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Abstract

We introduce UV-Net, a novel neural network architecture

and representation designed to operate directly on Boundary

representation (B-rep) data from 3D CAD models. The B-rep

format is widely used in the design, simulation and manufac-

turing industries to enable sophisticated and precise CAD

modeling operations. However, B-rep data presents some

unique challenges when used with modern machine learning

due to the complexity of the data structure and its support

for both continuous non-Euclidean geometric entities and

discrete topological entities. In this paper, we propose a uni-

fied representation for B-rep data that exploits the U and V

parameter domain of curves and surfaces to model geometry,

and an adjacency graph to explicitly model topology. This

leads to a unique and efficient network architecture, UV-Net,

that couples image and graph convolutional neural networks

in a compute and memory-efficient manner. To aid in future

research we present a synthetic labelled B-rep dataset, Soli-

dLetters, derived from human designed fonts with variations

in both geometry and topology. Finally we demonstrate that

UV-Net can generalize to supervised and unsupervised tasks

on five datasets, while outperforming alternate 3D shape

representations such as point clouds, voxels, and meshes.

1. Introduction

Parametric curves and surfaces form the basis of

computer-aided design (CAD) and are widely used in design,

simulation, and manufacturing. CAD software is primar-

ily concerned with modeling and representing 3D solids—

closed, watertight shapes which describe objects unambigu-

ously with consistently oriented patches of surface geometry.

The industry-wide standard to represent solid models is the

Boundary representation (B-rep) [41, 23]. The B-rep is a

versatile data structure comprised of faces (bounded por-

tions of surfaces), edges (bounded pieces of curves) and ver-

tices (points), glued together with topological connections

between them. The B-rep enables a variety of parametric
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Figure 1: UV-Net builds features by sampling points on the

edges and faces of solid models. These features are then

message-passed among adjacent topological entities.

curves and surfaces, such as lines, arcs, planes, cylinders,

toruses and Non-Uniform Rational B-Splines (NURBS), to

precisely represent complex 3D shapes formed from CAD

modeling operations such as extrusions, fillets, and Booleans.

CAD users interact directly with B-rep faces, edges, and ver-

tices to select, align, and modify 3D shapes. To leverage the

recent advances of deep neural networks in CAD software,

an appropriate representation of B-rep data is required. Such

a representation has the potential to unlock numerous CAD

applications such as auto-complete of modeling operations,

smart selection tools, shape similarity search and many more.

Critical to enabling these applications is a representation that

encodes the B-rep entities themselves.

Despite widespread usage of B-rep data in the industry,

there exists limited research on applying deep neural net-

works to this representation directly. There are numerous

challenges in feeding B-rep data to neural networks. B-rep

data consists of disparate geometric and topological entities,

such as parametric curves and surfaces, each with their own

set of parameters. Moreover, the mapping between a shape

and a surface type is not one-to-one, for example, a plane
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can be represented as a B-spline of arbitrary degree. This

means raw surface information, such as parametric coeffi-

cients or spline control points, cannot be fed directly into a

neural network, as it would not be invariant to the specific

parameterization. Finally, consideration must be given to

how different curve and surface geometry are connected to

form the entire shape, i.e. the topology.

An alternate approach is to preprocess B-rep data into

well-studied representations, such as images, voxels, point

clouds, or triangle meshes. Although plausible, such con-

versions are neither differentiable, nor trivial. Discretized

representations, such as point clouds or voxels, suffer from

loss of fidelity and may lose the critical mapping back to the

original B-rep entities. Conversion to triangle meshes can be

non-trivial and prone to failure when high quality, manifold

meshes are required [13].

To tackle these challenges, we present UV-Net, a novel

neural network architecture and representation designed to

operate directly on B-rep entities (Figure 1). In this paper,

we make the following contributions:

• We present a new representation of 3D CAD models de-

rived from B-reps, which captures geometric features from

the parameter domain as a regular grid, and topological

information as a graph.

• We propose a novel architecture which couples an im-

age CNN and a hierarchical graph-neural network in a

compute and memory-efficient manner.

• We create and release a synthetic labeled dataset: SolidLet-

ters, which unlike other synthetic datasets, is balanced,

and has variations in both geometry and topology.

• We demonstrate the efficacy of UV-Net on multiple tasks

including 3D shape classification, segmentation, and self-

supervised shape retrieval on unlabeled data. We achieve

state-of-the-art results on both classification and segmen-

tation tasks by leveraging the full B-rep data structure.

2. Related Work

Common geometric representations Modern neural net-

works work with several discrete 3D representations like

point clouds, voxels, meshes and multi-view images. A B-

rep can be easily sampled to obtain point clouds [30, 40].

A problem with this conversion is that CAD models often

contain small features that convey important information.

A prohibitively dense point cloud might be required to cap-

ture such fine details. 3D CNNs [48] can be applied to

voxelized B-reps, as shown by Zhang et al. [46] for classifi-

cation. Unfortunately, there is a cubic compute and memory

cost to increasing the voxel grid resolution to capture small

faces from a B-rep. O-CNN [38] can alleviate this prob-

lem using sparse octrees, however, very deep octrees may

be needed to delineate tiny faces common in B-rep data.

Neural networks representing signed distance [27, 9] or oc-

cupancy [25] functions are grid-free and concise, but need to

learn mappings to B-rep face and edges along with positional

encodings to support downstream applications, which is a

challenging problem. Triangle meshes on the other hand

better preserve the geometric and topological information

of a solid model [16, 43]. These methods require the B-rep

to be converted to watertight, manifold meshes with tight

constraints on vertex/edge count, edge length, and angles; a

difficult task prone to failure [18, 13]. Finally, multi-view

images represent 3D shapes by rendering, and have shown

excellent results on shape classification and retrieval [36].

Such renderings are not expressive enough to represent and

map back to the multitude of entities in a B-rep, thereby

limiting applications. There is a recent interest in the ma-

chine learning community in the generation of parametric

geometry such as Bézier curves [24, 39, 35], splines [12],

Coons patches [34] and binary space partitioning planes [8].

However, these methods do not deal with feature extraction

from B-reps with disparate parametric curve/surface types.

3D geometry as images Closely related to our considera-

tion of geometry as regular grids or images are geometry

images [15] where arbitrary meshes were parametrized into

2D grids for compression and resampling. Sinha et al. [33]

parametrized meshes globally as images to apply CNNs.

Groueix et al. [14] learnt the parametrization of point clouds

by deforming grids of points. Kawasaki et al. [20] smoothed

the normal map of B-spline surfaces for fairing. Different

from these works, we deal with parametric shapes employed

in CAD, and focus on deriving a representation from the B-

rep while retaining geometric and topological information.

Boundary representations Few neural networks are capa-

ble of directly consuming B-rep data. Initial attempts before

the deep learning era focused on automatically recognizing

machining features in a solid model. These methods con-

vert the B-rep into a face-adjacency graph [2], with features

such as surface type and edge convexity, that is then used by

rule-based schemes [19] or simple neural networks [29, 26].

However, hand-engineered features struggle to generalize

well to other tasks. Babic et al. [4] surveys several clas-

sic machine learning methods for feature classification on

B-reps. Very recently, Cao et al. [6] used a graph neural

network to segment the faces of a B-rep by converting it into

a face-adjacency graph. A major limitation of this method is

that it can only work on B-reps with planar faces, as it uses

the coefficients of the scalar plane equation as node features

to describe the geometry. In contrast to these works, we

aim to derive a general representation from the B-rep that is

suitable for a wide range of tasks, and can leverage advances

in modern deep learning methods.
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Figure 2: Our representation. (a) The B-rep is a complex data structure with several geometric and topological entities that is

difficult to feed to neural networks. (b) We derive a face-adjacency graph from the B-rep to capture topological information. (c)

Each face and edge in a B-rep contains a parametric surface and curve, respectively, which we represent as regular UV-grids,

and store as node and edge attributes in the graph. Local neighborhoods in UV-grids map to local regions in the geometry.

3. Method

In this section we review the B-rep data structure, and

introduce UV-Net’s representation and network architecture.

3.1. Input representation

The B-rep data structure comprises several topological

entities—faces, edges, halfedges, and vertices, with connec-

tions between them, see Figure 2 (a). Faces are the visible

portion of parametric surfaces such as planes, cones, cylin-

ders, toruses, and splines. Edges are the visible interval of

parametric curves and vertices are the endpoints of edges.

Each face is delimited by one or more loops of halfedges.

Anti-clockwise loops define outer boundaries while clock-

wise loops define internal holes. Solid modeling packages

are designed to generate closed and watertight B-rep mod-

els, in which every edge contains two halfedges on adjacent

faces. The data structure also stores many references allow-

ing efficient navigation between all adjacent entities [23].

Although expressive, the B-rep is a complex data structure

and is difficult to feed to neural networks in its original form.

Our goal is to extract the most informative geometric and

topological information from the B-rep, and convert it into

a representation that can easily and efficiently work with

existing neural network architectures.

Topology UV-Net uses a face-adjacency graph derived from

the B-rep,G(V,E), to model the topology where the vertices

V represent the faces in the B-rep, while the edges E encode

the connectivity between the faces, as shown in Figure 2

(b). This can be easily built in constant time complexity

by traversing through the halfedges of the B-rep: current

face → halfedges → twin-halfedges → neighboring faces.

The face adjacency captures the two most geometrically and

topologically rich entities: faces and edges from the B-rep,

and is sufficient to capture both local and global information

about a solid, as we later demonstrate.

Curve geometry Each topological edge in a B-rep has an

associated parametric curve to define the actual geometry.

Consider one such parametric curve C(u), which is a map

from an interval [umin, umax] ∈ R, the parameter domain, to

the geometry domain R
3. The curve could be parameterized

as a line, circular arc, or B-spline; we only expect that an

interface is available to evaluate the curve and optionally, its

first order derivative. Our idea is to represent the geometry

of the curve by discretizing its parameter domain [20] as a

regular 1D grid by a uniform step size δu = umax−umin

M−1 , where

M is the number of chosen samples, as shown in Figure 2 (c).

At each of the discretized points in the parameter domain

uk, we can attach a set of features evaluated from the curve,

e.g., absolute point coordinates C(uk), and optionally the

unit tangent vector Ĉu(uk) as features. This 1D UV-grid is

set as input edge features in G as shown in Figure 2(c).

Surface geometry Each topological face in a B-rep has

an associated surface geometry that can be a plane, sphere,

cylinder, cone, or a freeform NURBS surface. The sur-

faces are trimmed by the halfedge loops that run along

the boundary of the face to expose only a portion of the

surface as a visible region. Consider one such paramet-

ric surface S(u, v) which is a map from a 2D interval

[umin, umax] × [vmin, vmax] ∈ R
2, the parameter domain, to

the geometry domain R
3. We discretize the parameter do-

main into a regular 2D grid of samples with step sizes

δu = umax−umin

M−1 , and δv = vmax−vmin

N−1 , where M and N are

the number of samples along each dimension, as shown in

Figure 2 (c). The intervals [umin, umax] and [vmin, vmax] are

chosen such that they closely bound the loop that defines the

visible region. At each of these grid points indexed by (k, l),
we attach the following local features encoding the geometry

of the surface as channels: (1) 3D absolute point position

S(uk, vl) (the scale of the solid is normalized into a cube of

size 2 and centered at origin). (2) Optionally, the 3D abso-

lute surface normal
Su(uk,vl)×Sv(uk,vl)

‖Su(uk,vl)×Sv(uk,vl)‖
pointing outwards
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Figure 3: UV-Net encoder architecture. (a) A solid model is represented by (b) a set of regular UV-grids representing each

face’s and edge’s geometry by discretizing the parameter domain, and a graph that captures its topology with face-adjacency

information. (c) Curve and surface features are extracted from the UV-grids with 1D and 2D CNNs, respectively. (d) These

features are treated as edge and node embeddings of the graph and further processed by graph convolutions. The result is a set

of node embeddings, that can be pooled to get the shape embedding of the solid model.

consistently. (3) Trimming mask with 1 and 0 representing

samples that are in the visible region and trimmed region, re-

spectively. This 2D UV-grid is defined as input node features

in G. The representation is flexible enough to incorporate

other features like curvature based on the downstream task.

We set the number of samples M=N=10 in all experi-

ments throughout the paper. This is not a technical restric-

tion, rather it is convenient to form mini-batches of features.

A fixed step size is sufficient when the mapping between

parameter and geometry domains are roughly uniform. We

quantitatively evaluate this in the supplementary material. In

the case of extreme parameterizations with high stretching,

it is possible to derive a step size to upper bound the distance

between samples [47].

Advantages The UV-Net representation has several advan-

tages: (1) Evaluating curves/surfaces at a set of parameters is

fast for both primitive and spline surfaces [32]. (2) The rep-

resentation is sparse and scales with the number curves and

surfaces in the B-rep. (3) The grid is largely invariant to the

exact parametrization. For example, the grid does not change

when a planar surface is converted into a NURBS patch, or

when degree elevation or knot insertion is performed, since

the parameterization and geometry remain identical [28]. In

contrast, the raw curve/surface equation will change signif-

icantly. (4) Finally, local neighborhoods in the parameter

domain (UV-grids) correspond to local neighborhoods in

curve/surface geometry domain, hence hierarchical feature

extraction on the manifold [5] is possible.

3.2. Network architecture

With this representation, we first perform image con-

volutions on the curve and surface UV-grids. These local

curve/surface features are then propagated over the entire

B-rep with graph convolutions as shown in Figure 3.

Curve & surface convolution Our surface CNN takes in

2D UV-grids with typically 4 or 7 channels (3 xyz, 3 normals,

1 trimming mask) and is defined as: Conv(4/7, 64, 3) →
Conv(64, 128, 3) → Conv(128, 256, 3) → Pool(1, 1) →
FC(256, 64), where Conv(i, o, k) is an image convolutional

layer with i input channels, o output channels, and kernel

size k, Pool(n, n) is an adaptive average pooling layer which

outputs a n×n feature map, and FC(i, o) is a fully connected

layer which takes an input in i-D vector and maps it to o-D

vector. Our curve CNN takes 1D UV-grids computed from

the curves lying in the edges of the B-rep, and is defined sim-

ilarly with 1D convolutional and pooling layers. The weights

of the curve and surface CNN are shared among all edges

and faces in a B-rep, respectively, making them permutation-

invariant. Both convolutional and fully-connected layers do

not have biases, and include batch normalization and the

LeakyReLU activation function. We pad the features with

size ⌊k/2⌋ to retain the spatial dimensions of the input.

Message passing The output of curve and surface CNNs are

hidden features treated as input edge and node features to the

graph neural network. Given the initial features, we compute

the hidden node features h
(k)
v in graph layer k ∈ 1 . . .K, by

aggregating the input node features h
(k−1)
v from a one-hop

neighborhood u ∈ N(v) while conditioning them on the

edge features h
(k−1)
uv :

h(k)v = φ(k)
(

(1 + ǫ(k)) h(k−1)
v +

∑

u∈N(v)

fΘ
(

h(k−1)
uv

)

⊙ h(k−1)
u

)

)

, (1)

where φ(k) is a multi-layer perceptron (MLP) with two fully

connected layers FC(64, 64) → FC(64, 64), ǫ(k) is a learn-
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able parameter to distinguish the center nodes from the neigh-

bors and fΘ is a linear projection from the edge to node fea-

ture space. This update equation extends the Graph Isomor-

phism Network [45], with additional consideration of edge

features. The hidden edge features are next updated similarly

while considering the features of the endpoint nodes:

h(k)uv = ψ(k)

(

(1 + γ(k)) h(k−1)
uv + fΞ

(

h(k−1)
u + h(k−1)

v

)

)

,

(2)

where ψ(k) is a 2-layer MLP as before, γ(k) is a learn-

able parameter to distinguish the edge features from its

neighbors, and fΞ is a linear projection from the node

to edge feature space. At the end, we then take all the

hidden node features {h
(k)
v | k ∈ 1 . . .K} and apply an

element-wise max-pooling operation across the nodes to ob-

tain hierarchical graph-level feature vectors from every layer

{h(k) | k ∈ 1 . . .K}, where h(k) = maxpoolv∈V (h
(k)
v ).

These features are then linearly projected into 128D vectors

and summed to obtain the final shape embedding:

hG =

K
∑

k=1

w(k) · h(k) + b(k). (3)

We use K = 2 graph layers in all experiments. The node

and graph embeddings obtained from the network can be

used for several downstream applications as detailed next.

4. Experiments

In this section, we qualitatively and quantitatively eval-

uate UV-Net on 3D shape classification, segmentation, and

shape retrieval on unlabelled data.

4.1. Datasets

We briefly introduce the five datasets used in our ex-

periments and provide further details in the supplementary

material. We select the datasets below as they are available

in B-rep format, unlike many common benchmark datasets

provided in mesh format.

Machining feature dataset [46] a synthetic labeled, bal-

anced dataset representing machining features such as cham-

fers and circular end pockets applied to a cube. It has 23,995

3D shapes (∼1000 per class) split into 24 classes.

MFCAD dataset [6] a synthetic segmentation dataset of

15,488 3D shapes, similar to the Machining feature dataset,

but with multiple machining features. 16 different segmenta-

tion labels are used and applied per face.

FabWave dataset [1] a small labeled, imbalanced collec-

tion of 5,373 3D shapes split into 52 mechanical part classes,

such as brackets, gears, and o-rings.

ABC dataset [22] a real-world collection of millions of 3D

shapes. The dataset is unlabelled, imbalanced, and has many

duplicates. We remove duplicates and use a subset of 46k

models in our experiments.

SolidLetters dataset our dataset consists of 96k 3D shapes

generated by randomly extruding and filleting the 26 alpha-

bet letters (a–z) to form class categories across 2002 style

categories from fonts. Compared to other synthetic datasets

that have similar intra-class topology, SolidLetters contains

significant variations in both geometry and topology, due to

font variety, and is well-balanced.

4.2. Tasks

We now compare UV-Net to PointNet [30], DGCNN [40],

and MeshCNN [16] on several standard tasks. We show

additional results from the baseline methods presented with

the Machining feature and MFCAD datasets.

4.2.1 Classification

We first evaluate our method on the task of 3D shape classifi-

cation. The ability to classify 3D components in large B-rep

assemblies is valuable for numerous applications including

product lifecycle management and automation of repetitive

tasks such as simulation setup. We show the advantages

of using both geometry and topology in the B-rep. This is

particularly important in datasets where data within a class

has high geometric variance but similar topology, as is com-

mon in parametric CAD modeling. Our network comprises

the UV-Net encoder network in Figure 3 followed by a non-

linear classifier (2-layer MLP) that maps the 128D shape

embedding into class logits. Our input geometric features

include xyz coordinates and the trimming mask.

We train point cloud-based methods on 2048 points sam-

pled uniformly from the solid model, FeatureNet [46], the

baseline for the Machining feature dataset, on 643 voxel

grids, and MeshCNN [16] on triangle meshes. For the Ma-

chining Feature dataset we convert B-reps into high-quality,

watertight, manifold meshes as required by MeshCNN using

the finite-element mesher in Autodesk Fusion 360 with a

target edge-count of 2000 edges. As MeshCNN requires all

meshes to have a similar edge count, we find it is impractical

to use with datasets of varying shape complexity, such as

FabWave, SolidLetters, and ABC. Although it may be feasi-

ble to use a target edge count suitable for the most complex

shape in the dataset, in practice this dramatically increases

training time and limits the advantages of mesh pooling.

We train all models to a maximum of 350 epochs with

cross-entropy loss and the Adam [21] optimizer. Table 1

shows that our method achieves the best classification ac-

curacy on all datasets. Unstructured representations suffer

when data within a class has high geometric variance but

similar topology, since they cannot model the latter explicitly.
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Table 1: Solid model classification.

Dataset Model Accuracy (%) #Param.

Machining

Feature

UV-Net 99.94 ± 0.00 1.34M

PointNet (2048) 87.13 ± 0.15 0.81M

DGCNN (2048) 92.81 ± 0.69 1.81M

FeatureNet (643) 98.85 ± 0.48 33.94M

MeshCNN (2000) 98.90 ± 0.70 0.67M

FabWave

UV-Net 94.51 ± 0.10 1.35M

PointNet (2048) 80.08 ± 3.61 0.82M

DGCNN (2048) 69.95 ± 2.37 1.81M

SolidLetters

UV-Net 97.24 ± 0.10 1.34M

PointNet (2048) 94.72 ± 0.17 0.81M

DGCNN (2048) 96.62 ± 0.13 1.81M

Notably, we outperform FeatureNet [46] on their dataset, and

obtain the highest results on SolidLetters, demonstrating that

our method can exploit both geometry and topology.

4.2.2 Segmentation

We now consider the problem of segmenting the faces of

a B-rep, a classic task with applications in machining fea-

ture recognition, computer-aided process planning and CAD

modeling history reconstruction. We consider the MFCAD

and ABC datasets in this experiment and demonstrate the

benefit of directly working with B-rep entities. To work

around lack of labels in the ABC dataset, we use the Au-

todesk Shape Manager [3], a commercial solid-modeling

kernel, to assign labels indicating the CAD operation likely

to have created the face, such as ExtrudeSide, ExtrudeEnd,

or Fillet, we provide more details in supplementary material.

Our segmentation network is similar to the classification

network with a small difference: we concatenate the shape

embedding to each of the node embeddings, and use a non-

linear classifier to output per-node logits. We additionally

include curve tangents and surface normals in the edge and

face input features, respectively.

To investigate the benefits of working with B-rep data

directly, we compare against established point and mesh-

based methods. We mesh the B-reps in the MFCAD dataset,

as previously described and discard 27 shapes that fail to

mesh. To generate point clouds for both the MFCAD and

ABC datasets, we first convert the B-reps into render-meshes,

i.e., non-watertight, disjoint meshes. We then sample the

triangles uniformly based on the surface area to generate

2048 points. The mapping between the faces and primitives

(edges, and points) are retained, so that we can perform a

per-face voting to compute face-level scores.

We train the models as before using the cross-entropy

loss. Considering each face in the B-rep as a data point,

we report the accuracy, per-class accuracy and intersection-

over-union (IoU) metrics in Table 2. Results show that UV-

Net solves the face segmentation problem in the MFCAD

dataset, outperforming their baseline method [6] and point

cloud-based methods by a wide margin. MeshCNN [16]

obtains very similar results to UV-Net; we suggest this is due

to the dihedral angle feature used, which many segmentation

labels in the MFCAD dataset strongly correlate with. Our

method achieves state-of-the-art results while operating on B-

reps directly and avoids the problem of producing consistent

meshing. We observe a similar trend with the ABC dataset.

Point cloud methods are unable to discover the topological

information necessary to identify rare classes, and suffer

from loss of fidelity.

4.2.3 Self-supervised learning

Learning from unlabeled data is important with solid models

since real-world labeled datasets are limited, and represen-

tation learning by an encoder-decoder scheme is non-trivial

due to a lack of B-rep decoders. We leverage contrastive

learning [44, 7, 17, 31] (CLR) and propose the following

transformations to create positive views for training on B-rep

data, each of which enforces a useful prior on the model.

Connected patch Extract a random node and its n-hop

neighbors (n ∈ {1, 2}). This implies that local patches in a

B-rep hint about the global shape.

Drop nodes Randomly delete nodes with uniform probabil-

ity (0.4) along with attached edges to encourage B-reps with

partially similar faces to be clustered together in the latent

space.

Drop edges Randomly delete edges with uniform probabil-

ity (0.4), to encourage B-reps that look similar visually, but

have different topology be clustered together.

Our CLR model has three components [7]. Given a B-rep

in UV-grid+graph representation G, we uniformly sample

two i.i.d. transformations T1 and T2 to obtain two positive

views T1(G) and T2(G). Occasionally (10% of the time), we

set T1 to the identity transformation so that the global shape

is available to the neural network to associate with the other

partial views. An ablation study for these transformations is

provided in the supplementary material.

Our UV-Net encoder extracts the 128D shape embeddings

hi and hj of positive pairs. A 3-layer non-linear projec-

tion head (MLP) with ReLU activations maps these embed-

dings to 64D latent vectors zi and zj . Given a mini-batch

of size N = 256, we compute {zk | k ∈ 1 . . . 2N}, and

bring together the positive pairs while treating the remaining

2(N − 1) data as negative examples, with the normalized

temperature scaled cross-entropy [7] loss.

We first use the SolidLetters dataset (upper case only

since CLR performs per-instance discrimination) to quantita-

tively understand how our method performs. After training
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Table 2: Solid face segmentation. The per-primitive scores refer to per-point scores for point cloud-based models and per-edge

scores for MeshCNN. The corresponding per-face scores are computed by voting the predictions from all primitives in a face.

Dataset Model
Accuracy Per-class accuracy Intersection-over-Union

#Param.

Per-face Per-prim. Per-face Per-prim. Per-face Per-prim.

MFCAD

UV-Net 99.95 ± 0.02 - 99.93 ± 0.20 - 99.87 ± 0.03 - 1.23M

UV-Net (xyz) 99.83 ± 0.06 - 99.80 ± 0.00 - 99.63 ± 0.06 - 1.23M

PointNet 32.13 ± 7.92 59.13 ± 7.54 16.20 ± 8.51 15.78 ± 8.17 7.15 ± 5.22 8.27 ± 4.66 0.87M

DGCNN 82.50 ± 2.46 91.60 ± 2.18 80.43 ± 4.51 78.80 ± 4.57 67.70 ± 4.73 78.67 ± 6.27 0.98M

GNN - - - - 93.60 [6] - 0.53M

MeshCNN 99.89 ± 0.01 98.52 ± 0.04 99.84 ± 0.03 98.29 ± 0.09 99.70 ± 0.06 95.93 ± 0.05 2.29M

ABC

UV-Net 88.87 ± 0.70 - 56.81 ± 0.93 - 50.37 ± 1.11 - 1.23M

UV-Net (xyz) 77.33 ± 0.48 - 47.38 ± 0.54 - 38.99 ± 0.42 - 1.23M

PointNet 40.77 ± 1.79 61.27 ± 0.55 19.87 ± 0.51 25.53 ± 0.32 11.10 ± 0.70 18.47 ± 0.31 0.87M

DGCNN 54.18 ± 3.19 67.80 ± 0.59 27.30 ± 1.34 34.93 ± 1.52 18.14 ± 1.97 26.26 ± 1.27 0.98M

Figure 4: Self-supervised shape retrieval on SolidLetters and

ABC datasets. Column 1: Query, Columns 2–11: Retrieved

results sorted left to right by distance in latent space.

the model for 350 epochs, we extract the shape embeddings

of the test set and perform k-means clustering to generate 26
clusters. We measure the clustering quality against ground

truth clusters (labels) using the adjusted mutual-information

metric [37]. We also classify the shape embeddings using

a linear Support-Vector Machine (SVM) and compute the

classification accuracy. Results in Table 3 show that the

shape embeddings obtained with our CLR model is rich with

category information even though it is trained without labels.

To perform shape retrieval, we take random shape em-

beddings from the test set of SolidLetters and ABC (random

20% split) as queries, and compute their k-nearest neighbors

Table 3: Quality of self-supervised shape embeddings ob-

tained with our contrastive learning method on SolidLetters.

Method Score (%)

Linear SVM 79.40 ± 0.20

K-means clustering 58.17 ± 0.25
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Figure 5: Sensitivity of input representations and methods

to sampling resolution for machining feature classification.

in the UV-Net shape embedding space as shown in Figure 4.

The results demonstrate that our CLR approach is viable,

and shows high potential to learn from large-scale unlabeled

CAD datasets, an unaddressed problem until now.

4.3. Sensitivity to sampling

We now study the effect of the sampling resolution on the

accuracy produced by the network. A robust method should

degrade gracefully when the sample count is reduced, or

leverage other information to produce consistent results. The

classification networks are all trained with reduced resolution

data and the accuracy is reported in Figure 5. We see that
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Figure 6: Ablation study with input features and components

of UV-Net on the MFCAD segmentation problem.

our method is robust to sampling resolution in the machining

feature detection task. This is because we not only capture

the geometry, but also the topological information that can

be leveraged for the task. Moreover, every face in the solid

is seen by UV-Net regardless of its surface area, while other

representations suffer from loss of fidelity.

4.4. Feature and architecture ablation

Here we study the importance of the input features, and

network components on the MFCAD segmentation problem:

Full UV-Net (xyz only) : We remove the normals from the

set of input features but use the full architecture.

UV-Net (Face only) : This is similar to the full architec-

ture, but without the input curve features and curve CNN

(fΘ(huv) term in Eq. 1 and entire Eq. 2 are removed).

Face features only : We replace the GNN portion of the

network with an MLP (similar parameter count as the GNN).

Edge features are also removed since they cannot be consid-

ered without a message-passing scheme.

Topology only : We remove the curve and surface CNNs,

and set the edge and node attributes of the graph as noise

sampled from a normal distribution, so that the network is

forced to solve the task with topology features only.

These networks are trained for 100 epochs on the MF-

CAD segmentation task and the IoU score is compared

against the full model. The benefits of jointly considering

the geometric features and topology as proposed is evident

from Figure 6, and validates the merits of our approach.

4.5. Invariance to reparametrization

A solid can be altered in subtle ways without changing

the 3D appearance by reparametrizing the curve/surface ge-

ometry. This can occur when converting models from one

format to another (e.g. STEP to SAT), changing the surface

type (e.g. plane to spline), or as a result of some high level

CAD modeling operation. The UV-grid is to a large extent

invariant to common reparametrizations as discussed earlier.

On the other hand, reversing a surface parametrization

along the u- or v-axis amounts to flipping the UV-grid about

the same axis, while transposing the surface parametrization

by exchanging the u- and v-axis is equivalent to rotating and

Table 4: Effect of reparametrizing the SolidLetters classifi-

cation test set on UV-Net.

Convolution Reparametrized Test Accuracy

Regular
No 96.74 ± 0.06

Yes 55.98 ± 2.36

D2 equivariant
No 96.58 ± 0.01

Yes 96.59 ± 0.02

flipping the UV-grid. Flips about u- and v-axis and rotations

by {k π
2 | k ∈ [0, 1, 2, 3]} belong to the Dihedral symmetry

group D2, and regular image convolutions are not invariant to

them as we show in Table 4. We see that randomly perform-

ing these transformations to surfaces in the test set but not

the training set affects the classification accuracy. However,

employing D2 group equivariant convolutions [42] followed

by a group pooling layer in the surface CNN (Section 3.1)

makes the model resilient to these reparametrizations.

5. Conclusion

We have presented UV-Net, a neural network and repre-

sentation that can work on B-rep data, and leverage existing

image and graph convolutional neural networks. We have

shown its benefits and versatility on both supervised and

self-supervised tasks spanning five B-rep datasets, outper-

forming other representations such as point clouds, voxels,

and meshes. In addition, we introduced SolidLetters, a new

synthetic B-rep dataset with variations in both geometry

and topology. We believe our work can unlock data-driven

applications in established CAD modeling pipelines, and

revitalize research interest in this domain.

Limitations & future work We fixed the sampling step

size for each curve or surface regardless of its geometry.

Choosing the step using derivatives [47, 20] or learning it

in a task-dependent manner could be an interesting exten-

sion. While UV-grids are versatile, we did not exploit other

information available in the B-rep such as curve and surface

types, edge convexity, halfedge ordering, etc. which might

prove useful in certain applications. Finally, our UV-grid

features are not rotation-invariant. Although we can use lo-

cal coordinates for each UV-grid [11, 10] or switch to other

features like mean-curvature, this may make the network

lose sight of the relative orientation of various faces and

edges. We leave the detailed study of various invariances to

future work. We also believe there is tremendous potential

to improve our self-supervised method for transfer learning

from large datasets like ABC. Finally, it is worth investi-

gating how ideas from this work can be adapted to other

representations like subdivision surfaces, where the limit

surface can be parametrized as a regular structure using the

faces of the control mesh.
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