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Abstract-Remote Operated Vehicles (ROVs) are used 
extensively for salvage operations, ocean floor surveying and 
numerous inspection activities that support a wide range of 
underwater commercial activities.  In deep water (greater than 
1000 ft) an ROV is the platform of choice because of the depth 
and endurance limitations for human divers.  The key 
disadvantage to an ROV is the requirement for the long tether.  
The tether greatly inhibits the speed of the ROV, requires a ship 
with deck gear capable of handling this cable, and significantly 
restricts ship movement while deployed.   

Un-tethered Unmanned Underwater Vehicles (UUVs) have 
entered the commercial market and have demonstrated the 
ability to perform deep-water surveys faster and cheaper than 
towed vessels.  With further technological advances, UUVs have 
the potential for supplementing and even replacing ROVs for 
many deep-water operations because of the cost and problems 
associated with the tether.  One promising scenario for the near 
future is to use an ROV or surface ship to control multiple 
UUVs in a local work area.  Typically in this scenario the UUVs 
are used to extend the sensor footprint of the ROV or surface 
ship. 

Another area of interest is the UUV team concept.  A 
stereotypical UUV team would be a heterogeneous mix of 
several low-cost specific purpose vehicles, guided and supported 
by one or two higher cost control vessels.  Because of the severe 
restrictions that the sub-sea environment places on 
communication and positioning, precision underwater 
navigation is difficult.  Currently most precision underwater 
navigation relies on some sort of infrastructure such as surface 
ships or underwater beacons placed in known positions.  Using 
these assets as reference-points sub-sea navigation is carried out.  
Some situations require that the environmental and/or 
commercial attributes of an area be assessed before an 
infrastructure exists.  In order to do this the UUV team must be 
able to navigate to an area, carry out its task and return without 
any pre-existing infrastructure or step by step guidance. 

Given basic assumptions about the type and frequency of 
sensor input we present a biologically inspired, decentralized 
methodology for safely and efficiently moving a loose formation 
of UUV’s to and from the task area with the goal of minimizing 
outside guidance. 
 

I.  INTRODUCTION 
 

The PNT (Positioning, Navigation and Timing) team of 
the Naval Research Laboratory (NRL), located as Stennis 
Space Center, MS has recently undertaken a new project 
aimed at the conceptualization, development and testing of 
strategies, algorithms and sensors required to enable inter-
vessel positioning and coordinated navigation needed for 
UUV (unmanned underwater vehicle) task forces.  This effort 
supports an operational concept of UUVs that does not 
require the prior insertion of a communication and navigation 

infrastructure by ships or planes into the planned operational 
area.   

The employment of multiple UUVs has significant 
advantages for both military and commercial applications [2].  
Advantages include the ability to survey large ocean areas 
more rapidly and economically than can be accomplished 
with a ship or a single UUV, and increased operational 
envelopes due to weather insensitivity.  Inter-vessel 
positioning and navigation has distinct advantages in that it 
can reduce or eliminate the requirement for pre-deployed 
positioning systems.   

In this paper we describe methods that rely on machine 
learning techniques for creation and maintenance of loose 
formations of autonomous vehicles for the purpose of 
traveling from a mission staging area to an area of interest.   
Specifically, we have used a genetic algorithm (GA) to find 
relevant parameters for a feed-forward neural network that 
controls heading and speed changes for UUV’s.  Using these 
controllers and a leader/follower scheme we have achieved 
formation forming and maintaining behavior. We present a 
conceptual discussion and show simulator results. 

 
II.  BACKGROUND/REVIEW OF RELATED WORKS 

 
A typical mission involving multiple UUVs will have 

many distinct phases.  Initially, the UUVs will be onboard 
their host vessel/vessels.  Depending on the size of the UUVs 
involved in the mission and the goals of mission, there may 
be more that one host vessel deploying UUVs.  After the 
UUV have been sea prepped (batteries charged, sensors 
calibrated, positioning systems initialized etc.) and mission 
prepped (destination and mission types defined) the UUVs 
will be put into the water.  They will then form into a group 
and travel to the area of interest.  Currently, we are assuming 
that there will be at least one vehicle that has an accurate 
positioning system on board.  The others  

 
will rely on it for corrections and updates.  Upon getting to 
the area of interest, the UUVs will change into mission  
specific formations and execute their mission related goals.  
When the mission is complete they once again form a transit 
formation and journey back to their host vessel/vessels where 
upon arrival the collected data will processed and 
disseminated.  Below is a brief summary of phases of a UUV 
mission: 
 
 

1. Disembark. 
2. Traveling formation creation. 
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3. Transit to Area of Interest. 
4. Arrival  
5. Survey formation creation. 
6. Surveying of Area of Interest. 
7. Traveling formation creation. 
8. Transit back to home base. 
9. Arrival and data downloading. 

 
NRL’s PNT (Positioning, Navigation and Timing) team 

has developed autonomous surveying techniques, phase 6 
from the mission phases section above, for oceanographic 
vessels, both ships and submersibles.  This effort has focused 
on the optimal deployment of swath sensor systems, i.e. 
sensors with a fixed angular swath width whose physical 
coverage varies with sensor altitude over the terrain and 
terrain shape.  The primary development in this area is 
AutoSurvey [1] that generates next-line navigation waypoints 
based on the sensor data collected during the previous line.  
The objective of AutoSurvey is full sensor coverage in 
minimal time and simulation studies have shown time-
savings of up to 30%.   

Phases 2 and 3, traveling formation creation and transit to 
area of interest are very similar to their return counterparts, 
phases 7 and 8.  Superficially the difference is that during 
phases 2 and 3 the vehicles are leaving the staging area, and 
in 7 and 8 they are returning, but the big difference is that 
during stages 2 and 3 the host vessels are near enough to 
detect and correct problems.  In phases 7 and 8, the host 
vessels could be several miles from the UUVs, effectively 
leaving the UUVs on their own.  In this paper we concentrate 
on the control system developed for phases 2 and 3, and 
while many of these ideas may work for phases 7 and 8, in 
this paper we do not attempt to apply or confirm them. 
 
III.  DISCUSSION OF FORMATION MANEUVERING TECHNIQUES 

EXPLORED IN LITERATURE 
 

Coordinating multiple autonomous vehicles moving in 
formation has recently become an active area of investigation 
in robotics, multi-agent systems, and control.  A formation by 
a group of vehicles is a geometric configuration of the 
vehicles with specific relative position and orientations 
among them.  For example, a group of 3 vehicles can form an 
equilateral triangle formation with the distance between any 
two vehicles equal 500 meters.  Formation control deals with 
the problem of controlling the vehicles in a group so that the 
desired formation is obtained and maintained while the group 
is moving. 
 

Roughly speaking, existing works on formation control 
fall into one of the following 4 categories: 

 
1. Leader-follower approach: each vehicle (except a 

special leader vehicle) follows one or more 
designated leader vehicles with required relative 
position and orientation.  The group in University of 
Pennsylvania has done extensive work in this leader-
follower paradigm [3-6].   In [3], control laws have 
been developed for vehicles that follow one or two 

leaders.  The stability of the control laws has been 
established. 

 
2. The behavior-based approach [7] motor schemas 

(algorithms) are designed for each of the basic 
behaviors (such as keeping formation, 
avoidingobstacles, etc.), and the control command 
(heading and speed of the vehicle) is obtained by a 
weighted combination of the basic behaviors. 

 
3. The potential field approach [8-10]: this approach 

associates an artificial potential field with a group of 
vehicles.  The potential and the interaction force 
between a vehicle and its neighbor vehicle are 
dependent on the distance between these two 
vehicles.  The artificial potentials should be 
designed in such a way that the desired group 
configurations is obtained at a global minima of the 
potential function. The movement of the vehicles of 
the group should be toward minimizing the 
potential. 

 
4. Virtual structure approach [11]: consider the group 

of vehicles as forming a rigid structure, and move 
the group along a trajectory with control laws that 
minimize the deviation of each vehicle from the 
desired position in the virtual structure. 

 
While some existing works emphasize the study of 

stability of the control laws (such as [3,6,8]), quite some 
others validate the control algorithms by simulations and 
some by actual robotic vehicle road testing [7].  The work in 
[12] considers the issue of reducing the communication need 
by observations/sensing in underwater vehicle formation 
control. 

Compared with existing works about formation control, 
our work here has some distinctive features:  First, we use a 
machine learning technique (genetic algorithms) to learn the 
control laws to move into (acquire) formation, and to keep 
(follow) formation.  Existing works with machine learning in 
formation control are quite limited. 

Some works studied use reinforcement learning to better 
estimate other agent's performance.  In one of the most 
relevant works [13], a genetic algorithm is used to evolve 
neural network controllers for simulated "prey" creatures to 
learn a herding behavior avoiding predators.  However, that 
work [13] does not address the issue of forming a particular 
geometric shape (line, tree, etc.).  Second, we used a non-
conventional neural network in the sense that the node 
functions themselves can be evolved to fit the problem at 
hand.  Finally, the current work forms the first step toward a 
comprehensive, hierarchical system with learning capabilities 
for formation control for the PNT project. 
 

IV.  APPROACH 
 

For this work, the overall goal was to endow the UUVs 
with the ability to create a formation and move to a 
destination in that formation.  We recognized that seeking 
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and following leaders were two key abilities that would 
needed in order to realize our goals, so this paper discusses 
our pursuit of these sub-goals in the context of an adaptive 
system.   

Fig. 1 below shows the conceptual diagram for a 
rudimentary adaptive system from which the implemented 
system was modeled.  Based on internal states and sensory 
data from the environment, the Learn/Act box decides 
whether the system needs to improve its controllers.  The 
Action Development box uses a machine learning technique 
to build/modify a controller.  The Action Selection box uses 
controllers developed by the Action Development box.  Its 
outputs go to the robots actuators, which in turn change the 
environment. 
 

 
Fig. 1.  This figure shows a conceptual diagram of an adaptive system whose 

main feature is the ability to improve its controllers. 
 

Fig. 2 below shows the pared down system that serves as 
the initial controller system for formation creation and 
maintenance. 
 
 

 
Fig. 2.  This figure shows how the system in figure 1 was adapted for the 

formation maneuvering problem. 
 

The thrust of the diagram in Fig. 2 is that by developing 
techniques to seek out a UUV and to follow a UUV various 

formations can be created and held.  The effectiveness of the 
UUV can be increased if it can recognize which action is 
appropriate at the moment and have the ability to enhance the 
effectiveness of these actions for its current situation.  Our 
system organization provides for this by using a neural 
controller to select what action to take, and what action to 
learn. 

For the moment, we used a bottom up approach and 
decided to develop the key parts of the system in order to 
make sure that they would suffice for task at hand, formation 
creation and maintenance.   

A multi-robot simulator, called robot school, was 
developed as the primary research tool.  This simulator uses 
the Genetic Algorithm (GA) to grow feed forward neural 
network controllers for simulated UUV in a simulated 
environment.  It uses LabView as a control and display 
engine and C as the calculation engine.  The relevant input 
parameters of for the controllers, the lead UUV and the 
display of the simulated environment are managed by 
LabView, while the calculations of the various sensors, 
environmental effects, and control algorithms are done in a 
library written in C and linked to with LabView.  Fig. 3 
below shows the main control screen of the robot school 
program. 

 
Fig. 3.  This figure shows the main control screen for the robot school 
simulator.  The graph in the middle shows the error level of controllers 

during training mode.  The blue meters on the lower left of the screen show 
left and right acoustic sensor levels of the manually controlled robot.  The 
large dial to the right is the directional control for the manually controlled 

robot. 
 

Key features of the robot school simulator are: 
 

1. UUV model.  The robots are loosely modeled after 
the Underwater Navigation Control Lab (UNCL) lab 
robots (ActiveMedia Pioneer 2DX) in that they have 
the same speed characteristics, top speed of 1.8 
m/sec is enforced. 

2. Sensor model.  See figure 4 below. 
a. Two omni directional sensors placed at 45 

and 135 degrees on the robot at 2 meters 
from the center of the robot.  The front of 
the robot is at 90 degrees. 
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b. Each robot has an ambient amount of noise 
and noise associated with the speed that it 
is moving.  The faster it moves, the noisier. 

c. Noise dissipates with the square of the 
distance between the source and the 
receiver. 

 
Fig. 4.  This figure illustrates the robot acoustic sensor model as described in 

part 2 of the text. 
 

3. Collision model.  When robots collide they react 
according to a physical model with the following 
characteristics. 

a. Inelastic model. 
b. Robots modeled as round point masses.   
c. Collision radius is set at 1 meter. 

4. Communication model. 
a. Each robot has a signature frequency that 

can be used to identify the robot. 
5. GA implementation. 

a. Selection of parents.  The parents of the 
next generation are picked from the top 20 
percent of the current generation. 

b. Single crossover.  Only one child results 
from the combining of chromosome sets. 

c. Fitness functions for Follow function and 
Seek function. 

i. The cost function for Follow 
minimizes distance between the 
leader and follower. 

ii. The cost function for Seek 
minimizes the distance between 
the leader and follower and 
maximizes the distance covered by 
the follower. 

6. Feed forward network.  See Fig. 5 below. 
a. The feed forward network has 2 nodes in 

the input layer, 4 nodes in the hidden layer, 
and 2 nodes in the output layer.  It is fully 
connected.  See figure 3 below. 

b. Trained by GA.  Since we have no training 
data available, but do have a good idea of 
what the goals of each of the controllers 

should be, we use a GA to find the best set 
of weights for the feed forward networks. 

c. Transfer functions.  We let the genetic 
algorithm select the type of transfer 
function that will be applied at each node of 
the hidden layer.  It can select from linear 
(no transfer), discrete (if the input is greater 
than 0 then output is 1, otherwise it is –1), 
and sigmoid (y = 1/(1+exp(-v)) ).  So in this 
implementation, transfer functions in 
hidden layer can vary within a network. 

 
Fig. 5.  This figure shows the geometry of the feed forward network used in 

both seek and follow modes.  It has 2 nodes in the input layer, 4 in the hidden 
layer, and 2 in the output layer.  Transfer functions in the hidden layer are 

selected by the GA. 
 

In a typical session of the program, the user will use the 
genetic algorithm to grow either seek controller or a follow 
controller.  Usually 200 generations will work well.  After the 
controller has been grown, it can be tested by using a 2 UUV 
simulation.  The user will control one of the UUVs and the 
just grown controller will control the other.  If the controller 
appears to be good, it can be saved in a file for later use.  See 
the example in Appendix A.  In the simulated environment, 
all sensors and physical models apply to all UUVs.  After the 
user is satisfied that his controller is working, i.e. if it is a 
follow controller the manually controlled UUV will be 
shadowed by the computer controlled UUV, a formation can 
be tested using the controller.  Currently, both line and tree 
formations have been developed with lines working well with 
the current software.  The tree formation needs the robots to 
be able to listen a specific set of robots, which the software is 
not currently set up to do.  Currently a robot can be singled 
out and listened for, or all robots can be listened to. 
 

V.  RESULTS AND DISCUSSION 
 

For the follow function, the discrete transfer function 
works best if the network being generated is using all the 
same transfer functions in the hidden layer.  This was 
somewhat of a surprise; the early favorite was the sigmoid 
function.  Some networks with mixed transfer functions in the 
hidden layer have performed equally well, if not better.  Note: 
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at this point in the development cycle, we do not a set of 
fixed exercises to test our grown networks on, so how good a 
particular network is somewhat subjective, hence the 
language “equally well if not better”.  It is however, very 
obvious when a network does not work well, so the 
subjective part occurs in degrees of “goodness”.  The above 
comments apply to the seek network as well. 

 

In two robot situations, one leader and one follower, the 
behavioral difference between the two networks is that the 
follow network can keep the following robot in very close 
proximity to the leader, whereas the seek network tends to 
wander more and can loose track of the leader much easier.  
The seek network does have an advantage when it the leader 
robot has not been “locked” on to.  When a follow network 
looses track of its leader, it becomes stationary, and when the 
leader returns it will actually repel the leader.  The seek 
network is nearly opposite.  The robot will keep moving, 
whether the leader is close or not, and when the leader is 
close enough to be detected it will move to it.   

Fig. 7.  This figure illustrates the leader/follower relationship in the tree 
formation. 

 
These behaviors are a direct result of the fitness functions.  

The fitness rule for the follow function rewards proximity to 
the leader.  Whereas the fitness rule for the seek function 
rewards both proximity to the leader and area covered during 
the search for the leader. 

The line formation is simplest because each robot follows 
its assigned leader.  The formation remains stable as long as 
no robot looses its leader.  On several occasions, lines of 20 
robots have been maneuvered for up to 20 minutes in the 
simulator.  Lines of up to 30 robots have been tested, but it is 
not easy to form up.  Fig. 8 below shows robots forming a 
line of 20 robots, the green robot is the manually controlled 
leader. 

 
VI.  FORMATION CREATION AND HOLDING THE FORMATION 

DURING MOVEMENT 
 

With the current software, line and tree formations have 
been tested.  Leader assignment for the line formation is as 
follows. Each robot follows the robot with id one less than its 
own id.  Fig. 6 below shows the geometry of a robot line 
using this scheme. 

 
Fig. 8.  This figure shows a line of 20 robots attempting to form a line.  The 

green square is the leader robot. 

 

The formation creation process occurs at the beginning of 
the simulation.  At time zero each robot is placed in the 
simulation with a random heading and speed.  The robots are 
placed along the X-axis in fairly close proximity to each 
other.  At this moment the robots are milling around trying to 
get their bearings on their leaders.  Several collisions occur 
because obstacle avoidance has not been worked into the 
fitness functions yet.  In some cases the collisions may help 
in the line formation, because they help keep the robots 
bunched together long enough for each robot to find its 
leader.  As the lead robot, usually robot 0, is manually driven 
away from the formation creation area, the robot line 

 

Fig. 6.  This figure shows a robot line.  The green robot is controlled 
manually from the robot school control screen.  Using their sensors and feed-

forward controllers, the other robots follow the robot whose id is one less 
than their own. 

 
Tree formation leader assignment is similar.  Each robot 

follows the robot with the id of its own divided by 2.  Fig. 7 
below illustrates the leader/follower relationship of the tree 
formation. 
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emerges.  Fig. 9, 10, and 11 show various lines of robots 
being maneuvered on the screen. 

 
Tree formations have been less successful.  The current 

software supports listening to all robots and listening for one 
robot, but not listening for all robots, except one.  Because of 
this, the tree leaf members of the tree formation tend to run 
into each other. 

 

  

 
VII.  FUTURE WORK 

 
Immediate work will include improvement of the tree 

formation function.  A parallel effort will be undertaken in 
the UNCL using the three resident mobile robots. On a more 
long-term schedule, the rest of figure 2 will be implemented 
and tested. 
 

VIII.  CONCLUSIONS 
 

The simulator results show that biologically inspired 
methods such as feed-forward networks trained by a GA can 
be used to create, maintain and rebuild simple formations of 
simulated autonomous vehicles.  This method could provide 
utility because it requires no precise geometric/navigation 
knowledge in the controller.  It also has the benefit that it 
may work in situations where classic control methods are 
affected by discontinuities.  The critical factor in the work so 
far has been creating appropriate cost functions, correct 
selection of transfer functions, and making sure that there 
exist a mapping from the inputs of the neural network to its 
outputs.  While much work remains in making the system a 
self adapting system as in Figure 1, the work done so far 
shows that the low level functions that such a system would 
use can have utility when applied to the formation 
maneuvering.  

Fig. 9.  Line of simulated robots/UUVs making a sweeping turn. 
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APPENDIX A 
 

The following text is the file that contains the weights and 
various parameters used to reconstruct a feed-forward 
network in the robot school.vi program. 
 
Feed-forward network weights.  
Network id  
2  
Transfer function (0-discrete, 1-linear, 2-discrete) 
0 
Number inputs  
2  
Hidden layer size  
4  
Number outputs  
2  
Weights from input  layer to hidden layer node 0  
 -0.804000 0.343000 
Weights from input  layer to hidden layer node 1  
 -0.279000 0.497000 
Weights from input  layer to hidden layer node 2  

 0.965000 -0.719000 
Weights from input  layer to hidden layer node 3  
 0.511000 0.321000 
Weights from hidden layer to output layer node 0  
 0.640000 -0.010000 -0.908000 0.852000 
Weights from hidden layer to output layer node 1  
 -0.396000 -0.555000 0.440000 0.247000 
Transfer functions.  
 0 0 0 0 
End of network, good-bye. 
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