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Abstract: In this work, pulse laser detectors based on the transverse thermoelectric effect of YBa2Cu3O7-δ

thin films on vicinal cut LaAlO3 (001) substrates have been fabricated. The anisotropic Seebeck coeffi-
cients between ab-plane (Sab) and c-axis (Sc) of thin films are utilized to generate the output voltage
signal in such kind of detectors. Fast response has been determined in these sensors, including
both the rise time and the decay time. Under the irradiation of pulse laser with the pulse duration
of 5–7 ns, the output voltage of these detectors shows the rise time and the decay time of 6 and
42 ns, respectively, which are much smaller than those from other materials. The small rise time
in YBa2Cu3O7-δ-based detectors may be due to its low resistivity. While the high thermal conduc-
tivity and the large contribution of electronic thermal conductivity to the thermal conductivity of
YBa2Cu3O7-δ are thought to be responsible for the small decay time. In addition, these detectors
show good response under the irradiation of pulse lasers with a repetition rate of 4 kHz, including
the precise determinations of amplitude and time. These results may pave a simple and convenient
approach to manufacture the pulse laser detectors with a fast response.

Keywords: transverse thermoelectric effect; anisotropic seebeck coefficients; pulse laser detectors;
thin films; fast response

1. Introduction

Laser-irradiation sensors are of great value in detecting the laser parameters, such as
power/energy, pulse duration, pulse frequency and shape. These measurements may be
required as closed loop control arrangement or simple record-keeping. Nowadays, the
commonly used laser-irradiation sensors are represented by three types according to their
physical principles, such as photodiodes, pyroelectric and thermoelectric sensors [1].

The photodiode-based sensors detect lasers by converting photon energy into electron–
hole pairs in p-n junctions, giving rise to the fast response time of sub-nanoseconds. In
addition, the sensitivity of this type of sensors is much higher, which allows the detectabil-
ity of low power continuous wave (CW) and pulse lasers [1–3]. However, such a high
sensitivity is usually companied with a relatively low power saturation threshold, which is
not suitable for the detection of high power lasers. In addition, these photodiode-based
sensors suffer from the limited spectral response, which is determined by the band gap
of the semiconductors. For instance, sensors based on silicon possess a spectral response
range between 0.2 and 2 µm [4].

Pyroelectric sensors transduce a temperature change into an electric signal via the
spontaneous polarization. Benefiting from their thermal nature, pyroelectric sensors have
the broad spectral response (i.e., from UV to THz). High sensitivity for pulse lasers can
also be achieved in such pyroelectric sensors. Unfortunately, due to the transient response
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on the temperature, this type of sensors allows just measurements of pulse lasers with the
response time of microseconds [5,6].

Thermoelectric sensors are subdivided into two groups, including the devices utilized
the traditional longitudinal thermoelectric (LTE) effect and the ones based on the transverse
thermoelectric (TTE) effect [7–9]. The common advantages of these thermoelectric sensors
include the wide spectral response range and the high saturation threshold of laser irradi-
ation. The standard LTE sensors are composed of electrically connected thermocouples,
where the electrical and thermal flows are parallel. Due to the existence of thermal resis-
tance layer and the size of thermoelectric legs, this type of LTE sensor gives the response
time of seconds [10].

TTE sensors utilize the anisotropic Seebeck coefficients, which exhibits unique prop-
erties compared to the LTE effect. By way of example, one sole material with significant
anisotropy could produce a TTE voltage [8,9,11], where at least two different materials
are required to fabricate the thermocouples in LTE sensors [10]. This means much more
straightforward device fabrication is available in TTE sensors with a much lower cost. In
addition, the electrical and thermal flows are perpendicular to each other in TTE effect,
which indicates the relatively independent management of heat and electric fluxes. For
instance, an ultrafast response time of nanoseconds (ns) can be achieved by sacrificing the
thickness of sensors, while the voltage signal magnitude can be maintained by elongating
the length [9]. A general approach to fabricate TTE sensors is growing epitaxial thin films
with anisotropic Seebeck coefficients on vicinal cut substrates to engineer a tilted angle (θ)
between c-axis orientation and surface normal of thin films. When a laser irradiates on the
top surface of thin film, a temperature gradient along the out-of-plane direction (on the
z-axis) of thin film will be generated, and then produce a voltage in the in-plane direction
(on the x-axis) due to different Seebeck coefficients between ab-plane (Sab) and c-axis (Sc) of
thin film (see Figure 1). The output in-plane voltage (Ux) induced by the TTE effect in the
film surface is expressed in the following form:

Ux =
l
2

sin(2θ)(Sab − Sc)∇Tz (1)

where ∇Tz is the temperature gradient along film thickness direction, l is the irradiation
length, and d is thickness of thin film [8,12–16]. However, most of the previous studies on
the TTE-based laser detectors just focused on the enhancement of voltage sensitivity, and
less attention has been paid to the response speed. In this work, we investigate the fast
response of pulse laser detectors based on the TTE effect of YBa2Cu3O7-δ (YBCO) thin films
grown on vicinal cut LaAlO3 (001) substrates.
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2. Materials and Methods

YBCO thin films (10 × 5 mm) with thickness of about 200 nm were used as the sensing
layers, which were deposited on 15◦ vicinal cut LaAlO3 (LAO) (001) single crystal substrates
by pulse laser deposition (PLD). The PLD system included a KrF excimer pulse laser with
a wavelength of 248 nm and pulse duration of 20 ns. Laser fluence and pulse frequency
were fixed at ~1.8 J cm−2 and 3 Hz, respectively. A polycrystalline YBCO target was used
for the ablation process. During the deposition process, the substrate temperature and
flowing oxygen pressure were set at around 785–800 ◦C and 40–45 Pa, respectively. Then,
an oxygen annealing was performed at 500 ◦C with the oxygen pressure of 100,000 Pa for
1 h. The phase structure of thin film was checked by an X-ray diffraction (XRD, Rigaku
D/MAX 2500V/PC X). The microstructure of YBCO thin film on vicinal cut substrate was
studied by a transmission electron microscopy (TEM, JEOL ARM 200F). The schematic
structure of laser detectors based on the TTE effect of thin films is shown in Figure 1. Two Pt
electrodes were deposited on the top surface of YBCO thin films with the irradiation length
of l = 7 mm along the inclined direction. Two types of pulse lasers have been used as the
irradiation sources to measure the TTE voltage response. An optical parametric oscillator
(OPOTEK INC) was employed to generate pulse laser with the repetition rate of 1 Hz,
the wavelength of 1000 nm, and the pulse duration of about 5–7 ns, while a solid state
Q-switched laser at 1064 nm (MPL-H-1064) was utilized to produce the pulse laser with
the repetition rate of 4 kHz and the pulse duration of ~10 ns. The voltage signals of these
TTE-based laser detectors were recorded by an oscilloscope (Rohde & Schwarz RTE 1102,
1 GHz bandwidth).

3. Results

The XRD pattern of θ–2θ scan of YBCO thin film grown on 15◦ vicinal cut LAO (001)
substrate is shown in Figure 2. Besides the diffraction peaks of LAO (001) substrate, only
(00l) diffraction peaks of YBCO thin film are detected, while other orientations are not
observed. This demonstrates the pure phase and the c-axis tilted growth of YBCO thin films.
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Figure 2. XRD pattern YBCO thin film grown on 15◦ vicinal cut LAO (001) substrate.

The microstructure of tilted YBCO thin film has been studied by TEM. Figure 3a shows
the high-resolution TEM (HRTEM) image of YBCO thin film on 15◦ vicinal cut LAO (001).
It is clearly seen in Figure 3a that YBCO thin film exhibits the typical layered characteristics,
which is well consistent with its crystal features with the alternative stacks of CuO2, BaO,
CuO and Y layers along the c-axis [17]. Such layered structures give the large Seebeck
coefficient anisotropy of (Sab − Sc) = 30 µV/K [18], which is responsible for the origin
of TTE voltage. In addition, the interface between YBCO thin film and LAO substrate is
sharp, indicating the high quality of YBCO thin film. The fast Fourier transform (FFT)
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pattern of Figure 3a is presented in Figure 3b. The FFT pattern of YBCO thin film shows the
diffraction features of single crystal, which confirms the high crystal quality of YBCO thin
film again. Considering the crystal constants of LAO (a = 0.3821 nm) and YBCO (a = 0.3821,
b = 0.3887 and c = 1.169 nm), the FFT patterns of YBCO and LAO are well indexed in red
and black, respectively (see Figure 3b). These results demonstrate that single crystal YBCO
thin film is epitaxial growth on 15◦ vicinal cut LAO substrate, with the crystallographic
orientation relationships [100]YBCO ‖ [100]LAO (in-plane), [010]YBCO ‖ [010]LAO (in-plane)
and [001]YBCO ‖ [001]LAO (out-of-plane).
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The voltage response of YBCO thin film laser detector under the irradiation of pulse
laser with the repetition rate of 1 Hz, the wavelength of 1000 nm, the pulse duration (τp)
of 5–7 ns, and the energy of 0.5 mJ is shown in Figure 4. As seen in Figure 4, the TTE
voltage of YBCO thin film exhibits the rise time (τr, 0–100% of peak value) of about 6 ns,
which is much faster than other reported ones, such as 7 ns in La0.5Sr0.5CoO3 thin film,
33–100 ns in Ca3Co4O9 thin film [19], 51 ns in La0.9Ca0.1MnO3 thin film [20], and 33 ns
in CuCr0.98Mg0.02O2 thin film [21]. Such a fast response speed is related with the low
room-temperature resistivity of YBCO thin film (around 5.6 × 10−4 Ohm cm). It is believed
that the low resistivity yields small optical penetration depth, and the rise time has a
monotonous increasing relationship with this penetration depth [9]. In addition, the inset
of Figure 4 indicates a linear relationship between peak voltage and pulse energy.

In addition, the decay time (τd, 100–0% of peak value) in Figure 4 is about 42 ns,
which is significantly smaller than the ones of 1000 ns in Ca3Co4O9 thin film [19], 4000 ns
in La0.9Ca0.1MnO3 thin film [20], and more than 7000 ns in CuCr0.98Mg0.02O2 thin film [21].
The τd means a recovery process of the TTE sensors from a large temperature difference to a
normal state without temperature difference due to the thermal diffusion. Early studies just
deemed that the τd is inversely proportional to the total thermal conductivity (ktotal), with
the expression of τd ∝ d2c/2ktotal (where c is the density of thin film) [22]. More recently,
a detailed analysis showed that the composition of ktotal is also of great value to tune the
τd, in addition to the ktotal [21]. Generally, ktotal includes electronic thermal conductivity
(ke) and lattice thermal conductivity (kl), written as ktotal = ke + kl. Meanwhile, ke and kl
may dominate the corresponding fast (τf) and slow (τs) components of the decay signal,
respectively. Once the ke/ktotal is small, the decay signal may exhibit a long voltage tail
down to zero, which increases the total τd significantly. Hence, both ktotal and ke/ktotal have
notable influences on τd. The smaller τd of 42 ns in YBCO, including the fast component
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τf of 6 ns (decay 1 in Figure 4) and the slow part τs of 28 ns (decay 2 in Figure 4), may
originate from its room temperature ktotal of 6 W/(m·K) and ke/ktotal of 33.3% [23]. In the
case of CuCr0.98Mg0.02O2 thin film, its room temperature ktotal is as large as 8.8 W/(m·K),
but its τd remains larger than 7000 ns surprisingly [21]. The fitting on the decay time gives
the fast component of 30 ns and the slow part of about 5000 ns, which may be related with
its low ke/ktotal of 0.02% [21]. With respect to Ca3Co4O9, ktotal is just 2.4 W/(m·K), but the
ke/ktotal is as high as 58.3% [24]. Such a large ke/ktotal may be responsible for its medium τd
of 1000 ns with the fast component of 124 ns and the slow part of 583 ns. Similar situations
also exist in La0.9Ca0.1MnO3 thin film with the τd of 3500 ns, τf of 276 ns and the τs of
about 1400 ns, which may be from its ktotal of 1 W/(m·K) and ke/ktotal of 80% [25]. The
summarized details of the decay features of TTE voltage signals (including τd, τf, and
τs), the thermal conductivity (ktotal), and the contribution of electron thermal conductivity
(ke/ktotal) of these materials are shown in Table 1.
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Table 1. The summarized details of signal decay time and thermal conductivity of various materials.

Materials τd (ns) τf (ns) τs (ns) ktotal
(W/(m·K)) ke/ktotal (%) Reference

YBa2Cu3O7-δ 42 6 28 6 33.3 This work
and [23]

Ca3Co4O9 1000 124 583 2.4 58.3 [19,24]
La0.9Ca0.1MnO3 3500 276 1400 1 20 [20,25]
CuCr0.98Mg0.02O2 7000 30 5000 8.8 0.02 [21]

Here, it is worth noting that both τr and τd of laser detectors should be considered for
the detection of pulse lasers with repetition frequencies larger than 1 Hz, as τd will strongly
affect the measurements of the following pulses. However, most of the previous works only
focus on the τr and neglect the influences of τd on the maximum measurable frequency of
a train of pulse lasers. According to the discussion above, it is seen that the combinational
properties of thin films, including the low resistivity, the high thermal conductivity and
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the large contribution of electronic thermal conductivity to the thermal conductivity, are
beneficial to a fast and broadband response. Among the various materials, YBCO exhibits
better properties comprehensively than other materials, giving rise to much faster response
with smaller τr and τd simultaneously.

The response of YBCO thin film laser detector under the irradiation of a train of pulse
lasers (τp~10 ns) with a repetition rate of 4 kHz is shown in Figure 5. As seen in Figure 5,
pulse signals with the interval of about 230 µs are clearly observed, which is quite close to
the theoretical value of 250 µs. In addition, the amplitude of these signals shows the high
precision with the standard deviation of 0.0734. These results demonstrate that the YBCO-
based TTE sensors have the ability to measure the pulse lasers with a high repetition rate.
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irradiated by laser pulses with a repetition rate of 4 kHz. The dashed line in red indicates the
variation of amplitudes of different signals.

4. Conclusions

In summary, we have fabricated the pulse laser detectors based on the transverse
thermoelectric effect of YBa2Cu3O7-δ thin films on miscut LaAlO3 (001) substrates. The
Seebeck coefficient anisotropy between ab-plane (Sab) and c-axis (Sc) of YBa2Cu3O7-δ thin
films is utilized to generate the output voltage via the transverse thermoelectric effect, in
contrast to the traditional longitudinal thermoelectric effect. These transverse thermoelec-
tric detectors exhibit the fast response, including both the rise time and the decay time.
Irradiated by pulse laser with the pulse duration of 5–7 ns, the rise time and the decay
time of the output voltage are 6 and 42 ns, respectively. Compared with other materials,
these values of YBa2Cu3O7-δ thin film are significantly smaller. Such a fast rise time may
come from the low resistivity of YBa2Cu3O7-δ thin films, while the small decay time may
originate from its high thermal conductivity and the large contribution of electronic thermal
conductivity to the thermal conductivity. In addition, these detectors are able to precisely
measure the pulse lasers with a repetition rate of 4 kHz. Since this kind of laser detector
based on the transverse thermoelectric effect of thin film possesses the characteristics of
fast response and wide bandwidth, we believe that this work may provide a roadmap to
fabricate the thin film laser detectors with high performances.
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