath in B from (~0, q0, i) to the scsg C.

To prove the reverse direction, assume that B contains a subtly fair, green scsg C

reachable from (~0, q0, i). Using lemma 3.6 below, we see that unwind(-C,'6) is an

obviously fair scsg of B where ~ is any node in C. >From lemma 3.4 we see that, if p

is an path in B from the node (7o, q0, i) to ~ in C then unwind(p) is a path in B from

(~o, qo, i) to some node in unwind(-C,-~). Hence unwind(-C,'~) is a green obviously
fair scsg in B which is reachable from (~0, qo, i). By theorem 3.2, we conclude that

Lemma 3.4 (Correspondence of paths in B and B)
Let N be a nonempty subgraph of B, and N the subgraph of B induced by N.

(a) If ~ : ~0 L~ ~1 L~ ~ 2 . . . is a path in N, then the path obtained by unwinding ~,

x = unwind(-~) d=ef ~0.~.Trl (~l)_.).Tr 10 ~2(~2) . . .
is a path in B.
(b)Ifz=~o~UF-+u2... is a path in N starting at representative state ~0, then there

exists a path in N

322

�9

such that x = unwind(Y).

Proof. To prove (a), it is enough if we show that, for each j > 1, ~rl o rr= o ... o
zrj (~j) --+ *rl o 7ra o ... o ~rj+l (~j+l) is a transition in B. Since ~ is a group, we know
that zr~ o zr2 o ... o zrj is a permutation in ~, and an automorphism of B. Furthermore,

from the definition of B, we know that ~ j - + ~rj + 1 (~j+ 1) is a transition of B. The desired
result follows.

To prove (b), we note that we can write any such z in the form 30 -+ r 1 (~1)-+ r = (~ 2) - + . . .
where, for each j > 1, r is any permutation in ~ such that r (~i) = ui. We will argue
by induction on j/ 'fiat we can take r to be a permutation of the form ~rl o . . . o rr 5 as in

the statement of the lemma. For j = 1, since ~0-+r (~) E B, by definition of B , there

is some ~rx E G and u0 ~ ul E B such that ~r~(u~) = r Thus, wecan take r to
be ~r~. Inductively, we can take r = ~rx o . . . o ~-j. Because @/(~/)--}r (~j+~) E B,

~5 ~(~r~ o . . . o ~r 5) - ~ o r + ~ (~5 + ~) E B, by induction hypothesis and since r 1 is an au-

tomorphism of B. Hence, there is some ~rj+~ e G and some ~y ' ~ ~j+1 ~ ~ such that

rr5+l (us+x) = (Tr~ o. . .o~r 5) - ~ or Thus, we can take r = ;rl o . . . o r r j o rrj+l,

thereby completing the induction step. Then, the path z = u0 ~ ~ L~ ~ . , . is such
that unwind(~) = x. Moreover, since x is in N, then all the representatives ~5 are in

N, and ~ is itself in N.

L e m m a 3.5 I f C is an obviously fair, green scsg of B, then the subgraph C of B,

induced by the representatives of nodes in C, is a subtly fair, green scsg of B .
Proof. Assume that C is an obviously fair, green scsg of B. Let u ' , v ' be any two

nodes in C. There exist nodes u, v in C such that u ' = ~ and v' = ~. Because C is
an scsg of B, there exists a path in C from u to v. Now, since u ' is the representative
of u, u' =~ 3, and there is a permutation ~r~ E g such that ~r~ (u) = u' . As ~r, is an
automorphism of M and also of B, there also exists a path from ~ = u ' = ~r~, (u) to
~r~, (v) in ;r,, (C), which is an isomorphic copy of C in 13 whose set of representatives

coincides with that of C thereby inducing the same subgraph U of t3 as does C. Using

lemma 3.4, it follows that there exists a path in U from u' = ~ to v ' = ~. Hence C is
strongly connected and is a scsg. ",

To see that C is subtly fair, consider any node u' in C and any index j such that

u ' satisfies eni. ~ There exists a node u in C such that u ' is a representative of u. Let

~r ~ ~ be a permutation such that ~r(u) = u'. Since u ' satisfies eni, it is the case that u
satisfies en,~-~ (5)" Since C is obviously fair, there exists another fiode v in C such that

v satisfies ez~-~(~). Let y be a path in C from u to v. Since ~r is an automorphism of

B, the sequence z = ~r(y) is also a path in B, from u' = ~r(u) to ~r(v). By lemma 3.4,

there exists a path ~ in C from u' to ~, such that unwind('~) = z. Hence zr(v) = rrw(~)
(Recall that ~r~ is the product of permutations appearing on the edges in the path ~),
Since v satisfies ez,~-~ (5), it is the case that ~r(v), and hence rr~(~), satisfies ezi . la Since

7r-e~ (~) satisfies ezj , it is the case that ~ satisfies ex~z~ (5)" From this, it follows that C is

subtly fair. Since ~ leaves states o f . 4 invariant, it should be clear that C is green.

lz We say that node u' = (s', q', i ') of B satisfies a proposition P provided that its state component
s ' satisfies P, i.e., contains P in its label. Here P may be a global proposition or a local one
Qj; in the latter case there need be no relationship between j and i'.

la Here, we use this principle. If u satisfies P then 7r(u) satisfies It(P) for any n in ~. The
justification is that we are simply reindexing both sides of "satisfies". The restriction to ff a
subgroup of Aut M is to ensure that rr(u) is a well-defined node of B.

323

Lemma 3.6 If C is a subtly fair, green scsg of B and -6 is any node of C, then

unwind(C, -6) is an obviously fair, green scsg of B.

Proof. Assume that C is a subtly fair, green scsg of B and -6 is any node of C. We

first show that unwind(C, -6) is a scsg in B. By definition -6 is in unwind(C, .6). Let u
be any node in unwind(-C,.6). We will show that there is a cycle in unwind(-C, "~) which

contains both -6 and u. This will ensure that all the nodes in unwind(-C, -6) are strongly

connected. >From the definition of unwind('C,'~), we see that there exists a path ~ from

to ~ in C such that 7r~(~) = u. Since C is a scsg, it follows that there exists a cycle
which is an extension of �9 (i.e., �9 is a prefix of ~), such that ~ starts and ends with-6. The
permutation ~-V is in g. Hence there exists an integer I > 0 such that (~r~) t is the identity

permutation. Now consider the cycle ~t, i.e. the cycle obtained by repeating ~ exactly !

times. Using lemma 3.4, it is easy to see that unwind(F l) is a cycle in unwind(-C,-6)
that contains both -6 and u.

Now, we prove that unwind(C, "6) is obviously fair. Let u be any node in unwind(C, -6)
and j be any index such that u satisfies enj. Then, there is a path u from-6 to ~ in C such

that unwind('~) is a path from -6 to u in C and u = lr~(~). Let k = ,r~l(j) . Since u

satisfies enj, it is the case that ~ satisfies enk. Since C is subtly fair, there exists a path

from ~ to a node ~ in C such that ~ satisfies ex,{, (k)" Now ~- ~, the fusion o f f with

if, is a path from ~ to ~ in C. Hence unwind(~. ~) is a path from "6 to u to 7r~--~u (~) in

unwind(-C,-6). Since ~ satisfies ex ,~ (k), k = 7r~1 (j), and l r ~ = 7r~--r~, we calculate

that r~--~v (F) satisfies exj. This establishes that unwind(-C,.6) is obviously fair. As g does

not act on the states of `4, it is clear that unwind(C,-~) is green.
Proof of lemma 3.7 is straightforward from the definition of C* and lemma 3.4, and

is left to the reader.
Lemma 3.8 Let C be a scsg of B and C* the threaded graph associated with C.

Then,
C is subtly fair and green iff C* is plainly fair and green.

Proof. To prove the forward direction, assume that C is subtly fair and green. Since
g does not act on .4, it is clear that C* is green. We prove that C* is plainly fair. Consider
any node (~, j) in C* which is labeled with en. This means that the state ~ is labeled

with enj in C. Since C is subtly fair, there exists a path ~ from ~ to a node ~ such that
is labeled with ex,~{x(i). From lemma 3.7, it is seen that there is a thread in C* from

(~, j) to (V, ~r~ 1 (j)). Clearly, the node (F, ~r~ ~(j)) in C* is labeled with ex. Hence C*
is plainly fair. Now we prove the lemma in the other direction. Assume that C* is plainly

fair and green. It is trivial to see that C is green. Now consider any node ~ which is
labeled with enj for some j. In C* the node (~, j) is labeled with en. Since C* is plainly
fair, there exists a node (~, k), labeled with ex, which is reachable from (~, j) . >From

lemma 3.7, it should be easy to see that there exists a path ~ in C from ~ to ~ such that

k = ~r~ ~ (3'). Clearly, ~ is labeled with ex~. This proves that C* is plainly fair.
Theorem 3.9 The algorithm correctly marks exactly those representative states

such that M,~ ~ E(#Afi) . It runs in time O (I B I �9 n 2) = O (I M I " 1.41" ha) �9
Proof. To prove the theorem, it is enough if we show that in the second step of the

algorithm, the node ~ is marked iff it belongs to a subtly fair green scsg in B. >From all
our previous lemmas, it is easy to see that if a node ~ is marked then it must belong to a

subtly fair green scsg in B. To prove the other direction we need the following claim.

Claim. If C is a scsg in B then, C* is plainly fair iff all the maximal scsgs in C* are

324

plainly fair (i.e. if each maximal scsg in C* contains a node labeled with e n then it also
contains a node labeled with ez).

Proof. We prove the claim by simply showing that all the maximal scsgs in C* are
disconnected, i.e. C* does not have edges that connect nodes in different scsgs. It is
enough to show that if there is an edge connecting two nodes in C* then both the nodes
belong to the same scsg. Assume that there is an edge in C* from some node (~, j) to

some other node (~, k). This means that there is an edge e in B from ~ to ~ which is

labeled with a permutation 7r such that ~r-l(j) = k. Since ~ ,~ belong to the scsg C,
there exists a path �9 starting and ending with the node ~ and using the edge e for the first
transition. Clearly, ~r~, which is the product of permutations along ~, is in ~. Since 0 is
a group, it is easily seen that there exists an integer I > 0 such that (~rr) ~ is the identity

permutation. Clearly, (zr~) t is the permutation associated with the path z --t. Using lemma

3.8, it is easily seen that there is a thread in C*, corresponding to the path z - t , which is
a cycle and which uses the edge from (~, j) to (~, k). Hence both the nodes (~, j) and
(~, k) belong to the same scsg in C*.

Now, assume that ~ is a node in a subtly fair green scsg D in B. It is not difficult to

see that in step 2 of the algorithm none of the nodes in D are ever going to be deleted.
Now, we show that with in the n + 1 iterations of the outermost loop in step 2, ~ (in fact,

all the nodes in D) is going to be marked. In an outermost iteration at step 2, assume

that some nodes in B belonging to the mscsg containing ~ are deleted; assume that this
deletion occurs due to the presence of bad nodes in the mscsg of the threaded graph
containing (~, j) for some j (in this case, the mscsg in the threaded graph containing
(~, j) does not have any nodes labeled with e z and the bad nodes are all the nodes in it
that are labeled with en) . It is to be noted that, in all future instances after this iteration,
the mscsg in the threaded graph containing (~,j) will have no more bad nodes, and it
will be plainly fair. Hence with in at most n iterations, for each j = 1 , n, all the
mscsgs in the threaded graph containing (~, j) will be plainly fair; at this time, the mscsg

in B containing ~, call it C, will be subtly fair; this is because C* will be plainly fair
(due to the above claim). It should be now be clear that in the next iteration of step 2 all

the nodes in D will be marked.
It should be easy to see that steps 2 dominates the time complexity. Each iteration of

the outermost loop of ste_.pp 2 can be implemented in time proportional to the size of the

threaded version B* of B, i.e., O([BI �9 n) time. Hence, step 2 can be implemented in

time O(]BI �9 n ~) = O(IMI- [A[- ha).
Theorem 3.11. (Model Checking for Fair Indexed CTL*) The above procedure

provides an algorithm which checks M, ~0 ~ g for any Fair Indexed CTL* formula #
3 under strong fair semantics, in time O(IM �9 n �9 al �9 a) where M] is the size o f M , n

= III is the number of processes, I gl is the length of g, and a is the maximum size of the
automaton .,4 for any basic modality of g.

Proof. We can handle any single basic modality in # in timne o(1 1, a �9 n a) by
Theorem 3.9 and the definition of a. Then we can handle all of #, whzch is composed
of boolean combinations and nesting of basic modalities, by recursive descent in time at

most O([M[. n z . [g[. a) (cf. [EL87]).

