
Noname manuscript No.
(will be inserted by the editor)

UV-Diagram: A Voronoi Diagram for Uncertain Spatial
Databases

Xike Xie · Reynold Cheng · Man Lung Yiu · Liwen Sun · Jinchuan Chen

the date of receipt and acceptance should be inserted later

Abstract The Voronoi diagram is an important tech-

nique for answering nearest-neighbor queries for spa-
tial databases. We study how the Voronoi diagram can

be used for uncertain spatial data, which are inheren-

t in scientific and business applications. Specifically,

we propose the Uncertain-Voronoi Diagram (or UV-

diagram), which divides the data space into disjoin-
t “UV-partitions”. Each UV-partition P is associated

with a set S of objects, such that any point q located in

P has the set S as its nearest neighbor with non-zero

probabilities. The UV-diagram enables queries that re-
turn objects with non-zero chances of being the nearest

neighbor (NN) of a given point q. It supports “continu-

ous nearest neighbor search”, which refreshes the set of

NN objects of q, as the position of q changes. It also al-

lows the analysis of nearest neighbor information, e.g.,
to find out the number of objects that are the nearest

neighbors of any point in a given area.

A UV-diagram requires exponential construction

and storage costs. To tackle these problems, we devise

Xike Xie
Department of Computer Science, Aalborg University, Denmark
E-mail: xkxie@cs.aau.dk

Reynold Cheng
Department of Computer Science, The University of Hong Kong
E-mail: ckcheng@cs.hku.hk

Man Lung Yiu
Department of Computing, Hong Kong Polytechnic University
E-mail: csmlyiu@comp.polyu.edu.hk

Liwen Sun
University of California, Berkeley
E-mail: liwen@cs.berkeley.edu

Jinchuan Chen
Key Lab for Data Engineering and Knowledge Engineering,
MOE. Renmin University of China
E-mail: jcchen@ruc.edu.cn

an alternative representation of a UV-diagram, by us-

ing a set of UV-cells. A UV-cell of an object o is the
extent e for which o can be the nearest neighbor of any

point q ∈ e. We study how to speed up the derivation of

UV-cells by considering its nearby objects. We also use

the UV-cells to design the UV-index, which supports

different queries, and can be constructed in polynomi-
al time. We have performed extensive experiments on

both real and synthetic data to validate the efficiency

of our approaches.

1 Introduction

The Voronoi Diagram, primarily designed for evaluat-
ing nearest-neighbor queries over two-dimensional spa-

tial points [33], has raised plenty of research interest.

This technique has been extended to handle different

related problems, including database services in wire-

less broadcast environments [44, 45]; high-dimensional
query evaluation [7]; continuous location-based ser-

vices [4, 32, 43]; and virus spread analysis among mo-

bile devices [41]. Conceptually, the Voronoi diagram

partitions the data space into disjoint “Voronoi cell-
s”, so that all points in the same Voronoi cell have

the same nearest neighbor. The task of finding the n-

earest neighbor of a query point is then reduced to a

point query. Figure 1(a) illustrates a Voronoi diagram

of seven points. Since the query point q is located in
the Voronoi cell of O2, O2 is the nearest neighbor of q.

Is it possible to use the Voronoi diagram to per-

form nearest-neighbor search on objects whose values

are imprecise? Data values can be uncertain for a va-
riety of reasons. Consider a satellite image, which de-

picts geographical objects like airports, vehicles, and

people. Using machine learning and human effort (e.g.,

2

Fig. 1 (a) Voronoi Diagram. (b) UV-Diagram.

community-based systems like Wikimapia), the loca-

tion of each object on the image can be obtained. Due
to the noisy transmission of satellite data, the quali-

ty of these images can be affected, and we may not

be able to obtain very accurate locations. Moreover, if

this location information is released to the public (e.g,
for research purposes), it may need to be preprocessed

for privacy purposes. In fact, recent proposals like [1,2]

have suggested to represent a user’s position as a larg-

er region, in order to lower the likelihood that a us-

er is identified at a particular site. Uncertainty is also
inherent in biological data management. For example,

microscopy images have been actively used to analyze

the thickness of neuron layers in the retina, as well as

the extent of the area of a cell. Due to factors like im-
age resolution and measurement accuracy, it is hard to

obtain exact values of the objects of interest [28, 29].

For this kind of data, techniques for evaluating range

queries, nearest-neighbor queries, and joins, have been

developed. These queries return answers with proba-
bilistic guarantees, which reflect the confidence of an-

swers due to data uncertainty. For these applications,

tools that resemble the Voronoi diagram can be po-

tentially useful. Specifically, we would like to examine
space-partitioning techniques for performing a Proba-

bilistic Nearest-Neighbor Query (PNN). Given a query

point q, a PNN returns the IDs of objects with non-

zero probabilities for being the closest to q, as well as

their probabilities. In the sequel, we denote the objects
returned by the PNN as answer objects, and their prob-

ability values as qualification probabilities.

An uncertainty model that has been commonly used

is to assume that an object Oi has an “uncertainty

region” and a probability distribution function (pdf).
This means that the precise position of Oi can only be

located inside the (closed) region, with a pdf that de-

scribes the distribution of the object’s position within

the region. The uncertainty region can have any shape,
and the pdf is arbitrary (e.g., it can be a uniform distri-

bution, Gaussian, or a histogram). Here we assume that

Oi has a two-dimensional circular uncertainty region.

We will also explain how our solution can be extended

to handle non-circular-shaped regions.

We examine how the Voronoi diagram should be

defined to support PNN execution. Specifically, we pro-
pose the Uncertain-Voronoi diagram (or UV-diagram),

where the nearest-neighbor information of every point

in the data space is recorded, based on the uncertain

objects involved. The UV-diagram provides a basis for

studying solutions that used the Voronoi diagram for
point data. It could be interesting, for instance, to ex-

tend the solution of [44] to support uncertain data in

broadcasting services. Figure 1(b) illustrates an exam-

ple of the UV-diagram of seven uncertain objects, where
the space is divided into disjoint regions called UV-

partitions. Each UV-partition P is associated with a

set S of one or more objects. For any point q located

inside P , S is the set of answer objects of q (i.e., each

object in S has a non-zero probability for being the n-
earest neighbor of q). The highlighted regions contain

points that have two or more nearest neighbor objects.

As an example, since q1 is inside the dashed region, O4

has a non-zero probability for being the nearest neigh-
bor of q1; on the other hand, q2 is located inside the

dotted region, and O6 and O7 are the answer objects

for the PNN with q2 as the query point. Observe that

the Voronoi diagram, which indexes on spatial points,

is a special case of the UV-diagram, since a point can
be viewed as an uncertainty region with a zero radius.

Figure 1 compares the two diagrams.

The Voronoi diagram can also be used in other ap-

plications. For example, a continuous nearest-neighbor
query, which constantly returns the nearest neighbor

(e.g., gas station) of a moving point q (e.g., a vehicle),

is a typical operation in location-based services [32,43].

The Voronoi diagram supports this query; particular-

ly, the Voronoi cell that contains the current location
of q can be easily retrieved. We will illustrate how to

use the UV-diagram to track the possible nearest neigh-

bors of a moving point. Another use of the Voronoi dia-

gram is to perform data analysis or observe interesting
patterns of nearest-neighbor information. In [41], the

Voronoi diagram is used to investigate the spreading

pattern of bluetooth viruses among mobile users. We

can also use UV-diagram to provide valuable informa-

tion about these “nearest-neighbor patterns”. In Fig-
ure 1(b), if the dashed region is large, it indicates that

O4 has high chance to be placed in different clusters

(assuming that a nearest-neighbor clustering algorithm

is used). Another interesting query is: given a region R,
display all UV-partitions that intersect with R, as well

as the density of objects that can be the nearest neigh-

bor in each UV-partition. Hence, a UV-diagram allows

3

a user to visualize patterns about the nearest-neighbor

information.

Challenges of constructing UV-diagram. Al-

though the UV-diagram is useful, developing a UV-

diagram is not simple. Notice that the UV-partitions

are produced based on uncertainty regions, which may
not be points. Unfortunately, efficient computational

geometry methods for generating the Voronoi diagram

(e.g., line-sweeping [19]) cannot be readily used for cre-

ating a UV-diagram, since these methods are primarily

designed for spatial points, rather than uncertainty re-
gions. Figure 2 depicts the space partition based on

three uncertainty regions represented as circles. Each

UV-partition (named Ri, where i = 1, . . . , 7) is irregu-

lar in shape and contains different answer objects, list-
ed on the side of the figure. In general, given a set

of uncertain regions, an exponential number of UV-

partitions can be created. For example, Figure 2 shows

that for three objects, there are seven UV-partitions,

each of which contains one of 23 − 1 = 7 combination-
s of the three objects. Moreover, the number of edges

of each UV-partition can also be exponentially large!

This makes it computationally infeasible to generate

and store these partitions. It is also difficult to find out
which of these irregular UV-partitions contain a giv-

en query point. Indeed, our experimental results show

that a brute-force approach of computing and index-

ing UV-partitions over 40,000 objects require about 60

hours. Therefore, a scalable method for constructing a
UV-diagram is highly desirable.

Fig. 2 A UV-Diagram for 3 uncertain objects.

Our solutions. Instead of computing UV-

partitions, we have developed an alternative interpreta-
tion of the UV-diagram. For every object Oi, we consid-

er the extent ai such that Oi can be the nearest neigh-

bor of any point selected from ai. We call this extent

the UV-cell of Oi. We examine some basic properties
of a UV-cell (e.g., its size and number of edges). We

show how to represent a UV-cell as a set of objects,

and develop novel methods to find this object set ef-

ficiently. For example, our batch-construction algorith-

m allows the UV-cells of objects that are physically

close to each other to be swiftly obtained. We propose

a polynomial-time method for constructing an index for

the UV-partitions, called the UV-index. We adopt an
adaptive-grid indexing scheme, which has the advan-

tage of adapting to different distributions of uncertain

objects’ positions. Our experimental results show that

on both synthetic and real dataset, this index can be
constructed in a much shorter time. We also explain

how to use the UV-index to support different applica-

tions (e.g., PNN and nearest-neighbor pattern queries).

To summarize, our contributions are:

– Study the UV-diagram and its basic properties;
– Propose efficient algorithms for obtaining a UV-cell;

– Design the UV-index;

– Use the UV-index to support different queries; and

– Conduct experiments on real and synthetic datasets.

The rest of the paper is as follows. Section 2 sum-
marizes the related work. In Section 3 we present basic

concepts of the UV-diagram. In Section 4, we study

the UV-cell and its essential properties. We then ex-

plain how to represent UV-cell efficiently in Section 5.

An adaptive index based on the UV-diagram is pre-
sented in Section 6. We present experimental results in

Section 7. Section 8 concludes the paper.

2 Related Work

Data Uncertainty Management. Recently, re-

searchers have proposed to consider uncertainty as
a “first-class citizen” in a DBMS [13, 14, 18, 39]. T-

wo models can be used to represent uncertain data:

tuple- and attribute- uncertainty. For tuple-uncertainty,

each database tuple has a probability of being correc-

t [18]. Here we assume attribute-uncertainty, which rep-
resents an attribute as a range of possible values and a

probability distribution function (pdf) bounded in the

range [39]. Common queries for attribute uncertainty

include range queries [16], k-nearest-neighbors [28], sky-
lines [25, 36] and top-k queries [20].

A few works have been proposed to evaluate PNN

queries over attribute uncertainty. In [15], numerical in-

tegration techniques have been presented. Probabilistic

verifiers, described in [13], can generate answer object-
s’ probability bounds without performing expensive in-

tegration operations. Another way to compute answer

probabilities is based on sampling [24]. In this paper,

we focus on the efficient retrieval of answer objects.
To our understanding, the only indexing method

available for nearest-neighbor search over uncertain da-

ta is to use an index like the R-tree and the grid. The

4

R-tree is a disk-based structure that uses the Minimum-

Bounding Rectangles (MBRs in short) to cluster the un-

certainty regions of the objects, and organizes MBRs in

a hierarchical manner [6]. To evaluate PNN using the

R-tree, a branch-and-prune strategy has been proposed
in [15], where MBRs that may contain answer objects

are traversed. However, this involves a lot of I/O cost

in reading index nodes and leaf pages [13, 15]. Similar

issues also occur with grids [31]. On the other hand,
retrieving answer objects from the UV-diagram is es-

sentially a point query search: given a point q, find the

objects associated with the UV-partition that contains

q. Hence, a UV-diagram can support more efficient PN-

N search. While it is not clear how an R-tree or grid
over uncertain objects can provide pattern analysis of

nearest-neighbor information (e.g., displaying the ex-

tent of a UV-partition), we will show how to use the

UV-diagram to provide this information.

Other types of nearest-neighbor queries, like

the “group nearest-neighbors” [26], “reverse-nearest-

neighbors” [10, 27], “uncertain queries” [8], and “con-

tinuous nearest-neighbor queries” [12] have also been

proposed. In these works, the R-tree was used to sup-
port object retrieval. It is interesting to study how the

UV-diagram can be used to support the execution of

these queries. In this paper, we study how to use the

UV-diagram to support the execution of continuous
nearest-neighbor queries.

The Voronoi diagram is an important tech-

nique for answering nearest-neighbor queries over spa-

tial points [33]. It has been extended to support other

applications (e.g., [7, 32, 43–45]). It also facilitates the
analysis of spreading patterns of mobile viruses [41].

In [9], the k-th order Voronoi diagram is used to eval-

uate a k-NN query. In [38], an index called VoR-Tree

is designed to merge Voronoi diagrams into R-tree in
order to answer various nearest neighbor queries. The

Voronoi diagram has also been defined for boundaries

of circular objects in [23]. However, these objects are

not uncertain, and the method of [23] cannot be used

to answer PNN queries.

Few works have studied the application of the

Voronoi diagram on uncertain data. [8] consider the

“uncertain” nearest neighbor query (UNN) over spatial

points. Different from PNN, the query is an uncertain

region, not a query point. To evaluate a UNN, the au-
thors propose to use a Voronoi diagram over 2D points.

The portions of the Voronoi cells that overlap with the

query’s uncertainty region are then used to compute

answer probabilities. [22] consider the clustering of un-
certain attribute data, where a Voronoi diagram is con-

structed for centroid points. Notice that [8] and [22] do

not construct a Voronoi diagram for uncertain data. On

the other hand, the UV-diagram is a Voronoi diagram

tailored for attribute uncertainty.

In [21, 37], the Voronoi diagram was modified to i-

dentify an imprecise object which is surely the nearest

object of a query point q. However, the UV-diagram re-
turns object(s) that may have chance to be the nearest

neighbor of q, and can be used to answer probabilistic

nearest-neighbor queries. We also study a database in-

dex for the UV-diagram, which has not been examined
in these two works.

This paper is an extension of [17]. Here we improve

the performance of UV-index construction by proposing

batch pruning, which reduces the workload of generat-

ing UV-cells for a set of nearby objects. We provide a
more detailed study of the basic properties of a UV-cell

(e.g., its size and number of edges). We also examine

how the UV-index can be used to answer PNN queries

for a moving query point. We conduct new experiments
to validate the effectiveness of these approaches.

3 The UV-Diagram

We now present the basic notions of the UV-diagam.

We introduce the UV-cell, an alternative presentation

of the UV-diagram, in Section 3.1. We then study some
applications of the UV-diagram, in Section 3.2.

Notation Meaning

Objects and query

D Domain space (a square)
O A set of uncertain objects (O1, O2, . . . , On)

MBC(Oi) minimum bounding circle of object O
(ci, ri) Center and radius of Oi’s uncertainty region

q Query point of a PNN
ρ Density of objects in D

UV-diagram

⊙(c, r) A circle centered at c with radius r
dist(q, ci) Euclidean distance between q and ci

distmin(q, Oi) minimum distance of Oi from q
distmax(q, Oi) maximum distance of Oi from q

Ui UV-cell of Oi

Pi Possible region of Oi

Ei(j) UV-edge of Oi w.r.t. Oj

Xi(j) (Xi(j)) outside (inside) region of Oi w.r.t. Oj

Fi r-objects of Oi, where Fi ⊆ O
Ci cr-objects of Oi, where Ci ⊆ O
M maximum no. of non-leaf nodes
s estimated size of a UV-cell
Tθ split threshold

Table 1 Notations and meanings.

3.1 The UV-cell

As discussed before, the UV-diagram can be expensive

to construct. We hence propose an alternative represen-

5

tation of the UV-diagram, by using UV-cells. We will

later explain how the UV-cells facilitates efficient con-

struction of the UV-diagram. Now, let O1, O2, . . . , On

be the IDs of a set O of uncertain objects, and D be a

two-dimensional space that contains these objects. For
simplicity, we assume that D is a square. The UV-cell

is then defined as follows:

Definition 1 A UV-cell of Oi, denoted by Ui, is a

region in D such that Oi has a non-zero probability to
be the nearest neighbor (NN) of a point q, where q ∈ Ui.

Figure 2 illustrates the UV-cells for O1, O2, and O3.

The boundary of each UV-cell is labeled with the ID of

the object. For example, the UV-cell of O2 is a region
enclosed by solid-line segments.

The UV-cell can be used to recover the UV-

partitions (i.e., disjoint regions of a UV-diagram). In

fact, a UV-partition that contains q is the intersection
of all UV-cells that contain q. This is because the ob-

jects associated with these UV-cells have non-zero qual-

ification probabilities for q. For instance, in Figure 2,

the UV-cells of both O1 and O3 intersect at partitions

R5 and R7. This means that when q is located at any
of these partitions, both O1 and O3 are the answer ob-

jects. Since R7 is intersected by O2’s UV-cell, O2 is also

associated with R7. Therefore, a UV-diagram is the u-

nion of all objects’ UV-cells. Besides, the UV-cells of
all objects can be used to output which object(s) is/are

the nearest neighbor of q with non-zero probabilities.

Table 1 shows the symbols used in this paper. Notice

that if there is at least one uncertain object in domain

D, any point in D must be covered by at least one UV-
cell. In particular, if Oi is the only object in domain D,

then its UV-cell is exactly D.

3.2 Applications of the UV-Diagram

The UV-diagram supports a number of applications.

Let us now explain how to use the UV-diagram to han-

dle the following queries:

1. The Probabilistic Nearest Neighbor (PNN)
Query. This query has been mentioned in Section 1.

To evaluate a PNN for a given point q, we can find out

the UV-partition that contains q. The set A of objects

associated with this partition are those that can be the

nearest neighbor of q. Notice that the UV-partitions
can be obtained by finding the union of all the UV-

cells. For each object Oi ∈ A, the probability that Oi

is the closest to q can be efficiently evaluated by using

solutions in [13, 15, 24].
2. The Continuous PNN Search (CPNN), an ex-

tension of the PNN, is a query that resides in the pro-

cessing server for an extensive period of time. Differen-

t from PNN, the position of a query point q changes

with time [12]. The objective of the CPNN is to refresh

the PNN answer, when the value of q changes. This

query can be used in transportation services, where q

can be a moving vehicle or person, and the data can
be the geographical objects retrieved from satellite im-

ages. Assuming that q reports its position to the server

periodically, the UV-diagram can conveniently support

CPNN. Suppose that the server receives a new position
of q, say, q1. A simple solution is to issue a new PNN for

q1. However, if q1 is located in the same UV-partition

that contains the old position of q, then it suffices to

use the objects associated with that UV-partition to

compute the query answer for q1. The cost of retrieving
the UV-partition that contains q1 is thus saved.

3. The UV-partition Query. The UV-diagram can

also be used to retrieve the distribution and pattern in-

formation about nearest neighbors, which can be useful
for analysis purposes (e.g., [41]). One such “pattern-

analysis” operation is the UV-partition query. Given

a region R, this query retrieves all UV-partitions in-

side R, and the “density” of each partition Rj (which

is equal to the number of objects associated with Rj ,
divided by the area of Rj). This allows a user to exam-

ine the density distribution of the nearest neighbors in

his/her interested area R.

4. The UV-cell Query. This is another pattern-

analysis operation. Given an object Oi, it returns the
extent and the area of Oi’s UV-cell. The query user can

then obtain the area of the region where Oi may be the

nearest neighbor. This area can reflect the “influence”

of Oi (in terms of the nearest neighbor information).
The shape of the UV-cell can also be displayed on the

user’s computer screen for further analysis.

Since the UV-diagram is expensive to construct, in

Section 6 we revisit how the above queries can be im-

plemented by the UV-index, which is an approximate
version of the UV-diagram. We next address the UV-

cell in detail.

4 More about UV-cells

We now investigate the UV-cell, which is important for

constructing the UV-index, in more details. We first

present a simple method for constructing a UV-cell in
Section 4.1. We then examine the shape of a UV-cell in

Section 4.2. The number of edges of a UV-cell, and its

size, are studied in Sections 4.3 and 4.4, respectively.

6

0 x

y

F1

M

F2

p

Oi

Oj

p's min
distance

from Oi

ri rj

CjCi

p's max

distance
from Oj

q1

q0

UV-edge
of Oi

(Ei(j))

UV-edge

of Oj

(Ej(i))

Fig. 3 The UV-edge.

4.1 Constructing a UV-cell

Let us first address the relationship between a query

point and UV-cells. Let p be a point in D, and let

distmin(Oi, p) and distmax(Oi, p) be the minimum and

the maximum distances of object Oi from p respective-
ly. Figure 3 illustrates two uncertain objects, Oi and

Oj . For any point p on the solid line shown, we require

the following property to hold:

distmin(Oi, p) = distmax(Oj , p) (1)

We call this solid line the “UV-edge of Oi with respect
to Oj”, denoted by Ei(j). A special property of this

edge is that any point p at the region on the side of

Ei(j) closer to Oj has its maximum distance from Oj ,

i.e., distmax(Oj , p), shorter than its minimum distance
from Oi, i.e., distmin(Oi, p). On the other hand, if p

is on the opposite side of Ei(j), then distmax(Oj , p) ≥
distmin(Oi, p).

The UV-edge allows us to decide whether an ob-

ject is an answer object (i.e., an object with non-zero
qualification probabilities). In Figure 3, q0 is on the

right of Ei(j), which is also closer to Oj than Oi. Thus,

distmax(Oj , q0) < distmin(Oi, q0). In other words, Oj

is always closer to q0 than Oi, and Oi has no chance
to be the nearest neighbor of q0. As another exam-

ple, q1 is on the left of Ei(j). Since distmin(Oi, q1) ≤
distmax(Oj , q1), Oi has a non-zero qualification proba-

bility. Hence, given Ei(j), if the query point is on the

right of Ei(j), Oi can be pruned.

We can now present a simple method of constructing

a UV-cell. Let us define the outside region:

Definition 2 The outside region of UV-edge Ei(j),

denoted byXi(j), is the region on one side of Ei(j) such

that for any point q ∈ Xi(j), Oj is always closer to q
than Oi. We call the complement of Xi(j) the inside

region, denoted by Xi(j).

Given a set of n objects O, the UV-cell Ui of object Oi

is essentially the intersection of all other n − 1 inside

regions:

Ui =
⋂

j=1...|O|∧j 6=i

Xi(j) (2)

Definition 3 A possible region of object Oi, denot-

ed by Pi, is the intersection of a set of inside regions:

Pi =
⋂

j=1...|R|∧j 6=i∧R⊆O

Xi(j) (3)

According to the definition, the possible region should
be an area that completely covers the UV-cell of Oi. An

example of an object’s possible region is the domain D,

since D must cover any UV-cell. Here, R is the empty

set. Notice that a UV-cell is also a possible region.
In Figure 3, the outside region of the UV-edge Ei(j)

is the area on the right of the solid line. Notice that since

q0 is in the outside region of Ei(j), Oj is closer to q0
than Oi, and thus Oi cannot be q0’s nearest neighbor.

Algorithm 1 Generating a UV-cell
Input: Uncertain objects O = {O1, O2, . . . , On}
Output: U1, U2, . . . , Un

1: for each Oi ∈ O do
2: Pi ← D;
3: for each Oj ∈ O ∧ j 6= i do
4: Ei(j)← UV-edge of Oi w.r.t. Oj ;
5: Xi(j)← outside region of Ei(j);
6: Pi ← Pi −Xi(j);
7: end for
8: Ui ← Pi;
9: end for
10: return U1, U2, . . . , Un

Given an object Oi, if we know all the outside re-

gions Xi(j) (where j = 1, . . . , n∧ j 6= i), then Oi’s UV-

cell can be constructed by excluding all these regions

from D. Algorithm 1 illustrates the basic method for

constructing UV-cell for n objects. The possible region
of each object Oi is first initialized as the whole space

(Step 2). Then, for each Oj , we compute the UV-edge

of Oi and its corresponding outside region (Steps 4 and

5). The possible region, which contains all the points
that may have Oi as one of their nearest neighbors, is

then “reduced” by the outside region that overlaps with

it (Step 6). The UV-cell of Oi is then assigned to be the

final possible region (Step 8).

We now discuss Step 6 in more detail. This step uses
Ei(j) to “refine” the edges of Pi, i.e., find the intersec-

tions of Ei(j) with Pi. Specifically, for each UV-edge e

of Pi, we compute the intersection of Ei(j) and e. Since

Ei(j) is a hyperbola, we can use the techniques in [3]
to do this. The resulting intersections partition Ei(j)

into some segments? For each segment s, there are two

scenarios:

7

Fig. 4 (a)Before checking Ei(j). (b)After checking Ei(j).

– Case 1: s is inside Pi: We refine Pi by using s as

one of the new edges of Pi. Some existing edges of

Pi are removed if necessary.

– Case 2: s is outside Pi (except the end points of s):

Pi cannot be changed by s, and we do not have to
do anything to handle this case.

After we have visited all the segments of Ei(j), we
have found all the intersections of Ei(j) and Pi. More-

over, Pi is refined, and Step 6 is completed.

As an example of Step 6, consider Figure 4(a), which

illustrates Pi, and (b), which shows the result of inter-

secting Ei(j) and Pi. The segment between v4 and v5 is

inside Pi. Since Case 1 is satisfied, the existing edges be-

tween v4 and v5 (i.e., (v4, v
′
1) and (v′1, v5)) are replaced

by segment (v4,v5). On the other hand, (v5, v6) is out-

side Pi, and so Case 2 is satisfied. There is no need to

change any edges of Pi between v5 and v6. The process

is repeated until all the segments are visited. As shown
in Figure 4(b), vertices v′1, v

′
2, and v′3 are removed from

Pi, while v4, . . . , v9 are added to it.

Note that the order of selecting the object for refin-
ing Oi’s possible region (Steps 4-6) does not affect the

correctness of the algorithm; the UV-cell is produced

by “shrinking” the possible regions by using the out-

side regions of other objects. Also, not all objects are
useful in shaping a UV-cell. In Section 5 we will explain

how to prune away these objects.

4.2 The Shape of a UV-cell

We now study a mathematical representation of the

UV-cell. We also derive the number of UV-edges of a

given UV-cell. Here, we assume that the uncertainty

region of Oi is a circle, with center ci and radius ri,
with ri > 0. Later, we discuss the UV-cell of a “point

uncertainty” (i.e., ri = 0), and also uncertainty regions

which are not circle in shape. For any point q ∈ D, we

can observe from Figure 3 that:

distmin(Oi, q) =

{

dist(q, ci)− ri if q /∈ ⊙(ci, ri)

0 otherwise
(4)

distmax(Oj , q) = dist(q, cj) + rj (5)

where ⊙(ci, ri) denotes a circle with center ci with
radius ri. Since rj > 0, distmax(Oj , q) must also be

positive. By substituting Equations 4 and 5 into Equa-

tion 1, we have:

dist(q, ci)− dist(q, cj) = ri + rj (6)

Let the coordinates of ci and cj be (xi, yi) and
(xj , yj). Let fx = 1

2 (xi + xj) and fy = 1
2 (yi + yj). Let

cosθ =
(xj−xi)

dist(ci,cj)
and sinθ =

(yj−yi)
dist(ci,cj)

. Then, Equa-

tion 6 becomes:

x2
θ

a2
− y2θ

b2
= 1 (7)

where

– a =
ri+rj

2 , c =
dist(ci,cj)

2 , and b =
√
c2 − a2;

– xθ = (x− fx) cos θ + (y − fy) sin θ;

– yθ = (fx − x) sin θ + (y − fy) cos θ.

Essentially, Equation 7 is a hyperbolic equation, with

ci and cj as the foci, rotated by θ in an anti-clockwise
sense [3]. Figure 3 illustrates that the UV-edge of Oi

w.r.t. Oj (the solid line) is a hyperbola.

Equation 7 shows that a UV-cell is composed of the

intersections of one or more UV-edges, which are hyper-

bolas. Since a hyperbola is a conic curve, an UV-edge
must be concave in shape. In Figure 2, apart from the

edges of the domain space, the UV-cells of the three

objects have concave edges. Note that Equation 7 has

two curves, which represent the UV-edges for each pair
of objects involved. For example, in Figure 3, the solid

line is the UV-edge of Oi w.r.t. Oj , and the dotted line

is the UV-edge of Oj w.r.t. Oi.

If two objects overlap, then dist(ci, cj) < ri + rj ,

and in Equation 7, b is not a real number. Physically,
this means Ei(j) cannot be found, and we can treat

Xi(j) as an empty region.

We now revisit Algorithm 1. Step 4 is done using

Equation 7. Step 5 is performed by observing that the
outside region of a UV-edge must be convex in shape.

To perform Step 6 (i.e., cutting the possible region by

an outside region), we compute the intersections of hy-

perbola equations by using linear algebra techniques [3],

which are detailed in Appendix A.

Let us state an interesting observation about a pos-

sible region, which we will use later.

Lemma 1 The possible region of an uncertain object

is a connected region without any hole inside it.

8

The proof of this lemma, detailed in Appendix B, shows

that a contradiction will result if a possible region con-

tains a hole. We next discuss the shape of the UV-cell

for other kinds of uncertainty regions.

(1) Point uncertainty. Given two objectsOi andOj ,
suppose that at least one of them has no uncertainty,

i.e., ri or rj is equal to zero. There are two scenarios:

– If ci 6= cj , without loss of generality, assume that

ri = 0. Then, Ei(j) can be obtained by Equation 7,
because all variables used in that equation are real

numbers, and a, b are nonzero values. Notice that

Ei(j) becomes a perpendicular line segment when

ri = rj = 0.
– If ci = cj , then Ei(j) does not exist. If ri 6= rj ,

Equation 1 does not hold, and the UV-cell of Oi,

or Ui, does not exist. If ri = rj , Equation 1 always

holds, and Ui = D.

O1

O2

q

Fig. 5 A UV-Edge for rectangular regions.

(2) Non-circular uncertainty regions. To find

the UV-cells for non-circular uncertainty regions, our
first attempt is to derive the UV-edges for objects

with rectangular uncertainty regions. As shown in Fig-

ure 5, the UV-edge between objects O1 and O2 is a

piecewise-quadratic line segments. This is too expen-

sive to compute and store. Instead, for each object Oi,
we convert its non-circular uncertainty region to a cir-

cle, MBC(Oi), which minimally contains it. Then, we

use Algorithm 1 to construct the UV-cells for these cir-

cles. We claim that MBC(Oi)’s UV-cell always cover
that of Oi.

To understand why, notice that if some objec-

t O1 may be q’s nearest neighbor, then MBC(O1)

can also be q’s nearest neighbor. First, for all i =

1, . . . , n, distmin(q, O1) < distmax(q, Oi). Also,

{

distmin(q,MBC(Oi)) < distmin(q, Oi),

distmax(q,MBC(Oi)) > distmax(q, Oi)

Hence, distmin(q,MBC(O1)) < distmin(q, O1),
which is less than distmax(q, Oi), and is less than

distmax(q,MBC(Oi)). Therefore, MBC(O1) is q’s

possible nearest neighbor, among {MBC(Oi)}ni=1. If

q is situated in the UV-cell of O1, it must also be

located in the UV-cell of MBC(O1). In other words,

MBC(Oi)’s UV-cell always cover that of Oi. There-

fore, in answering a PNN, if we found that MBC(Oi)

contains q, we have to verify whether Oi can be the
nearest neighbor of q. In the sequel, we assume that

all uncertainty regions are circular.

4.3 The Number of UV-Edges of a UV-cell

Let us now examine the number of UV-edges of a UV-
cell. As Algorithm 1 shows, for every object Oi, its UV-

edge with respect to other objects is used to refine its

possible region Pi (Step 6). This requires computing

the intersections of all edges of Pi with a new UV-edge

Ei(j), for some object Oj . As shown in Figure 4(b),
Ei(j) intersects with Ui’s UV-edge (v′1, v

′
2) at v5 and

v6. Thus, (v
′
1, v

′
2) is replaced by three edges: (v4, v5),

(v5, v6), and (v6, v7).

From this example, we can see that Ei(j), a hyper-

bolic curve, can have at most 2 intersections with a
UV-edge of Pi; and 3 new edges can be created for Pi

as a result. In the worst case, the number of edges of

Pi increases by 3 times whenever a new edge is con-

sidered. In general, to obtain Ui, we have to take into
account n − 1 objects. Hence, the number of edges of

the UV-cell has an (exponential) upper bound of O(3n).

Moreover, computing intersections between hyperbolas

is complex. In our implementation, 60 hours are need-

ed to create a UV-diagram of 40,000 objects by using
Algorithm 1. We will explain how to find an efficient

representation of the UV-cell, in Section 5.

4.4 The Size of a UV-cell

Fig. 6 Estimating the size of a UV-cell.

We now estimate the size of a UV-cell, under the

assumption that all objects are evenly placed. We con-

sider the hexagonal lattice model, where each object has

9

six neighbors whose centers are equidistant from each

other, with distance d0.
1 We assume that the uncer-

tainty region sizes of all objects are the same, with a

radius of r. Figure 6 illustrates seven objects configured

in this manner. Given an object O1, we assume that the
UV-cell U1 of O1 is not trimmed by the boundary of the

domain space. That is, its UV-cell is solely determined

by the uncertainty regions of other objects. Our goal is

to find the dimension s of a square that contains U1.
This square should be a good approximation of U1.

2

Fig. 7 Illustrating O1 and its neighbors.

Let H(d) be a set of six objects whose uncertainty
region’s centers have the same distance d from that of

O1. For example, Figure 6, the centers of the uncer-

tainty regions of H(d) = {O2, . . . , O7} are d units away

from that of O1. We claim the following:

Lemma 2 Let P1,d be the possible region of O1 gener-

ated by the objects in H(d). The length of the square,

which is centered at c1 and minimally covers P1,d, is:

s(d) =
2d2 − 8r2√
3d− 4r

if d >
4r√
3

(8)

In the sequel, we use s(d) to denote the size of

P1,d.The proof of Lemma 2 can be found in Appendix C.

Notice that P1,d contains U1.

Now, observe that the centers of the six objects in

H(d0) form the vertices of a hexagon called HEX1.
This hexagon is illustrated in Figure 7. As shown in [35],

1 The centers of uncertainty regions form the vertices of n

hexagons, each of which has an area of
√
3d2

0

2
. Since |D| =

n×
√

3d2
0

2
, d0 =

√

2|D|√
3n

.

2 As shown in Figure 2, a UV-cell can be irregular in shape,
and so estimating its size is not easy. Thus, we use a simple data
model here. We will also explain how these results can be applied
to uniformly-distributed data, in Section 5.2.

a larger hexagon HEXi+1, formed by the centers of six

other objects, can be obtained by rotating HEXi by
π
6

radians, and scaling it by a factor
√
3. Figure 7 shows

how HEX2 and HEX3 are generated in this way. We

then obtain the following result.

Theorem 1 If d0 > 2
√
3r, then the square that min-

imally contains U1 has a size of s(d0) obtained from

Equation 8.

The main idea of the proof is that when d0 > 2
√
3r,

the six objects that form HEX1 alone contribute to

the edges of O1’s UV-cell. Its details can be found in

Appendix D.

An iterative approach of finding d∗. We now
explain how to derive the size of a square that contains

U1, for any value of d0. Our goal is to find d∗ among

different values of d, such that the square covering P1,d∗

is the smallest. We observe from the first-order deriva-
tive of s from Equation 8 that d+ = 2

√
3r is the on-

ly inflexion point, such that s monotonously decreases

when 4r√
3
< d < d+, and monotonously increases when

d ≥ d+. However, this result cannot be readily used,
since we may not be able to find six neighbors of O1

that are exactly d+ units apart from each other. We

thus estimate d∗ as follows. We first consider the ob-

jects on HEX1, and compute s(d0). We then consider
HEX2, where each vertex is

√
3d0 from c1, and evalu-

ate s(
√
3d0). We repeat this process, until the six ob-

jects found are dx units apart from each other, where

(1) dx > 4r√
3
and (2) s(dx) < s(

√
3dx). Then, we set

d∗ = dx, and use Lemma 2 to find s.

The above process only examines the values of
d at d0,

√
3d0, (

√
3)2d0, . . . ,

√

|D|. Hence, at most
⌈

log√3(
√

|D|/d0)
⌉

trials are needed to find d∗. Al-

though this procedure does not find the square that

tightly contains a UV-cell, our experiments show that

the approximation is highly accurate.

5 Efficient UV-cell Generation

Since generating a UV-cell is inefficient, our strategy

is to avoid computing it directly. Instead, we represent

a UV-cell as a set of candidate reference objects (cr-

objects), which can be efficiently derived. As will be

discussed in Section 6, cr-objects can be used to devel-
op an approximate representation of the UV-diagram.

Section 5.1 outlines the algorithm of yielding cr-objects.

We explain the preparation phase of this algorithm as

well as two techniques for finding these objects quickly,
in Sections 5.2 and 5.3 respectively. Section 5.4 discuss-

es how to derive cr-objects efficiently for a group of

nearby objects.

10

5.1 Reference Objects and Candidate Reference

Objects

Recall from Algorithm 1 that the UV-cell of an objec-

t Oi, i.e., Ui, is the result of repeatedly subtracting

the outside region of other objects (i.e., Xi(j)) from its

possible region, Pi. In fact, not all outside regions are
useful for refining Pi. In particular, if the UV-edge of

Oi corresponding to Oj , i.e., Ei(j), does not intersect

with Pi, then Pi cannot be shrinked by Xi(j). We call

an object Oj a reference object (or r-object) of Oi, if Oj

defines an edge of Oi’s UV-cell. We also denote Fi ⊆ O

to be the set of r-objects of Oi. The set Fi contains ob-

jects whose outside regions are responsible for defining

the UV-cell of Oi. In Figure 2, for example, the set of

r-objects of O3, i.e., F3, is {O1, O2}.
Given that the r-objects for each object are known,

our solution (to be shown in Section 6) can use r-

objects to develop an alternative representation of the

UV-diagram. This solution is much cheaper than Algo-
rithm 1, which requires exact UV-cells to be computed.

However, finding Fi itself is difficult, because we do not

know the UV-cell of Oi. Our strategy is to find a small

set Ci of objects, where Fi ⊆ Ci. We call Ci the candi-

date reference objects (or cr-objects in short). We next
show how Ci can be derived without acquiring the ex-

act UV-cell of Oi. In Section 6, we study an indexing

solution based on cr-objects.

Algorithm 2 (getcrObject(Oi, S)) presents a pro-
cedure that derives the cr-object set Ci for object Oi,

based on a set S of objects. To retrieve Ci, we can

simply invoke getcrObject(Oi, O). In this algorithm,

Step 1 (initPossibleRegion) creates a possible region
Pi based on a small number of objects retrieved from S.

In Step 2, the “index level” pruning (or iPrune) yield-

s a set I of objects that may contribute edges to the

UV-cell. Step 3 applies “computational level” pruning

(or cPrune) on I, and produces Ci. Here we assume
that an R-tree index has been built on the uncertainty

regions of the objects in O. Each object’s information

(e.g., uncertainty region and pdf) is stored in the disk.

Next, we explain how to generate an initial possible re-
gion (Section 5.2), based on which two techniques for

pruning non-cr-objects are developed (Section 5.3).

Algorithm 2 getcrObject(Oi, S)
Input: Uncertain object Oi

Output: cr-object Ci

1: Pi ← initPossibleRegion(Oi , S)
2: (Pi, I)← iPrune(Pi)

3: Ci ← cPrune(Pi, I)

5.2 Generating a Possible Region

In Step 1 of Algorithm 2, we retrieve a small number

of objects, called seeds, from a set of objects S. These

seeds are used to generate an “initial” possible region,

using a routine similar to Steps 3 to 7 of Algorithm 1.
This region is used by other pruning methods to pro-

duce cr-objects.

Seeds have to be selected with care. If seeds are ran-
domly selected, a big initial region can be produced.

This region may be intersected by many outside re-

gions, resulting in a poor pruning efficiency. Ideally, we

would like the initial possible region generated by these

seeds to closely resemble the UV-cell. We would also
prefer the number of these seeds to be small, so that

the possible region can be constructed efficiently. We

next present two simple steps to find “good” seeds.

Step (i). We issue a k-Nearest-Neighbor Query (k-

NN) on S, by using the center ci of Oi’s uncertainty

region as the query point.The k objects, which are not

Oi and whose regions’ minimum distances from ci are

the shortest, are obtained. Since these objects are close
to Oi, we consider them to have a good chance for defin-

ing the UV-edges of Ui. They are thus good candidates

for being seeds. Note that if S = O, then the R-tree on

O can be used to support the k-NN search.

Step (ii). Out of the k objects obtained from

Step (i), we select ks seeds. These objects are chosen in

way such that they are evenly spread, in order to gen-

erate a “good” possible region. In particular, we divide
the domain D into ks equally-sized sectors, centered at

ci. For each sector, the object closest to ci is a seed.

The above method does not guarantee that all ks
seeds can be found (e.g., no seeds can be found if a

sector is empty). Even if this happens, however, we can

still obtain an initial possible region without affecting

the latter steps. This region may be larger though. In

our experiments, ks = 30, and in most cases all seeds
can be found. For each object, evaluating a k-NN query

requires O(|S|) time, selecting seeds costs O(k) time,

and constructing an initial region needs O(ks) time.

Hence, the cost of this step is O(|S|+ k + ks).

Model-based seed selection. We can use the re-

sults in Section 4.4 to estimate the value of k derived

from Step (i). We assume that all the objects in do-

main D follow the hexagonal lattice model. First, we
find the size s of the square that bounds the UV-cell

of Oi. Particularly, we check whether the condition for

Theorem 1 is satisfied. If this is true, we let dmin = d0.

Otherwise, we use the iterative approach, described in
Section 4.4, to find d∗, and let dmin = d∗. Then, we
find s(dmin) by using Lemma 2. Figure 6 shows that

the maximum distance of any point on the possible re-

11

gion Pi from the center ci of Oi’s uncertainty region is
s
2 . If we draw a circle of radius (s − r), centered at ci,

then Theorem 3 (to be discussed in Section 5.3) tells us

that only objects located in this circle can be the refer-

ence objects Fi. We can then estimate k as the expected
number of objects in ⊙(ci, s− r):

k = ⌈π(s− r)2ρ⌉ (9)

We can also use the above approach in a database whose

locations are uniformly distributed in D. We first com-

pute the average uncertainty radius ra of these objects.
We then suppose that all these objects have the same

radius ra. We also evaluate the distance of each object

from its nearest neighbor, and find the average da of

these distances. The values of the radius r and the dis-

tance d0 of the hexagonal model are set to be ra and da
respectively. We also compute the density ρ, which is

equal to No. of objects in D

Area of D
. Our experiments show that

this model can enhance the seed selection process for

uniformly distributed data.

5.3 I-Pruning and C-Pruning

Once the possible region has been initialized, we perfor-

m I-pruning and C-pruning (Steps 2 and 3 of Algorith-
m 2), in order to remove objects that cannot constitute

a UV-edge to the UV-cell. Let us now examine these

two steps in more details.

Step 2: Index Level Pruning. To understand this
step, let us consider an object Oi, its possible region

Pi, and another object Oj , which has not yet been con-

sidered for refining Pi. Our goal is to establish the nec-

essary and sufficient condition(s) for Oj to have effect

on the shape of Pi. We first claim the following.

Lemma 3 Pi = Pi − Xi(j), if and only if for every
point p inside Pi, distmax(p,Oj) > distmin(p,Oi).

Proof (If) For every p ∈ Pi, p cannot be on Xi(j).
If this is false, then Oj is always closer to p than

Oi, i.e., distmax(p,Oj) ≤ distmin(p,Oi) (Definition 2).

This violates the condition that distmax(p,Oj) >

distmin(p,Oi). Hence, p /∈ Xi(j), and Pi = Pi −Xi(j).

(Only if) Suppose there exists a point p′ inside Pi,
such that distmax(p

′, Oj) ≤ distmin(p
′, Oi). Then Oj

is always closer to p′ than Oi, and Oi cannot be the

nearest neighbor of p′. This implies that p′ must be ex-

cluded from Pi after Oj is considered. Hence, Pi cannot
be equal to Pi −Xi(j), resulting in a contradiction.

Let b(Pi) be the boundary of Pi. We have:

Theorem 2 Pi = Pi − Xi(j) if and only if for every

point p ∈ b(Pi), distmax(p,Oj) > distmin(p,Oi).

Proof (If) Let us first show that:

∀p′′ ∈ Pi, distmax(p
′′, Oj) > distmin(p

′′, Oi) (10)

Suppose by contrary that the above is not correct.

That is, ∃p′ ∈ Pi − b(Pi), such that distmax(p
′, Oj) ≤

distmin(p
′, Oi). If we let P ′

i be Pi − Xi(j), then p′ ∈
Xi(j) and p′ /∈ P ′

i . From the given condition, we can see

that for every p ∈ b(Pi), p /∈ Xi(j), and p ∈ P ′
i . Thus,

P ′
i must have a hole (p′) inside it. However, this must

not be true, according to Lemma 1. Hence, Equation 10
is true. Using Lemma 3, we see that Pi = Pi − Xi(j),

and the so the “if” part is correct.

(Only if) From Lemma 3, we know that for ev-

ery point p ∈ Pi, distmax(p,Oj) > distmin(p,Oi). Since
b(Pi) ⊆ Pi, the “only if” part is correct.

Essentially, if we want to examine whether Oj has

any effect on Pi, it suffices to consider the points on

Pi’s boundary, instead of all points in Pi. We next

present the following theorem, which forms the basis
of I-pruning.

(a) I-pruning (b) C-pruning

Fig. 8 Our pruning methods.

Theorem 3 Given an object Oi with center ci and ra-

dius ri, let w be the maximum distance of Pi from ci. Let

Cout be a circle, with center ci and radius 2w− ri. For

another object Oj, if cj /∈ Cout, then Pi = Pi −Xi(j).

Proof Denote Cin by a circle with center ci and radius

w. Figure 8(a) illustrates Oi, its possible region Pi (in

solid lines), Cin and Cout. Let us suppose on the con-

trary that Pi is not equal to Pi − Xi(j), i.e., Pi can
be reshaped by the UV-edge of Oj . Then, using Theo-

rem 2, there must exist a point p on the boundary of

Pi such that:

distmax(p,Oj) ≤ distmin(p,Oi) (11)

Using Equations 4 and 5, we have:

dist(p, cj) + rj ≤ dist(p, ci)− ri

⇒ dist(p, cj) + dist(p, ci) + rj ≤ 2 · dist(p, ci)− ri

⇒ dist(p, cj) + dist(p, ci) ≤ 2 · dist(p, ci)− ri

⇒ dist(ci, cj) ≤ 2 · dist(p, ci)− ri (12)

12

since dist(ci, cj) ≤ dist(p, cj)+dist(p, ci) due to the tri-

angular inequality. Now, dist(p, ci) ≤ w, so Equation 12

becomes:

dist(ci, cj) ≤ 2w − ri (13)

This implies that cj is in the circle Cout, contradicting
the assumption of Theorem 3. Hence, this lemma is

correct.

The I-pruning method uses Theorem 3 by issuing

a circular range query, centered at ci with radius
2w − ri, on the dataset O. This operation can be

easily implemented by using the R-tree created for

O. The range query first uses the R-tree to filter

all objects that do not overlap with the range. For
the remaining objects, they are removed if their

centers are beyond the circular range. Hence, in this

phase (Step 2 of Algorithm 2), a cost of O(n) is needed.

Step 3: Computational Level Pruning.
We next discuss a method, based on distance compar-

ison, to check whether object Oj can affect the possi-

ble region of object Oi. We call this method C-pruning

(Step 3 of Algorithm 2). Theorem 4, discussed below,

serves as the foundation of C-pruning.

Theorem 4 Given an uncertain object Oi(ci, ri) and

Pi’s convex hull CH(Pi), let v1, v2, . . . , vn be CH(Pi)’s

vertex. If another object Oj’s center cj is not in any of

{⊙(vm, dist(vm, ci))}nm=1, then Pi = Pi −Xi(j).

Proof First, the convex hull CH(Pi), which completely

contains Pi, must also be Oi’s possible region. For every

point p on CH(Pi)’s boundary, suppose cj is located
outside the circle ⊙(p, dist(p, ci)). Then we have:

dist(p, cj) > dist(p, ci)

⇒ dist(p, cj) + rj > dist(p, ci)− ri

⇒ distmax(p,Oj) > distmin(p,Oi) (14)

Second, Theorem 2 states that if distmax(p,Oj)

> distmin(p,Oi), then CH(Pi) = CH(Pi) − Xi(j).
Therefore, if cj is outside ⊙(p, dist(p, ci)) for every p

on CH(Pi)’s boundary, Oj can be safely pruned.

For convenience, let ⊙(p, dist(p, ci)) be a w-bound

(where w = dist(p, ci)). We also define a set S of w-

bounds for every point p in Ui. We now show that
instead of checking all the w-bounds in S, it is only

necessary to check those w-bounds constructed for the

vertices of CH(Pi). Specifically, the w-bounds of the

vertices must contain all other w-bounds of all points
on the boundary of CH(Pi). To see this, let wk be the

distance of vertex vk from Oi’s center. We extend each

vertex vk by the distance wk to obtain a new vertex v′j

(black dot in Figure 8(b)). These new vertices are con-

nected to form a polygon. We use e1 and e2 to represent

the w-bounds ⊙(v1, w1) and ⊙(v2, w2), respectively.

We next show that, for any point v′ on CH(Pi)’s

edge v1v2, ⊙(v′, dist(v′, ci)) ⊆ e1 ∪ e2, where we let

e′ = ⊙(v′, dist(v′, ci)). We draw a line c1c
′
1, which is

perpendicular with v1v2 and v′1v
′
2, and intersects them

at points c1 and c′1 respectively. As v1v2 is the perpen-

dicular bisector of cic
′
1, we see that cic

′
1 is the common

chord of e1, e2 and e′. Since e1 or e2 is bigger than e′,
e′ is contained by e1 or e2.

Hence, to check whether Oj can refine Pi, we
just need to check the set of w-bounds S′ =

{⊙(vm, dist(vm, ci))} (where S′ ⊆ S). If cj is lo-

cated outside all w-bounds in S′, then CH(Pi) =

CH(Pi) − Xi(j). Finally, since Pi is completely cov-
ered by CH(Pi), Pi = Pi − Xi(j) must also be true.

This completes the proof.

Step 3 of Algorithm 2 uses Theorem 4 to prune un-

qualified objects returned by I-pruning. This can be
done efficiently, because only the vertices of CH(Pi)

are used. Moreover, |CH(Pi)| is small, since the possi-

ble region is only derived by a small number ks of seeds.

The complexity of this phase is O(n).

We consider the objects that remain after this step
as cr-objects (i.e., Ci). The complexity of Algorithm 2,

for generating Ci’s of n objects, is O(n(n+ k)).

5.4 Batch Processing of cr-objects

To create the UV-index, we first find out the cr-objects

for each of the n database objects. A simple way to do

this is to run Algorithm 2 (i.e., getcrObject(Oi, O))

for all objects Oi ∈ O, as proposed in [17]. However,
this involves running getcrObject for n times and can

be quite costly. We now present a Batch Processing al-

gorithm (or BP in short), where the cr-objects of a group

of objects are considered together. As we will show, this

new algorithm allows the effort of devising an object’s
cr-objects to be shared by others, and consequently re-

duces a lot of cr-object generation overhead.

Observe that if an object Oi is near to Oj , then

their UV-cells should be similar. The cr-object set of

Oi, i.e., Ci, can then be similar to Cj . The BP makes

use of this principle; it employs Ci to derive Cj , instead
of generating Ci and Cj independently. Let G be a set

of objects that are physically close to each other. The

BP first computes a set of objects CG, a superset of

Ci, for every Oi ∈ G. The cr-objects of objects in G are
then extracted from CG. Usually, CG is smaller than the

database size |O|, and thus retrieving cr-objects from

CG is faster than from O.

13

Algorithm 3 BP

Input: A set G of objects in O
Output: cr-object set Ci for each Oi ∈ G

1: OG ← (MBC(G), uniform pdf)
2: CG ← getcrObject(OG, O)
3: for each object Oi ∈ G do
4: Pi ← initPossibleRegion(Oi, CG)
5: Ci ← cPrune(Pi, CG)
6: end for

Algorithm 3 presents the BP. Given G ⊆ O, Step 1
creates a new object OG. The uncertainty region of OG

is the minimum bounding circle (MBC) of the uncer-

tainty regions of all objects in G. Its uncertainty pdf

is not important here, and we assume it to be uniform.
Notice that OG is only used by the BP; it will be deleted

after the algorithm halts.

Step 2 invokes a slightly-modified version of

getcrObject to obtain a cr-object set CG of OG.

Particularly, in Step (i) of initPossibleRegion, the
k-NN search skips all objects in G. Notice that

initPossibleRegion computes the possible region of

an object. In Step (i) of that procedure, we obtain the

seeds – objects that are useful for generating a UV-cell.
In Algorithm 3, the input of getcrObject is OG, whose

uncertainty region includes the uncertainty regions of

all objects in G. Therefore, the uncertainty region of

any object Oi ∈ G overlaps with that of OG. More

importantly, Oi ∈ G is not useful for finding possible
regions of OG, because Oi does not create any UV-edge

for OG’s UV-cell. We next claim the following:

Theorem 5 Given an object Oj , if Oj /∈ CG after Step

2 of Algorithm 3, then Oj /∈ Fi, where Oi ∈ G.

That is to say, any object not contained in CG can-
not be an r-object of Oi ∈ G. In other words, CG is a

superset of r-objects for all the objects in G. The proof

of this theorem, which is quite complex, is detailed in

Section 5.5. Notice that all objects in G are included in

CG after the execution of Step 2. This is because in the
last step of getcrObject (Algorithm 2), objects whose

centers are located in the c-pruning bound of OG are

treated as cr-objects. Since the center of an object in

G is inside OG’s c-pruning bound, it must also be a
cr-object of OG. Thus, G ⊆ CG.

Steps 3-6 use CG to generate cr-objects for each ob-

ject Oi ∈ G. From Theorem 5, we know that an object

in CG may be an r-object of Oi. Thus, objects in CG

can be considered as good candidates for generating an
initial possible region, Pi for Oi. We thus pass CG to

initPossibleRegion and get Pi (Step 4). We then ex-

ecute cPrune on CG to retrieve Ci (Step 5). These two

steps are repeated for all objects in G, until we obtain

their cr-objects. 3

The LP algorithm. We now discuss a way to use

Algorithm 3 to construct cr-objects for O. The Leaf-
Node-Processing, or LP, performs a preorder traversal

of the R-tree that indexes O. When a leaf node, say

N , is reached, BP is invoked on all objects stored in

N , in order to compute their cr-objects. The algorithm
terminates when all leaf nodes have been exhausted.

The LP can generate cr-objects for O quickly. This

is because when the BP is called, it always uses the ob-

jects located in a leaf node. In an R-tree, the leaf node
consists of a set G of objects, which are physically close

to each other. Recall that the object created in Step 1

of BP (i.e., OG) is the MBC of the uncertainty region-

s of objects in G. Thus, the size of OG would not be

very different from those of the objects in G. Conse-
quently, the set CG derived from Step 2 (getcrObject)

should also be similar to the r-objects of G’s object-

s. In our experiments, |CG| is much smaller than |O|.
Hence, Step 4 can be carried out more efficiently than
if initPossibleRegion is carried out on O for every

object.

We have introduced an efficient construction

method to derive the cr-object set Ci for Oi. We have
also explained how to obtain cr-objects for O quickly.

One may consider to use Ci to generate the exact UV-

cell of Oi. However, our experiments show that |Ci|may

be large, and so generating the UV-cell of Oi can still
be costly. In Section 6, we show how to use Ci directly

to construct an index for the UV-diagram. In the rest

of this section, we present the proof of Theorem 5.

5.5 Proof of Theorem 5

Recall that OG is formed by a set G of objects, using
Step 1 of Algorithm 3. Let Pi(S) be a possible region of

an object Oi, constructed by using a set S ∈ O of ob-

jects. Essentially, Pi(S) is the intersection of the inside

regions Xi(k), where Ok ∈ S. Let ui be the uncertainty

region of Oi. We first claim the following.

Lemma 4 Given a set S of objects, where S ⊆ O, for

any objects Oi and Ok, if ui ⊆ uk, then Pi(S) ⊆ Pk(S).

Figure 9 illustrates Lemma 4, which shows that

Pi(S) is inside Pk(S). Its proof can be found in Ap-
pendix E.1.

3 We do not execute iPrune(Pi, O) after Step 4, because the
set of objects returned by iPrune is often the superset of CG in
our experiments. Thus iPrune is not very effective here.

14

Fig. 9 Illustrating Lemmas 4 and 6.

Lemma 5 Given objects Oi and Oj, if cj /∈ Pi, then

∀p ∈ Pi(S):

distmax(p,Oj) > distmin(p,Oi) (15)

if and only if ∃Ok ∈ S, where

distmax(p,Oj) > distmax(p,Ok) (16)

In Figure 10, the objects in S are shaded. The

center of Oj , i.e., cj , is outside Pi(S). Given a point

p ∈ Pi, Lemma 5 states that if there is an objec-
t Ok ∈ S such that distmax(p,Oj) > distmax(p,Ok),

then distmax(p,Oj) > distmin(p,Oi), or vice versa. Its

proof can be found in Appendix E.2. These results are

used by the next lemma.

Fig. 10 Illustrating Lemma 5.

Lemma 6 Given two objects Oi and Ok, where ui ⊆
uk, and an object Oj where cj /∈ Pk(S), if Pk(S) =

Pk(S)−Xk(j), then Pi(S) = Pi(S)−Xi(j).

As shown in Figure 9, Lemma 6 claims that given
an object Oj whose center is outside Pk(S), if the edge

Ek(j) does not affect the possible region Pk(S), then

Ei(j) cannot contribute to Pi(S).

Proof Since Pk(S) = Pk(S)−Xk(j), by using Lemma 3,

we have:

∀p ∈ Pk(S), distmax(p,Oj) > distmin(p,Ok) (17)

Using the “only-if” part of Lemma 5, we have:

∀p ∈ Pk(S), ∃Ot ∈ S, distmax(p,Oj) > distmax(p,Ot)

(18)

Since ui ∈ uk, using Lemma 4, we have Pi(S) ∈ Pk(S).
Thus, Equation 18 becomes:

∀p ∈ Pi(S), ∃Ot ∈ S, distmax(p,Oj) > distmax(p,Ot)

(19)

Using the “if” part of Lemma 5, Equation 19 becomes:

∀p ∈ Pi(S), distmax(p,Oj) > distmin(p,Oi) (20)

Using Lemma 3, Equation 20 means that Pi = Pi −
Xi(j). Hence, the lemma is correct.

Theorem 5 Proof. Let V be the set of seeds

used to construct possible region PG(V) in Step 2 of
Algorithm 3. If Oj /∈ CG, the UV-edge EG(j) does not

cut PG(V). In other words, PG(V) = PG(V) −XG(j).

The I-pruning and C-pruning methods used in Step

2 also guarantees that cj is not inside PG(V), i.e.,

cj /∈ PG(V). Moreover, ui ⊆ uG. By substituting
S = V and k = G, we can deduce from Lemma 6 that

Pi(V) = Pi(V) − Xi(j). Now there are two cases to

consider:

Case 1: Oj contributes an edge to Pi(V). In other

words, Oj ∈ V . Since an object in V is not pruned by
Step 2 of Algorithm 3, V ⊆ CG, and so Oj ∈ CG.

However, this contradicts with the assumption that

Oj /∈ CG, and so this case cannot occur.

Case 2: Oj does not contribute an edge to Pi(V).

Since the UV-cell Ui of Oi must be inside Pi(V), Oj

cannot contribute an edge to Ui. Hence, Oj is not an
r-object of Oi, and the theorem holds.

6 The UV-Index

We now present the UV-index, an approximate version

of the UV-diagram. The UV-index can be efficiently

computed and stored. It also facilitates efficient query

evaluation. Section 6.1 gives an overview of its struc-
ture. In Section 6.2 we discuss how to use this index to

support execution of different queries. We explain its

construction process in Section 6.3.

15

Fig. 11 UV-index: (a) Structure, (b) Overlap checking.

6.1 Structure of the UV-Index

The UV-index adopts a framework similar to a quad-

tree [5], in order to index the irregular and non-

overlapping UV-partitions. Figure 11 (a) illustrates this
index. 4 Each non-leaf node, 16 bytes each, records a

pointer to each of its four child nodes, where the square

region spanned by each child node is one-fourth of that

of its parent. The region covered by the root node is the

whole domain D. Each leaf node stores all the objects
whose UV-cells overlap with the region defined for the

node. To save space, a node’s region is not stored, since

we can easily derive the dimension of the region based

on the level of the node in the tree. Also, due to ap-
proximation, a UV-cell that does not overlap with the

leaf node’s region may be included. However, a UV-cell

that truly overlaps with the region will not be excluded.

For each leaf node l, we store a linked list of disk pages,

which contain tuples <ID, MBC, pointer>, where:

– ID is the identity of object Oi whose UV-cell may
overlap with the region covered by l;

– MBC is the circle that minimally bounds the uncer-

tainty region of Oi; and

– pointer stores the disk page address of the object.

We assume that all non-leaf nodes are stored in the

main memory, and allocate a maximum number of M
non-leaf nodes. The leaf nodes, which contain the lists

of pages, are stored in the disk. Hence, M controls the

amount of main memory to be used to implement the

index. Next, we study how to use it to support query

evaluation.

6.2 Using the UV-Index

We now explain how to use the UV-index to support

the queries that we described in Section 3.2.

4 We adopt the quad-tree rather than the R-tree. While R-
tree MBRs may overlap, quad-tree grids do not. Issuing a point
query on non-overlapping UV-partitions in quad-tree is thus more
convenient than R-tree.

1. The PNN Query. To find the probabilistic n-

earest neighbors of q, we first locate the leaf node l,

whose region contains q. This can be done easily by

finding the grid that contains q in each index level, and

traversing the index. We then retrieve the disk pages
associated with l, which contains the ID and the MBC

values of the objects stored in these pages. Since these

objects may have their UV-cells overlap with the region

of l, it is possible that q is contained in their UV-cells.
Let L be the set of objects associated with l, and A be

the answer objects of q. To answer a PNN, we need to

retrieve A from L, where A ⊆ L. We use the method

described in [15]: from the set of the MBC’s of the ob-

jects in L, find dminmax, the minimum of the maximum
distances of these objects from q. Any object with the

minimum distance larger than dminmax is removed, s-

ince it cannot have a non-zero qualification probability.

For objects that are not filtered, their probabilities are
computed and returned as answers.

2. The CPNN Querymaintains the PNN answers

for a “moving” query point, whose location is periodi-

cally reported to the server. Let q0 be the latest position

of q received by the server. Let g0 be a leaf node in the
UV-index, whose region r0 contains q0. We assume that

the objects stored in the disk pages associated with g0
are known. Now, suppose the new location of q, say, q1,

is received by the server. A straightforward solution is
to treat q1 as a new PNN query, and use the PNN al-

gorithm described above to compute the answers of q1.

A better way is to check whether q1 is inside r0. If this

is true, we simply use the object set associated with g0
to compute the answer for q1. This saves the effort of
traversing the UV-index for q1.

3. The UV-Partition Query. We append a

counter to each leaf node, and record the number of

objects at that node. This process could be done after
the UV-index is constructed. Then, a range query with

range R is issued over the index, in order to find the

leaf nodes whose regions overlap with R. For every leaf

node whose region r overlaps with R, we compute its

density, which is equal to the number of objects associ-
ated with r, divided by the area of r. The query then

outputs r and its density value.

4. The UV-cell Query. Notice that if an object

Oi appears in a leaf node g, its UV-cell overlaps with

the region of g. Hence, we can return the approximate
area and the extent of Oi’s UV-cell by scanning the

leaf nodes associated with Oi, and then summing up

the total area of the regions covered by these nodes.

This step can be improved by precomputing and storing
the area information. For example, we can scan all the

leaf-nodes once, and generate a table for each Oi with

its respective areas. A similar procedure can be used

16

to support the operation of displaying the approximate

shape of the UV-cell on the user’s screen.

6.3 Construction of the UV-Index

As discussed in Section 5, a UV-cell can be represented
by a set of cr-objects, Ci. We now examine how this

facilitates the construction of the UV-index.

Algorithm 4 InsertObj
Input: cr-objects Ci; Node g;

1: if (CheckOverlap(Ci , g.region) = true) then
2: if g is a non-leaf node then
3: for k = 1 to 4 do
4: InsertObj(Ci , hk);
5: end for
6: else
7: state← CheckSplit(Ci, g);
8: switch (state)
9: case NORMAL:
10: g.list.add(i, MBC(Oi), ptr(Oi));
11: break;
12: case OVERFLOW:
13: Allocate new page for g;
14: g.list.add(i, MBC(Oi), ptr(Oi));
15: break;
16: case SPLIT:
17: delete g.list;
18: for k = 1 to 4 do
19: Assign hk as child of g;
20: end for
21: nonleafnum ← nonleafnum + 1;
22: break;
23: end if
24: end if

Framework. Let g be the grid node being exam-

ined, and hk (where k = 1, . . . , 4) be the four child

nodes of g. We define a variable nonleafnum, which

indicates the number of non-leaf nodes allocated to
the index and has an initial value of 1. Originally, the

root of the grid is a leaf node, whose region covered

(root.region) is the domain D.

We use Algorithm 4 (InsertObj) to insert an
object Oi to the index. This algorithm, whose in-

puts are Ci and node g, is a recursive procedure,

where InsertObj(Ci, root) is first invoked. In Step

1, CheckOverlap investigates if the UV-cell represented

by Ci overlaps with the region of grid g. If so, we check
whether g is a non-leaf node. If this is true, InsertObj

is called recursively (Steps 2-4). Otherwise, we perform

CheckSplit (Step 7), which returns:

1. NORMAL (Steps 9-11): g’s pages still have space left,
and so (i, MBCi, ptr(Oi)) is inserted to g’s page, where

ptr(Oi) is the pointer to Oi’s uncertainty region and

pdf.

2. OVERFLOW (Steps 12-15): g’s pages are full, and a

new disk page has to be associated with g, before the

information about Oi is inserted to the new page.

3. SPLIT (Steps 16-22): g’s pages are full. The page

list g is removed. Then, g becomes the parent of four
nodes (hk), which have been previously generated by

CheckSplit. The region of each child node hk covers

each of the four quarters of the region defined for g.

Also, nonleafnum is incremented by a value of 1. Es-
sentially, The information about the UV-cells previous-

ly associated with g are now represented by its child

nodes, and g becomes a non-leaf node.

Decision on Splitting. When g’s pages are ful-

l, either Oi’s information is inserted to a new page
(OVERFLOW), or split into four child nodes (SPLIT). Ide-

ally, the region of the leaf node that covers q is com-

pletely covered by a true UV-partition. This guaran-

tees that the set of objects returned by the UV-index is
the true answer objects. The UV-index, which contain-

s grids, is just an approximation of the UV-diagram.

Apparently, the more the splitting is performed, the

closer the index can resemble the actual UV-diagram,

and yield better query performance.
In fact, splitting is not always useful. Suppose that

g.region is associated with 100 UV-cells. Moreover,

g.region is completely covered by each of these UV-cells.

Then it is not necessary to redistribute g into four child
nodes. If splitting is performed in this case, then the

UV-cells associated with each child node are exactly

the same. Thus, more space is wasted to store dupli-

cated information about the UV-cells. This can happen

if the corresponding 100 objects of these UV-cells are
close to each other. Then, these UV-cells have similar

shapes and significant overlapping. To decide whether

to split, we define split fraction, θ, as follows:

θ =
mink=1,...,4 |hk.list|

|g.list| (21)

which is the minimum fraction of UV-cells in one of the

child nodes hk that are also in g (note that the UV-
cells associated with hk must be the subset of the ones

attached to g). A small θ means that the number of

UV-cells overlapping with hk.region is small compared

with that of g. We now define a splitting condition of a
node:

Split if θ < Tθ

where Tθ ∈ [0, 1] is called the split threshold. A larger

value of Tθ implies a higher tendency of splitting.

Algorithm 5 (CheckSplit) implements these ideas.

Steps 1-3 return NORMAL if the pages of g are not full.
Steps 4-5 return OVERFLOW if the number of non-leaf n-

odes allocated is higher than M . In Steps 7-16, we com-

pute the value of θ, by creating four nodes hk (Step 7),

17

and checking the overlap of each UV-cell with hk.region

(Steps 11-12). If the splitting condition is satisfied (Step

17), then the SPLIT decision is returned, where Algo-

rithm 4 (Steps 18-19) will assign the nodes hk to be the

child nodes of g. Otherwise, the child nodes are deleted
and an OVERFLOW decision is made (Steps 20-21).

Algorithm 5 CheckSplit
Input: cr-objects Ci; node g;
Outputs: NORMAL, SPLIT, OVERFLOW;

1: if there is space on any disk page of g.list then
2: return NORMAL;
3: end if
4: if nonleafnum + 1 > M then
5: return OVERFLOW;
6: else
7: Create nodes hk (k = 1, . . . , 4) with hk.region equal to

each quarter of g.region;
8: A← Oi ∪ g.list;
9: for each Oj ∈ A do
10: for each hk do
11: if (CheckOverlap(Cj , hk.region)) = true then
12: hk.list.add(j, MBC(Oj), ptr(Oj));
13: end if
14: end for
15: end for
16: θ ← (mink=1,...,4 |hk.list|)/|g.list|;
17: if θ < Tθ then
18: return SPLIT;
19: else
20: delete hk, where k = 1, . . . , 4;
21: return OVERFLOW;
22: end if
23: end if

Algorithm 6 CheckOverlap
Input: cr-objects Ci; Region r;
Output: true if Ui and r overlap, false otherwise;

1: for each Ok ∈ Ci do
2: if r ⊆ Xi(k) then // Use 4-point testing
3: return false;
4: end if
5: end for
6: return true;

Overlap Checking. Algorithm 6 tests if the UV-

cell of an object Oi overlaps with a grid g’s region

r. For every cr-object Ok ∈ Ci, if any of their cor-
responding outside region (Xi(k)) totally contains r,

then CheckOverlap returns false (Steps 1-3). Other-

wise, true is returned (Step 6). To prove the correctness

we use the following lemma:

Lemma 7 If region r is totally covered by Xi(k), where

Ok ∈ Ci, then r must not overlap with the UV-cell Ui.

Proof We would like to show that if there exists an

object Ok, such that r ⊆ Xi(k), then r ∩ Ui = φ. Let

Xi(j) be the region D−Xi(j). Then Ui, the UV-cell of

Oi, can be expressed as the intersection of all regions

Xi(j), for all objects in O except Oi, i.e.,

Ui =
⋂

j=1...|O|∧j 6=i

Xi(j) (22)

Since r ⊆ Xi(k), we have

r ∩Xi(k) = φ

⇒ (r ∩Xi(k)) ∩
⋂

j=1...|O|∧j 6=i∧j 6=k

Xi(j) = φ

⇒ r ∩ (Xi(k) ∩
⋂

j=1...|O|∧j 6=i∧j 6=k

Xi(j)) = φ

⇒ r ∩ Ui = φ

from Equation 22. Hence, the lemma is correct.

To check whether a region r is contained in Xi(j)

(Step 2), a simple way is to generate and test with the

UV-edge Ei(j). This can be avoided, by carrying out a

simple 4-point test. Observe that r is a square, and
the UV-edge of Oi with respect to Oj is concave in

shape. If all its four corner points are confirmed to be in

Xi(j), we conclude that r ⊆ Xi(j). Figure 11(b) shows

that the region of g1 must not overlap with Ui, since all
the four corners of g are located on the outside region

of one of the UV-edges. Checking whether a point is in

Xi(j) is easy, because we can simply check if the point’s

minimum distance from Oi is larger than its maximum

distance from Oj . We thus use the four-point test in
Step 2.

Notice that Algorithm 6 may incorrectly judge that

Ui overlaps with r. Figure 11(b) shows that Ui does

not overlap with the region of grid g2. However, some
corners of g2.region are not contained in the outside

regions of two of the UV-edges of Ui. If this is true

for all UV-edges of Ui, then Ui would be decided to be

associated with g2! If this happens, then during query

evaluation, Oi will be retrieved from g2. This increases
the execution time since Oi is not in g2. However, query

accuracy is not affected, since we can still detect that

Oi is not a nearest neighbor of q. In our experiments,

this situation is rare, and does not have a significant
effect on query evaluation time.

Since |Ci| = O(n), Algorithm 6 needs O(n) time to

complete. Algorithm 5 uses O(n2) time, mainly for per-

forming splitting and overlap checking with four child

nodes. For Algorithm 4, each UV-cell, in the worst case,
needs to perform overlap and split tests withM non-leaf

nodes. Hence, its total time complexity is O(Mn2). The

index has a maximum height of M/4, if, the data dis-

tribution is very skewed, and splitting always happens
in one single quadrant. However, all non-leaf nodes, 16-

byte long, can all be stored in the main memory. Thus

the tree height has little effect on query performance.

18

7 Results

We now report the results. Section 7.1 describes the

experiment settings. In Section 7.2, we discuss the re-

sults about query performance. Section 7.4 presents the

results about UV-index construction.

7.1 Setup

We use both synthetic and real datasets in our exper-

iments. For synthetic data, we use Theodoridis et al’s
data generator 5 to obtain 20K, 40K, 60K, 80K, and

100K objects, which are uniformly distributed in a 10K

× 10K space. Each object has a circular uncertainty

region with a diameter of 40 units, and a Gaussian un-

certainty pdf. For each uncertainty pdf, its mean is the
center of the circle, and its variance is the square of

one sixth of the uncertainty region’s diameter. We rep-

resent an uncertainty pdf as 16 histogram bars, where

a histogram bar records the probability that the object
is in that area. We also use three real datasets of ge-

ographical objects in Germany, namely utility, roads,

and rrlines, with respective sizes 17K, 30K, and 36K.

We also test the Long Beach (or LB) dataset, which

contains 53K objects. 6 These objects are represented
as circles before indexing, and has the same uncertainty

pdf information as that of the synthetic data.

To compare with R-tree, we use a packed R*-

tree [30] to index uncertain objects. The R-tree uses
4K-byte disk pages, and has a fanout of 100. We keep

all its non-leaf nodes in the main memory. For the UV-

index, each non-leaf node has four 4-byte pointers to

its children. We set M , the number of non-leaf nodes in

the main memory, to be 10, 000. The leaf nodes of both
indexes, as well as the uncertainty information about

the objects, are stored in the disk.

For Tθ, the splitting threshold used in construct-

ing the UV-index, we have performed a sensitivity test.
Under a wide range of Tθ, the indexes only have a s-

light performance difference. For very small values of

Tθ (e.g., 0.2), however, the adaptive grid tends not to

split, and degrades into long linked lists of pages. Here

we set Tθ to be 1.We wrote the programs in C++ and
tested them on a Core2 Duo 2.66GHz PC.

7.2 Results on Query Evaluation

We first study the performance of the queries studied

in Section 3.2. We assume that the LP algorithm, pre-

sented in Section 5.4, is used to generate the UV-index.

5 http://www.rtreeportal.org/software/SpatialDataGenerator.zip
6 http://www.rtreeportal.org/

However, as we will discuss later, the different UV-index

construction methods described here has little effect on

query performance.

1. The PNN Query. We first compare the PN-

N performance of the UV-index and the R-tree. We
present the average results of 50 query points random-

ly selected in the data domain. We use the numeri-

cal integration method of [15] to implement the prob-

ability computation of answer objects. 7 Figure 12(a)

shows the query running time (Tq) for different synthet-
ic datasets, with the number of objects ranging from

20K to 100K. The running times of both queries in-

crease, because with a larger dataset, potentially more

objects qualify as query answers, and this increases the
time for index retrieval and probability computation.

Our method outperforms R-tree in all cases. For exam-

ple, when |O| = 60K, the UV-index needs about 50%

of the time needed by the R-tree.

To understand why our method performs better, let
us examine the traversal time of the UV-index, which

is composed of the time costs for visiting non-leaf and

leaf nodes. Since its non-leaf traversal time takes little

time in all experiments (up to 3.9 µs), we only present

the I/O overhead. In Figure 12(b) we compare the I/O
performance of the UV-index and the R-tree. The UV-

index requires significantly less number of I/Os than the

R-tree (e.g., when |O| = 60K, the UV-index consumes

about one-fifth of the I/Os needed by the R-tree). When
the R-tree is used to process a PNN query, plenty of

leaf nodes needed to be retrieved. For the UV-index,

we only need to look for the leaf node that contains the

query point. Since the number of disk pages for each

leaf node is also small, a high I/O performance can be
attained. Also notice that the number of I/Os for the

R-tree increases with |O|, whereas that of the UV-index
is relatively stable.

Figure 12(c) shows the time components of Tq: (1)

index traversal; (2) retrieval of objects’ pdf; and (3)
probability computation. While object retrieval and

probability computation costs are similar for both in-

dexes, the R-tree requires a higher index traversal time.

This explains the difference in Figure 12(b). In Fig-
ure 12(d), we can see that the query time of both in-

dexes increases with uncertainty region size (i.e., the

radius of the uncertainty region), since the larger the

region, the more probable that the corresponding ob-

ject is a PNN answer.For real datasets, columns 3 and 4
of Table 2 show that the UV-index consistently attain-

s a higher query performance than the R-tree. Again,

7 If faster methods such as [13] are used, the fraction of the
time spent on retrieving answer objects from the index will be
higher, and thus it would be more important to optimize the
index.

19

2 4 6 8 10

x 10
4

0

50

100

150

200

250

|O|

T
q
(m

s
)

R−tree
UV−index

2 4 6 8 10

x 10
4

0

2

4

6

8

10

|O|

T
q
(I

/O
)

R−tree
UV−index

R−tree UV−index
0

20

40

60

80

T
q
(m

s
)

Index
Object Retrieval
QP Calculation

(a) Tq(ms) vs. |O|. (b) Tq(I/O) vs. |O|. (c) Analysis of Tq.

20 40 60 80 100
50

100

150

200

250

300

Size of Uncertain Region

T
q
(m

s
)

R−tree
UV−index

100 200 300 400 500
20

40

60

80

100

120

140

160

Size of Query Region

T q(m
s)

(d) Tq vs. Uncertainty. (e) UV-partition Query.

Fig. 12 Results on the PNN Query.

2 4 6 8 10

x 10
4

0

5000

10000

15000

|O|

T
q
(m

s
)

p
e
r

T
ra

je
c
to

ry

R−tree
UV−index−n
UV−index−e

2 4 6 8 10

x 10
4

0

200

400

600

|O|

T
q
(I

/O
)

p
e
r

T
ra

je
c
to

ry

R−tree
UV−index−n
UV−index

20 40 60 80 100
0

1

2

3
x 10

4

Trajectory Length

T
q
(m

s
)

p
e
r

T
ra

je
c
to

ry

R−tree
UV−index−n
UV−index

(a) Tq(ms) vs. |O|. (b) Tq(I/O) vs. |O|. (c) Tq(ms) vs. Trajectory Length.

Fig. 13 Results on the CPNN Query.

this is because the I/O performance of the UV-index is

better than that of the R-tree.

Dataset |O| Tq(UV) Tq(R-tree) Tc pc
(ms) (ms) (s)

utility 17K 89 141 569 97.45%
roads 30K 82 135 1195 97.80%
rrlines 36K 107 159 1340 98.30%
LB 53K 109 173 1579 98.22%

Table 2 Results on real datasets.

2. The UV-Partition and the UV-cell

Queries. We now examine the efficiency of our index

for answering the UV-partition query on our synthetic

dataset. For each size of a query region R, 50 queries are

generated, whose centers of R are uniformly distributed
in the data domain. We can see from Figure 12(e) that

the retrieval time of UV-partitions (Tq) increases with

the size of R, since more UV-partitions are loaded when

R becomes larger. The increase is almost linear, and the
query evaluation time is less than 160ms. We have al-

so examined the performance of the UV-cell queries on

the default synthetic dataset. On average, the time for

obtaining a UV-cell from the UV-index is 58.46ms, or

equivalently, 4.62 I/Os. Thus, running a UV-cell query

costs little time in our experiments.

3. The CPNN Query. To generate a CPNN

query, we use the CanuMobiSim simulator 8, which pro-

duces a moving-point trajectory. The movement of a

query point follows a random walk model, as detailed

in [34]. The location of a query point, which changes
at a maximum speed of 100 units per second, is report-

ed every second. The default “trajectory length” of a

query is 60, i.e., each query has 60 location reports. In

our experiments, each data point is the average of 50
queries.

We examine two algorithms that use the UV-index

to support CPNN queries. The first variant, called UV-

index-n, is a näıve application of the UV-index: each
time a query point is received, the UV-index is con-

sulted once. The second one, called UV-index-e, is the

enhanced version of UV-index-n, where the UV-index is

only consulted if the current query point is not located

in the same grid as the previous one (Section 6.2). Fig-
ure 13(a) shows the evaluation time of a query over syn-

8 http://canu.informatik.uni-stuttgart.de/mobisim/downloads/

20

thetic data of different sizes. As we can see, the query

performance of the UV-index is at least 25% times bet-

ter than the R-tree. The reason can be explained by

Figure 13(b), which shows the number of I/Os required

by these methods. We observe that the I/O cost of issu-
ing a CPNN on the UV-index is much lower than that

of the R-tree. For example, when |O| = 60k, the query

cost of the UV-index algorithms is about 30% of the R-

tree. We also see that UV-index-e performs better than
UV-index-n. When the current query point q1 is locat-

ed in the grid g that also contains the previous query

point q0, UV-index-e uses the objects associated with

g to answer the PNN at q1. Thus, the effort of travers-

ing the UV-index for q1 can be saved. This saving is
quite significant; at |O| = 60k, for instance, the num-

ber of I/Os required by UV-index-e is only 66% of that

of UV-index-n. In Figure 13(c), we examine the effect

of the query trajectory length. Again, the UV-index-e
performs the best among the three access methods.

7.3 Storage cost analysis

Next, we compare the sizes of R-tree and UV-index. As
mentioned in Section 7.1, for both indices, we store the

non-leaf nodes in the main memory, and the leaf-nodes

in the disk. The index size is the sum of the main mem-

ory and disk space required. Figure 14(a) compares the
size of the UV-index and the R-tree. The UV-index is

larger than the R-tree. While the UV-index consumes

less main memory than the R-tree (Figure 14(b)), it

needs more disk space (Figure 14(c)). Although the

UV-index has a larger size than the R-tree, the UV-
index provides a better query performance. Moreover,

the UV-index provides functionalities that are not avail-

able by R-tree (e.g., retrieval of UV-partitions). These

benefits are provided in the expense of a larger disk
cost. Given the low cost of hard disk space nowadays,

we believe that the extra disk space required by the

UV-index is still justifiable.

7.4 Results on UV-Index Construction

We now examine several UV-index construction meth-

ods. We first study the following techniques:

– Basic: a UV-cell is derived using Algorithm 1, which

is then used to build the UV-index;

– ICR (I- and C-pruning with Refinement): collect cr-
objects through I- and C-pruning (Algorithm 2),

compute UV-cells and obtain the r-objects, then in-

dex them with Algorithm 4.

– IC (I- and C-pruning): the cr-objects obtained

through I- and C-pruning are used directly to con-

struct the UV-index by Algorithm 4.

We assume that the R-tree for uncertain objects is avail-
able for use by these methods. Unless stated otherwise,

the model-based seed selection and batch construction

methods are not used (their effect will be examined lat-

er). For generating initial possible regions (used in IC

and ICR), we set k to 300 for performing the k -NN
search. Then, the domain D is divided into ks = 30

sectors to obtain the seeds.

Figure 15(a) describes the development time (Tc)

of the UV-index for the three methods. Basic increases
sharply with the dataset size; handling a 40K dataset

requires about 60 hours. This is because constructing a

UV-cell requires an exponential amount of time and nu-

merous complex hyperbola intersections. For ICR and

IC, the use of I- and C-pruning significantly reduces the
number of objects examined. Their effects are shown in

Figure 15(b), where pc, the pruning ratio, denotes the

fraction of objects from O that has been filtered. At

|O|=60k, I-pruning and C-pruning achieve a pruning
ratio of 98.9% and 99.5% respectively. Hence, a large

portion of objects are removed before being considered

for constructing the UV-cell. Next, we examine ICR

and IC.

IC vs. ICR. As shown in Figure 15(c), IC per-
forms much better than ICR. For example, at |O| =

80K, the construction time of IC is about 10% of that

of ICR. To understand why, we analyze their time com-

ponents in Figures 15(d) and 15(e). Recall the differ-
ence between the two methods is that ICR needs to

find out the exact r-objects (by constructing an exac-

t UV-cell based on the objects returned by pruning),

while IC does not. For ICR, Figure 15(d) shows the

fraction of the construction time spent on: (i)seeds s-
election (ii)initial possible region computation (iii) I-

and C-pruning, (iv) generating r-objects, and (v) in-

dexing UV-cells. For most datasets, ICR spends most

of the time to generate exact r-objects, which is very
costly. For IC, r-object is not produced (Figure 15(e)).

Instead, the cr-objects produced by the pruning meth-

ods are immediately passed to Algorithm 4 for indexing.

The number of cr-objects generated, while larger than

that of r-objects, does not increase the indexing time
significantly.

In Figure 15(f), the construction time of ICR in-

creases sharply with the objects’ uncertainty region

sizes. With larger uncertainty regions, it is more like-
ly that these regions overlap with each other, making

it harder to prune the objects, so that more time is

needed to generate r-objects. On the other hand, IC is

21

2 4 6 8 10

x 10
4

0

5

10

15

20

|O|

in
d
e
x
 s

iz
e
 (

M
B

)

UV−index
R−tree

2 4 6 8 10

x 10
4

0

0.02

0.04

0.06

0.08

|O|

m
a
in

 m
e
m

o
ry

 s
to

ra
g
e
(M

B
)

UV−index
R−tree

2 4 6 8 10

x 10
4

0

5

10

15

20

|O|

s
e
c
o
n
d
a
ry

 s
to

ra
g
e
(M

B
)

UV−index
R−tree

(a) Index size vs. |O|. (b) main memory size vs. |O|. (c) disk size vs. |O|.

Fig. 14 Storage cost analysis.

2 4 6 8 10

x 10
4

10
0

10
1

10
2

|O|

T
c
(h

o
u
r)

Basic
ICR
IC

2 4 6 8 10

x 10
4

98

98.5

99

99.5

100

|O|

p c(%
)

I−pruning
C−pruning

2 4 6 8 10

x 10
4

0

2

4

6

8

10

12

|O|

T c(h
ou

r)

ICR
IC

(a) Tc vs. |O|. (b) I- vs. C- pruning. (c) IC vs. ICR(Tc).

2 4 6 8 10

x 10
4

0

20

40

60

80

100

|O|

T c(%
)

Seeds Selection
Init Possible Region
I+C Pruning
Gen r−object
Indexing

2 4 6 8 10

x 10
4

0

20

40

60

80

|O|

T c(%
)

Seeds Selection
Init Possible Region
I+C Pruning
Indexing

20 40 60 80 100
0

2

4

6

8

10

Size of Uncertain Region

T
c(h

ou
r)

ICR
IC

(d) Tc’s breakdown (ICR). (e) Tc’s breakdown (IC). (f) Tc vs. uncertainty.

2 3 4 5 6 7 8 9 10

x 10
4

1

1.5

2

2.5

3

|O|

T
q
(I

/O
)

ICR
IC

2 3 4 5 6 7 8 9 10

x 10
4

1

1.5

2

2.5

3

|O|

T
q
(I

/O
)

ICR
IC

(g) Query processing time.

Fig. 15 Basic, ICR, and IC.

2 4 6 8 10

x 10
4

0

0.5

1

1.5

|O|

T
c
(h

o
u
r)

Non−model
Model

20 40 60 80 100
0

1

2

3

Size of Uncertainty Region

T
c
(h

o
u
r)

Non−model
Model

20 30 40 50 60 70 80
200

400

600

800

1000

Size of Uncertainty Region

av
g.

 s
iz

e
of

 U
V

−c
el

ls

Experimental Value
Estimated Value

(a) Tc vs. |O|. (b) Tc vs. U . (c) S vs. U .

Fig. 16 Model-based seed selection.

relatively insensitive to the change of uncertainty region
sizes.

We have also measured the query times between the

indexes created by IC and ICR. Figure 15(g) shows that

the UV-index generated by the two methods are high-
ly similar, resulting in a close query performance. The

query cost of ICR is about 0.01 I/Os, or 0.13ms, better

than IC. In the sequel, we assume that IC is used.

Model-based index construction. In Sec-
tion 5.2, we have demonstrated how to use the UV-cell

model (Section 4.4) to facilitate seed selection for ob-

jects whose locations are uniformly distributed. We call

the UV-index construction algorithm that employs this
method as Model, and the one that does not use it as

Non-model. We evaluate these two algorithms on our

synthetic datasets. As we can see from Figure 16(a),

22

2 4 6 8 10

x 10
4

0

0.5

1

1.5

|O|

T
c
(h

o
u
r)

Single
LP

1 2 3 4 5 6 7 8 9 10

x 10
5

0

2

4

6

8

10

|O|

T
c(h

o
u
r)

Single
LP

2 4 6 8 10

x 10
4

0

20

40

60

80

100

|O|

Im
pr

ov
em

en
t(

%
)

Seeds Selection
I + C Pruning

(a) Tc vs. |O|. (b) Tc vs. |O| (LP). (c) Single vs. LP (%).

20 40 60 80 100
0

1

2

3

4

Size of Uncertainty Region

T
c
(h

o
u
r)

Single
LP

2 4 6 8 10

x 10
4

1

1.5

2

2.5

3

|O|

T
q
(I

/O
)

IC
LP

2 4 6 8 10

x 10
4

1

1.5

2

2.5

3

|O|

T
q
(I

/O
)

Single
LP

2 3 4 5 6 7 8 9 10

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

|O|

T
c o

f
R

−
tr

e
e
 /
 T

c o
f
U

V
−

d
ia

g
ra

m
 (

%
)

LP
Single

(d) Tc vs. U . (e) Query processing time. (f) R-tree overhead.

roads rrline utility LB
0

0.5

1

1.5

T
c(h

o
u
r)

Single
LP

roads rrline utility LB
0

0.5

1

1.5

T
c(h

o
u
r)

Single
LP

roads rrline utility LB
0

0.5

1

1.5

T
c(h

o
u
r)

Single
LP

(g) Real datasets.

Fig. 17 Results on batch processing.

Model performs better than Non-model in most cases.

When |O|=80k, about 20% of the index construction

time is saved. Figure 16(b) illustrates that Model is con-

sistently better than Non-model under different uncer-
tainty region sizes. For example, when the radius of an

uncertainty region is 80, the time required by Model is

about half of that of IC.

To understand why Model performs well, we com-

pare the difference between the size S of a UV-cell esti-

mated by our model, and its “true” size. Again, S is the
length of the MBR that tightly bounds the estimated

UV-cell. The true size of the UV-cell can be obtained

by using Algorithm 1. Based on the vertices of this UV-

cell, we obtain its minimum bounding rectangle (MBR).
We use the larger length of the two dimensions of this

MBR to represent the size of the UV-cell. Figure 16(c)

shows the the average size of a UV-cell under different

uncertainty region sizes. The UV-cell size increases with

the uncertainty region radius, since an object can be in
more possible locations. This increases its chance to be

a possible nearest neighbor of a query point. In this ex-

periment, our method offers a reasonable estimation of

the UV-cell’s size – the estimation error is between 4%
and 12%. This enables the selection of seeds, as well as

the index construction algorithm, to be effective.

Batch processing. We next examine the perfor-

mance of LP, which derives cr-object based on groups

of data objects (Section 5.4). We compare LP with sin-

gle, which generates a cr-object set for each data object

separately. We do not use model-based seed selection

in these experiments. Figure 17(a) shows that LP per-
forms better than single on our synthetic datasets. At

|O| = 80k, the time cost of LP is about 60% of that of

single. In LP, the cr-object set generation cost is shared

among a group of objects.

We also test the performance of single and LP on

larger datasets. We use the same synthetic data genera-
tor to produce two datasets that contain 0.5M and 1M

objects. The 1M-dataset occupies 640Mbytes. The new

result, illustrated in Figure 17(b), shows that the con-

struction performance of both single and LP increases
with the dataset size in a linear manner. For the 1M

dataset, LP needs 7.7 hours, which is 23% faster than

single.

Figure 17(c) shows that when LP is used, the seed

selection time of single is shortened by more than 80%.

While single generates seeds for every object individual-
ly, in LP the seeds of every object in set G are retrieved

from a set of objects CG (Step 2 of Algorithm 3). We

can also see that the I- and C-pruning time required

by LP is also less than single; when |O| = 60k, the im-
provement is over 60%. In single, I-pruning is done for

every object; in LP, I-pruning is only done once for ev-

ery group. The performance gap is more profound when

23

|O| is large, since the same domain is populated with

more objects, resulting in more candidates retrieved af-

ter I-pruning.

We also examine the effect of the average uncertain-

ty region size on the construction time. As discussed
before, the larger this size, the more construction time

will be needed. Figure 17(d) shows that LP is more

stable than single. When the uncertainty region size is

60, LP needs more about 60% time of single; when the
size becomes 100, LP is 3.5 times faster than single.

In Figure 17(e), we compare the query performance of

the UV-indices generated by single and LP. We observe

that the number of I/Os required by the two methods

is the same. Their probability computation times, not
shown here, are also very close. Hence, the query per-

formance of two methods is almost the same.

Next, we compare the construction time of the R-

tree and UV-index, using single and LP. Figure 17(f)
shows that the construction cost of the R-tree is less

than 1 percent of that of the UV-index. Hence, the R-

tree introduces little overhead to the UV-index con-

struction process. However, it improves the perfor-

mance of generating the UV-index. For instance, the
I-pruning phase can be executed more efficiently with

the use of the R-tree.

For real datasets, LP also outperforms single (Fig-

ure 17(g)). In rrline, for example, LP needs one-third
of the time required by single. LP also achieves a high

pruning ratio, as shown in Table 2. This explains why

LP requires less time to construct a UV-index, com-

pared with single.

1500 2000 2500 3000 3500
0.5

1

1.5

σ

T
c
(h

o
u
r)

Single
LP

Fig. 18 Effect of variance.

Skewness. In Figure 18, we study the effect

of data skewness, by varying the variance (σ) of the

objects’ mean positions. We can see that when the da-

ta is more skewed (i.e., with a smaller variance), the

construction time is higher, because in a dense area
where uncertainty regions have high degree of overlap,

an object’s UV-cell is likely small and associated with

many r-objects. The LP algorithm is still more efficient

than single. In the most skewed dataset that we tested
(σ = 1500), LP is 33.3% faster than single.

Finally, we examine how a skewed distribution of

the centers of uncertainty regions can affect our results.

|O| = 60k
uniform zipfian
LP Single LP

Tc(hours) 0.45 5.78 2.46

Tq(I/Os) 2.00 2.48 2.45

Table 3 Results on zipfian distribution.

We obtain a 60k dataset that follows the zipfian distri-

bution, by using the same generator that produces our
uniformly distributed dataset. For the zipfian distribu-

tion, the average query I/O costs for IC and ICR are

2.48 and 2.41. Thus, the query performance of ICR is

0.07 I/Os (or 2.8%) better than IC. Since their time d-
ifference is small (around 0.4ms), we use IC in the rest

of the experiments.

Table 3 compares these two distributions in terms

of their construction and query performance, by using

the batch processing (LP) technique. Observe that the

construction time of the zipfian distribution is worse
than the uniform distribution. In a skewed dataset, a

UV-cell in a very dense area can be determined by many

r-objects, and this renders lower pruning efficiency in

the construction phase. However, there is only a slight
query I/O difference between the two distributions, and

the query performance for both distributions is almost

the same.

In the same table, we study the difference between s-

ingle and LP for zipfian distribution. Notice that LP re-

quires about 42% of time needed by single. This means
that our batch processing method improves the con-

struction performance for zipfian distribution signifi-

cantly. The query performance of the UV-index con-

structed by LP is also slightly better (0.03 I/Os) than
single.

8 Conclusions

The UV-diagram is a variant of the Voronoi Diagram

designed for uncertain data. To tackle the complexity

of constructing and evaluating a UV-diagram, we intro-
duce the concept of UV-cells and cr-objects. We study

the theoretical size of a UV-cell. We propose an adap-

tive index for the UV-diagram, and develop efficien-

t algorithms for building it. We also present a batch

processing algorithm to further reduce the UV-index
construction time. Our experiments show that this in-

dex efficiently supports PNNs and other UV-diagram-

related queries.

We plan to study the use of the UV-diagram to sup-

port other variants of probabilistic NNQs, e.g., approx-
imate NNQs [12, 13]; monochromatic and bichromatic

reverse-nearest-neighbor (RNN) queries [10,27,42]; and

k-RNN queries [11]. Another interesting problem is to

24

design a UV-diagram such that whenever a query point

is located in a UV-cell Ui, we can know that the qual-

ification probability of Oi is larger than some thresh-

old T . By using this variant of UV-diagram, we can

get all the objects with qualification probability larger
than T , without computing their actual probabilities.

This could be beneficial to queries where a user is on-

ly interested in answers with qualification probabilities

larger than T . It is also interesting to examine how the
UV-diagram can support multi-dimensional data and

incremental updates.

Acknowledgments

Reynold Cheng, Xike Xie, Liwen Sun and Jinchuan

Chen were supported by the Research Grants Council of

Hong Kong (GRF Projects 711110, 711309E, 513508).

We would like to thank the anonymous reviewers for
their insightful comments.

References

1. C. C. Aggarwal. On unifying privacy and uncertain data
models. In ICDE, 2008.

2. R. Agrawal and R. Srikant. Privacy-preserving data mining.
In SIGMOD, 2000.

3. A. Akopyan and A. Zaslavski. Geometry of Conics. American
Mathematical Society, 2007.

4. G. Albers, J. S. Mitchell, L. J. Guibas, and T. Roos. Voronoi
diagrams of moving points. Intl. Journal on Computational
Geometry and Applications, 8(3), 1998.

5. W. Aref and I. Ilyas. Sp-gist: An extensible database index
for supporting space partitioning trees. JIS, 17(1), 2001.

6. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for points
and rectangles. In SIGMOD, 1990.

7. S. Berchtold, B. Ertl, D. A. Keim, H. peter Kriegel, and
T. Seidl. Fast nearest neighbor search in high-dimensional
space. In ICDE, 1998.

8. G. Beskales, M. Soliman, and I. Ilyas. Efficient search for the
top-k probable nearest neighbors in uncertain databases. In
VLDB, 2008.

9. B. Chazelle and H. Edelsbrunner. An improved algorithm
for constructing kth-order voronoi diagrams. IEEE Trans.
Computing, 36(11), 1987.

10. M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei.
Probabilistic reverse nearest neighbor queries on uncertain
data. TKDE, 16(9), 2009.

11. M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang. Influ-
ence zone: Efficiently processing reverse k nearest neighbors
queries. ICDE, 2011.

12. J. Chen, R. Cheng, M. Mokbel, and C.-Y. Chow. Scal-
able processing of snapshot and continuous nearest-neighbor
queries over one-dimensional uncertain data. The VLDB
Journal, 18(5):1219–1240, 2009.

13. R. Cheng, J. Chen, M. Mokbel, and C.-Y. Chow. Probabilis-
tic verifiers: Evaluating constrained nearest-neighbor queries
over uncertain data. In ICDE, 2008.

14. R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD, 2003.

15. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying
imprecise data in moving object environments. TKDE, 16(9),
2004.

16. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter.
Efficient indexing methods for probabilistic threshold queries
over uncertain data. In VLDB, 2004.

17. R. Cheng, X. Xie, M. L. Yiu, J. Chen, and L. Sun. UV-

diagram: A voronoi diagram for uncertain data. In ICDE,
2010.

18. N. Dalvi and D. Suciu. Efficient query evaluation on proba-
bilistic databases. In VLDB, 2004.

19. M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer-Verlag, 1997.

20. M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries
on uncertain data: A probabilistic threshold approach. In
SIGMOD, 2008.

21. M. Jooyandeh, A. Mohades, and M. Mirzakhah. Uncertain
voronoi diagram. Inf. Process. Lett., 109(13):709–712, 2009.

22. B. Kao, S. Lee, D. Cheung, W. Ho, and K. Chan. Clustering
uncertain data using voronoi diagrams. In ICDM, 2008.

23. M. I. Karavelas. Voronoi diagrams for moving disks and
applications. In WADS, 2001.

24. H. Kriegel, P. Kunath, and M. Renz. Probabilistic nearest-
neighbor query on uncertain objects. In DASFAA, 2007.

25. X. Lian and L. Chen. Monochromatic and bichromatic re-
verse skyline search over uncertain databases. In SIGMOD,
2008.

26. X. Lian and L. Chen. Probabilistic group nearest neighbor
queries in uncertain databases. TKDE, 20(6), 2008.

27. X. Lian and L. Chen. Efficient processing of probabilistic re-
verse nearest neighbor queries over uncertain data. In VLD-
BJ, 2009.

28. V. Ljosa and A. Singh. APLA: Indexing arbitrary probability
distributions. In ICDE, 2007.

29. V. Ljosa and A. Singh. Top-k spatial joins of probabilistic
objects. In ICDE, 2008.

30. M.Hadjieleftheriou. Spatial index library version 0.44.2b.
31. M. Mokbel, C. Chow, and W. Aref. The new casper: Query

processing for location services without compromising priva-
cy. In VLDB, 2006.

32. S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The
V*-Diagram: a query-dependent approach to moving knn
queries. VLDB, 2008.

33. A. Okabe, B. Boots, K. Sugihara, and S. Chiu. Spatial Tes-
sellations: Concepts and Applications of Voronoi Diagrams.
Wiley, second edition, 2000.

34. N. Oppenheim. Urban Travel Demand Modeling: From In-
dividual Choices to General Equilibrium. Wiley, 1995.

35. J. Pedersen. On the stability of crystal lattices. ix. covari-
ant theory of lattice deformations and the stability of some
hexagonal lattices. In Proceedings of the Cambridge Philo-
sophical Society 38, 1942.

36. J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines
on uncertain data. In VLDB, 2007.

37. J. Sember and W. Evans. Guaranteed voronoi diagrams of
uncertain sites. In CCCG, 2008.

38. M. Sharifzadeh and C. Shahabi. Vor-tree: R-trees with
voronoi diagrams for efficient processing of spatial nearest
neighbor queries. PVLDB, 2010.

39. P. A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Query-
ing the uncertain position of moving objects. In Temporal
Databases: Research and Practice. 1998.

40. W. Stallings. Wireless Communications & Networks (2nd
Edition). Prentice-Hall, Inc., 2004.

41. P. Wang, M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi.
Understanding the spreading patterns of mobile phone virus-
es. Science Express, 324(5930), 2009.

25

42. R. C.-W. Wong, M. T. Özsu, P. S. Yu, A. W.-C. Fu, and
L. Liu. Efficient method for maximizing bichromatic reverse
nearest neighbor. PVLDB, 2009.

43. J. Xu and B. Zheng. Energy efficient index for querying

location-dependent data in mobile broadcast environments.
In ICDE, 2003.

44. J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based spatial queries. In SIGMOD, 2003.

45. B. Zheng, J. Xu, W.-C. Lee, and L. Lee. Grid-partition in-
dex: a hybrid method for nearest-neighbor queries in wireless
location-based services. VLDB J., 15(1):21–39, 2006.

A Hyperbolic Curve Intersection

As discussed in Section 3.1, a vertex of the UV-cell is the intersec-
tion point of two hyperbolic curves. We now outline the procedure
of finding this intersection, using the method described in [3]. We
can represent two hyperbolic curves, C1 and C2, as homogeneous
conic equations:

C1:A1x
2 + 2B1xy + C1y

2 + 2D1xz + 2E1yz + F1z
2 = 0

C2:A2x
2 + 2B2xy + C2y

2 + 2D2xz + 2E2yz + F2z
2 = 0

which are obtained by substituting x/z into x and y/z into y for
the hyperbolas (Equation 7) of C1 and C2. Next, we construct
equation Cλ:

Cλ : C1 + λC2 = 0 (23)

where λ is a real value, and Cλ, a linear combination of C1 and
C2, is a system of hyperbolas. We then rewrite Cλ in the form of
ωTHω = 0, where ω = (x, y, z)T , and

H =

A1 + λA2 B1 + λB2 D1 + λD2

B1 + λB2 C1 + λC2 E1 + λE2

D1 + λD2 E1 + λE2 F1 + λF2

Let det(H) be the determinant of H. Our aim is to find the
value(s) of λ that satisfy the characteristic equation det(H) = 0.
The real value of λ, when substituted into Equation 23, ensures
that (1) there is at least one intersection between C1 and C2,
and (2) Cλ becomes a degenerated hyperbola, in the form of two
straight lines. Finally, for each of the λ found from the character-
istic equation, we obtain at most four roots that simultaneously
satisfy Cλ and C1. Each root represents an intersection point of
C1 and C2.

B Properties of a Possible Region (Lemma 1)
Given an object Oi, we discuss two properties of its possible re-
gion Pi.

1. Connectivity of Pi: Recall from Definition 3 that Pi

is the intersection of a set of inside regions. Since each inside
region is a connected region (by Definition 2), Pi must also be
connected.

2. Pi cannot contain any hole inside it. Suppose by con-
tradiction that there is a hole h inside Pi, such that an arbitrary
point q inside h does not have Oi as its possible nearest neighbor.
Figure 19 illustrates the situation. Since q must be covered by the
UV-cell of some other object, let us assume that q is covered by
the UV-cell of object Oj . Then, distmin(q, Oi) > distmax(q, Oj),
or dist(q, ci)− ri > dist(q, cj) + rj .

We now draw a straight line, which passes through ci and q,
and intersects the boundary of Pi at q′. We have:

distmin(q, Oi) + dist(q, q′) > distmax(q,Oj) + dist(q, q′)

⇒ dist(q, ci) − ri + dist(q, q′) > dist(q, cj) + rj + dist(q, q′)

⇒ (dist(q, ci) + dist(q, q′)) − ri > (dist(q, cj) + dist(q, q′)) + rj

Fig. 19 Illustrating the proof of Lemma 1.

Since dist(q, ci) + dist(q, q′) = dist(q′, ci) and dist(q, cj) +
dist(q, q′) > dist(q′, cj), we have:

dist(q′, ci)− ri > dist(q′, cj) + rj

In other words, distmin(q′, Oi) > distmax(q′, Oj). Hence, q′

cannot have Oi as its nearest neighbor. However, this is not pos-
sible, since q′ ∈ Pi. Therefore, Pi cannot have any hole.

C Size of a Possible Region (Lemma 2)

Here we explain how to derive the size of a possible region, as
shown in Equation 8, Section 4. Let us denote the six objects that
have the same distance d from O1 be {O2, . . . , O7}, as shown in
Figure 6. We consider two UV-edges E1(2) and E1(3). Let X0 be
the intersection of E1(2) and E1(3). Using Equation 1, we have:

{

distmin(O1,X0) = distmax(O2, X0)
distmin(O1,X0) = distmax(O3, X0)

(24)

Let X1 be the point on O1 such that dist(X0, X1) =
distmin(X0, O1). Also, let X2(X3) be the point on O2(O3) whose
distance from X0 is the maximum between X0 and O2(O3). Ac-
cording to Equation 24,

dist(X0,X1) = dist(X0, X2) = dist(X0, X3) (25)

Since X1, X2 and X3 have the same distance to X0, they are on a
circle centered at X0 with radius R. Thus, as shown in Figure 6,
X0 is the center of circle ⊙(X0, R), which is externally tangent
to O1 on X1, and internally tangent to O2 (O3) on X2 (X3).
Therefore,

{

dist(X0, c1) = R+ r
dist(X0, c2) = dist(X0, c3) = R− r

(26)

Now, let the coordinates of c1 be (c1.x, c1.y). Since ∠c2c1X0 = π
6

(according to [40]), we have c2 = (c1.x − d
2
, c1.y +

√
3d
2

), and
X0 = (c1.x, c1.y +R+ r). By substituting them to Equation 26,
we have:

R =
d× (d−

√
3r)√

3d− 4r
(d >

4r√
3
) (27)

Notice that d has to be larger than 4r√
3
, in order for R to be

positive. The dimension of the square s that bounds the possible
region P1,d is then equal to s = 2 × (R + r). By substituting R
with Equation 27, we can obtain Equation 8.

26

D Size of a UV-cell (Theorem 1)

Here we establish the condition that the possible region P1,d0 ,
formed by the six objects in H(d0), is exactly the UV-cell of O1.
Recall that the centers of uncertain regions of objects in H(d0),
which are the closest to that of O1, form the vertices of a hexagon
HEX1, as shown in Figure 7. Now, if objects in H(d0) are disre-
garded, then any of the object Ok whose uncertainty region cen-

ter is a vertex of hexagon HEX2 must be the nearest neighbor of
O1. Suppose that the UV-edge Ei(k) cannot contribute to P1,d0 .
Then, as all uncertainty regions are equally spaced and identical,
the UV-edges of other objects that are further away from HEX1

and HEX2 must also not change the shape of P1,d0 . Thus, P1,d0
becomes the UV-cell of O1, i.e., U1.

When does Ei(k) fail to influence the shape of P1,d0? First,
we calculate the minimum distance between the center of O1 and
E1(k), which is equal to

√
3

2
d0 + r. We compare this with s(d0)

2
,

where s(d0) is the size of the square that bounds P1,d0 according

to Equation 8. If
s(d0)

2
<

√
3
2
d0 + r, U1, which is embedded in

the square of size s(d0), cannot be further refined by E1(k). By
substituting this condition into Equation 8, we have:

s(d0)

2
<

√
3

2
d0 + r

⇒ 1

2
× 2d20 − 8r2√

3d0 − 4r
<

√
3

2
d0 + r

Assume that d0 > 4r√
3

(required by Lemma 2). By multiplying

2(
√
3d0 − 4r) on both sides of the above inequality, we have:

2d20 − 8r2 < (
√
3d0 + 2r)(

√
3d0 − 4r)

⇒ 2d20 − 8r2 < 3d20 + 2
√
3d0r − 4

√
3d0r − 8r2

⇒ 2d20 < 3d20 − 2
√
3d0r

⇒ d0 > 2
√
3r

Thus, d0 > 2
√
3r is the condition that Ei(k) cannot change P1,d0 .

It is also the constraint that the 6 objects of HEX1 form the
square of dimension s(d0) that minimally U1.

E Proof of Lemmas for Section 5.5

E.1 Proof of Lemma 4

For any point p ∈ Pi(S), p is within the intersection of the inside
regions Xi(j), where Oj ∈ S. Hence, for every Oj ∈ S,

distmax(p, Oj) > distmin(p,Oi) (28)

Since ui ⊆ Pi(S), and ui ⊆ uk, ∀p ∈ Pi(S), distmin(p,Oi) ≥
distmin(p,Ok). Using Equation 28, we have:

∀p ∈ Pi(S), Oj ∈ S : distmax(p,Oj) > distmin(p,Ok) (29)

This means that ∀p ∈ Pi(S), p ∈
⋂

Oj∈S
Xk(j), or simply ∀p ∈

Pi(S), p ∈ Pk(S). Thus, Pi(S) ⊆ Pk(S), and the lemma is proved.

E.2 Proof of Lemma 5

Proof (If) Since p ∈ Pi(S), we have p ∈ ∩Ok∈SXi(k). Thus, for
every Ok ∈ S,

distmax(p, Ok) > distmin(p,Oi) (30)

Fig. 20 Illustrating the proof of Lemma 5.

Using Equations 16 and 30, we see that distmax(p,Oj) >
distmin(p, Oi). So, the “if” part is proved.
(Only if) Consider any point p′ lying on some UV-edge Ei(k)
of Pi(S), where Ok ∈ S. Then,

distmax(p
′, Ok) = distmin(p

′, Oi) (31)

Using Equations 31 and 15, we have:

distmax(p
′, Oj) > distmax(p

′, Ok) (32)

Thus, the “only if” part is true for any p′ ∈ Ei(k). .
We now complete the proof by showing that the lemma is

true for any p′′ ∈ Pi(S). Since cj /∈ Pi(S), a line that passes
through cj and p′′ must intersect Ei(k) at some point p2 for
some object Ok ∈ S. Also suppose a line that passes through ck
and p′′ intersects Ei(k) at p1. The situation is shown in Figure 20.

Using Equation 32, we have:

distmax(p2, Oj) > distmax(p2, Ok)

This implies:

l4 + rj > l3 + rk

l4 + l6 + rj > l3 + l6 + rk

Using triangular inequality, we have:

l3 + l6 > l1 + l5

Thus,

l4 + l6 + rj > l1 + l5 + rk

or simply distmax(p′′, Oj) > distmax(p′′, Ok). Thus, the “only
if” part is correct.

