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Efficient surface modification strategies are crucial for the development of novel 

functional materials, surfaces and nanoparticles.[1] Among different surface coating methods, 

polydopamine (PD) coatings[2] have attracted great interest due to their ease and generality, as 

well as their applicability to almost any substrate.[2-4] A typical PD coating can be performed 

by immersing a substrate into a dopamine aqueous solution at basic pH.[2] In addition, PD 

coatings are reactive and can be post-modified by a variety of functional molecules, such as 

thiols,[2] amines,[5] acyl halides,[6] or by metal ions such as Ag+ and Cu2+.[2,7] Owing to these 

advantages, PD coatings were applied for new adhesive surfaces,[8a] for surface 

immobilization of proteins and nucleic acids,[8b,c] and for the formation of bio-arrays.[8d,e,f,g] 
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These PD coated surfaces have been exploited to create anti-bacterial surfaces,[5a,8c] adhesive 

binders[8h], conductive electrodes[8i] as well as for the functionalization of nanoparticles.[7,8j,k,l] 

However, the current PD coating method exhibits some critical limitations. The main 

drawbacks are the inability to effectively control the onset and termination of the dopamine 

polymerization,[2,9] as well as the very slow kinetics of the process, which can take from 

several hours[10] to a few days.[2] This limits the scope of possible applications of dopamine 

polymerization and makes formation of functional PD micropatterns difficult.[2,8b,d,e,f,1,m] 

 Here, we report that dopamine polymerization can be triggered by UV irradiation. 

Moreover, the polymerization can be induced or stopped using UV light as a trigger. UV-

assisted PD coating and photopatterning were demonstrated on different substrates. The UV-

triggered dopamine polymerization and deposition was investigated by ellipsometry, X-ray 

photoelectron spectroscopy (XPS), X-Ray Reflectometry (XRR) and Time-of-Flight 

Secondary Ion Mass Spectrometry (ToF-SIMS). 

A possible mechanism of dopamine polymerization is shown in Figure S1. Dopamine is 

first oxidized and rearranged/further oxidized into different quinone structures, which finally 

participate in the polymerization step. It has been shown that partial removal of oxygen by 

purging with argon slows down the kinetics of dopamine polymerization,[2] indicating an 

important role of oxygen in this process.[9] In addition, basic conditions (pH 8.5) are required 

to promote and accelerate the dopamine-quinone oxidation and the dopamine polymerization 

(Figure S1).[9b] However, strong oxidants, such as ammonium persulfate and sodium periodate, 

were shown to induce dopamine polymerization even under neutral or acidic conditions.[9c,12a]  

Reactive oxygen species (ROS), including singlet oxygen (1O2), superoxide radicals (O2
-

•), or hydroxyl radicals (OH), are more active than molecular oxygen and are known to be 

generated under UV irradiation.[12] Taking this into account, we hypothesized that ROS could 

play the role of the oxidant required to initiate the dopamine polymerization, thereby 

controlling the process in situ upon UV irradiation (Figure 1).  
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In order to verify that dopamine polymerization can be initiated by UV light, the UV-Vis 

spectra of dopamine solutions (2 mg/ml) were measured after UV irradiation. The experiment 

was performed using Tris buffer solutions at pH 8.5 (commonly used for PD coatings[2]) and 

at pH 7.0 (at which dopamine polymerization is usually very slow). The solutions were 

irradiated with UV light (260 nm, 7.5 mW cm-2, HgXe lamp) to achieve continuous 

generation of ROS. Figure 2 shows the time-dependent change of color (Figure 2a) as well as 

the change of absorbance at 420 nm (Figure 2b) of the irradiated dopamine solutions (open 

symbols), and the non-irradiated samples used as a control (filled symbols). As depicted on 

Figure 2a, for dopamine solutions at pH 7.0, UV-irradiated solutions turned dark yellow after 

2 hours, while the color change was almost imperceptible in the non-irradiated solutions.  

The observed color changes were also confirmed by the UV-Vis spectroscopy (Figure 2b 

and S3). The absorbance at 420 nm of the irradiated sample increased from 0 to 1.4 after 2 

hours of irradiation, while the non-irradiated solution showed only a small absorbance change 

from 0 to 0.26 (Figure 2b). The basic solutions at pH 8.5 exhibited the same tendencies. UV-

irradiated solutions showed darker color (Figure 2a) and higher change in the UV-Vis 

absorbance at 420 nm after 2 hours of UV (Figure 2b, 0 - 1.6 under UV, and 0 - 0.75 in the 

dark). Moreover, for the dopamine solutions at pH 8.5, precipitation of large PD particles 

visible with the naked eyes was observed after 90 min of UV irradiation. On the contrary, no 

PD particles were observed in the non-irradiated samples after 120 min. The above 

experiments clearly indicate that UV irradiation accelerates dopamine polymerization. 

Previously, it was shown that polymerization of dopamine under acidic conditions was 

completely inhibited in the absence of strong oxidants,[9b,13] which was confirmed by our 

results (Figure S4). However, the irradiation of the dopamine solution with UV light triggered 

the dopamine polymerization even under acidic conditions (Figure S4). On the other hand, we 

also observed a clear decrease of the kinetics of dopamine polymerization upon decrease of 

pH from 8.5 to 2.0 (Figure S4). 
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According to the previous reports, dopamine polymerization under basic conditions can 

be slowed down by reducing the amount of O2 in the solution, which plays the role of an 

oxidant in the course of dopamine polymerization. In order to test whether the dopamine 

polymerization under UV light is based on a possible radical mechanism, oxygen-rich and 

oxygen-scarce argon-purged solutions were irradiated with UV light as well as were kept in 

the dark. The results (Figure S5) showed that the reduction of oxygen in the dopamine 

solution led to a decrease in the polymerization kinetics even under UV irradiation. Since 

oxygen is well known for its ability to trap radicals and inhibit radical polymerization, the 

result confirmed that UV-initiated dopamine polymerization was not based on a free radical 

mechanism.  

The observed acceleration of the dopamine polymerization under UV light may be 

explained by ROS, which can be generated even from traces of O2. To confirm that UV-

triggered dopamine polymerization is an oxidation-induced process, 2 mg/mL of ascorbic acid 

(vitamin C, an efficient antioxidant and ROS scavenger)[14] was added to the dopamine 

solution in order to avoid the generation of ROS during UV irradiation. No polymerization 

was observed even after 2 hour UV irradiation at pH 7.0 or at pH 8.5 (Figure S6a). This 

confirms that UV-triggered dopamine polymerization also depends on dopamine oxidation 

which can be triggered by ROS. Additionally, we also showed that hydroxyl radicals (OH, an 

active ROS), produced using the Cu2++H2O2 system,[15] could stimulate the dopamine 

polymerization at pH 7.0 without UV irradiation (Figure S6b). 

 The half-life of the generated ROS is usually very short (e.g., ~4 μs for singlet oxygen 

in water, 1 μs for hydroxyl radicals).[16] Taking this into account, we hypothesized that under 

neutral and acidic conditions, UV triggered dopamine polymerization can be controlled by the 

UV dose. To investigate this, an argon-purged dopamine aqueous solution at pH 7.0 (Tris 

buffer) was irradiated with UV for 10 min (ON), followed by 30 min without UV (OFF). The 

ON-OFF cycle was repeated three times and the absorbance of the solution at 420 nm was 
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tested after each step. The result depicted in Figure 2c shows that absorbance of the dopamine 

solution only increases upon UV irradiation. No absorbance increment was observed when the 

solution was not irradiated. This phenomenon can be explained by the high reactivity and 

short half-life of the UV generated ROS. Thus, as opposed to the base-induced dopamine 

polymerization, the UV-triggered polymerization at neutral or acidic pH can be conveniently 

controlled by properly regulating the “ON/OFF” mode of the respective irradiation. 

Having shown the effect of UV irradiation on triggering and controlling dopamine 

polymerization, UV-promoted formation of PD layers on silicon substrates was investigated 

by ellipsometry, X-ray Photoelectron Spectroscopy (XPS), X-Ray Reflectometry (XRR) and 

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). 

Four silicon wafers coated with PD under the following conditions were explored: (a) 

dark, pH 8.5; (b) UV, pH 8.5; (c) dark, pH 7.0; (d) UV, pH 7.0. According to the XPS spectra 

(Figure 3a), the peak corresponding to nitrogen (N1s) was found only in samples prepared by 

UV-triggered dopamine polymerization (pH 8.5 and pH 7.0) and by non-irradiated base-

catalyzed dopamine polymerization (pH 8.5), confirming the existence of PD on the 

substrates. C1s XPS data are presented in Figure 3b. For samples where PD coating was 

found (“UV, pH 8.5”, “UV, pH 7.0” and “dark, pH 8.5”), N/C ratios were 1:6, 1:8 and 1:8, 

respectively. The last two N/C ratio values are the same as was previously reported for the PD 

structure.[2] However, the N/C ratio for the “UV, pH 8.5” sample (1:6) indicates possible 

binding of the Tris molecules to the PD. 

A time-dependent ellipsometry measurement of the PD thickness on silicon wafers is 

shown in Figure 3c. An acceleration of PD deposition under UV irradiation is clearly 

observed. As shown in Figure 3c, for surfaces in neutral solution, without UV irradiation 

(dark, pH 7.0) no PD layer was formed on the wafer, while for the UV-irradiated samples 

(UV, pH 7.0), a PD layer of 4 nm was obtained after 2h of irradiation. Similarly, samples at 

pH 8.5 with UV irradiation exhibited higher PD deposition rate (~4 nm in 2h) than the non-
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irradiated samples (~2 nm in 2h). These results confirm that UV irradiation can accelerate 

both the dopamine polymerization and formation of PD layers on solid surfaces.  

With the purpose to validate the results obtained by ellipsometry, the thickness of PD 

coatings obtained after 30 min in the dopamine solution was also characterized by XPS. From 

the attenuation of the Si 2p substrate signal in XPS measurements and assuming a 

homogeneous overlay we estimated the PD thicknesses to be 1.3 nm, 0.4 nm and 0.8 nm for 

the “UV, pH 8.5”, “dark, pH 8.5” and “UV, pH 7.0” samples, respectively. These values are 

close to those obtained by ellipsometry (1.8 nm, 0.5 nm and 0.5 nm, respectively). X-Ray 

Reflectivity (XRR) measurement was also employed to confirm the results of the ellipsometry 

(Figure S7). The morphology and thickness of a UV-triggered PD layer prepared on a silica 

surface was also measured by AFM and the result confirmed the formation of a homogeneous 

PD layer of several nm thickness with a nanostructured surface (Figure S8 and Figure S9). 

The structure of UV-triggered PD was investigated by ToF-SIMS. Figure 3d shows the 

negative ion mass spectrum of the PD formed by UV-triggered polymerization (30 min UV 

irradiation, pH 7.0, Tris buffer). A strong signal corresponding to the dopamine dimer 

fragment can be observed at m/z 297. The results obtained by ToF-SIMS confirm that the 

UV-triggered PD has a similar structure to the base-triggered PD. 

Considering that one of the major advantages of the base-induced PD coating is its 

applicability to different substrates,[2,8] we investigated the UV-triggered deposition of PD on 

glass, gold, silicon wafer and alumina surfaces (Figure S10). The water contact angles (WCA) 

on these surfaces varied from 11~64° before coating and changed to ~40° after 30 min of UV 

irradiation at pH 7.0, indicating coverage of the substrates with a PD layer.  

One of the main advantages of all photochemical surface functionalization methods is 

the ability to create two-dimension functional surface patterns. Formation of 2D patterns of 

PD using the base-catalyzed method is difficult due to the poor controllability of the 

polymerization. Here we show that the UV triggered PD deposition is perfectly suited for the 
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formation of 2D PD surface patterns. As shown in Figure 3c, no PD is deposited on the 

silicon wafer after 120 min in neutral solution without UV light, while a 4 nm PD layer is 

obtained in the corresponding UV-irradiated sample. Figure 4a depicts the TOF-SIMS 

mapping results of a PD pattern prepared by irradiating a dopamine solution (2 mg/ml) at pH 

7.0 through a photomask (see supporting information for details). Figure 4b shows a 

microscopy image of a silver nanoparticle pattern, which is formed by immersing a PD 

pattern, produced on a porous polymethacrylate substrate, into a 50 mM AgNO3 aqueous 

solution for 18 hours.[2] Figure 4c shows a fluorescence image of a dye pattern formed by 

immersing the PD pattern in a Rhodamine-SH solution for 24 hours, followed by washing 

with acetone. 

In conclusion, a novel method allowing for the effective control of dopamine 

polymerization by UV light has been reported. Irradiation of a dopamine solution with UV 

light at both acidic and basic conditions showed a strong increase in the absorption of the 

solution at 420 nm – a characteristic peak of PD. Interestingly, the decrease of oxygen 

concentration in solution slowed down both the UV- and base-stimulated dopamine 

polymerization, indicating that both reactions involve an oxidation step and require oxygen. 

Additional experiments showed that ROS, such as hydroxyl radicals could accelerate the 

dopamine polymerization even under acidic conditions, while the addition of a ROS 

scavenger, could inhibit both the base- and UV-induced polymerization of dopamine at 

different pH. This indicates that the UV-triggered dopamine polymerization is based on the 

ROS generated under UV irradiation. Owing to the short half-life of ROS, we showed that the 

UV-induced dopamine polymerization could be easily controlled by the UV light (ON/OFF 

possibility). The UV-induced dopamine polymerization could be used to coat different 

materials including glass, silicon, or gold. It was also shown that the method was compatible 

with photopatterning and could be used to generate micropatterns of PD coating on different 

materials. The photopatterning method can potentially be employed on curved surfaces, 
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porous surfaces, or particles, where the micro contact printing method is difficult to apply. We 

anticipate that the presented evidence for the UV-induced dopamine polymerization as well as 

the ability to form precise surface micropatterns of PD will lead to various applications of this 

method in the development of novel functional surfaces, materials, and devices. 
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Figure 1. Dopamine polymerization under different conditions. a) Acidic conditions – no 

polymerization.9b b) Basic conditions – fast polymerization.2,9b c) Acidic, neutral or basic 

conditions, with strong oxidants – fast polymerization.9a,12a d) Acidic, neutral or basic 

conditions, with UV irradiation – fast polymerization. 

 

 

 
Figure 2 Color and absorbance change of dopamine solutions. a) Photographs of the 

corresponding dopamine solutions at different time points. b) Absorbance of the dopamine 

solution (2 mg/ml) at 420 nm as a function of time and pH. c) Change of absorbance (at 420 

nm) of a low oxygen containing dopamine solution under UV irradiation at 254 nm ( ) and in 

the dark ( ). Dopamine solution (pH 7.0, purged with argon for 10 min) was irradiated for 10 

min, followed by 30 min in the dark. The cycle was repeated 3 times. 
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Figure 3 Surface characterization on surfaces coated with UV triggered PD. a) N1s XP 

spectra of “UV, pH 8.5”, “UV, pH 7.0”, “dark, pH 8.5” and “dark, pH 7.0” samples. b) C1s 

XP spectra of “UV, pH 8.5”, “UV, pH 7.0”, “dark, pH 8.5” and “dark, pH 7.0” samples. c) 

Time-dependent PD thickness during the coating process, measured by ellipsometry. 

Samples:   pH 8.5, UV.  pH 8.5, dark.  pH 7.0, UV.  pH 7.0, dark. d) ToF-SIMS 

spectum obtained from the UV triggered PD surface. The mass spectrum of the coated PD 

(dopamine concentration 2 mg/mL, pH 7.0, UV for 30 min) shows a dimer structure of 5,6-

dihydroxyindole, possibly fragmented from a long-chain polymer of similar composition. A 

series of peaks, referring to different fragments of the polymer, could be observed in the 

spectrum. 
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Figure 4 Photopatterning of PD. a) ToF-SIMS characterization of a PD pattern produced by 

photopatterning on a silicon wafer surface (CN- intensity map). b) Bright-field microscope 

image of a silver nanoparticle pattern produced on a PD patterned surface. c) Red 

fluorescence pattern formed by a treatment of the PD pattern with a Rhodamine-thiol solution . 

The scale bars are 1 mm. 
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Table of contents: We demonstrate that UV irradiation initiates dopamine 

polymerization and deposition on different surfaces under both acidic and basic pH. The 

observed acceleration of the dopamine polymerization is explained by the UV-triggered 

formation of reactive oxygen species that trigger dopamine polymerization. The UV-induced 

dopamine polymerization leads to a better control over polydopamine deposition and 

formation of functional polydopamine micropatterns.  
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