

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 23, 2022

UTV Tools
Matlab Templates for Rank-Revealing UTV Decompositions

Fierro, Ricardo D.; Hansen, Per Christian; Hansen, Peter Søren Kirk

Published in:
Numerical Algorithms

Link to article, DOI:
10.1023/A:1019112103049

Publication date:
1999

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Fierro, R. D., Hansen, P. C., & Hansen, P. S. K. (1999). UTV Tools: Matlab Templates for Rank-Revealing UTV
Decompositions. Numerical Algorithms, 20(2-3), 165-194. https://doi.org/10.1023/A:1019112103049

https://doi.org/10.1023/A:1019112103049
https://orbit.dtu.dk/en/publications/89ade480-116c-4e10-b402-df8d102ab68c
https://doi.org/10.1023/A:1019112103049

Numerical Algorithms 20 (1999) 165–194 165

UTV Tools: Matlab templates for rank-revealing UTV
decompositions ∗

Ricardo D. Fierro a, Per Christian Hansen b and Peter Søren Kirk Hansen b

a Department of Mathematics, California State University at San Marcos, San Marcos, CA 92096, USA
E-mail: fierro@thunder.csusm.edu

b Department of Mathematical Modelling, Building 321, Technical University of Denmark,
DK-2800 Lyngby, Denmark

E-mail: {pch; pskh}@imm.dtu.dk

We describe a Matlab 5.2 package for computing and modifying certain rank-revealing
decompositions that have found widespread use in signal processing and other applications.
The package focuses on algorithms for URV and ULV decompositions, collectively known
as UTV decompositions. We include algorithms for the ULLV decomposition, which gener-
alizes the ULV decomposition to a pair of matrices. For completeness a few algorithms for
computation of the RRQR decomposition are also included. The software in this package
can be used as is, or can be considered as templates for specialized implementations on
signal processors and similar dedicated hardware platforms.

Keywords: rank-revealing decompositions, rank deficiency, numerical rank, up- and down-
dating, Matlab

AMS subject classification: 65F25, 65F20

1. Introduction

Algorithms based on orthogonal transformations play an important role in many
signal processing applications. There are several reasons for this. Orthogonal trans-
formations are numerically stable, which is particularly important when the matrix
dimensions m and n increase and/or the condition number increases, and when the
numerical rank of the matrix is an issue. Decompositions based on orthogonal transfor-
mations are often easy to update in a reliable fashion, thus reducing the computational
burden by a factor m or n. And, finally, these decompositions can yield information
about certain subspaces defined on the matrix which play an essential role in noise
suppression techniques and other signal processing applications.

One of the main numerical tools in signal processing based on orthogonal trans-
formations is the singular value decomposition (SVD), cf. [5; 26, section 2.5; 56, sec-
tion 1.4.3] and its generalizations to matrix pairs, triplets, etc. The SVD detects
near-rank deficiency in a matrix very reliably and yields all the necessary subspace

∗ This work was supported in part by NATO Collaborative Research Grant No. 951327.

 J.C. Baltzer AG, Science Publishers

166 R.D. Fierro et al. / UTV Tools

information. Because the SVD algorithm is so reliable and numerically stable, it is
used in a wide variety of applications, such as frequency estimation via least squares
and total least squares [48,49,58], principal component analysis [60], noise reduction
in speech processing [33], computer-aided geometric design [40], and information
retrieval [4]. Additional applications of the SVD can be found in the International
Workshop on SVD and Signal Processing proceedings [17,42,59].

Although the SVD is a valuable analytical and computational tool, it has certain
drawbacks. First, for many problems the SVD is impractical because the algorithm is
unable to take advantage of important matrix properties, such as structure or sparsity,
to minimize both computational work-load and storage requirements. This is due to the
full bidiagonalization phase in the algorithm. This drawback also appears in specialized
algorithms such as the partial SVD algorithm designed to compute only the “needed”
information. Second, the SVD is difficult to update and downdate [9,27], and thus it
is not always suitable for applications with real-time constraints. Depending on the
application, these difficulties with the SVD make alternative decompositions attractive,
provided they are nearly as reliable and more efficient to compute and up/downdate.

The rank-revealing QR (RRQR) decomposition [10,24] is one of the alternatives
to the SVD, being faster to compute and yet providing reliable estimates for the
rank and the desired subspaces. Indeed, the RRQR decomposition has advantages in
sparse matrix computations [47] and subset selection problems [26, section 12.2], but
unfortunately its representation of the numerical null space is not well suited for up-
and downdating [6].

Rank-revealing two-sided orthogonal decompositions, also referred to as UTV
decompositions [54; 56, section 5.4] or complete orthogonal decompositions [26, sec-
tion 5.4.2], are other promising alternatives to the SVD that provide reliable estimates
for the numerical rank and the desired subspaces. There are two main advantages in
using rank-revealing UTV decompositions instead of the SVD or RRQR decomposi-
tion: UTV decompositions can be computed more efficiently than the SVD, and their
subspace information is easier to up- and downdate, cf. [3; 26, section 12.5.5; 45;
51; 52]. Some applications of UTV decompositions can be found in [1,2,23,37,46,52].

The SVD can be generalized to pairs of matrices in several ways, depending on
the application [16], and the same holds for the UTV decompositions. For example,
the so-called ULLV decomposition due to Luk and Qiao [38] reveals the numerical
rank of the matrix “quotient” AB† (where B† is the pseudoinverse of the second
matrix B), and thus it matches the quotient SVD. The ULLV decomposition can be
up- and downdated by means of the same techniques as the UTV decompositions.

The purpose of this work is to provide a package with easy-to-use Matlab tem-
plates for computing and working with UTV decompositions. For completeness, we
include a few templates for computing the RRQR decomposition. In our implementa-
tions we focus on robustness and modularity, rather than ultimate performance. The
reason behind this choice is that in most signal processing applications, the algorithms
must be tuned to the particular application anyway. Hence, we consider Matlab tem-
plates the optimal way to communicate algorithms, developed by numerical analysts,

R.D. Fierro et al. / UTV Tools 167

to the signal processing community and other users. The package for Matlab 5.2, as
well as the accompanying manual, is available from Netlib.

Our notation is standard linear algebra notation plus Matlab-style matrix indexing
where, e.g., A(1: k, 1: k) denotes the leading k× k submatrix of A. The particular no-
tation used here follows closely the one used in [21] where the accuracy of the various
quantities, computed by means of UTV and RRQR decompositions, are investigated,
and where several numerical examples can be found.

After a brief introduction to rank-revealing decompositions, we summarize some
important properties of UTV decompositions in section 2. Next, in sections 3 and 4,
we describe the algorithms used in this package for computing and up/downdating
UTV decompositions. In section 5 we turn to definitions and algorithms for the
ULLV decomposition of a matrix pair. We do by no means attempt to be complete; all
algorithmic details can be found elsewhere in the literature, and pointers to the relevant
literature are always given. We conclude with a brief overview of the 46 functions
included in the package in section 6.

2. Rank-revealing orthogonal decompositions

Roughly speaking, a rank-revealing decomposition is a decomposition in which
information about the numerical rank of the matrix can easily be extracted. Here,
“numerical rank” usually means the number of singular values larger than a certain
threshold, and it is important to realize that for this concept to make sense, there
has to be a well-determined gap in the singular value spectrum at the threshold [25;
29, section 3.1]. Hence, rank-revealing decompositions may also be labeled “gap-
revealing decompositions”, a phrase coined by Stewart [55]. General treatments of
rank-revealing decompositions are presented in [29, chapter 3] and [56, chapter 5].

Turning to algorithms for computing rank-revealing orthogonal decompositions,
experience shows that it is natural to distinguish between high-rank and low-rank al-
gorithms for the two important cases where the numerical rank is either close to the
number of rows or columns of the matrix, or much smaller. So far, no efficient algo-
rithm has been developed for computing a rank-revealing orthogonal decomposition of
a matrix whose numerical rank is approximately half the number of rows or columns.

All rank-revealing orthogonal decompositions introduced so far are two-sided in
nature, i.e., they are of the general form A = XMY T, where the two “outer matrices”
X and Y are orthogonal – occasionally they are permutation matrices – and the “middle
matrix” M is the matrix that reveals the numerical rank or gap. We conjecture that
rank-revealing decompositions must be two-sided; for example, in connection with the
RRQR decomposition, column permutations are needed to guarantee that one reliably
detects the numerical rank.

168 R.D. Fierro et al. / UTV Tools

2.1. The singular value decomposition

The most well-known example of a rank-revealing two-sided orthogonal decom-
position is the singular value decomposition (SVD), cf. [26, section 2.5]. The SVD of
an m× n matrix A with m > n is given by

A = U

(
Σ
0

)
V T = U1ΣV T =

r∑
i=1

σiuiv
T
i , (1)

where U1 = U (: , 1:n) and r = rank(A). Both U and V are orthogonal, i.e., UTU = Im
and UT

1 U1 = V TV = In. The diagonal elements σi of the n × n diagonal matrix Σ
are called the singular values of A with the ordering

σ1 > · · · > σr > σr+1 = · · · = σn = 0.

The columns of U and V are referred to as the left and right singular vectors, respec-
tively. The first r columns of U and V are the orthonormal eigenvectors associated
with the r nonzero eigenvalues of AAT and ATA, respectively.

Given an integer k 6 r, we partition the SVD according to

A = (Uk,U0,U⊥)

(Σk 0
0 Σ0

0 0

)
(Vk,V0)T, (2)

where Σk = diag(σ1, . . . ,σk) and Σ0 = diag(σk+1, . . . ,σn) are diagonal matrices con-
sisting of the k largest and the n − k smallest singular values, respectively. The
matrix Ak defined by Ak = UkΣkV T

k is a rank-k matrix approximation to A, and is
the nearest one in the 2-norm. This matrix is called the truncated SVD matrix, and it
has important theoretical and practical value [29, section 3.2].

2.2. Numerical rank and singular subspaces

The selection of k obviously depends on both the application and the method
used to determine the parameter. One way is to simply specify the first k or last
n − k singular triplets (σi,ui, vi) needed to capture the most relevant information in
the data matrix A for the particular application. This approach is used, for example, in
information retrieval [4]. A difficult aspect of this approach is that ad hoc procedures
are often used to choose k.

Another way is to specify a threshold τ , and then k is identified as the largest
integer such that σk > τ . The parameter k is then called the numerical rank of A with
respect to τ . Suppose, for example, that the singular values of A are

σ1 = 1.0, σ2 = 0.5, σ3 = 0.1, σ4 = 10−5, and σ5 = 10−10.

Then k = 3 with respect to τ = 10−3, but k = 2 with respect to τ = 0.3. The
parameter k plays an important role in signal processing in distinguishing signal from
noise, when the signal can be considered as a sum of a pure signal plus additive white

R.D. Fierro et al. / UTV Tools 169

noise. The parameter τ reflects the noise level, and k is related to the number of
prominent signals. Moreover, the matrices Uk, Σk, and Vk carry information about
the pure signal (plus some noise), while (U0,U⊥), Σ0, and V0 carry information solely
about the noise. Some issues concerning the very important subproblem of selecting τ
for numerical rank detection are discussed in [28,50,53].

Once k is specified, there are four fundamental numerical subspaces defined by
the SVD of A. They are:

R(Ak) =R(Uk) the numerical range of A,

N (Ak) =R(V0) the numerical null space of A,

R
(
AT
k

)
=R(Vk) the numerical row space of A,

N
(
AT
k

)
=R(U0,U⊥) the numerical null space of AT.

Here, R(M) denotes the range (or column space) of the matrix M and N (M) denotes
the null space of M .

2.3. UTV decompositions

The SVD is a special two-sided decomposition because the middle matrix Σ is
diagonal, and this is what makes the algorithm computationally expensive and also
difficult to update. In many circumstances one can sacrifice the diagonal structure
of Σ for a more efficient algorithm that computes a decomposition which provides
approximately the same rank and subspace information, and which can be updated
efficiently. This is the main idea behind the UTV decomposition, which is a product
of three matrices: an orthogonal matrix, a middle matrix that is triangular or block-
triangular, and another orthogonal matrix.

If the middle matrix is upper triangular, then the decomposition is called the
URV decomposition, and for m > n it takes the form

A = UR

(
R
0

)
V T
R = (URk,UR0,UR⊥)

(
Rk F
0 G
0 0

)
(VRk ,VR0)T, (3)

where Rk is a k × k nonsingular matrix and G is an (n − k) × (n − k) matrix.
If A has a well-defined gap (σk+1 � σk), then the URV decomposition is said to be
rank-revealing if

σmin(Rk) = O(σk) and
∥∥(F T,GT)∥∥

2 = O(σk+1). (4)

The second form, in which the middle matrix is lower triangular, is called the ULV
decomposition, and it takes the form

A = UL

(
L
0

)
V T
L = (ULk,UL0,UL⊥)

(
Lk 0
H E
0 0

)
(VLk,VL0)T, (5)

170 R.D. Fierro et al. / UTV Tools

where Lk is a k × k nonsingular matrix and E is an (n− k) × (n − k) matrix. If A
has a well-defined gap (σk+1 � σk), then the ULV decomposition is said to be rank-
revealing if

σmin(Lk) = O(σk) and
∥∥(H ,E)

∥∥
2 = O(σk+1). (6)

Although decompositions of the form (3) and (5) have been around for some time (they
are discussed in the classical book by Lawson and Hanson [35] from 1974), algorithms
which guarantee the rank-revealing property (4) and (6) are more recent. From the
standard perturbation theory for singular values, cf. [26, section 8.6.1], it follows that
the smaller the norm of the off-diagonal block, the better the approximations in (4)
and (6).

We mention that there are situations where σk and σk+1 are not well separated
but Σk, Uk, and Vk of the SVD are still useful. In some of these cases a UTV
decomposition may still be an appropriate tool, but more research is needed in order
to understand precisely when (see [31] for an example).

UTV decompositions are often used to supply good estimates of basis vectors
for the numerical subspaces. For example, the subspace R(URk) or R(ULk) can
be considered an approximation to the numerical range R(Uk), and the subspaces
are identical if the off-diagonal block is zero. Hence it is natural to compare the
numerical subspaces of A to the corresponding UTV-based subspaces of A. The
following theorem gives bounds for the distance between the SVD- and UTV-based
subspaces (see [26, section 2.6.3] for more information about subspace distances).

Theorem 1 (See [20, corollaries 2.3 and 2.5]). Let A have the UTV decompositions
as in (3) and (5) and the SVD as in (1). If σmin(Rk) > ‖G‖2, then

dist
(
R(Uk),R(URk)

)
6 ‖F‖2‖G‖2

σmin(Rk)2 − ‖G‖2
2

(7)

and

‖F‖2

2‖R‖2
6 dist

(
R(V0),R(VR0)

)
6 σmin(Rk)‖F‖2

σmin(Rk)2 − ‖G‖2
2

. (8)

Similarly, if σmin(Lk) > ‖E‖2, then

‖H|2
2‖L‖2

6 dist
(
R(Uk),R(ULk)

)
6 σmin(Lk)‖H‖2

σmin(Lk)2 − ‖E‖2
2

(9)

and

dist
(
R(V0),R(VL0)

)
6 ‖H‖2‖E‖2

σmin(Lk)2 − ‖E‖2
2

. (10)

The a posteriori bounds in (7)–(10) show that the UTV-based subspaces of A
are accurate approximations of the singular subspaces of A provided the off-diagonal
block of the middle matrix is sufficiently small in norm. In the next section we discuss

R.D. Fierro et al. / UTV Tools 171

strategies to compute UTV decompositions so that the off-diagonal block is sufficiently
small.

Another important result that follows from theorem 1 is that the URV-matrix URk ,
considered as an approximate basis for the numerical range R(Uk), has a smaller
upper bound than the corresponding ULV-matrix ULk, due to the factor ‖F‖2 instead
of the factor σmin(Lk). On the other hand, the ULV-matrix VL0, considered as an
approximate basis for the numerical null space R(V0), has a smaller upper bound than
the corresponding URV-matrix VR0. We conclude that the choice of decomposition
depends on which quantities one wants to estimate; e.g., if one wants to estimate
numerical null spaces then the ULV decomposition is preferred.

At this stage we mention that the matrix A is often a noisy realization of a pure
matrix A plus additive noise, where A can be assumed to be exactly rank-deficient.
Hence, it is of interest to compare the UTV-based subspaces, computed from A, with
the corresponding exact subspaces defined from A which, in turn, are identical to
the fundamental SVD-based subspaces of A. The relevant perturbation theory can be
found in [19].

The standard way to use the UTV decompositions in solving numerically rank-
deficient least squares problems min ‖Ax − b‖2 is to “plug in” either of the UTV
decompositions for A and then neglect the two blocks with small norm, i.e., either F
and G in the URV decomposition, or E and H in the ULV decomposition. The
corresponding UTV-based least squares solutions are then given by

xRk = VRkR
−1
k UT

Rkb and xLk = VLkL
−1
k UT

Lkb,

and the accuracy of these solutions is investigated in [21]. The computation of trun-
cated UTV solutions is implemented in the two Matlab functions tulv and turv for
computing xLk and xRk, respectively. Similar UTV-based total least squares solutions
are studied in [62].

Although the RRQR decomposition was not introduced this way, it can be con-
sidered as a special URV decomposition in which the right orthogonal matrix is a
permutation matrix Π. It is customary to write this decomposition in the form

AΠ = Q

(
RQ
0

)
= (Q1,Q2,Q⊥)

(
R11 R12

0 R22

0 0

)
, Π = (Π1, Π2).

Computation of the RRQR decomposition is implemented in the two Matlab functions
hrrqr and lrrqr, designed for the high- and low-rank cases, respectively, cf. [10,12,24].
The corresponding truncated RRQR solution is given by xQk = Π1(R11,R12)†QT

1b,
and computation of this solution is implemented in the Matlab function trrqr. We note
that RRQR algorithms often, in addition to the three matrices Q, R, and Π, return a
matrix W whose columns span an approximation to either N (Ak), in the high-rank
case, or R(AT

k), in the low-rank case, and RRQR-based total least squares solutions
can be based on this matrix. More details about RRQR-based solutions can be found

172 R.D. Fierro et al. / UTV Tools

in [11], while a study of the accuracy of the RRQR-based subspaces and solutions is
presented in [21].

2.4. A numerical example

To illustrate some of the quantities defined above, we generate an 8×6 matrix A
with singular values

2, 1, 0.5, 0.2, 0.005, 0.001,

and the numerical rank of A, with respect to the threshold τ = 0.1, is k = 4. Then we
use the Matlab function hurv (described in the next section) to compute a rank-revealing
URV decomposition of A. The computed triangular factor R has the form

R =


0.47 0.67 −0.54 0.92 7.7 · 10−5 −4.3 · 10−6

1.46 −0.79 0.03 −3.8 · 10−5 1.2 · 10−6

0.64 −0.34 5.2 · 10−5 −1.8 · 10−6

0.46 −1.1 · 10−4 6.5 · 10−6

4.5 · 10−3 2.3 · 10−4

1.0 · 10−3

 .

The norms of the three nonzero blocks are ‖Rk‖2 = 2.00, ‖F‖2 = 1.46 · 10−4,
and ‖G‖2 = 5.00 · 10−3, clearly revealing the numerical rank of A, and the smallest
singular value of Rk is σmin(Rk) = 0.20. The accuracy of the estimated subspaces,
and the corresponding upper bounds from theorem 1, are as follows:

dist
(
R(Uk),R(URk)

)
= 1.68 · 10−5,

‖F‖2‖G‖2

σmin(Rk)2 − ‖G‖2
2

= 1.85 · 10−5,

dist
(
R(V0),R(VR0)

)
= 6.85 · 10−4,

σmin(Rk)‖F‖2

σmin(Rk)2 − ‖G‖2
2

= 7.35 · 10−4,

and we see that the upper bounds are very close to the actual subspace distances.
This example illustrates that the rank-revealing URV decomposition indeed provides
good estimates for the SVD-based quantities, and that the numerical range is better
approximated than the numerical null space.

We also compute rank-revealing ULV and RRQR decompositions by means of
the Matlab functions hulv and hrrqr, and the corresponding triangular matrices L and
RQ are

L =


0.22
−0.11 0.90
−0.02 −1.18 0.93

0.39 −0.61 0.68 −1.08
1.4 · 10−4 4.7 · 10−5 9.1 · 10−5 5.6 · 10−5 5.0 · 10−3

4.4 · 10−6 1.5 · 10−6 2.9 · 10−6 1.8 · 10−6 1.3 · 10−4 1.0 · 10−3



R.D. Fierro et al. / UTV Tools 173

and

RQ =


0.89 0.74 0.81 0.22 0.56 0.94

10.56 0.30 0.76 0.21 0.33
0.43 0.52 0.37 −0.14

0.49 0.08 −0.06
5.9 · 10−3 7.3 · 10−4

1.6 · 10−3

 ,

both revealing the numerical rank of A. The ULV subspace distances and their upper
bounds from theorem 1 are

dist
(
R(Uk),R(ULk)

)
= 8.50 · 10−4,

σmin(Lk)‖H‖2

σmin(Lk)2 − ‖E‖2
2

= 8.99 · 10−4,

dist
(
R(V0),R(VL0)

)
= 2.10 · 10−5,

‖H‖2‖E‖2

σmin(Lk)2 − ‖E‖2
2

= 2.25 · 10−5,

illustrating that for the rank-revealing ULV decomposition, the null space estimate is
indeed more accurate than the estimate of the numerical range. Finally, turning to the
RRQR decomposition, the quantities Q1 and W provide approximate bases for the
numerical range and null space with

dist
(
R(Uk),R(Q1)

)
= 5.29 · 10−3, dist

(
R(V0),R(W)

)
= 6.78 · 10−4,

and we see that both approximations are poorer than those from the UTV decomposi-
tions.

3. UTV algorithms

Turning to algorithms for computing UTV decompositions, experience shows that
it is natural to distinguish between high-rank algorithms for the case k ≈ n, and low-
rank algorithms for the case k � n. So far, no efficient algorithm has been developed
for computing a rank-revealing orthogonal decomposition of a matrix whose numerical
rank is approximately half the number of rows or columns.

We concentrate on the ULV algorithms; the URV algorithms are very similar,
and thus we omit a discussion of these algorithms. We assume that the reader is
familiar with standard “building blocks” of numerical linear algebra such as orthogonal
transformations and condition estimation. Finally, we mention that all of our algorithms
are designed for the case m > n, and if the left orthogonal matrix is required then we
always compute the “skinny” part, i.e., U1.

3.1. High-rank algorithms

Many applications give rise to high-rank matrices A, where k ≈ n. One exam-
ple is direction-of-arrival estimation in signal processing, where k corresponds to the
number of incoming signals, which is usually comparable to the number of sensors n.

174 R.D. Fierro et al. / UTV Tools

Another example is discretizations of certain deconvolution problems (Fredholm in-
tegral equations of the first kind), in which the integral operator has a null space of
small dimension.

For such high-rank matrices, Stewart introduced the rank-revealing URV and
ULV decompositions and algorithms [51,52] as alternatives to the SVD. In these al-
gorithms, the rectangular matrix A is preprocessed by a standard orthogonal triangular
factorization, in which the “skinny” form is computed if only U1 is required. This fac-
torization can take advantage of the structure of A, such as Toeplitz structure (although
the feature is not implemented in our package). Then condition estimation, plane rota-
tions from the left and right, and deflation steps are used to achieve the rank-revealing
form. Here, by condition estimation we mean estimation of the smallest singular value
of a matrix and the corresponding left or right singular vector.

Stewart’s high-rank algorithms “peel off” the small singular values of A one at a
time, starting with the smallest. In each step, the estimated singular vector is used to
generate Givens rotations which, when applied to A, produce the desired rank-revealing
triangular form. The generic high-rank ULV algorithm for the case m > n can be
summarized as follows (τ denotes the threshold used in determining the numerical
rank):

Generic high-rank ULV algorithm (Stewart).

1. Let k ← n and compute an initial factorization A = U1L with a lower triangular L.

2. Condition estimation: let σ̃k estimate σmin(L(1: k, 1: k)) and
let wk estimate the corresponding left singular vector.

3. If σ̃k > τ then exit.

4. Revealment: determine an orthogonal Pk such that Pkwk = (0, . . . , 0, 1)T;

5. update L(1: k, 1: k) ← P T
k L(1: k, 1: k);

6. update L(1: k, 1: k) ← L(1: k, 1: k)Qk , where the orthogonal matrix Qk is chosen
such that the updated L is triangular.

7. Refinement (optional): while ‖L(k, 1: k − 1)‖2 > δ‖L‖F
apply QR-refinement to the bottom row of L(1: k, 1: k).

8. Deflation: let k ← k − 1.

9. Go to step 2.

The three phases that we – for clarity – call revealment (steps 4–6), refinement
(step 7), and deflation (step 8) are usually referred to collectively as “refinement”.
Before step 8, a small singular value has revealed itself in the form of small elements
in absolute value in the bottom row of L(1: k, 1: k).

Steps 5 and 6 consist of interleaved left and right Givens transformations applied
in such a way that intermediate fill-in is restricted to the upper bidiagonal of L. The

R.D. Fierro et al. / UTV Tools 175

left and right transformations are accumulated into U1 and In in order to compute
the two final orthogonal matrices U1 and V . This approach is efficient for high-rank
matrices with k ≈ n, because the smallest n − k singular values are guaranteed to
emerge first, one per deflation step, and thus the algorithm terminates after n − k
deflation steps when only large singular values remain.

The optional QR-refinement in step 7, which can be used to reduce and control
the norm of the off-diagonal block, is explained in section 3.3 (the iteration is, of
course, safeguarded by allowing only a small number of refinement steps for each k).
If refinement is used, then upon completion of the ULV algorithm we can guarantee
that ‖(H ,E)‖F 6

√
n− kδ‖L‖F .

The condition estimation in step 2 can be implemented in various ways, and
there are many algorithms available for triangular matrices, cf. the survey [32]. The
algorithm we have chosen was designed by Cline et al. [13] to be consistent with the
2-norm, and it is implemented in the Matlab function ccvl. The complete high-rank
algorithms are implemented in the two Matlab functions hulv and hurv for computing
ULV and URV decompositions, respectively.

There is an intimate and subtle relationship between the accuracy of the condition
estimator and the norm of the off-diagonal block H or F , see the study in [20]. The
main conclusion is that an accurate condition estimator will produce an off-diagonal
block with small norm. This fact has inspired us to develop alternative high-rank
UTV algorithms, implemented in Matlab functions hulv a and hurv a, in which the
condition estimation and revealment steps can be repeated – for each value of k –
until the norm of the current off-diagonal block is sufficiently small. Thus, we have
replaced QR-refinement with refinement of the condition estimation. The condition
estimation used in these algorithms is inverse iteration (implemented in the Matlab
function inviter), which allows us – for a fixed k – to restart the iterations in a simple
way. The use of inverse iterations has also been suggested by Yoon and Barlow in
connection with a ULV downdating algorithm [65]. The alternative ULV algorithm
takes the following form for m > n.

Generic high-rank ULV algorithm (Alternative version).

1. Let k ← n and compute an initial factorization A = U1L with a lower triangular L.
2. Let wo

k ← k−1/2 · ones(k, 1).
3. Condition estimation: let (σ̃k,wk)← inviter(L(1: k, 1: k),wo

k).
4. If σ̃k > τ then exit.
5. Revealment – similar to steps 4–6 in Stewart’s algorithm.
6. Refinement (optional): if ‖L(k, 1: k − 1)‖2 > δ‖L‖F
7. let wo

k ← (0, . . . , 0, 1)T,
8. go to step 3.
9. Deflate: let k ← k − 1.

10. Go to step 2.

176 R.D. Fierro et al. / UTV Tools

Here, ones is Matlab’s built-in function for generating a vector of all ones, and
the revealment step 4 is identical to steps 4–6 in Stewart’s algorithm. The notation
used in step 3 means that the estimates σ̃k and wk are computed by means of inverse
iteration with starting vector wo

k. We use a fixed starting vector in order to ensure
that the decomposition can be reproduced. Ideally, we would like to stop the inverse
iterations when the estimate wk ensures that the norm ‖L(k, 1: k − 1)‖2 – after the
revealment step – is sufficiently small. Unfortunately, the only available a priori bound
is ‖L(k, 1: k − 1)‖2 < σ̃k, which is too crude. Hence, when refinement is used it is
necessary to perform alternating condition-estimation and revealment steps.

3.2. Low-rank algorithms

Certain applications give rise to low-rank matrices A in which k � n. For
instance, low-rank matrices arise in information retrieval using latent semantic indexing
(LSI) [4], where the elements of the m×n matrix A provide an incomplete connection
between n documents which define the database, and m key words pertaining to the
database. The parameter k is typically 0.1% of min(m,n), thus relatively few factors
are adequate for the LSI approach.

Low-rank problems are traditionally solved using SVD-based techniques, and
more details can be found in [61]. Low-rank UTV algorithms [22] are computationally
attractive alternatives to the SVD because they provide enough important information,
but more efficiently than the SVD.

Our generic low-rank UTV algorithms are very similar to the alternative version
of the high-rank algorithm. They “peel off” the large singular values of A one at a
time, starting with the largest, and in each step the estimated singular vector is used
to generate Givens rotations which, when applied to A, produce the desired rank-
revealing triangular form. The low-rank revealment step differs from the high-rank
version in that the orthogonal matrix Pk is chosen such that Pkwk = (1, 0, . . . , 0). If
again τ denotes the threshold used in determining the numerical rank, the generic ULV
algorithm can be summarized as follows for m > n:

Generic low-rank ULV algorithm.

1. Let k ← 1 and compute an initial factorization A = U1L with a lower triangular L.
2. Let wo

k ← (n− k + 1)−1/2 · ones(n− k + 1, 1) and ` = 1.
3. Norm estimation: (σ̃k,wk)← normest(L(k:n, k:n),wo

k).
4. If σ̃k < τ then k ← k − 1 exit.
5. Revealment – as explained in the text above.
6. Refinement (optional): if ` < `max

7. let wo
k ← (1, 0, . . . , 0)T and ` = `+ 1,

8. go to step 3.
9. Deflate: let k ← k + 1.

10. Go to step 2.

R.D. Fierro et al. / UTV Tools 177

The notation in step 3 means that the estimates σ̃k and wk are computed by means
of a 2-norm estimator with starting vector wo

k. We say that this algorithm is “warm-
started” because of the initial triangular factorization, and again the left and right
orthogonal transformations are accumulated into U1 and In, respectively, to produce
the final U1 and V .

In the low-rank algorithms, the condition estimation of the high-rank algorithms is
replaced by estimation of the largest singular value (which is identical to the 2-norm)
and a corresponding singular vector. This can be accomplished by means of the
classical power method [26, section 8.2] or by means of Lanczos bidiagonalization [26,
section 9.2]. The number of iterations in both methods depends on the gap between
the largest and the second largest singular values in the current submatrix, and often
the Lanczos method is faster than the power method; see [22] for more details.

The most important difference between the high- and low-rank algorithms is that
in the low-rank algorithm, the norm of the current off-diagonal block (i.e., L(k +
1:n, 1: k) in the ULV algorithm) does not become small until k reaches its final value
– the details are discussed in [22]. Hence, we cannot use the norm of the current
off-diagonal block to control the refinement process, so this process is controlled only
by the maximum number `max of refinement steps allowed for each k.

The two warm-started low-rank Matlab functions included in this package are
lulv and lurv for computing low-rank ULV and URV decompositions, respectively, and
the underlying power and Lanczos methods are implemented in the Matlab functions
powiter and lanczos. From a probabilistic point of view, random starting vectors for
the iterative singular value estimators are superior to fixed vectors [34], but still we
have chosen to use a fixed starting vector because this ensures that the computed
decompositions can be reproduced.

We remark that several Lanczos-based algorithms have been suggested for com-
puting good estimates of the low-dimensional signal subspaces associated with various
problems [14,18,63,64]. None of these algorithms produce a UTV decomposition, only
approximations to the desired subspaces – whether this is a drawback depends on the
particular application.

When estimating the largest singular value of a matrix, there is no particular
need for working with a triangular matrix (which, on the other hand, is essential when
estimating the smallest singular value efficiently in the high-rank algorithms). This
leads to the definition of an alternative form of the UTV decomposition in which the
initial triangularization is omitted, and the final middle matrix is block triangular with a
square (m− k)× (n− k) bottom right submatrix. This version, and the corresponding
“cold-started” algorithm, is described in [22], and the corresponding Householder-
based low-rank algorithms are implemented in the Matlab functions lulv a and lurv a.

3.3. Refinement techniques

Once a UTV decomposition has been computed, one may want to improve the
accuracy of the estimated singular subspaces, represented by the columns of the ma-

178 R.D. Fierro et al. / UTV Tools

trices U and V . It follows from theorem 1 that this can be achieved by reducing the
norm of the off-diagonal block, i.e., either F in the URV decomposition, or H in the
ULV decomposition.

This can be accomplished by a block QR iteration applied to either R or L, as
described in [41]. Consider the URV decomposition. In the first step, right Givens
rotations are constructed such that F is annihilated and the (2,1)-block fills out. In the
second step, left Givens rotations are applied to the updated matrix in order to annihilate
the (2,1)-block again and thus restore the upper triangular form. If these two steps are
repeated, then it is proved in [41] that the norm of the off-diagonal block converges
linearly to zero, with a factor equal to ‖G‖2/σmin(Rk) for the URV decomposition,
and ‖E‖2/σmin(Lk) for the ULV decomposition. These “post-processing” refinement
operations are implemented in the two Matlab functions ulv qrit and urv qrit.

Refinement can also be applied in each step of the UTV algorithms, as shown
in Stewart’s high-rank algorithm above, by “flipping” the last row of the current
L(1: k, 1: k) – or the last column of R(1: k, 1: k) – as in the block QR iteration. Again,
it follows from the theory in [41] that refinement of a single row or columns of the
current triangular matrix will reduce the norm of the off-diagonal block. In the alter-
native high-rank algorithm, as well as in the low-rank algorithms, the QR-refinement
steps are replaced by repeated restarts of the condition or norm estimator followed
by revealment. The initial guess in the restart is chosen so that one continues the
iterations in order to further improve the norm estimate, thus obtaining a reduction of
the off-diagonal block’s norm.

A different flavor of refinement is used in Stewart’s PLQ decomposition [55],
where a pivoted QR factorization is followed by an orthogonal reduction to lower
triangular form, which can be considered as “half a QR iteration”. The lower trian-
gular matrix produced in this way is sometimes quite good at revealing gaps in the
singular value spectrum, but without the theoretical justification underlying the UTV
decompositions.

3.4. Numerical examples

We will first show the influence of the number of power iterations used to estimate
the largest singular value in the low-rank ULV algorithm. We generate a low-rank 8×6
matrix A with singular values

0.3, 0.2, 0.05, 0.03, 0.02, 0.01,

and the numerical rank of A with respect to the threshold τ = 0.1 is k = 2. Then
we use the Matlab function lulv to compute ULV decompositions of A using a fixed
number of 1, 2, 3, and 4 power iterations in each stage of the algorithm, and the results
are shown in table 1 where we use the notation

d(Uk) = dist
(
R(Uk),R(URk)

)
, d(V0) = dist

(
R(V0),R(VR0)

)
.

R.D. Fierro et al. / UTV Tools 179

Table 1
Results from the low-rank ULV algorithm lulv(A,0.1,power its).

Power iterations ‖H‖2 d(Uk) d(V0)

1 3.4 · 10−2 1.6 · 10−1 3.7 · 10−2

2 1.8 · 10−3 9.2 · 10−3 2.3 · 10−3

3 1.1 · 10−4 5.6 · 10−4 1.4 · 10−4

4 6.5 · 10−6 3.4 · 10−5 8.6 · 10−6

Table 2
Results from the low-rank ULV algorithm lulv(A,0.1,1,ref steps).

Refinement steps ‖H‖2 d(Uk) d(V0)

0 3.4 · 10−2 1.6 · 10−1 3.7 · 10−2

1 2.0 · 10−3 1.1 · 10−2 2.6 · 10−3

2 5.1 · 10−5 2.7 · 10−4 6.8 · 10−5

3 3.0 · 10−6 1.6 · 10−5 4.0 · 10−6

4 1.8 · 10−7 9.7 · 10−7 2.4 · 10−7

Table 3
Results from the ULV refinement algorithm using block QR iterations

ulv qrit(k,block its,L,V,U).

Block iterations ‖H‖2 d(Uk) d(V0)

0 3.4 · 10−2 1.6 · 10−1 3.7 · 10−2

1 1.7 · 10−3 8.9 · 10−3 2.2 · 10−3

2 1.0 · 10−4 5.4 · 10−4 1.3 · 10−4

3 6.3 · 10−6 3.4 · 10−5 8.4 · 10−6

4 3.9 · 10−7 2.1 · 10−6 5.2 · 10−7

First of all, we see that the norm of the off-diagonal block H decreases as the number
of power iterations increases, reflecting the fact that the more accurate the singular
vector estimate, the closer the triangular matrix is to block diagonal form, and thus
the more accurate the subspace estimates. Moreover, as expected from theorem 1, we
see that the approximate null space bases are always more accurate than the bases for
the numerical range.

Another way to achieve accurate subspace estimates is to perform one or more
refinement steps in each stage of the algorithm. To illustrate this, we use lulv again with
one power iteration followed by refinement in the form of 0, 1, 2, 3, or 4 refinement
steps in each stage. The results of this experiment are shown in table 2, and it is no
surprise that the results improve as the number of refinement steps increases.

The third way to improve the accuracy of the UTV subspaces is to perform
block QR iterations on the final triangular matrix L, and we illustrate this by applying
block iterations (using the function ulv qrit) to the matrix L computed with one power
iteration and no refinement in each stage; cf. table 3. Clearly, the block QR iterations
reduce the off-diagonal block’s norm and improve the subspace estimates. The same
conclusions hold for the high-rank algorithms; we do not show the results here.

180 R.D. Fierro et al. / UTV Tools

4. Up- and downdating

One of the most important properties of the UTV decompositions is their ability
to be updated and downdated efficiently and stably. Here we briefly summarize the
algorithms used in the package. It should be noted that none of the algorithms described
below apply to the block triangular low-rank UTV decomposition computed by the
cold-started algorithms mentioned in section 3.2.

4.1. Updating

Consider first updating the UTV decomposition with an additional row wT and
with a positive weighting factor β 6 1 applied to A (which is a standard operation
in signal processing), i.e., given the UTV decomposition A = U1TV

T, where T is
either L or R, we want to compute the new UTV decomposition(

βA
wT

)
= U1T V

T
.

The updating is accomplished by promoting wT to the middle matrix,(
βA
wT

)
=

(
U1 0
0 1

)(
T

wTV

)
V T,

and then left and right Givens rotations G and H are used to annihilate the elements
of wTV . Thus we obtain(

βA
wT

)
=

(
U1 0
0 1

)
G

(
T
0

)
HTV T =

(
U1u2

)(T
0

)
V

T
= U1T V

T
.

Notice that V is always needed in order to accomplish the updating, while U1 is not
required.

The order in which the Givens rotations are applied is important because we wish,
as far as possible, to maintain the small elements present in the triangular matrix T .
Using the scheme proposed by Stewart [51] together with the fact that if β = 1 then
the numerical rank can either remain at k or increase by one, we merely have to apply
one step of condition estimation and at most one deflation step in this case. See [26,
section 12.5.5] or [51] for more details.

The updating algorithm is implemented in the Matlab functions ulv up and urv up,
and after all the Givens rotations have been applied, we normalize the columns of V
as recommended in [43]. In these implementations, the condition estimation is accom-
plished by means of ccvl, and we allow refinement of the updated triangular matrix.

Moonen et al. [44] presented a related updating algorithm in which the updating
step is followed by one – or a few – sweeps of Kogbetliantz’s iterative SVD algorithm.
The result of this post-processing is that if the initial middle matrix T is close to diag-
onal (e.g., if the initial decomposition is the SVD), then the norm of the off-diagonal
part of T stays relatively small after each updating step. We have not implemented
this variant in our package.

R.D. Fierro et al. / UTV Tools 181

4.2. Downdating

The downdating problem is the following: given the UTV decomposition A =
U1TV

T, where T is either L or R, compute the new UTV decomposition of the
(m− 1)× n submatrix A(2:m, :), i.e.,

A =

(
wT

A(2:m, :)

)
, A(2:m, :) = U1T V

T
.

Downdating is a more complicated problem than updating, and the algorithm depends
on whether the matrix U1 is explicitly available, because its first row is required in the
downdating algorithm.

If U1 is available, then the first step is to augment U1 with one additional column
u2 that is orthogonal to the columns of U1, i.e., UT

1 u2 = 0, in such a way that the norm
of the first row of the matrix (U1,u2) is one, and this can almost always be achieved
by orthonormalizing the unit vector e1 = (1, 0, . . . , 0)T to U1 by means of the modified
Gram–Schmidt (MGS) process [15]. At this stage, the UTV decomposition of A can
be reformulated as

A = (U1,u2)

(
T
0T

)
V T.

If T = R, then we use the standard algorithm for downdating a QR factorization, cf.
[26, section 12.5.3]. We apply a sequence of right Givens rotations G that annihilate
all but the first element of the first row of (U1,u2), starting from the right, and these
rotations are also applied from the left to the middle matrix:

(U1,u2)G =

(
±1 0T

0 U

)
and GT

(
R
0T

)
=

(
yT

R

)
,

where the (m−1)×n matrix U has orthonormal columns. Then it follows immediately
that the three matrices U , R, and V constitute a URV decomposition of A(2:m, :).

If T = L, then we use the algorithm from [8]. First we annihilate all but the first
element of U1, again starting from the right, and when these rotations G are applied
from the left to L then they must be interleaved with right rotations H that restore the
triangular form:

U1G = Ũ =

(
υeT

1

Ũ (2:m, :)

)
, GTLH = L̃, Ṽ = V H ,

where |υ| 6 1. We finish by a single Givens rotation G̃ involving u2 and the first
column of Ũ in which υ = Ũ(1, 1) is annihilated, and when G̃ is applied from the left
to the middle matrix, it introduces a single fill-in in the bottom row:(

Ũ ,u2
)
G̃ =

(
0T ±1
U 0

)
and G̃T

(
L̃
0T

)
=

(
L
αeT

1

)
.

Then the ULV decomposition of A(2:m, :) consists of U , L, and Ṽ .

182 R.D. Fierro et al. / UTV Tools

Finally, we need to make the new UTV decomposition a rank-revealing one. We
note that the numerical rank can either remain at k or decrease by one. Hence, due
to the ordering of the Givens rotations, most of the small elements in T remain small,
and we need only perform a few condition estimation and deflation steps.

Consider now the case where U1 is not available, which is common in signal
processing applications due to constraints in both memory size and computational
complexity. The vector qT = U1(1, :) can be computed from the relation wT = qTTV T

by solving this equation for q, i.e.,

q =
(
T T)−1

V Tw, (11)

and the first element of u2 is then given by u2(1) = (1 − ‖q‖2
2)1/2. Once this infor-

mation is available, it follows from the relations above that the downdating can be
accomplished. Unfortunately, this so-called Linpack procedure is numerically inferior
when ‖q‖2 is close to one, in which case it is safer to use algorithms based on the
corrected semi-normal equation (CSNE) approach [7]. Two versions of this approach
have been developed: the first by Bojanczyk and Lebak [8], and the second by Park
and Eldén [45] and further improved by Barlow et al. [3]. It is outside the scope of
this work to present the details of these sophisticated downdating algorithms; instead
we refer to the papers for details.

The process of orthogonalizing e1 to U1 breaks down when e1 lies in the range
of U1, and one instance where this happens is when the exact rank of the coefficient
matrix decreases during the downdating process, as shown in the following theorem.

Theorem 2. Let qT = U1(1, :). If rank(A(2:m, :)) < rank(A), then

e1 ∈ R(U1)⇐⇒ ‖q‖2 = 1. (12)

Proof. Since rank(T) = rank(A), and since

rank
(
U1(2:m, :)T

)
= rank

(
A(2:m, :)

)
= rank(A)− 1,

we conclude that U1(2:m, :) must be rank-deficient. Now, from the CS decomposition
[26, section 2.6.4] of U1 it is clear that ‖q‖2 = 1 ⇔ rank(U1(2:m, :)T) = n − 1.
Hence, rank(A(2:m, :)) < rank(A) implies that ‖q‖2 = 1. This, in turn, is equivalent
to e1 ∈ R(U1) because ‖UT

1 e1‖2 = ‖q‖2 is the norm of the orthogonal projection of e1

on the range of U1. �

Our algorithms detect and overcome this difficulty as follows. If U1 is available,
the situation is detected reliably by the “twice is enough” strategy in MGS, and instead
we orthonormalize the vector (1, 2, . . . ,m)T to U1 which yields a vector u2 whose first
component is of the order of the machine precision. If U1 is not available, the situation
is detected during the CSNE algorithm which returns an exact zero for u2(1).

At this stage, we want to emphasize that numerically stable UTV downdating
algorithms have become very complex, and the computational overhead can become

R.D. Fierro et al. / UTV Tools 183

quite large, especially when the exact rank decreases. In certain real-time applications
where the complexity of the software is limited, it may be worth considering whether
recomputation of the ULV decomposition – which simplifies the code at the expense
of introducing a time delay or a gap in the output data – is to be preferred to the more
complex algorithms. The decision to recompute the UTV decomposition should then
be linked to the detection of the situation when e1 is on the range of U1.

The downdating algorithms described above are implemented in the two Matlab
functions ulv dw and urv dw for downdating the ULV and URV decompositions, re-
spectively. Similar to the updating implementations, we normalize the columns of V
once all Givens rotations have been applied.

Downdating frequently arises in signal processing in connection with sliding
window applications where, in each time step, the top row of A is skipped and a new
row is appended to the bottom of A. Algorithmically, this is treated by means of an
updating step followed by a downdating step, and this combined action is implemented
in the two Matlab functions ulv win and urv win.

4.3. A numerical example

The subspace tracking capability of the up- and downdating algorithms is demon-
strated in the Matlab demo functions wulvdemo and wurvdemo. Here, we illustrate
some of the inherent numerical difficulties associated with a ULV downdating step as
implemented in ulv dw. Consider first the case where U1 is available, and let A be a
6× 4 matrix such that

svd(A) =
(
2.08, 1.03, 0.21, 1.24 · 10−16),

svd
(
A(2:m, :)

)
=
(
2, 1, 1.96 · 10−16, 8.11 · 10−17),

and

svd
(
U1(2:m, :)

)
=
(
1, 1, 1, 2.41 · 10−16).

First we use MGS with one reorthogonalization step to orthogonalize z = e1 to U1,
by means of the generic algorithm:

Generic MGS algorithm.

1. For j = 1:n, z ← z − U1(: , j)(U1(: , j)Tz); end
2. If ‖z‖2 < 2−1/2 then
3. for j = 1:n, z ← z − U1(: , j)(U1(: , j)Tz); end

We obtain ‖z‖2 = 2.32 · 10−16, and we conclude that e1 ∈ R(U1). Instead,
we choose z = (1, 2, . . . ,m)T and apply the above MGS algorithm to this vector.
After normalization we end up with a vector u2 whose first component, as expected,
is practically zero, u2(1) = −1.34 · 10−17. Then the downdating process can be
completed.

184 R.D. Fierro et al. / UTV Tools

Next, consider the situation where U1 is not available, and where q must be
computed from w via (11). With the same data as above, the Linpack procedure
yields

q =
(
−0.968, −0.200, 0.153, −4.40 · 10−16)

with ‖q‖2 = 1 exactly, and thus u2(1) = 0. Hence, in this exactly rank-deficient
case, there is in principle no problem in using the simple Linpack approach. However,
in finite precision arithmetic we cannot distinguish an exactly rank-deficient problem
from a near-rank-deficient problem. To illustrate this, we modify the matrix slightly,
such the small singular values of A and A(2:m, :) become somewhat larger than the
machine precision (8.49 · 10−7 and 10−6, 10−9, respectively); now ‖q‖2 6= 1, but it is
so close to one that u2(1) cannot be computed as (1−‖q‖2

2)1/2. Thus, we must switch
to the CSNE approach, which leads to the result u2(1) = 5.36 · 10−9.

5. Quotient UTV decompositions

Throughout the years, rank-revealing orthogonal decompositions – and in partic-
ular the SVD – have been generalized to matrix pairs, triplets, etc. One of the most
well-known and most frequently used generalizations is the quotient SVD (QSVD),
or generalized SVD, of two matrices A and B with the same number of columns
[26, section 8.7.3], which yields information about the numerical rank and numerical
subspaces of the matrix “quotient” AB−1 when B is invertible, and AB† (where B† is
the pseudoinverse [26, section 5.5.4] of B) when B has full column rank. The QSVD
has numerous applications in signal processing as well as in many other applications,
cf. [16,29], and is available in Matlab 5.2 as the function gsvd.

5.1. The rank-revealing ULLV decomposition

In signal processing applications, the QSVD is often used in connection with
problems that involve additive colored noise, where the matrix A represents the sam-
pled noisy signal, while the matrix B represents the noise. As long as A and B
have the same number of columns and B has full column rank, the matrix quotient
AB† represents a so-called prewhitened signal with white noise, to which the standard
filtering and noise-reduction techniques can be applied; see [33] for details.

In these applications it is natural to generalize the UTV decomposition to such
pairs of matrices with the same number of columns. In this work, we focus on the
important case where B has full column rank, which is very often the case in signal
processing applications. Then the quotient ULV composition, also referred to as the
ULLV decomposition [38], takes the form

A = UALALV
T, B = UBLV

T, (13)

where UA and UB have orthonormal columns and V is orthogonal, i.e., UT
AUA =

UT
BUB = V TV = In, while LA and L are both lower triangular. Moreover, L has full

R.D. Fierro et al. / UTV Tools 185

rank, because we assume that B has full column rank. The corresponding quotient URV
decomposition is defined analogously, and we shall not pursue this decomposition here.

Since B has full rank, its pseudoinverse is given by B† = V L−1UT
B , and thus

the matrix quotient can be written in terms of the ULLV decomposition as

AB† = UALAU
T
B.

We see that the three matrices UA, LA, and UB form the ULV decomposition of AB†,
and this decomposition can always be made to reveal the numerical rank of AB†

by means of ULV revealment steps. When this is the case, we say that the ULLV
decomposition (13) is a rank-revealing quotient ULV decomposition of A and B.

For completeness, we mention that if B does not have column full rank, then we
can always assume that preprocessing has been applied to the matrix pair such that B
is p× n with rank(B) = p < n. The corresponding quotient ULV decomposition then
takes the form

A = UALA

(
L 0
0 In−p

)
V T, B = UB(L, 0)V T,

where L is now p× p; for more details about this version and its application in inter-
ference problems, see [30,39]. Other generalized UTV decompositions are discussed
in [57] (matrix quotients of the form A−1B) and [8] (a decomposition of the form
A = UALALV

T, B = UBLBLV
T).

We note that the approximation bounds in theorem 1 immediately carry over to
the numerical subspaces of the matrix quotient AB†, when applied to the columns
of UA and UB and the corresponding vectors of the QSVD.

5.2. ULLV algorithms

The algorithms for computing and modifying rank-revealing quotient UTV de-
compositions are similar to those for the ordinary UTV decompositions, except that
care must be taken to maintain the triangular structure of both LA and L. Here, we
assume that the matrix B has full rank. We restrict ourselves to a ULLV algorithm for
the high-rank case; corresponding low-rank ULLV algorithms can always be derived
from the low-rank ULV implementations lulv and lulv a.

5.2.1. A simple ULLV algorithm
To compute a rank-revealing ULLV decomposition in the high-rank case, we

need an initial decomposition with the same structure. As long as B has full rank and
is well conditioned, we can use the following approach.

Initial ULLV algorithm.

1. Compute the QL factorization B = UBL.
2. Solve A = ZL for Z (i.e., formally, Z = AL−1).
3. Compute the QL factorization Z = UALA.

186 R.D. Fierro et al. / UTV Tools

Then the condition estimation and deflation steps of Stewart’s high-rank UTV
algorithm are applied to the three matrices UA, LA, and UB in order to make the
ULLV decomposition reveal the numerical rank of AB†. Note that some of the Givens
rotations in these steps are also applied from the left to L, and they must be interleaved
with right Givens rotations (which are also applied to V) in order to maintain the
triangular form of L. The complete algorithm is implemented in the Matlab function
ullv, where the details of the condition estimation and deflation steps can be studied.
We do not provide low-rank algorithms for the ULLV decomposition.

5.2.2. Updating algorithms
Algorithms for updating the ULLV decomposition (13) when a row is appended

to A and/or B are described in [38]. Consider the case where a row wT is appended
to A; then we promote this row to L as follows (where a weighting factor β is included
for completeness):(

βA
wT

)
=

(
UA 0
0T 1

)(
βLA 0
0T 1

)(
L

wTV

)
V T, B = UB(In, 0)

(
L

wTV

)
V T.

Now left and right Givens rotations are used to annihilate all but the leftmost element
of the row wTV and, simultaneously, to maintain the triangular structure of L. The
left rotations are also applied from the right to LA and interleaved with other rotations
applied from the left that maintain the triangular form of LA, and we arrive at the
intermediate form(

βA
wT

)
=

(
ŨA 0
0T 1

)(
L̃A 0
0T 1

)(
L̃
ξeT

1

)
Ṽ T, B = ŨB(In, 0)

(
L̃
ξeT

1

)
Ṽ T.

Next, the element ξ is annihilated by means of a scaled rotation Y from the left,
satisfying

Y

(
L̃
ξeT

1

)
=

(
L̃
0

)
.

The transformation Y is a Givens rotation scaled by c, and it has the form

Y =

(
c2 0T cs
0 In−1 0
−cs 0T c2

)
, Y −1 =

(1 0T −s/c
0 In−1 0
s/c 0T 1

)
. (14)

When Y −1 is propagated to the left it creates fill,(
L̃A 0
0T 1

)
Y −1 =

(
L̃A z̃
ηeT

1 1

)
, (In, 0)Y −1 = (In,−ηe1),

R.D. Fierro et al. / UTV Tools 187

where η = s/c, and fortunately this fill does not contribute to the updated A or to B
because of the newly created zero row. Notice that the scaled rotation maintains the
submatrices L̃, L̃A, and In. At this second intermediate stage, we have(

βA
wT

)
=

(
ŨA 0
0T 1

)(
L̃A
ηeT

1

)
L̃Ṽ T, B = ŨBL̃Ṽ

T,

and now η is annihilated by means of a single left Givens rotation which creates fill
in the last column of the leftmost factor of A that can be neglected:(

ŨA 0
0T 1

)(
L̃A
ηeT

1

)
=
(
UA, z

)(LA
0

)
= UALA.

Hence, we arrive at (
βA
wT

)
= UALAL̃Ṽ

T, B = ŨBL̃Ṽ
T.

The updating process concludes, as usual, with condition estimation, revealment, and
deflation. We refer to [38] for more details as well as a similar algorithm for updat-
ing B. The updating algorithms are implemented in the two Matlab functions ullv up a
and ullv up b, respectively, where further details can be found.

Whenever B is ill-conditioned or rank-deficient, the initial ULLV algorithm de-
scribed above must be avoided, and instead one should apply the updating algorithm
ullv up a a number of times to the initial matrix pair 0 and B with β = 1, in such a
way that the rows of A are introduced one at a time, cf. [38].

5.2.3. Downdating algorithms
Algorithms for downdating the ULLV decomposition (13) when a row is removed

from A and/or B are described in [31]. These algorithms, in turn, are adapted from
the downdating algorithms presented in the unpublished report [36]. They are not as
sophisticated as the algorithms in [3,45], but more research is necessary to extend the
latter algorithms to the ULLV decomposition.

When A is downdated, then the matrix UA is first augmented with an additional
column u2 that is orthonormal to the columns of UA in such a way that the norm of
the first row of (UA,u2) is one. Then we formally write the ULLV decomposition as

A=

(
wT

A(2:m, :)

)
= (UA,u2)

(
LA 0
0T 1

)(
L
0T

)
V T,

B=UB(In,−ηe1)

(
L
0T

)
V T,

where η is a parameter to be determined later. Now we annihilate all but the leftmost
element of the top row of UA by means of a sequence of Givens rotations, starting from

188 R.D. Fierro et al. / UTV Tools

the right. Applying the necessary Givens rotations in order to maintain the triangular
form of LA and L, we compute

A =

(
υeT

1 u2(1)
ŨA u2(2:m)

)(
L̃A 0
0T 1

)(
L̃
0T

)
Ṽ T, B = ŨB(In,−ηe1)

(
L̃
0T

)
Ṽ T.

Next, we apply a single Givens rotation to the first and last columns of the leftmost
matrix in the expressions for A to annihilate υ, and we obtain(

υeT
1 u2(1)

ŨA u2(2:m)

)(
L̃A 0
0T 1

)
=

(
0T ±1
UA 0

)(
LA −se1

ηeT
1 c

)
.

This relation defines the quantity η used in the augmented expression for B. Finally,
we apply the scaled transformation Y (14) from the right to the rightmost matrix in the
above expression, with c and s determined from the relations η = s/c and c2 +s2 = 1.
This transformation annihilates η, and we obtain(

LA −se1

ηeT
1 c

)(
L̃
0T

)
=

(
L̃A 0
0 1

)(
L̃
ξeT

1

)
,

(In,−ηe1)

(
L̃
0T

)
= (In, 0)

(
L̃
ξeT

1

)
.

We thus arrive at the expressions

A(2:m, :) = UALAL̃Ṽ
T, B = ŨBL̃Ṽ

T.

Finally, condition estimation and deflation steps are applied. We refer to [31] for more
details and for a similar algorithm for downdating B. The downdating algorithms are
implemented in the two Matlab functions ullv dw a and ullv dw b, respectively, where
details can also be found.

5.3. Numerical examples

Our first example illustrates the structure of the two triangular matrices LA and L.
Both A and B are random 8 × 5 matrices; A has numerical rank k = 3 with respect
to the threshold τ = 0.005, and B is well-conditioned with condition number equal to
6.3. Using the function ullv, we compute

LA =


2.7 · 10−2

−3.2 · 10−1 2.8 · 10−1

1.1 · 10−2 5.3 · 10−1 7.5 · 10−1

1.1 · 10−4 1.3 · 10−4 −9.2 · 10−5 2.9 · 10−3

−5.4 · 10−6 −6.3 · 10−6 4.5 · 10−6 −1.6 · 10−4 1.2 · 10−3



R.D. Fierro et al. / UTV Tools 189

and

L =


0.45
0.06 0.62
−2.40 0.38 2.53

0.45 0.05 −0.74 1.07
−0.19 0.11 −0.04 −0.12 1.01

 .

With respect to the same threshold τ = 0.005, the numerical rank of AB† is clearly
revealed through LA as 3.

Our second example illustrates that the numerical rank of the matrix coefficient
AB† can differ from that of A, thus showing the need for a quotient ULV decompo-
sition. The matrix A is 8× 5 and its singular values are

σ1 = 10, σ2 = 7, σ1 = 4, σ1 = 0.4, σ1 = 0.2.

There is obviously a cluster of three large singular values, i.e., the rank is 3 with
respect to the threshold τ = 1. The 8 × 5 matrix B is again well-conditioned with
‖B‖2 = 23.1 and condition number equal to 58.9. The five singular values of the
matrix quotient AB† are

σ1 = 10, σ2 = 5, σ1 = 0.5, σ1 = 0.2, σ1 = 0.1,

showing that the gap in the singular value spectrum has changed; the matrix quotient
has a cluster of only two large singular values, i.e., the numerical rank is now 2 with
respect to the same threshold τ = 1. These two different numerical ranks are estimated
correctly by the ULV decomposition of A and the ULLV decomposition of (A,B). By
means of hulv we compute A’s lower triangular factor in the ULV decomposition,

5.14
4.98 8.09
0.87 −1.48 6.73

−9.5 · 10−4 5.1 · 10−4 9.7 · 10−4 0.40
−3.7 · 10−4 2.2 · 10−4 1.7 · 10−4 3.2 · 10−2 0.20

 ,

and by means of ullv we compute the following LA-factor in the ULLV decomposition:

LA =


5.13
−1.94 9.74

−1.2 · 10−3 4.1 · 10−3 0.50
1.9 · 10−5 2.3 · 10−4 1.0 · 10−2 0.19
−8.6 · 10−5 3.7 · 10−5 2.6 · 10−3 −4.3 · 10−2 0.10

 .

Both triangular factors reveal the correct numerical rank of A and AB†, respectively.

6. Overview of software

The following eight tables summarize the 46 Matlab 5.2 functions included in
the package, of which details are given in the manual that accompanies the software.

190 R.D. Fierro et al. / UTV Tools

UTV-based solvers
tulv Solves a numerically rank-deficient least squares problem using the

rank-revealing ULV decomposition.
turv Similar to tulv, except it uses the rank-revealing URV decomposition.

High-rank UTV algorithms
hulv Stewart’s rank-revealing ULV algorithm.
hulv a The alternative rank-revealing ULV algorithm.
hurv Stewart’s rank-revealing URV algorithm.
hurv a The alternative rank-revealing URV algorithm.

Low-rank UTV algorithms
lulv Warm-started rank-revealing ULV algorithm.
lurv Warm-started rank-revealing URV algorithm.
lulv a Cold-started rank-revealing ULV algorithm.
lurv a Cold-started rank-revealing URV algorithm.

Block QR refinement
ulv qrit Refinement of L in the ULV decomposition.
urv qrit Refinement of R in the URV decomposition.

UTV up- and downdating
ulv dw Downdate the rank-revealing ULV decomposition.
ulv up Update the rank-revealing ULV decomposition.
ulv win Sliding window modification of the rank-revealing ULV decomp.
urv dw Downdate the rank-revealing URV decomposition.
urv up Update the rank-revealing URV decomposition.
urv win Sliding window modification of the rank-revealing URV decomp.

ULLV algorithms
ullv Compute a high-rank revealing ULLV decomposition.
ullv dw a Downdate A in the rank-revealing ULLV decomposition.
ullv dw b Downdate B in the rank-revealing ULLV decomposition.
ullv up a Update A in the rank-revealing ULLV decomposition.
ullv up b Update B in the rank-revealing ULLV decomposition.

RRQR algorithms
hrrqr Chan–Foster high-rank RRQR algorithm.
lrrqr Chan–Hansen low-rank RRQR algorithm.
trrqr Solves a numerically rank-deficient least squares problem

using the RRQR decomposition.

R.D. Fierro et al. / UTV Tools 191

Misc. tools
app giv Apply a Givens rotation (from the left or right).
app hous Apply a Householder reflection (from the left or right).
ccvl Estimation of the smallest singular value via the Cline–Conn–

Van Loan algorithm.
gen giv Determine a 2× 2 Givens rotation matrix.
gen hous Determine a Householder reflection matrix.
inviter Estimation of the smallest singular value via inverse iteration.
lanczos Estimation of the largest singular value via Lanczos bidiagonalization.
mgsr Modified Gram–Schmidt expansion step with reorthogonalization.
powiter Estimation of the largest singular value via the power method.
ullv csne Corrected semi-normal equations expansion step (for ULLV).
ullv rdef Deflate one row of LA in the ULLV decomposition.
ullv ref Refine one row of LA in the ULLV decomposition.
ulv cdef Deflate one column of L in the ULV decomposition.
ulv csne Corrected semi-normal equations expansion step (for ULV).
ulv rdef Deflate one row of L in the ULV decomposition.
ulv ref Refine one row of L in the ULV decomposition.
urv cdef Deflate one column of R in the URV decomposition.
urv csne Corrected semi-normal equations expansion step (for URV).
urv rdef Deflate one row of R in the URV decomposition.
urv ref Refine one column of R in the URV decomposition.

In addition we provide eight demo functions that illustrate the use and func-
tionality of the main algorithms, by applying them to small test matrices with known
singular values. In addition, we demonstrate that our up- and downdating algorithms
are capable of tracking the numerical rank of a difficult test problem from [36]. See
the accompanying manual for more details.

Acknowledgements

We wish to thank Adam Bojanczyk for sharing his ULLV algorithms with us dur-
ing the early stages of this project. Also thanks to Sanzheng Qiao for kindly providing
us with his Matlab software.

References

[1] G. Adams, M.F. Griffin and G.W. Stewart, Direction-of-arrival estimation using the rank-revealing
URV decomposition, in: Proc. of IEEE Internat. Conf. on Acoustics, Speech, and Signal Processing,
Washington (1991).

[2] J.L. Barlow and P.A. Yoon, Solving recursive TLS problems using the rank-revealing ULV decom-
position, in: Recent Advances in Total Least Squares Techniques and Errors-In-Variables Modeling,
ed. S. Van Huffel (SIAM, Philadelphia, PA, 1997) pp. 117–126.

192 R.D. Fierro et al. / UTV Tools

[3] J.L. Barlow, P.A. Yoon and H. Zha, An algorithm and a stability theory for downdating the ULV
decomposition, BIT 36 (1996) 15–40.

[4] M.W. Berry, S.T. Dumais and G.W. O’Brien, Using linear algebra for intelligent information re-
trieval, SIAM Rev. 37 (1995) 573–595.

[5] E. Biglieri and K. Yao, Some properties of singular value decomposition and their applications to
digital signal processing, Signal Processing 18 (1989) 277–289.

[6] C.H. Bischof and G.M. Shroff, On updating signal subspaces, IEEE Trans. Signal Processing 40
(1992) 96–105.

[7] Å. Björck, H. Park and L. Eldén, Accurate downdating of least squares solutions, SIAM J. Matrix
Anal. Appl. 15 (1994) 549–568.

[8] A.W. Bojanczyk and J.M. Lebak, Downdating a ULLV decomposition of two matrices; in: Applied
Linear Algebra, ed. J.G. Lewis (SIAM, Philadelphia, PA, 1994).

[9] J.R. Bunch and N.P. Nielsen, Updating the singular value decomposition, Numer. Math. 31 (1978)
111–129.

[10] T.F. Chan, Rank revealing QR factorizations, Linear Algebra Appl. 88/89 (1987) 67–82.
[11] T.F. Chan and P.C. Hansen, Some applications of the rank revealing QR factorization, SIAM J. Sci.

Statist. Comput. 13 (1992) 727–741.
[12] T.F. Chan and P.C. Hansen, Low-rank revealing QR factorizations, Numer. Linear Algebra Appl. 1

(1994) 33–44.
[13] A.K. Cline, A.R. Conn and C.F. Van Loan, Generalizing the LINPACK condition estimator, in:

Numerical Analysis, ed. J.P. Hennart, Lecture Notes in Mathematics, Vol. 909 (Springer, Berlin,
1882).

[14] P. Comon and G.H. Golub, Tracking a few extreme singular values and vectors in signal processing,
Proc. IEEE 78 (1990) 1337–1343.

[15] J.W. Daniel, W.B. Gragg, L. Kaufman and G.W. Stewart, Reorthogonalization and stable algorithms
for updating the Gram–Schmidt QR factorization, Math. Comp. 30 (1976) 772–795.

[16] B. De Moor, Generalizations of the OSVD: Structure, properties and applications, in: [59] pp. 83–98.
[17] F. Deprettere, SVD and Signal Processing, Algorithms, Applications, and Architectures (North-

Holland, Amsterdam, 1988).
[18] L. Eldén and E. Sjöström, Fast computation of the principal singular vectors of Toeplitz matrices

arising in exponential data modelling, Signal Processing 50 (1996) 151–164.
[19] R.D. Fierro, Perturbation analysis for two-sided (or complete) orthogonal decompositions, SIAM J.

Matrix Anal. Appl. 17 (1996) 383–400.
[20] R.D. Fierro and J.R. Bunch, Bounding the subspaces from rank revealing two-sided orthogonal

decompositions, SIAM J. Matrix Anal. Appl. 16 (1995) 743–759.
[21] R.D. Fierro and P.C. Hansen, Accuracy of TSVD solutions computed from rank-revealing decom-

positions, Numer. Math. 70 (1995) 453–471.
[22] R.D. Fierro and P.C. Hansen, Low-rank revealing UTV decompositions, Numerical Algorithms 15

(1997) 37–55.
[23] R.D. Fierro, L. Vanhamme and S. Van Huffel, Total least squares algorithms based on rank-revealing

complete orthogonal decompositions, in: Recent Advances in Total Least Squares Techniques and
Errors-in-Variables Modeling, ed. S. Van Huffel (SIAM, Philadelphia, PA, 1997) pp. 99–116.

[24] L. Foster, Rank and null space calculations using matrix decomposition without column inter-
changes, Linear Algebra Appl. 74 (1986) 47–71.

[25] G.H. Golub, V. Klema and G.W. Stewart, Rank degeneracy and least squares problems, Technical
Report TR-456, Dept. of Computer Science, University of Maryland, MD (1976).

[26] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd ed. (Johns Hopkins University Press,
Baltimore, MD, 1996).

[27] M. Gu and S.C. Eisenstat, Downdating the singular value decomposition, SIAM J. Matrix Anal.
Appl. 16 (1995) 793–810.

R.D. Fierro et al. / UTV Tools 193

[28] P.C. Hansen, The 2-norm of random matrices, J. Comput. Appl. Math. 23 (1988) 117–120.
[29] P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inver-

sion (SIAM, Philadelphia, PA, 1998).
[30] P.C. Hansen, Rank-deficient prewhitening by quotient SVD and UTV, BIT 38 (1998) 34–43.
[31] P.S.K. Hansen, Signal subspace methods for speech enhancement, Ph.D. thesis, Dept. of Mathemat-

ical Modelling, Technical University of Denmark (1997).
[32] N.J. Higham, A survey of condition number estimation for triangular matrices, SIAM Rev. 29

(1987) 575–596.
[33] S.H. Jensen, P.C. Hansen, S.D. Hansen and J.A. Sørensen, Reduction of broad-band noise in speech

by truncated QSVD, IEEE Trans. Audio Speech Proc. 3 (1995) 439–448.
[34] J. Kuczynski and H. Wozniakowski, Estimating the largest eigenvalue by the Power and Lanczos

algorithms with a random start, SIAM J. Matrix Anal. 4 (1992) 1094–1122.
[35] C.L. Lawson and R.J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs,

NJ, 1974). Reprinted by SIAM, Philadelphia.
[36] J.M. Lebak and A.W. Bojanczyk, Modifying a rank-revealing ULLV decomposition, Manuscript,

School of Electrical Engineering, Cornell University (1994).
[37] K.J.R. Liu, D.P. O’Leary, G.W. Stewart and Y.-J. Wu, URV ESPRIT for tracking time-varying

signals, IEEE Trans. Signal Processing 42 (1994) 3441–3448.
[38] F.T. Luk and S. Qiao, A new matrix decomposition for signal processing, Automatica 30 (1994)

39–43.
[39] F.T. Luk and S. Qiao, An adaptive algorithm for interference cancelling in array processing, in:

Advanced Signal Processing Algorithms, Architectures, and Implementations VI, ed. F.T. Luk, SPIE
Proceedings, Vol. 2846 (1996) pp. 151–161.

[40] W. Ma and J.P. Kruth, Mathematical modelling of free-form curves and surfaces from discrete points
with NURBS, in: Curves and Surfaces in Geometric Design, eds. P.J. Laurent, A. Le Méhauté and
L.L Schumaker (A.K. Peters, Wellesley, MA, 1994).

[41] R. Mathias and G.W. Stewart, A block QR algorithm and the singular value decomposition, Linear
Algebra Appl. 182 (1993) 91–100.

[42] M. Moonen and B. De Moor, SVD and Signal Processing, III, Algorithms, Architectures and Ap-
plications (Elsevier, Amsterdam, 1995).

[43] M. Moonen, P. Van Dooren and J. Vandewalle, A note on efficient numerically stabilized rank-one
eigenstructure updating, IEEE Trans. Signal Processing 39 (1991) 1911–1913.

[44] M. Moonen, P. Van Dooren and J. Vandewalle, A singular value decomposition updating algorithm
for subspace tracking, SIAM J. Matrix Anal. Appl. 13 (1992) 1015–1038.

[45] H. Park and L. Eldén, Downdating the rank revealing URV decomposition, SIAM J. Matrix Anal.
Appl. 16 (1995) 138–155.

[46] H. Park, S. Van Huffel and L. Eldén, Fast algorithms for exponential data modeling, in: Proc. of
1994 IEEE Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), April 19–22,
Adelaı̈de, Australia, Vol. 4 (1994) pp. 25–28.

[47] D.J. Pierce and J.G. Lewis, Sparse multifrontal rank-revealing QR factorization, SIAM J. Matrix
Anal. Appl. 18 (1997) 159–180.

[48] M.A. Rahman and K. Yu, Total least squares approach for frequency estimation using linear pre-
diction, IEEE Trans. ASSP 35 (1987) 1442–1454.

[49] L.L. Scharf, The SVD and reduced rank signal processing, Signal Processing 25 (1991) 113–133.
[50] G.W. Stewart, Rank degeneracy, SIAM J. Sci. Statist. Comput. 5 (1984) 403–413.
[51] G.W. Stewart, An updating algorithm for subspace tracking, IEEE Trans. Signal Processing 40

(1992) 1535–1541.
[52] G.W. Stewart, Updating a rank-revealing ULV decomposition, SIAM J. Matrix Anal. Appl. 14

(1993) 494–499.

194 R.D. Fierro et al. / UTV Tools

[53] G.W. Stewart, Determining rank in the presence of error in: Linear Algebra for Large Scale and
Real-Time Applications, eds. M.S. Moonen, G.H. Golub and B.L.R. DeMoor (Kluwer Academic,
Dordrecht, 1993) pp. 275–292.

[54] G.W. Stewart, UTV decompositions, in: Numerical Analysis, eds. D.F. Griffith and G.A. Watson
1993, Pitman Research Notes in Mathematical Sciences (New York, 1994).

[55] G.W. Stewart, A gap-revealing matrix decomposition, Report TR-3771, Dept. of Computer Science,
University of Maryland (1997), to appear in SIAM J. Sci. Comput.

[56] G.W. Stewart, Matrix Algorithms. Vol. I: Basic Decompositions (SIAM, Philadelphia, PA, 1998).
[57] M. Stewart and P. Van Dooren, Updating a generalized URV decomposition, SIAM J. Matrix Anal.

Appl., to appear.
[58] D.W. Tufts and R. Kumaresan, Estimation of frequencies of multiple sinusoids: Making linear

prediction perform like maximum likelihood, Proc. IEEE 70 (1982) 975–989.
[59] R. Vaccaro, SVD and Signal Processing, II, Algorithms, Analysis and Applications (Elsevier, Ams-

terdam, 1991).
[60] R.J. Vaccaro, D.W. Tufts and G.F. Boudreaux-Bartels, Advances in principal component signal

processing, in: [17] pp. 115–146.
[61] A. van der Veen and E.F. Deprettere, SVD-based low-rank approximations of rational models,

in: [59] pp. 431–454.
[62] S. Van Huffel and H. Zha, An efficient total least squares algorithm based on a rank revealing

two-sided orthogonal decomposition, Numerical Algorithms 4 (1993) 101–133.
[63] G. Xu and T. Kailath, Fast estimation of principle eigenspace using Lanczos algorithm, SIAM J.

Matrix Anal. Appl. 15 (1994) 974–994.
[64] G. Xu, H. Zha, G.H. Golub and T. Kailath, Fast and robust algorithms for updating signal subspaces,

IEEE Trans. Circuits Systems 41 (1994) 537–549.
[65] P.A. Yoon and J.L. Barlow, An efficient rank detection procedure for modifying the ULV decom-

position, BIT 38 (1998) 781–801.

