
J
H
E
P
0
8
(
2
0
1
1
)
1
0
8

Published for SISSA by Springer

Received: January 26, 2011

Revised: July 18, 2011

Accepted: August 3, 2011

Published: August 24, 2011

UV-completion by classicalization

Gia Dvali,a,b,c,d Gian F. Giudice,c Cesar Gomeze and Alex Kehagiasf

aArnold Sommerfeld Center for Theoretical Physics, Fakultät für Physik,

Ludwig-Maximilians-Universität München,

Theresienstr. 37, 80333 München, Germany
bMax-Planck-Institut für Physik,
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Abstract: We suggest a novel approach to UV-completion of a class of non-renormalizable

theories, according to which the high-energy scattering amplitudes get unitarized by pro-

duction of extended classical objects (classicalons), playing a role analogous to black holes,

in the case of non-gravitational theories. The key property of classicalization is the ex-

istence of a classicalizer field that couples to energy-momentum sources. Such localized

sources are excited in high-energy scattering processes and lead to the formation of clas-

sicalons. Two kinds of natural classicalizers are Nambu-Goldstone bosons (or, equivalently,

longitudinal polarizations of massive gauge fields) and scalars coupled to energy-momentum

type sources. Classicalization has interesting phenomenological applications for the UV-

completion of the Standard Model both with or without the Higgs. In the Higgless Standard

Model the high-energy scattering amplitudes of longitudinal W -bosons self-unitarize via

classicalization, without the help of any new weakly-coupled physics. Alternatively, in the

presence of a Higgs boson, classicalization could explain the stabilization of the hierarchy.

In both scenarios the high-energy scatterings are dominated by the formation of clas-

sicalons, which subsequently decay into many particle states. The experimental signatures

at the LHC are quite distinctive, with sharp differences in the two cases.
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1 Introduction

In this note, we wish to suggest an alternative approach to UV-completion of some non-

renormalizable theories, which we shall refer to as classicalization. In order to outline

the essence of this phenomenon, consider a non-renormalizable theory in which particle

interactions are governed by a coupling constant of dimensionality of an inverse mass, and

let us study a two-to-two scattering process in such a theory. The perturbative amplitude

grows as a positive power of the kinematic parameter s and violates unitarity above a

certain scale M∗ ≡ L−1
∗ . The standard (Wilsonian) approach to the problem is to build a

UV-completion by integrating-in some new degrees of freedom that reconstruct a weakly

coupled quantum field theory above the scale M∗.

We shall suggest a different path, according to which the violation of unitarity is

only an artifact of the perturbative approach, and instead the theory self-unitarizes by

classicalization. In order to understand how this could happen, imagine that scattering of

particles at distance 1/
√
s requires exciting a source J(s) that grows as a positive power

of s. Such source produces a strong classical field φ within a region of effective size r∗(s),

which grows as some positive power of s. This means that the scattering is accompanied by
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formation of a classical configuration of φ, a classicalon. We shall refer to the scale r∗(s),

setting the size of the classicalon, as the classicalization radius, or r∗-radius for short. As

a result of this phenomenon, the scattering process classicalizes.

Our idea of UV-completion by classicalization should be understood as a conjecture

of how the theory could make itself consistent by creating classical configurations. Un-

derstanding unitarization is only a first step in this direction. For the complete picture,

one obviously needs to understands many other things, such as e.g. the precise spectrum

of classicalons, their contribution to the effective low energy operators, and so on. All

these questions are material for future work and here we have limited our considerations

to plausible arguments.

In the perturbative approach, the two-to-two scattering is accompanied by hard pro-

cesses with momentum transfer of the order of
√
s, which apparently violate unitarity.

However, in reality, since the decay of a classical object into any two-particle state is ex-

ponentially suppressed, the two-to-two scattering amplitude with high-momentum transfer

must be exponentially suppressed,

A2→2 ∼ e−(
√

s/M∗)c
, (1.1)

where c is some positive model-dependent number. Instead, at high s, the leading contri-

bution to two-to-two scattering processes will come from soft scattering with momentum

transfer ∼ r∗(s)
−1 ≪ M∗, which is automatically below the unitarity bound.

At high s, the scattering becomes dominated by production of long-lived classicalons

of size r∗(s), with geometric cross-section

σ ∼ r∗(s)
2 . (1.2)

As mandatory for classical configurations, the classicalons slowly decay into many light

quanta over time-scales tclass > r∗ ≫ 1/M∗. The physics of such objects is entirely

dominated by properties of the theory at long distances. In the other words, classicalization

converts the high-energy physics into a long distance physics.

The key feature of classicalizing theories is the r∗-phenomenon, according to which the

theory responds to localized sources by creating large classical objects. A famous example

of r∗-phenomenon is the Schwarzschild radius of black holes in gravity. Another important

example of r∗-phenomenon, very relevant for our discussion, is the creation of r∗-radius

classicalons by longitudinal (Stückelberg) components of the interacting massive vector

fields, in the absence of the weakly-coupled Higgs degree of freedom [1].

Notice that, classicalons need not be classically-stable configurations. Nor they must

correspond to any topological solitons. Although, as we shall explain, sharply localized

topological charges can also serve as sources for large-size classicalons, the production rate

of topological charges in two-particle scatterings is exponentially suppressed due to the

required coherence. As a result, they cannot play any efficient role in unitarizing the

scattering amplitudes.

Classicalons that provide UV-completion of the theory must be sourced by Noether

(as opposed to topological) charges, such as energy and momentum. Such charges leave
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Gaussian fluxes at infinity that guarantee the formation of classicalons. This is the key to

why production of such classicalons is the dominant effect in high-energy scattering.

An example of a universal classicalizer is gravity. Although in this paper we try to

keep to a minimum the connection with gravity, our inspiration comes from the known

properties of gravitational amplitudes. In particular, although we are not working in

a string framework, the attemps of unitarization of high energy scattering in theories

with a fundamental physical length, such as string theory, can serve as a source of such

inspiration [2]–[12, 13].

Consider for instance a process of two-to-two graviton scattering at distance 1/
√
s and

energy
√
s. The tree level amplitude of this process grows as ∼ αgr(s) = GNs, where

GN ≡ M−2
P is the Newton’s constant. Violation of unitarity in this process is due to the

fact that the effective gravitational coupling grows at short distances and blows up for

s ≫ M2
P . However, this violation is an artifact of perturbation theory. We know that the

localization of a particle pair of center-of-mass energy
√
s ≫ MP is impossible at distances

shorter than the Schwarzschild radius of corresponding mass, Rs ≡ 2GN
√
s. This fact is

insensitive to the short distance properties of the theory, and suggests the way out of

the seeming violation of unitarity in two-to-two scattering. The two-to-two scattering for√
s ≫ MP is expected to be exponentially suppressed. Instead, the scattering process is

dominated by production of classical black holes that decay slowly by Hawking evaporation

into many quanta. In other words the theory classicalizes itself by black hole formation.

Based on the above universal classicalizing property of gravity, in ref. [14] it was

suggested that the scattering of longitudinal W -bosons in the Higgless Standard Model

can also be unitarized via classicalization. The idea is that in the presence of extra spin-2

and spin-0 degrees of freedom that get strong couplings to energy-momentum sources at

the scale M∗ ∼TeV, WW -scattering must get classicalized via black hole formation for√
s ≫TeV. One of the questions that we ask in the present work is: how essential is the

existence of extra degrees of freedom for achieving the classicalization effect in the Standard

Model? In other words, the question is whether the Standard Model itself possesses the

resources for unitarizing WW -scattering via classicalization.

Our goal is to introduce the concept of classicalization in non-gravitational theories.

Although the analogy with black holes serves as a source of inspiration for our idea, gravity

is not the main focus of our paper. On the contrary, we depart from gravitational systems

as much as possible, because we want to disentangle the classicalization phenomenon from

the peculiarities of gravity. The goal is to reduce the analysis to its bare essentials, when

energy (self)sourcing results into the appearance of a macroscopic classical length-scale

governing the interaction range at high energies, and to show that these bare essentials

are shared by a class of non-gravitational systems. From this point of view, otherwise

important concepts such as entropy and thermal properties are only peculiarities of the

way gravity accommodates the existence of the horizon, but are not essential for unitarity.

Any consistent theory in which the high-energy scattering of two particles is dominated

by a multi-particle final state obtained through an intermediate classical configuration

is expected to unitarize. The essence of the phenomenon is that a seeming violation of

unitarity is cured by production of classical objects at very high energies. In a certain sense,
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classicalization is a “self-defense” of the theory against the absence of a Wilsonian UV-

completion. The purpose of this note is not to provide a complete proof of classicalization,

but to suggest the key idea and provide some crucial evidence.

As we shall show, there are two phenomenologcally-important categories of low spin

particles that exhibit classicalization:

1) Nambu-Goldstone bosons (or, equivalently, longitudinal components of massive vec-

tor gauge fields;

2) Higgs-like scalars.

The first category of fields is automatically sourced by the derivative energy-momentum

interactions. In the absence of a weakly-coupled Higgs degree of freedom, these fields are

known to exhibit the r∗-phenomenon, responding by creating an extended classical con-

figuration around a localized source [1]. Thus, as we shall see, these theories have the

tendency to self-classicalize. An obvious phenomenological application of this phenomenon

is the unitarization of the high-energy WW -scattering amplitudes in the Higgless Stan-

dard Model by means of classicalization of longitudinal W -bosons. Needless to say, this

would be an astonishing possibility, suggesting that that Standard Model self-completes

itself by classicalization without any need of a Higgs particle (or any other weakly-coupled

physics [15]).

In the second case, classicalization is not automatic, but takes place whenever the

scalar in question is sourced by the energy-momentum. This offers a possibility to address

the hierarchy problem in the Standard Model (with the Higgs), by using the Higgs field as

a classicalizer.

Below we shall explore both possibilities. A characteristic feature in both cases is

that the relevant two-to-two scattering amplitudes at high
√
s saturate at relatively low

momentum transfer, while the scattering is dominated by production of classicalons that

decay into many-particle final states.

An important difference is that, in the Higgless Standard Model, this only applies

to processes that involve WW -scattering and the Higgs particle is replaced by classicalon

resonances. On the other hand, when the Higgs behaves as classicalizer, the feature of

classicalon-production is universal for all high-energy collisions, but a weakly-coupled Higgs

must exist with mass below the classicalization scale.

Finally, classicalization of non-gravitational theories can represent a simplified labora-

tory in which one can test ideas about self-completeness of gravity [14]. The unitarization

of high-energy amplitudes is reduced to its bare essential of creating a classical object,

and one can decouple from the problem all the subtleties connected with the existence of

horizons or the complications related to information loss.

2 The essence of classicalization

The phenomenon of classicalization is a non-Wilsonian self-completion of the theory by

localized particles becoming classical in deep-UV [14]. As we have argued earlier, in

consistent gravity theories clasicallization appears to be a built-in property, because of
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black holes, which prevent us from performing measurements at arbitrarily short dis-

tances. But the notion of classicalization can be generalized to a class of non-gravitational

non-renormalizable theories.

Of course, in non-gravitational theories there are no black holes, so strictly speaking

it is always possible to retrieve information from arbitrarily short scales if one uses arbi-

trary external sources. However, if we switch-off gravity, then a complete inaccessibility

of information is unnecessary for the UV-completion of a particular interaction. Instead,

it is sufficient that the storage of a particular type of information in sources relevant for

particularly badly behaved correlators or amplitudes results in the formation of extended

classical objects.

For example, consider a theory in which a bosonic field φ is sourced by an operator

J , through an interaction φJ , where J is some operator that may depend on φ and also

on some other fields. Imagine that, at the perturbative level, the theory becomes sick at

high energies because of the bad behavior of correlators such as 〈JJ〉. If these correlators

involve integration over sources that produce classical configurations of φ, the bad behavior

becomes an artifact of the perturbative expansion. Instead, if we take into the account

that those integrands are in reality classical objects, integration over such sources would

be exponentially suppressed. This is the key point of classicalization.

For the classicalization phenomenon the essential ingredient is a classicalizer field (φ)

that generalizes the role of gravity in creating the extended objects. The key point is that

the field φ must be sourced by an operator (J) that becomes strong whenever particles

are localized at short distances. In this way, localization of particles is accompanied by

formation of a strong classical field φ, so that short distance scattering is accompanied by

creation of extended classical objects. The characteristic distance scale that serves as a

measure of classicality of a given source will be called here the associated r∗-radius, and it

is a generalization of the Schwarzschild radius for non-gravitational theories. Essentially

the r∗-radius measures the effective extent of the strong classical field φ around the source.

Schematically the phenomenon of classicalization can be understood in the following

general terms. Let us think in terms of a generic Lagrangian,

L(φ, J) = L(φ) +
φ

M∗
J , (2.1)

where J is a source. This Lagrangian is such that the two-to-two perturbative scattering

amplitude A(s, t) for φ quanta violates unitarity at the UV length-scale L∗, i.e. A(1/L2
∗) =

O(1). For example, an effective Lagrangian (for the simplest case of spin-zero φ quanta)

leading to this violation of unitarity can be of the form,

L(φ) = (∂µφ)2 +
1

M∗
φ(∂µφ)2 +

1

M5
∗
φ(∂µφ)4 + . . . (2.2)

with L∗ = M−1
∗ . The non-linear terms in the above Lagrangian provide an example

of self-sourcing of the φ field. The source at the perturbative level leads to violation of

unitarity for energies
√
s ≫ M∗, but we wish to argue that the same interaction at the

non-perturbative level restores unitarity by classicalization.
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Classicalization takes place whenever the strength of a source localized within a region

of size L grows as a positive power of 1/L. In particular, this is the case for the energy-

momentum type sources, and this property is shared by the cubic self-coupling in eq. (2.2).

For this reason, the scattering of φ particles must classicalize at high energies. In order to

see this, let us consider the scattering of wave packets of the φ field at some center-of-mass

energy
√
s ≫ M∗. In order to scatter with momentum transfer 1/L, the particles have to

come within a distance L. Perturbatively it seems that, as long as L > L∗, such localized

wave-packets are well-described quantum states. However, this is not the case. In fact, for

the wave-packets that are localized within the distance

r∗(s) ∼ L2
∗
√
s , (2.3)

physics enters in the classical regime by forming a classical configuration of radius r∗.

In other words, the system classicalizes. Thus, due to self-sourcing, the localization of

quanta of center-of-mass energy
√
s ≫ M∗ is impossible within a distance shorter than

the corresponding r∗-radius given by eq. (2.3). In order to prove that this is the case,

let us assume the opposite. Imagine that we localized particles of center-of-mass energy√
s = 1/L ≫M∗ within a sphere of radius R ≪ r∗. Because of the cubic self-interactions,

such localization produces an effective localized source for the φ-field with integrated value

J ∼ 1/LM∗. Thus, far from the localization region, the dynamics of the weak field φ should

be well-described by the following linearized equation,1

�φ + . . . = δ(r)
L∗
L
. (2.4)

This equation shows that, since φ is sourced by the energy, the localization of quanta

implies the existence of a Gaussian flux of the gradient ~∇φ at infinity, and φ has to grow

as

φ(r) ∼ L∗
rL

, (2.5)

as we approach the localization region. Notice, that non-linear interactions cannot prevent

this growth until φ becomes of order M∗, which happens at the distance-scale

r∗(L) ∼ L2
∗
L
. (2.6)

Thus, we see that a source of energy
√
s = 1/L ≫ M∗ acquires an effective size r∗ ≫ L∗

and becomes a classical object.

The result is that, although in the naive perturbative approach one would think that

high-energy scattering at
√
s≫M∗ is dominated by hard-collisions with momentum trans-

fer ∼ √
s, in reality it is totally dominated by formation of classical objects of radius

1Here and in the following δ(r) represents the three-dimensional Dirac delta-function δ(3)(~r). For our

purposes, it is convenient to use the representation

δ(r) =
1

4π

d

dxi

“

xi

r3

”

,

where xi are the three-dimensional space coordinates and r = (x2
i )

1/2.
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r∗ = L2
∗
√
s that eventually decay into many particles. Two-to-two particle scattering am-

plitude at high momentum transfer is exponentially suppressed, and instead is dominated

by soft processes with momentum transfer as low as ∼ 1/r∗.

It is very important to note that, although classicalization of sources at
√
s = 1/L ≫

M∗ is an ultra-high-energy phenomenon, it is entirely dominated by long-distance dynamics

corresponding to momenta 1/r∗ ≪ M∗. Because of this, all the possible higher-order

corrections are under control. In other words, the higher-order terms in the Lagrangian,

1

Mn+4k−4
∗

φn(∂µφ∂
µφ)k , (2.7)

are not changing the dynamics of classicalization. This can be seen from the following

analysis. The asymptotic behavior at large r is φ(r) ∼ (M∗Lr)
−1, meaning that at large

distances the terms (2.7) behave as

1

Mn+4k−4
∗

φn(∂µφ∂
µφ)k ∼ (M2n+6k−4

∗ L2k+nr4k+n)−1 . (2.8)

The radius rn,k for which a given non-linear term becomes of the order of the linear term

(n = 0, k = 1) is

rn,k = L∗

(

L∗
L

)
2k+n−2
4k+n−4

. (2.9)

The r∗-radius in eq. (2.6) corresponds to the largest of these scales. Indeed, for k = 1,

any rn,1 is parametrically equal to r∗. The addition of extra derivatives (i.e. increasing

the value of k) reduces rn,k, while adding powers of fields (i.e. increasing n) increases rn,k.

However, for k > 1, any rn,k is smaller than r∗. Thus, ignoring accidental cancellations, we

conclude that the largest r∗-radius is set by eq. (2.6). In the case of a purely polynomial

interaction (k = 0), the leading effect comes from the operator with the smallest number

of fields and thus the exponent in eq. (2.9) ranges between 1 and 3. In general, the scale

r∗ is determined by the leading non-linearity, whereas higher non-linearities only affect the

behavior of φ at short distances r ≪ r∗. Because of this, they cannot affect the size of the

classical configuration and they do not play an important role in the scattering processes

at large s.

2.1 An example

In order to demonstrate explicitly the insensitivity of the classicalization phenomenon with

respect to the higher-derivative interactions, consider a scalar field with DBI-type action,

M4
∗

√

1 + L4
∗(∂µφ)2 +

φ

M∗
J . (2.10)

We assume that the scalar φ transforms under a shift symmetry as φ → φ + c, which

(up to boundary terms) forbids any non-derivative interaction of φ. Let us consider the

response to a localized spherically-symmmetric source J(r) = δ(r)4π/L, with 1/L ≫ M∗.

For such a source, the equation of motion,

∂µ

(

∂µφ
√

1 + L4
∗(∂µφ)2

)

=
J

M∗
, (2.11)
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can be easily recast as an algebraic equation for ∂rφ(r),

∂rφ
√

1 − L4
∗(∂rφ)2

= − L∗
r2L

. (2.12)

Its solution is

∂rφ(r) = M2
∗

1
√

1 + (r/r∗)4
, (2.13)

where r∗ = L∗
√

L∗/L. The action (2.10) includes only the invariants that contain exactly

one derivative per φ.

Let us now supplement this action by arbitrary operators that contain more derivatives

per φ,

M4
∗

√

1 + L4
∗(∂µφ)2 + M4

∗
∑

n>2,k>0

In,n+k

[

∂k, (∂φ)n
]

+
φ

M∗
J , (2.14)

where In,n+k[∂
k, (∂φ)n] schematically denotes an invariant that contains n powers of φ and

n+ k powers of the derivative. Since according to eq. (2.13) the behavior of ∂rφ is

∂rφ(r)|r≫r∗
∼ M2

∗
r2∗
r2

and ∂rφ(r)|r≪r∗
∼ M2

∗

(

1 − r4

2r4∗

)

, (2.15)

the derivatives behave as

∂k

Mk
∗

[∂φ(r)]n|r≫r∗
∼ [∂φ(r)]n

Lk
∗
rk

and
∂k

Mk
∗

[∂φ(r)]n|r≪r∗
∼ [∂φ(r)]n

Lk
∗

r4∗ r
k−4

. (2.16)

Thus, higher derivatives are negligible as long as r ≫ L∗.

In other words, adding extra n-derivatives to any particular invariant amounts to

lowering the value of that invariant at least by (L∗/r). Thus, any such invariant will be

subdominant with respect to the action (2.10), for r ≫ L∗. In particular, higher-derivative

terms will play no role in the formation of the classicalon at
√
s ≫ M∗.

The insensitivity of classicalization to higher-order invariants is completely analogous

to the case of gravity, in which the higher-order curvature invariants play no role in the

formation and evolution of classical black holes of size larger than the Planck length,

LP . In our case, the role of LP is played by the scale L∗, whereas r∗ takes the role of

the Schwarzschild radius. The analogy with gravitational self-completeness is already clear

from eq. (2.6). In fact eq. (2.6), for L∗ = LP , is at the core of the bouncing of transplanckian

configurations into classical black holes.

Classicalization of non-unitary theories is therefore crucially dependent on the nature

of the source. As it is clear from eq. (2.4), in order to classicalize processes at high

momentum transfer t, the source of φ quanta should have the property to increase with

t, and should behave as an effective energy source with energy 1/L set by the localization

width. Interestingly enough there are non-gravitational theories where such a behavior

appears quite naturally. A well-known case in which the spin-zero φ quanta necessarily have

derivative couplings to the source occurs for Nambu-Goldstone bosons and consequently for

longitudinal (Stückelberg) components of the gauge fields. We shall provide evidence that

interactions of such particles have the tendency to classicalize. This opens the possibility of

self-completeness, by means of classicalization, of theories with massive gauge fields and/or

non-linear sigma-models.
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2.2 Quantum and classical scales

Before turning to a more detailed analysis of the phenomenon of classicalization, we would

like to comment on the physical meaning of the various length scales. Let us consider the

Lagrangian

L =
1

2
(∂µφ)2 +Gφ On,k . (2.17)

Here Gφ = M4−n−2k
∗ and On,k ∼ ∂2kφn is a generic non-renormalizable operator containing

n powers of the field and 2k derivatives (with n > 2 and n + 2k > 4). Of course Lorentz

invariance always requires an even number of derivatives.

We are considering the case of self-sourcing, in which the classicalizer acts as a source

of its own field. We are interested in the scattering process of φ quanta at large center-

of-mass energy and large momentum transfer. But, for simplicity, we will treat only the

static case in which we localize within a volume of radius r∗ an amount of energy
√
s in

the φ field. Parametrically, this corresponds to

√
s ∼

∫

r<r∗

d3r (∂φ)2 ∼ r∗ φ
2 . (2.18)

This localized wavepacket acts as a source for the field φ itself with an integrated value

parametrically given by

Q =

∫

r<r∗

d3r Gφ
δOn,k

δφ
∼ Gφ r

3−2k
∗ φn−1 ∼ (M∗r∗)

7−n−4k
2

(√
s

M∗

)
n−1

2

. (2.19)

From the previous examples we have learned that, far from the localization region,

the field behaves as φ ∼ Q/r. We can estimate the size of the radius r∗ as the distance

at which the non-linearity due to On,k become as important as the kinetic term. We then

obtain

r∗ ∼
1

M∗

(√
s

M∗

)
n−2

n+4k−6

. (2.20)

Let us now reconsider the same process without solving any dynamical equation, but

using only dimensional analysis. The two dimensionful parameters characterizing the pro-

cess are the kinematic variable
√
s and the coupling Gφ. To illustrate the quantum nature

of the scales, it is convenient to insert back the ~ factors, while working in units with c = 1.

In this way, we distinguish between mass (M) and length (ℓ) scaling dimensions which, for

the relevant quantities, are given by

[~] = Mℓ , [L] = Mℓ−3 [φ] = M
1
2 ℓ−

1
2 , [

√
s] = M , [Gφ] = M

2−n
2 ℓ

n+4k−6
2 . (2.21)

Just with the help of dimensional analysis, we can construct some length scales out of

the relevant dimensionful parameters. From Gφ and
√
s we can determine the lengths

L∗ = G
1

n+2k−4

φ ~
n−2

2(n+2k−4) , (2.22)

L =
~√
s
. (2.23)
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The length L∗ corresponds to the scale at which the quantum effects of the φ interaction

become strong. The length L is the de Broglie wavelength of the source, which is the

distance at which the quantum properties of the localized waves are important. Both

these scales incarnate quantum features of the process. In fact, they both vanish in the

limit ~ → 0.

Combining Gφ and
√
s, we can define another length

r∗ = G
2

n+4k−6

φ

√
s

n−2
n+4k−6 = L∗

(

L∗
L

)
n−2

n+4k−6

. (2.24)

This length persists in the limit ~ → 0: it is a classical length. It describes the distance at

which the classical interaction of φ becomes strong. When L≪ L∗, the classical length r∗
is larger than any quantum length. Quantum effects become unessential and the scattering

process can be characterized in terms of a (semi)classical description. Note that the scale

r∗ in eq. (2.24), derived from dimensional arguments, parametrically coincides with the

scale obtained in eq. (2.20) from the dynamics, providing further evidence for the classical

nature of the classicalon configuration.

The classicalization radius r∗ has the meaning of the distance at which a physical

quantity associated with an observable becomes of order one in M∗-units. In particular,

this implies that the scattering of a probe particle off such a configuration becomes strong

at such a distance, similarly to the deflection of photons in the gravitational field of a black

hole near the Schwarzschild horizon. In contrast to the solitonic case, the r∗-radius does

not necessarily coincide with the maximal-energy localization region.

3 Electric field classicalized by topological charges

In this section we would like to illustrate how the source of classicalons can also be topolog-

ical charges. As explained in the introduction, such object cannot be used for unitarizing

the high-energy scattering amplitudes, since production of topological charges is exponen-

tially suppressed in such processes. Nevertheless, this example can serve as an interesting

illustration of how sharply localized topological charges lead to the creation of classicalons

of much larger r∗-radius.

Our example deals with correlators that would be naively UV-sensitive to highly lo-

calized charges. In this case an attempt to localize charge at distances shorter than a

certain length scale L∗ results in its classicalization, a turnover into a classical object of

size r∗ ≫ L∗ (in this respect classicalization is related to the r∗-phenomenon discussed in

ref. [1] so we borrow some examples from there).

Consider the following action:

− F 2

4
+ L4

∗

(

F 2

4

)2

+ Aµ j
µ , (3.1)

where as usual F 2 ≡ FµνF
µν . This action describes the interaction of an abelian gauge

field to the current jµ. The gauge field also posseses a non-linear self-coupling described

by the second term in eq. (3.1). The crucial ingredient is that the current jµ is topological,
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and thus is trivially conserved, ∂µ j
µ = 0. Thus,

∫

d3xj0 ≡ Q is a topological charge.

The precise nature of this topological charge is unimportant as long as it can be localized

within a finite region (sphere) of characteristic radius L. An explicit example will be

constructed below.

The reason why we assume a topological charge is that, in this case, the value of the

charge is set by the localization width, so that Q = L∗/L, where the coefficient is absorbed

in the normalization of Q.

Let us now show that any attempt of localizing Q within a sphere L ≪ L∗ will result

into the formation of a classical object of radius ≫ L∗. Consider the equation of motion

∂µ

[

Fµν

(

1 − L4
∗F

2

2

)]

= −jν , (3.2)

for a static charge jν = δ0ν q(r) localized within a sphere of radius L. We look for a

static spherically symmetric field configuration Aj = 0, A0 = φ(r). Since q(r) is localized

within the radius L ≪ L∗, for r ≫ L, the source can be replaced by q(r) → 4πδ(r)Q.

Equation (3.2) then becomes an algebraic cubic equation for ∂rφ,

∂rφ[1 + L4
∗(∂rφ)2)] =

Q

r2
, (3.3)

which is easy to solve. The important thing is the existence of the scale r∗ = Q1/2L∗ =

L∗(L∗/L)1/2. This is the scale for which the value of the electric field saturates the cutoff

1/L2
∗, and thus r∗ is the classicality radius of the charge Q. We can see that for r ≫ r∗,

the electric field is weak, ∂rφ ∼ Q/r−2, and hits the cutoff at r = r∗. For r < r∗, we have

∂rφ ∼ r−2/3L−1
∗ L−1/3. Therefore any attempt of localizing the charge within a radius L

creates a classical field configuration of much larger radius r∗.

A consequence of this is that the scattering cross section of a probe on a localized

charge grows at least as the geometric cross section, σ ∼ r2∗ = L3
∗/L, for L→ 0.

As an example, we can resolve jµ by the topological current of a magnetic monopole.

Then Q will be proportional to the magnetic charge of the monopole. Consider a ’t Hooft-

Polyakov monopole formed by a scalar field φa, with the potential

λ2(φaφa − v2)2 , (3.4)

where a = 1, 2, 3 is an SO(3) index. The non-abelian field strength is Ga
µν . The coupling

Aµj
µ up to a total derivative is generated by a coupling [16]

L∗ Fµν(φaGa
αβ)ǫµναβ . (3.5)

Notice that, after plugging the expectation value of the scalar φa, the term (3.5) reduces

to a theta-type mixing term between F and the abelian subgroup of SO(3) (call it FM )

under which the monopole has a long-range magnetic field. The magnetic charge of the

monopole under FM is µ = 1/g, where g is the gauge coupling of SO(3). It is easy to

see that the magnetic charge under FM , due to the above term, automatically becomes an

electric charge under F with

Q = (L∗v)/g . (3.6)
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(In fact, we can view this phenomenon as a generalization of Witten’s mechanism for

monopole electric charge in the presence of theta-term [17]). In the absence of (3.5), the

magnetic charge of the monopole could be localized at arbitrarily short distances by taking

v → ∞ (keeping the gauge coupling g fixed). However, the coupling (3.5) induces an electric

charge Q. The crucial point is that the localization of this electric charge to arbitrary short

distances is no longer possible. Such attempt automatically classicalizes the electric charge.

But in the presence of the coupling (3.5) the effective electric charge grows as Q = vL∗,

and thus the electric charge classicalizes with the growing radius r∗ = (L∗v)
1/3L∗. In other

words, our gauge interaction plays a role similar to gravity.

4 Classicalization of energy sources

Our second example concerns a scalar field with action,

(∂µφ)2
(

1

2
+
L3
∗

4
�φ

)

+ φJ. (4.1)

The idea is that this theory also classicalizes itself at distances below L∗. We can read-off

this result from the solutions of this theory existing in the literature [1, 18–20]. In other

words, the guess is that any information stored in wave-packets of φ localized at the scale

L ≪ L∗ (and readable by detectors sensitive to φ-quanta) results into classical objects of

size r∗ ∼ L∗(L∗/L)1/3. This is suggested by the fact that φ becomes classical at distances

r∗ for any source localized within a length L and having a strength 1/L. Consider a

localized source at scale L ≪ L∗. At distances r ≫ L such a source can be approximated

by 4πδ(r)/(M∗L). The equation of motion

�φ+
L3
∗

2

[

(�φ)2 − (∂µ∂νφ)2
]

= J (4.2)

for this spherically symmetric ansatz simplifies to

∂j

[

∂jφ(r) − xj

r2
L3
∗(∂rφ)2

]

= −4πδ(r)
L∗
L
, (4.3)

which can be easily integrated and rewritten as a quadratic algebraic equation for ∂rφ(r),

∂rφ − L3
∗(∂rφ)2

r
+

L∗
Lr2

= 0 . (4.4)

The exact solution of this equation [20]

∂rφ =
r

2L3
∗

(

1 ±
√

1 +
4r3∗
r3

)

(4.5)

shows that at distances r ≫ r∗ ≡ L∗(L∗/L)1/3, we have φ ∼ L∗/(Lr), whereas for r ≪ r∗
we have φ ∼

√

r/LL−1
∗ . Thus, r∗ plays a role similar to the Schwarzschild radius and is

the scale at which φ classicalizes. The analogous phenomenon in massive gravity is known

under the name of Vainshtein effect [21].
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Now it is clear that the radius r∗ is given by the distance at which the first term

in eq. (4.4) becomes comparable to the second one. Starting at large distances, where

φ = (M∗Lr)
−1 and comparing the two terms, we find r∗ = L∗(L∗/L)1/3. So we see that,

although the interaction of φ looks horribly bad in the UV, any integration over sources

localized at the scale L must be suppressed, because such sources have typical size of order

r∗, and thus should be classicalized.

Indeed, consider the scattering of two sharply localized wave-packets prepared either

out of φ-quanta or any other particles that source φ. For instance, imagine that φ is sourced

by the trace of the energy momentum tensor of some fermions ψ,

L∗φT
µ
µ (ψ) . (4.6)

Perturbatively, the exchanges of the φ-quanta violate unitarity for the scattering of ψ

particles with momentum transfer above the scaleM∗. Non-perturbatively, however, as long

as the impact parameter is within the r∗ radius of an effective source, the scattering must

become dominated by classical configurations of the φ field. This intuitive argument can

be made more precise by the following consideration. Relativistic pulses that come within

distance L and experience momentum transfer 1/L, on time scales L can be approximated

as a static source of mass 1/L and size L. The φ field created by such a source can be

found from eq. (4.4) and has an associated r∗-radius given by r∗ = L∗(L∗/L)1/3, which

exceeds L∗ for L < L∗. Thus, the scattering amplitudes classicalize above M∗.

The same must be true for any virtual quanta that source φ. Integration over sources

with r∗ radius exceeding L∗, implies integration over classical objects and must be expo-

nentially suppressed. So the basic ingredient for classicalization by φ is the existence of

interactions that lead to the r∗-phenomenon, which requires the existence of appropriate

non-renormalizable operators. Let us now discuss some speculative applications to the

Standard Model physics.

5 UV-completion of the Standard Model by classicalization?

In order to classicalize the Standard Model the three logical possibilities are:

1) In the absence of Higgs, the classicalizer is an additional field [14]. Such a case is

effectively in the same class as classicalization by gravity.

2) Classicalizers are the longitudinal W -bosons.

3) The classicalizer is the Higgs.

5.1 UV-completion of the Standard Model without Higgs by classicalization

Let us first discuss the non-Wilsonian UV-completion of the Higgsless Standard Model by

classicalization. For this we either need to introduce an additional classicalizing field, such

as gravity, or classicalize the interactions of longitudinal W -bosons without introducing

new physics. Let us turn to the second option which is the most dramatic one. We shall

first consider a prototype model [1], which illustrates how the interactions of longitudinal
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vector field exhibit the r∗-phenomenon and thus classicalize in the absence of the Higgs.

Consider a massive vector field Wµ (for the moment we shall limit ourselves to a single

self-interacting vector field). At the linear level the dynamics of this field is described by

the well-known Proca Lagrangian

L = −1

4
FµνF

µν +
1

2
m2

W WµW
µ . (5.1)

The Wµ field propagates 3 degrees of freedom which, without loss of generality, can be

written as

Wµ = W̃µ +
1

mW
∂µφ . (5.2)

Here W̃µ describes the transverse polarizations of the W -boson and φ is a canonically-

normalized Stückelberg field describing its longitudinal polarization. This field gets its

kinetic term from the mass term of the gauge-field in eq. (5.1). This is the source of the

problem. In the presence of self-interactions, perturbative unitarity is violated above the

scale set by mW . In the standard approach one therefore integrates in the Higgs boson in

order to restore unitarity.

We now wish to reconsider this violation of unitarity in the light of classicalization.

We wish to show that self-interactions of the longitudinal Proca field classicalize exactly

above the scale where naive perturbative unitarity is violated. As shown in ref. [1], the

longitudinal Proca field exhibits the r∗-phenomenon, and we will discuss here how this is

essential for classicalization. Let us add a simple self-interaction to the Proca Lagrangian

L = −1

4
FµνF

µν +
1

2
m2

W WµW
µ +

g4

4
(WµW

µ)2 − gWµj
µ (5.3)

where jµ is an external source and g is a coupling constant. The new interaction can be

viewed as the first term of an operator expansion. Note that, due to the non-zero mass,

conservation of jµ is no longer mandatory. Instead, the equation of motion implies the

following constraint,

∂µ
[

Wµ

(

m2
W + g4WνW

ν
)]

= g∂µjµ . (5.4)

The quartic interaction generates the following self-coupling for the longitudinal

(Stückelberg) component,
g4

4m4
W

(∂µφ∂
µφ)2 . (5.5)

Moreover, an exchange of longitudinal W -bosons induce the interaction

g2∂µjµ∂
νjν

m2
W (m2

W + �)
. (5.6)

The operators in eqs. (5.5) and (5.6) violate perturbative unitarity at distances shorter

than L∗ ≡ g/mW . However, the sources classicalize at such a distance. In order to see this,

consider a φ-field created by a point-like source of strength 1/L of the form ∂µjµ = δ(r)/L.

To see the effect of this source we can decouple the transverse gauge field, by taking the

limit g → 0 with L∗ fixed. Equation (5.4) then becomes the equation of motion for φ, which
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takes the form (3.3) and which we have solved previously. Its solution indicates that the

sources classicalize at the distance r∗ = L∗
√

L∗/L. This classicalization is entirely due to

interactions of longitudinal W -boson and is unrelated to the presence of the Higgs particle.

To see this, we can explicitly rewrite the Lagrangian (5.3) as the Higgs-decoupling limit of

the theory with the Higgs. For this we can first integrate in the Higgs field by expressing

φ as the phase of a complex scalar H = ρ(x)ei
φ(x)

v /
√

2 with Lagrangian

L = −1

4
FµνF

µν +DµH
∗DµH +

1

v4
(DµH

∗DµH)2 − λ2

2

(

H∗H − v2

2

)2

, (5.7)

where Dµ = ∂µ − ig Wµ. This theory contains two particle mass scales, the gauge boson

mass mW = gv and the Higgs mass mH = λv. Perturbative unitarity is violated at the

scale M∗ = v = mW/g. We can keep the scales mW and M∗ fixed, but decouple the Higgs

by taking the limit λ → ∞. In this limit the Lagrangian (5.7) reduces to (5.3).

Another interesting classicalizing interaction that we can add to the Proca La-

grangian (5.1) has the form

g3 (∂µW
µ)WνW

ν . (5.8)

After taking into account the decomposition (5.2), the above interaction generates the

following interaction for the longitudinal component

g3

m3
W

(∂µφ)2�φ. (5.9)

Notice that this interaction exactly reproduces the second term in the scalar example of

eq. (4.1), with L∗ = g/mW . In fact, by taking the decoupling limit g → 0 with g/mW

fixed, the Proca theory with interaction (5.8) exactly reproduces the theory of eq. (4.1)

plus a decoupled massless gauge field W̃µ.

But as we have seen the interaction in eq. (5.9) has the property to classicalize at

L∗. Thus, although the scattering of longitudinal W -bosons violates perturbative unitarity

at distances shorter than g/mW , non-perturbative arguments tell us that this is precisely

the barrier below which the interaction classicalizes itself and scattering are dominated by

creation of extended classical objects.

To discuss the realistic Standard Model we have to generalize the above classicalization

mechanism to non-abelian theories. In the non-abelian case, the gauge field mass term

automatically contains the self-interactions that violate perturbative unitarity. These come

from the following terms in the Lagrangian,

[DµU(x)]†a[DµU(x)]a , (5.10)

where U(x)a, (a = 1, 2) represents an SU(2) Stückelberg field that is obtained by the

action of local SU(2)-transformation upon a constant doublet (0, v). The interactions of

the Stückelberg fields violate perturbative unitarity at the scale M∗ = v. The question is

whether the same interaction is able to classicalize the theory above the scale v or whether

additional classicalizing interactions of the form,
(

[DµU(x)]†a[DµU(x)]a

)2
+ L4

∗ U(x)†b[DνDνU(x)]b [DµU(x)]†a[DµU(x)]a + . . . (5.11)

are required. We shall now investigate this question.
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6 Classicalization of Nambu-Goldstone bosons

We shall first study the role of higher-dimensional operators in the classicalization of

Goldstone fields. Consider an abelian Goldstone model with a complex scalar field

H = eiθρ(x)/
√

2 and with the following action,

∂µH
∗∂µH − λ2

2

(

H∗H − v2

2

)2

− (∂µθ)J
µ , (6.1)

where θ ≡ φ/v is a Goldstone angular degree of freedom, and ρ(x) is a radial (Higgs) degree

of freedom with mass mH = λv. Here Jµ is an external current, which for example, can

be taken as the axial fermionic current Jµ = ψ̄γ5γ
µψ. Rewriting the action in terms of

the Higgs and Goldstone degrees of freedom, we obtain

1

2
(∂µρ)

2 +
ρ2

2
(∂µθ)

2 − λ2

8
(ρ2 − v)2 − (∂µθ)J

µ . (6.2)

At distances ≫ m−1
H , we can integrate out the Higgs degree of freedom by replacing it with

its expectation value, and write down an effective theory of a Goldstone field

v2

2
(∂µθ)

2 − (∂µθ)J
µ + higher-dimensional operators . (6.3)

Although the scale that suppresses the Goldstone interactions is v, the higher-dimensional

operators will be suppressed by powers of mH , which in a weakly coupled theory (λ ≪ 1)

is below v. Let us ignore these operators for a moment. Then, the Lagrangian in eq. (6.3)

describes a theory with cutoff L∗ = v−1. Let us study the classicalization phenomenon in

such a theory. Proceeding as in the previous examples, let us prepare a spherical source

localized over distance L and strength 1/L, which for r ≫ L can be approximated by

∂jJ
j = 4πδ(r)/L. According to the equation of motion,

� θ(x) =
∂µJ

µ

v2
, (6.4)

such a source results into a classical Goldstone field,

∂rθ(r) =
L2
∗

Lr2
. (6.5)

In order to study the classicalization phenomenon, we are interested in sources localized

at L ≪ L∗. For classicalization to happen, two conditions are necessary. First the source

should be able to provide a value of the Goldstone gradient of order 1/L∗, that is ∂rθ(r) ∼
v. Seemingly this is the case for the solution (6.5) at sufficiently small r, but this is just

an illusion created by the low-energy approximation. The culprit is the Higgs field, which

prevents the growth of the Goldstone-gradient beyond the scale mH . To see this, we can

examine the back-reaction of the solution (6.5) on ρ by inspecting the equation of motion

for ρ evaluated on the background solution (6.5),

[

� + (∂rθ)
2 − λ2v2

2
+
λ2

2
ρ2

]

ρ = 0 . (6.6)
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Replacing ∂rθ with the background solution (6.5), it is clear that the tachyonic mass for ρ

changes sign and becomes positive for r < v−1/
√
LmH . As a result, in the weakly-coupled

Goldstone-Higgs system, classicalization does not happen.

Now it is clear that, in order for classicalization to take place, we have to take the

limit λ→ ∞, keeping v fixed and, at the same time, we have to supplement the theory by

a higher-dimensional operator L4
∗(∂µθ∂

µθ)2. This is precisely the operator that is obtained

by integrating out the Higgs field, but for classicalization to happen we have to keep its

coefficient fixed L∗ = v−1 even in the limit of infinitely-heavy Higgs. This would guarantee

the turn-over of the solution at the scale r∗.

6.1 Non-abelian Goldstone theory

In order to reproduce the Standard Model, we now consider the non-abelian generalization

of the previous model to an SU(2) global symmetry,

∂µH
a∗∂µHa − λ2

2

(

Ha∗Ha − v2

2

)2

−Haψ̄
aψ + i ψ̄aγµ∂

µψa + . . . . (6.7)

Here Ha (a = 1, 2) is an SU(2)-doublet scalar field, and in order to provide for an ex-

ternal test-source we have introduced SU(2)-doublet (ψa) and SU(2)-singlet (ψ) fermions.

We shall now represent the doublet field in terms of the radial and Goldstone degrees of

freedom, Ha = Ua(x) ρ(x)/
√

2 = (cosθeiα, −sinθe−iβ)ρ/
√

2, where θ, α, and β are the

three Goldstone fields of the spontaneously broken global SU(2) group. Now we wish to

decouple the Higgs particle by taking the limit λ = ∞ with v fixed. In the remaining

sigma-model the non-linear self-interactions of the Goldstone triplet is described by the

following invariant

I ≡ v2 ∂µU(x)†∂µU(x) = v2
[

(∂µθ)
2 + cos2 θ(∂µα)2 + sin2 θ(∂µβ)2

]

. (6.8)

At a first glance, these non-linear self-interactions have the right structure for classicalizing

the localized sources and creating the scale r∗. However, although the classical configu-

rations are produced, the 1/r2-growth of the Goldstone gradients for r → 0 cannot be

regulated by non-linearities for any localized source. To illustrate this, let us take an

external fermionic current to be composed out of fermions with only first non-zero SU(2)-

component, Jµ = ψ̄1γµψ1,

L = I + i
[

(∂µU
†)U − U †(∂µU)

]

Jµ

= v2(∂µθ)
2 + v2 cos2 θ

[

(∂µα)2 + 2(∂µα)
Jµ

v2

]

+ v2 sin2 θ

[

(∂µβ)2 − 2(∂µβ)
Jµ

v2

]

. (6.9)

The equations of motion are

∂µ

[

cos2θ

(

∂µα +
Jµ

v2

)]

= 0 , (6.10)

∂µ

[

sin2θ

(

∂µβ − Jµ

v2

)]

= 0 , (6.11)

� θ +
sin 2θ

2

[

(∂µα)2 − (∂µβ)2 + 2∂µ(α+ β)
Jµ

v2

]

= 0 . (6.12)
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These equations of motion are trivially satisfied by ∂µα = − ∂µβ = −Jµ, and by θ being

an arbitrary plane-wave satisfying the massless wave equation � θ = 0. In particular, for

an arbitrary localized spherical source, ∂jJ
j = 4πδ(r)/L, the system allows the Goldstone

gradients to grow unbounded at short distances. Thus, although classicalization takes

place, the system is unable to regulate the classicalized solutions at short scales solely by

Goldstone self-interactions, and requires introduction of higher powers of the invariant I.

For example, consider adding the square of this invariant to the original action (6.9), so

that the resulting Lagrangian becomes

L = I +
I2

2v4
+ 2(cos2 θ ∂µα− sin2 θ ∂µβ)Jµ . (6.13)

The equations of motion now become,

∂µ

{

cos2 θ

[(

1 +
I

v4

)

∂µα +
Jµ

v2

]}

= 0 , (6.14)

∂µ

{

sin2 θ

[(

1 +
I

v4

)

∂µβ − Jµ

v2

]}

= 0 . (6.15)

∂µ

[(

1 +
I

v4

)

∂µθ

]

+
sin 2θ

2

{(

1 +
I

v4

)

[

(∂µα)2 − (∂µβ)2
]

+ 2∂µ(α+ β)
Jµ

v2

}

= 0 . (6.16)

A solution to these equations is found for constant θ and ∂rα = −∂rβ = f(r) satisfying

the algebraic equation

f(r) − L2
∗f(r)3 +

L2
∗

Lr2
= 0 , (6.17)

where L∗ = 1/v. As we have already shown in section 3, this equation exhibits classical-

ization at the scale r∗ = L∗(L∗/L)1/2. This result can be easily generalized to the case in

which the Lagrangian is an arbitrary function of the invariant I,

L = F (I) + 2(cos2 θ ∂µα− sin2 θ ∂µβ)Jµ . (6.18)

For a spherically-symmetric localized source, the equations of motion are solved by the

same ansatz (∂rα = −∂rβ = f(r) and θ constant), with the function f(r) now satisfying

the equation
[

dF (I)

dI

]

I=− f2

L2
∗

f(r) = − L2
∗

Lr2
. (6.19)

For any regular function F (I) expandable in powers of I/v4, the above solution classicalizes

at the scale r∗ ∼ L∗(L∗/L)1/2. The reason is that the scale r∗ is defined as the distance

at which non-linearities in F (I) become important and, for a generic function F , this

happens when I(r) ∼ v4. For instance, for a (DBI-type) function, F (I) = L−4
∗
√

1 + L4
∗I,

the solution is

f(r) =
1

L∗

(

1 +
L2r4

4L6
∗

)−1/2

. (6.20)

In each order in fields, the addition of higher-derivative invariants is not changing the

value of the scale r∗, but only the behavior of the solution at the short distances. Thus,

the classicalization scale is rather insensitive to higher derivatives.
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If the above classicalization of the Goldstone modes works, the recipe for constructing

the classicalizing Higgless standard model is the following. Supplement the action of the

Standard Model with the higher-order invariants of the form,

v−4(DµH
†DµH)2 + . . . . (6.21)

Then take the limit λ → ∞, keeping v fixed. In this limit the radial Higgs mode ρ

decouples, converting the Higgs doublet into a Stückelberg doublet Ha → Uav/
√

2. The

Standard Model Lagrangian then becomes

v2

2
(DµU

†DµU) +
1

4
(DµU

†DµU)2 + . . . . (6.22)

In this way, we are left with a manifestly gauge invariant theory in which the Higgs doublet

is replaced by the Stückelberg doublet. The propagating degrees of freedom of this theory

are exactly the same as in the Standard Model without the Higgs. Such a theory violates

perturbative unitarity above the scale v, but in deep UV unitarity is restored by classical-

ization. The theory above v is no longer a Wilsonian quantum field theory, but rather a

theory of classicalized extended objects. In other words, classicalization is the response of

the theory to the lack of Wilsonian UV completion.

In order to see how the role of the Higgs is replaced by classicalization, notice that

the classicalizing higher-dimensional operators in eq. (6.22) are of precisely the same form

which is obtained by integrating out the Higgs particle. Indeed, ignoring fermions, the

Higgs-dependent part of the Standard Model in our parameterization is

1

2
(∂µρ)

2 +
ρ2

2
(DµU

†DµU) − λ2

8
(ρ2 − v2)2 . (6.23)

Integrating out the Higgs through its equation of motion, which at low energies becomes

an algebraic constraint

ρ2 = v2 +
2

λ2
(DµU

†DµU) , (6.24)

we obtain the following effective theory

v2

2
(DµU

†DµU) +
1

2λ2
(DµU

†DµU)2 . (6.25)

Notice that the second term exactly coincides with the classicalizing interaction in

eq. (6.22), with the difference that it is suppressed by λ2, and thus in the ordinary Stan-

dard Model would disappear in the limit of infinite Higgs mass. Classicalization thus cor-

responds to the situation in which, although the Higgs has been eliminated, the would-be

Higgs-mediated interaction is maintained.

6.2 Phenomenology of Higgless classicalization

Let us discuss some phenomenological aspects of classicalization as seen from the low-

energy effective field theory point of view. For this let us reiterate some key points of

the classicalization phenomenon. We shall work in the approximation in which there is a
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substantial hierarchy between the mass of the classicalizer field φ and the the classicalization

scale M∗, so that for the energies of interest the classicalizer can be treated as massless.

In order to make some phenomenological predictions, we need to understand what

are the UV-sensitive and UV-insensitive aspects of the classicalization phenomenon. We

first wish to stress again that classicalization of sources with 1/L ≫ M∗ is predomi-

nantly a long distance phenomenon, largely insensitive to the structure of the theory at

distances ∼ L∗. The inevitability of classicalization of such sources can be understood

already at the linearized level, as a consequence of the Gauss’s law. Let us take a source

J(r) localized within a sphere of radius r∗ ∼ L∗
√

L∗/L, and having an integrated value

L∗
∫ r∗
0 r2dr J(r) = L∗/L. According to the linearized equation

�φ + . . . = J(r)L∗ , (6.26)

such a source is producing a Gaussian flux of the gradient ∂rφ ∼ L∗/(r
2L) that approaches

values of order M2
∗ , for r → r∗. When we are approaching the source from large distances,

the effect of the non-linearities is fully under control and we can be sure that the quantity

L2
∗∂rφ becomes of order one for distances at which the effect of higher-dimensional operators

is not yet dominant. As a result, we are convinced that such a source produces a classical

configuration of size r∗. For example, a test source particle interacting with the gradient

of φ will scatter at such a configuration with a geometric cross-section σ ∼ r2∗.

Such a source is a highly classical state, and its decay into any two-particle quantum

state is exponentially suppressed. This result indicates that the two-to-two scattering

amplitude with momentum transfer ∼ 1/L ≫ M∗ producing such classicalized sources

must be exponentially suppressed.

As an example consider the effect of clasicallization in a two-to-two scattering process

mediated by a four-derivative interaction

L4
∗(∂µφ∂µφ)2 . (6.27)

Such interaction models the scattering of longitudinal W -bosons in the Higgless Standard

Model, with L∗ = v−1. Perturbatively, the amplitude of this process grows as

A(s) ∼ s2

v4
. (6.28)

However, classicalization shuts-off the growth for
√
s > v. In fact, for

√
s ≫ v, the

amplitude of the process WW → WW is completely dominated by the low momentum

transfer of order2

r∗(s)
−1 = v

(

v√
s

)
1
3

, (6.29)

and therefore

A(s) ∼ [vr∗(s)]
−4 ∼

(

v√
s

)
4
3

. (6.30)

2Notice that the appearance of (
√

s)1/3 as opposed to
√

s in eq. (6.29) is due to the fact that φ is self-

sourced not by the two-derivative operator (∂φ)2, but rather by a four-derivative one which, for the same
√

s, produces a shorter r∗-radius. This result is obtained from eq. (2.20) for n = 4 and k = 2.
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The reason for this suppression is that events with high momentum transfer (∼ √
s) because

of classicalization go through the formation of an intermediate classical state of size r∗(s)

and mass ∼ √
s, whose decay probability into a two-particle quantum state is exponentially

suppressed at least by the following factor,

exp
[

−
√
sr∗(s)

]

∼ exp

[

−
(√

s

v

)
4
3

]

. (6.31)

Such a classical state will instead decay into many particles, with the decay being dominated

by low-momentum states. Of course, the total inclusive cross section of the WW -scattering

process increases as the geometric cross section

σ ∼ r∗(s)
2 ∼ v−2

(√
s

v

)
2
3

. (6.32)

It should be noted that the above scaling of the cross section with center of mass

energy does not contradict the Froissart bound, as the assumptions to derive this bound

(in particular the existence of a mass gap) are not satisfied in classicalizing theories. In a

sense, the Froissart bound is just a physical manifestation of the fact that in a theory with

massive mediators the cross section cannot exceed the range of interaction. In our case,

first we are concerned with massless particles and, second, the r∗ radius can arbitrarily

grow with energy. Of course, whenever the classicalizer field gets a mass, the cross section

will saturate at the Compton wavelength squared. In the case of the Higgless Standard

Model, we expect that the cross section freezes (in accordance with the Froissart bound)

once the corresponding r∗ reaches the Compton wave-length of the W boson. This is

phenomenologically a rather high energy scale, roughly equal to
√
s = v4/M3

W . It is

probably only at the edge of the LHC reach, so at most the LHC will be able to probe the

geometrically growing cross section.

We should also note here that the decrease of the 2→2 amplitude with
√
s, together

with an increase of the total cross section, is not in conflict with the optical theorem,

because the number of intermediate channels is increasing enormously with energy. This

is exactly the same phenomenon that is expected in black hole physics. So the process

2→ 2 is effectively going as 2→Many→2, and the last step is precisely what causes the

suppression. In fact the number of channels is ∼ exp(N), withN =
√
sr∗. Each channel has

a probability suppressed by the same exponential factor exp(−N), so the two compensate.

However, once a given intermediate state is formed, the probability for it to decay back

into the 2-particle state is exp(−N).

One may wonder how sensitive are the above features to the possible higher-

dimensional operators that can source φ. As previously discussed, they are not. For

example, imagine that we add to the classicalizing interaction other terms that are higher-

order in derivatives, say,

∂k(∂φ)2n+2 . (6.33)
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In the scattering process each term individually self-sources φ and results in the production

of a classical object of size

r∗ = v−1

(√
s

v

)

n+1/2
3n+k+3/2

. (6.34)

This largest r∗ corresponds to k = 0. Thus, at high s, the scattering is completely domi-

nated by the leading term, and higher-derivative terms are irrelevant. The insensitivity of

the scattering amplitudes to the higher invariants for large values of s, is the key property

of the classicalization phenomenon. On the other hand, the higher invariants will play an

important role for s ∼ v2, where the dynamics becomes model dependent.

The stability of the classical states is not an essential ingredient for the classicalization

phenomenon, as long as the lifetime τ of the classical states of size r∗ is such that τ >∼ r∗.

This condition should hold in any ghost-free theory with positive energy sources, and it

can be translated into a restriction on the types of higher-dimensional operators.

From the point of view of LHC phenomenology, it is important to understand the

dynamics of the states around L∗. This dynamics is defined by the cross-over phenomenon

according to which any consistent theory that classicalizes above the energy 1/L∗ must

contain quantum resonances with masses around this scale [22]. The existence of such

resonances inevitably follows from the quantum-to-classical transition. They correspond

to the quantum states obtained from the classical configurations in the limit r∗ → L∗. The

key point is that the lifetime of a classical configuration must be parametrically larger than

its characteristic size, τ > r∗. This is a defining property of a classical state and it should

persist for any r∗ > L∗. Thus, classicality of objects with size r∗ implies the existence

of quantum resonances with mass L−1
∗ . To be more precise, classicalization implies the

existence of a tower of resonances that starts at M∗, with states becoming more and more

classical as mass increases. The heavier the resonance, the more classical it is, and more

insensitive its properties are to higher-order invariants in the action.

Thus, classicalization of the Higgless Standard Model leads us to the following self-

consistent picture. We start from the Standard Model and decouple the Higgs by taking the

limit λ→ ∞ with v = M∗ fixed. Despite the absence of the Higgs, the high energy (1/L ≫
v) scattering is now unitarized by classicalization. This fact on its own is insensitive to

the structure of the higher-dimensional operators, since it comes entirely from the long-

distance effects of the localized sources. On the other hand, the precise structure of the

higher-dimensional operators is important for defining the short-distance properties of the

classicalized objects, and thus, for defining the dynamics of quantum resonances at the scale

M∗. Thus, higher-dimensional operators are crucial in setting the spectrum of states in the

vicinity of M∗, but quickly become irrelevant for the heavier states. This is very similar

to the case of gravity, in which the higher-curvature invariants play no role in defining

the properties of large black holes, whereas they give important corrections to Planckian

black holes.

A purely Higgless Standard Model is incompatible with electroweak data, because it

predicts a value of the custodial-symmetry breaking parameter T of about −0.3, while

present measurements indicate T = 0.07± 0.08. However, the classicalized Higgsless Stan-
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dard Model contains more dynamics at the scale M∗ than what described by the ordinary

quarks, leptons, and gauge bosons. Whether we wish for it or not, the removal of the

Higgs particle from the Standard Model automatically introduces a tower of resonances,

with increasing mass (and spin) which, well above M∗, turn into classical states. These

quantum resonances will give virtual contributions to electroweak observables. It is there-

fore natural to expect new effects on the parameters S and T of typical electroweak size.

These effects cannot be computed without detailed knowledge of the dynamics at the scale

M∗. All we can do here is to argue that it is possible for this dynamics to give a positive

contribution to T and an insignificant contribution to S, needed to reconcile the theory

with experimental data.

It is important to note the different roles played by the heavy and light resonances

at various length scales. The resonances that are heavier than M∗ do not affect the pre-

cision electroweak observables, since they represent classical states giving exponentially

suppressed contributions to virtual processes, but they are crucial in restoring unitarity

at high energies. On the other hand, resonances with mass around M∗ play no role in

scattering processes at energies much larger than M∗, but give important contributions to

the electroweak precision parameters. In other words, since classical states decouple expo-

nentially, the main contribution to electroweak observables comes from quantum states in

a narrow interval around M∗. Although these quantum states must replace the contribu-

tion of a light Higgs in precision data, this should occur just as a numerical coincidence,

because their physical effect is very different than the Higgs. In the Standard Model, the

Higgs is responsible for restoring unitarity at arbitrarily high scales, whereas the quantum

resonances in the Higgsless model play no role in unitarizing processes at energies larger

than M∗. The classical states, controlled by the infra-red sector of the theory, take care of

this task.

The situation is somewhat analogous to what happens in string theory with gs ∼ 1,

with the classicalized states of the Higgless Standard Model playing the role of the string

resonances. Thus, from the phenomenological point of view, the classicalization may appear

as a UV-completion by some sort of string theory, with the characteristic signature of a

tower of string-type resonances above the scale v.

The occurrence of a tower of quantum states is reminiscent of technicolor, which also

results in a series of QCD string-type resonances. However, there is a crucial difference.

While in technicolor-like theories (like in any Wilsonian completion) the inclusive cross

section decreases with s well above the resonance region, in our case the total cross section

keeps on growing with s as larger (and more massive) classicalons are formed.

6.3 Using the Higgs as classicalizer

Another interesting application of classicalization in the context of the Standard Model is

the idea of maintaining the Higgs as a fundamental field, but using it as a classicalizing

source. The motivation for this approach is addressing the hierarchy problem by classi-

calization, whereas unitarity in WW-scattering is restored in the usual perturbative way

through the Higgs field. Since the Higgs is a scalar, it does produce scalar gravity. So what

we need is that the Higgs field classicalizes whenever integration is performed over sources
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with momenta exceeding M∗. This can be achieved by adding operators ensuring that the

Higgs is sourced by the energy-momentum of any Standard Model particle. The simplest

universal interaction is

Lint =
κ

M2
∗
H†H T µ

µ , (6.35)

where κ is a coupling constant and T µ
µ represents the trace of the energy-momentum tensor

of the Standard Model fields, evaluated order by order in 1/M∗. Although other types of

interactions that couple the Higgs linearly can also be considered, we shall focus on the

above interaction, which we consider to be the most straightforward choice.

The classicalization effect of this coupling can be easily observed from the equation of

motion of the Higgs field in the presence of a localized source T µ
µ = 3 θ(L− r)/L4, where

θ is the Heaviside step function and the source is normalized in such that its integrated

value is
∫∞
0 dr r2 T µ

µ = 1/L. Defining 2H†H = [v + ρ(r)]2, the equation for the Higgs in

the presence of the source takes the form
(

∂2
r +

2

r
∂r − λ2v2

)

ρ(r)− λ2

2

[

3vρ2(r) + ρ3(r)
]

+. . . = − 3κ

M2
∗L

4
θ(L−r) [v + ρ(r)] . (6.36)

On the left-hand side we have left out the higher-order self-couplings of the Higgs that

will come from the interaction of H with its own energy momentum source. Choosing the

boundary conditions such that ρ(∞) = 0, the asymptotic solution to eq. (6.36) for large r

and weak coupling is

ρ(r) =
κvL2

∗
rL

e−λvr . (6.37)

Depending on the sign of κ, we can distinguish two different regimes. If κ < 0, the

source pushes ρ(r) towards negative values as r → 0, but ρ cannot become smaller than

−v, because beyond that point the expectation value of the Higgs simply vanishes. Thus,

in such a case the classicalized configuration (“Higgsion”) represents a sphere of radius

r
(−)
∗ , within which the Higgs expectation value vanishes, with

r
(−)
∗ ≃ L2

∗
L
. (6.38)

When κ > 0, ρ(r) is driven towards positive values, and the expectation value of the

Higgs increases when we approach the source. This growth is stabilized by higher-order

self-interactions at the distance

r
(+)
∗ ≃ vL3

∗
L

. (6.39)

Note that the growth could also be stabilized by the non-linearities in the Higgs potential

but, for weak coupling (λ≪ 1), these are less important than higher-order operators such

as, for instance, L2
∗(ρ+ v)2(∂µρ)

2.

The values of the r∗-radius in eqs. (6.38) and (6.39) are legitimate as long as they are

shorter than the Compton wavelength of the Higgs particle in the vacuum, m−1
H ≡ (λv)−1.

Beyond that value, r∗ does not further grow with energy. For the two cases, this translates

into a condition on λ,

λ ≪ L

L2
∗v

for κ < 0 and λ ≪ L

L3
∗v

2
for κ > 0 . (6.40)
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In other words, classicalization requires a mild hierarchy between the Higgs mass and the

scale M∗. Thus, if classicalization solves the hierarchy problem at the TeV scale, a relatively

light Higgs is preferred.

For
√
s ≫ M∗ the scattering of Standard Model particles is universally dominated by

production of Higgsions, with total inclusive cross section

σ ∼ r
(−)
∗

2
≃ sL4

∗ for κ < 0 and σ ∼ r
(+)
∗

2
≃ sv2L6

∗ for κ > 0 . (6.41)

This cross section grows with
√
s until it freezes at the value σ ∼ m−2

H . This happens

at
√
s ∼ 1/(mHL

2
∗) for κ < 0 and at

√
s ∼ 1/(mHvL

3
∗) for κ < 0. Above this scale the

energy pumped into the system goes into creating heavier and heavier Higgsions, without

increasing their size (at least until the Higgsion becomes a true gravitational black hole

at
√
s ∼MP ).

As we have already mentioned, classicalization requires the mass of the Higgs to be

parametrically smaller than the classicalization scale M∗. However, having the mass of

the classicalizing field parametrically one-loop factor below the scale M∗ is enough for

classicalization to occur, and a one-loop hierarchy between the Higgs mass and M∗ is

perfectly natural. The Higgs mass receives contributions from quantum loops, which are

evaluated by integrating over sources of Standard Model particles (such as top-antitop

pairs). Because of the interaction in eq. (6.35), sources with energies E > M∗ will become

classical and their decoupling factor will be at least exp(−E2/M2
∗ ). As a result, the total

contribution to the Higgs mass will be given by δm2
H ∼ (loop factor) ×M2

∗ . This is still

consistent with having the Higgs as classicalizer at the scale M∗, since the Higgs mass is

not preventing classicalization of sources with energies above M∗.

We can now ask the following question about the couplings of the Higgs to the energy-

momenta of different Standard Model particles in the classicalizing interaction: how uni-

versal must they be? Flavor conservation restricts the form of such couplings, but we wish

to address the issue from the point of view of classicalization. At first sight, it seems that

fermions that are weakly coupled to the Higgs (like first-generation quarks and leptons)

could be allowed to have weaker couplings also in the classicalizing interaction. For ex-

ample, consider the Yukawa coupling of the Higgs to the electron, geHēe. At one loop

this coupling generates a quadratically sensitive Higgs mass δm2
H ∼ (g2

e/16π
2)Λ2. In the

presence of the classicalizing coupling

g′e
2H

†H

M2
∗
ē6∂e , (6.42)

the electron loop will get classicalized and cutoff at the scale Λ ∼M∗/g
′
e, which would not

destabilize the weak scale as long as g′e
>∼ ge. Therefore, it seems that the electron can

be allowed to have a much weaker classicalizing coupling than, say, a top quark. But this

consideration is true only if we forbid all possible higher-dimensional operators that could

couple the electron to the top quark generating unsuppressed contributions to the Higgs

mass at some higher-loop level. For instance, a four-fermion interaction ēet̄t/M2
∗ would

create a problem at two loops. Thus, if we allow for generic operators that couple different
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Standard Models species, then each of these species must have the same strength in the

classicalizing interaction with the Higgs. This implies that the production of Higgsions is

a universal property of scattering processes with any Standard Model particle. Similarly,

the decay of Higssions will be approximately universal, with roughly equal probability of

producing any species of Standard Model particles.

7 Conclusions

Since the time of Rutherford’s experiments, the exploration of smaller distances has been

performed by means of particle probes of increasingly higher energies. Assuming that we

could build accelerators with arbitrary high energies, we can ask the question of whether,

as a matter of principle, this experimental strategy could be pursued ad infinitum. The

answer is no. If the momentum transfer in a particle collision exceeds the Planck mass, the

system collapses into a black hole and any information about shorter distances is inevitably

cloaked inside its horizon. There is a minimum length beyond which no information can

be extracted from collider experiments, no matter how powerful the accelerator is.

In practice, this does not seem a serious limitation, since there is no immediate plan

for a collider accelerating particles at Planckian energies. However, the situation could be

very different if gravity becomes strong at the TeV scale [23], since black holes could be

formed in proton collisions at the LHC [24–28]. In this paper we have argued that the

inaccessibility of short distances at high energies — a feature characteristic of gravity —

could also occur in certain non-gravitational non-renormalizable field theories and thus be

relevant at much lower energies. Although we have not rigorously proved the phenomenon,

which is intrinsically non-perturbative, we have given abundant evidence for its occurrence.

We have given several examples of theories which exhibit this phenomenon, called here

classicalization. In these theories, the system of two particles colliding with energy and

momentum transfer larger than M∗ (the mass scale associated with the non-renormalizable

interaction) acts as a source for a field (called classicalizer), which consequently develops

a classical configuration of size r∗, the classicalon. As the energy localized in the sys-

tem increases, the radius r∗ grows. The classical size r∗ then becomes larger than any

of the quantum lengths involved in the scattering process, and any information about

the short-distance behavior of the theory is permanently enshrouded inside the extended

classical object.

Contrary to the case of black holes, the formation of classicalons does not imply the

existence of horizons and therefore not all the short-distance information becomes inacces-

sible. Classicalons act only on special processes, whose nature depends on the structure of

the underlying theory.

The phenomenon of classicalization suggests an alternative route in dealing with the-

ories that seemingly violate unitarity in high-energy scattering processes. Instead of fol-

lowing the traditional Wilsonian approach and modifying the high-energy behavior of the

theory by introducing new degrees of freedom, we can invoke classicalization as a cure.

Some theories, which apparently violate unitarity, have in reality their own resources to

bypass the problem at the non-perturbative level. As one approaches the energy scale of
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unitarity violation, large classical objects are formed and we do not need to specify the

short-distance behavior of the theory to know its high-energy behavior.

Classicalization could have dramatic consequences for theories at the electroweak scale.

We have shown that the Standard Model, even without the Higgs, could have no clash with

unitarity above the scale v, because of the classicalization of the longitudinal components

of the gauge bosons. Alternatively, classicalization could solve the hierarchy problem of the

Standard Model, if the Higgs field behaves as a classicalizer. In both cases, classicalization

predicts sensational phenomena visible at the LHC.

We would like to stress that the essence of classicalization is at the heart of gravity as

well as of string theory. In fact classicalization implements a physical mechanism in which

the energy pumped into the system in order to localize it causes an increase of its effective

size. This phenomenon naturally sets a fundamental length where the quantum/classical

cross-over takes place [7, 9–11, 29]. Non-Wilsonian self-completeness by means of clas-

sicalization can only be achieved in theories possessing in their spectrum a classicalizer

field.3 Similarly to what happens in gravity, the non-linear dynamics of the classicalizer

field determines the effective size of any localized distribution of energy and sets the energy

scale at which such a distribution turns into a classical configuration.
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A Stability analysis

Although, as previously pointed out, absolute stability is not really an issue, we would like

to examine the stability of the classicaling configurations under linear perturbations. For

this, let us consider the theory described by the action

Lφ =
1

2
(∂µφ)2 − L4

∗
4

(∂µφ)4 . (A.1)

The spherically symmetric classicalizing scalar configuration φ = φ0(r) satisfies

∂rφ0 + L4
∗(∂rφ0)

3 =
Q

r2
,

3In string theory the classicalizer lies in the closed string sector and the existence of the classicalizer is

guaranteed by the open/closed string correspondence.
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where the charge Q is localized within r < L≪ L∗. The solution to this equations has the

following profile at short and large distances (r2∗ = QL2
∗)

φ0 ∼ 1

r
r ≫ r∗ ,

φ0 ∼ r1/3

r
4/3
∗

r ≪ r∗ . (A.2)

By setting φ = φ0 +ϕ, the dynamics of the perturbations ϕ is described at quadratic order

by

L(2) =
1

2

[

1 − L4
∗(∂σφ0)

2
]

∂µϕ∂
µϕ− L4

∗∂µφ0∂νφ0∂
µϕ∂νϕ . (A.3)

For the background (A.2) and for ϕ = ϕ0(r)e
−iωt, we find that ϕ(r) satisfies

1

r2
∂r

[

r2
(

1 + 3L4
∗(∂rφ0)

2
)

∂rϕ0

]

+ ω2
(

1 + L4
∗(∂rφ0)

2
)

ϕ0 = 0 . (A.4)

The solution for spherically symmetric fluctuations to the above equation describes ingoing

and outgoing plane waves at large distances (r ≫ r∗) from the classicalon,

ϕ ∼ e−iω(t±r)

r
, r ≫ r∗ ,

whereas, close to the classicalon

ϕ0 ∼ C1 r
1/6 J1/6

(

rω/
√

3
)

+ C2 r
1/6 Y1/6

(

rω/
√

3
)

, r ≪ r∗ . (A.5)

Since r1/6Y1/6, r1/6J1/6 remains finite for r → 0, there are no growing modes to destabilize

the classicalizer solution and the solution is stable (at least for linear perturbations).

Similarly, classicalizing configurations induced by vectors are also stable. For example,

we will show below that the theory described in eq. (3.1):

LA = −1

4

(

F 2
µν − 1

4
L4
∗(F

2
µν)2

)

(A.6)

is stable under linear perturbations. Let us consider small fluctuations fµν = ∂µaν − ∂νaµ

around a classical background F
(0)
µν such that

Fµν = F (0)
µν + fµν (A.7)

Then, the quadratic action for fµν turns out to be

L(2) = −1

4

[(

1 − 1

2
L4
∗F

(0)2
)

δκµδλν − L4
∗F

(0)
µν F

(0)
κλ

]

fκλfµν (A.8)

On a static electric background F
(0)
0i = Ei, like the one described in section 3, the action

in terms of the perturbed electric (ei) and magnetic (bi) fields

f0i = ei , fij = ǫijkbk (A.9)

is written as

L(2) =
1

2

{(

1 + L4
∗ ~E

2
)

δij + 2L4
∗EiEj

}

eiej −
1

2
(1 + L4

∗ ~E
2)~b2 . (A.10)

For the classicalizing background, the above Lagrangian describes ordinary electromag-

netism, which however has anisotropic electric susceptibility tensor for r ≪ r∗, due to an

effective polarization of the classicalon.
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