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Abstract

In today’s world, more and more functionalities in the form of IP cores are integrated into a single

chip or SOC. System-level verification of such large SOCs has become complex. The modern

trend is to provide pre-designed IP cores with companion Verification IP. These Verification IPs

are independent, scalable, and reusable verification components. The SystemVerilog language

is based on object-oriented principles and is the most promising language to develop a complete

verification environment with functional coverage, constrained random testing and assertions.

The Universal Verification Methodology, written in SystemVerilog, is a base class library of

reusable verification components. This paper discusses a Universal Verification Methodology

based environment for testing a Wishbone compliant SPI master controller core. A multi-layer

testbench was developed which consists of a Wishbone bus functional model, SPI slave model,

driver, scoreboard, coverage analysis, and assertions developed using various properties of Sys-

temVerilog an the UVM library. Later, constrained random testing using vectors driven into the

DUT for higher functional coverage is discussed. The verification results shows the effectiveness

and feasibility of the proposed verification environment.
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Chapter 1

Introduction

The rapid development of modern integrated circuits not only increased the complexity of inte-

grated circuit (IC) design, but also made the IC verification equally challenging. Around 70% to

80% of the entire design cycle time is allotted to verification, and traditional verification method-

ologies are no longer able to support current verification requirements [1]. In 2002, the Accellera

Systems Initiative released SystemVerilog (SV) a a unified hardware design and verification lan-

guage. SystemVerilog language was an amalgamation of constructs from different languages

such as Vera, Super Log, C, Verilog and VHDL languages. Moreover, in 2005 IEEE standard-

ized (1800-2005) SystemVerilog. SystemVerilog supports behavioral, register transfer level, and

gate level descriptions. SystemVerilog also supports testbench development by the inclusion of

object-oriented constructs, cover groups, assertions, constrained random constructs, application

specific interface to other languages [2].

Universal Verification Methodology (UVM) is a standardized verification methodology for

testbench creation an is derived form the Open Verification Methodology (OVM), and also in-

herits some features from Verification Methodology Manual (VMM). Use of the UVM standard

enables an increase in verification productivity by creating a reusable verification platform and
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verification components. The verification results of this work show the effectiveness and feasi-

bility of the proposed verification environment [3]

System on Chip (SoC) is used for intelligent control feature with all the integrated compo-

nents connected to each other in a single chip. To complete a full system, every SoC must be

linked to other system components in an efficient way that allows a faster error-free communi-

cation. Data communication between core controller modules and other external devices like

external EEPROMs, DACs, ADCs. is critical. Different forms of communication protocols ex-

ist such as high throughput protocols like Ethernet, USB, SATA, PCI-Express which are used

for data exchanges between whole systems. The Serial Peripheral Interface (SPI) is often con-

sidered as light weight communication protocol. The primary purpose of the protocol is that it

is suited for communication between integrated circuits for low and medium data transfer rates

with onboard peripherals and the serial bus provides a significant cost advantage.

1.1 Research Goals

The goal of this research work is to build a effective test bench that validates the SPI master

controller with the help of the WISHBONE bus function model and SPI slave model. The goal

is achieved with the following objectives:

• To understand SPI protocol architecture and WISHBONE specific requirements, to estab-

lish a connection between the test bench components and core controller.

• To apply advanced verification techniques such as Universal Verification Methodology and

Coverage Driven Functional Verification.

• To develop a reusable Verification IP for WISBONE compliant SPI master core.
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1.2 Contributions

The major contributions if this work include:

1. Research the SPI sub-system architecture, the Universal Verification Methodology, and

SystemVerilog.

2. Development of a WISBONE bus function model acting as an interface between the test

bench and the SPI master device under test (DUT) and SPI slave model in order to make

the verification closed loop testing.

3. Build hierarchical testbench components using UVM libraries and SystemVerilog con-

structs, constrained random stimulus, coverage and assertions.

4. Verify transmission of data with different character width and data formats.

1.3 Organization

The structure of the thesis is as follows:

• Chapter 2: This chapter consists majorly of articles/journals/books that are referred to

provide a foundation for building a layered test bench. It also discusses some of the new

methodologies and techniques for controller verification.

• Chapter 3: This chapter briefly describes the system verification, various components and

methodology associated with it.

• Chapter 4: The system architecture, theory of operation, controller configuration registers

of both WISHBONE and SPI described.



1.3 Organization 4

• Chapter 5: SPI test methodology, test bench components and bus function model are dis-

cussed in this chapter.

• Chapter 6: This chapter comprises of the verification results, conclusion and possible fu-

ture work.



Chapter 2

Bibliographical Research

SPI protocol is one of the widely used serial protocols used in a SoC compared to other protocols

such UART and I2C simply because SPI can operate in higher bandwidth and throughput [4].

SPI Protocol typically provides communication between the hosts side microcontroller and slave

devices. It is widely used owing to fewer control signals to operate with [5]. At the host side,

the specific SPI core studied in this work acts like a WISHBONE compliant slave device. The

SPI master core controller consists of three main parts, Serial shift interface, clock generator and

WISHBONE interface. The SPI core controller has five 32-bit registers which can be configured

through the WISHBONE interface. The serial interface consists of slave select lines, serial clock

lines, as well as input and output data lines. The data transfers are full duplex in nature and

number of bits per transfer is programmable [6].

It is possible to have high speed SPI Master/Slave Implementation of range 900 – 1000 MHz.

The core can be designed with greater ways to control SPI-bus such as the flexibility of handling

two slaves at a time. One important feature is configured by programming the control register of

the core through which the SPI module can be made to either operate in master or slave mode.

During operation, the SPI status register gives information such as the current position of the
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data transfer operation, whether the data transfer has completed or not, etc. [7]. Another key

feature is the flexibility of designing the SPI Interface IPs for multiple devices using parameter-

ization method. Advanced design techniques, such as Time Sharing Multiplex (TSM), is used

to automatically identify the master/slave devices and achieve multi-master devices. Using TSM

the disadvantage of communication among multiple devices are overcome [8].

Owing to the increasing complexity of the modern SoC, the verification has become more

challenging. In fact 70% of the product development time is spent on complex SoC verification.

Reducing the verification effort is the key for time to market challenge. In order to cater to

such growing complexity advanced verification methodologies are employed. IP verification

requires in depth functional coverage with constraint random simulation technique. Various

components such as coverage monitors and scoreboards are used for this purpose [9]. For a

communication protocol like the SPI communication protocol, it has to be verified as per the

design specifications. Applying constrained random technique for higher functional coverage

provides effective verification result [10].

For many years, EDA vendors have been proposing newer verification methodologies and

languages. For any system level verification methodology and language to be successful, the key

lies in the scalability and reusability of the verification components developed. SystemVerilog

with object-oriented programming is considered as one of the most promising techniques for

high level function verification for current complex SOC designs. SystemVerilog provide com-

plete verification environment, with direct and constrained random generation, assertion based

verification and coverage driven metrics [11].

The Universal Verification Methodology (UVM) is the latest functional verification method-

ology, it uses base class libraries coded in SystemVerilog. UVM is built upon previous method-

ology libraries such as Mentor’s AVM, Mentor & Cadence’s OVM, Verisity’s eRM, and Syn-

opsys’s VMM-RAL. This standardization allows users to implement verification modules that
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are portable and highly compatible. Such modules are called as Verification components. They

are encapsulated and made ready to use configurable verification environments for full systems,

submodules, or protocols. The comprehensive base class library forms the foundation for such

applications. It is simulation-oriented, and performs coverage-driven constrained random verifi-

cation, assertion-based verification, hardware acceleration or emulation [12].

Pre-designed and pre-verified is the corner stone of any new modern SoC development. IP

blocks developed are reusable in nature and for most blocks one or more bus protocols play a

very important role to make these IPs to adapt to a plug and play concept thereby increasing the

productivity with a reduction in design time. The WISHBONE System on Chip interconnection

is a method to connect different IP cores to form integrated circuits. The core objective behind the

WISHBONE bus is to create a standard, portable interface that supports both ASIC and FPGA

and technology independent [13]. The SPI protocol is developed using other bus protocols such

as On-Chip Peripheral Bus [14]. A Bus Function Model (BFM) is use to verify IPs that are

compatible with bus protocol such as the WISHBONE bus. The need for such models is to

create a standalone interface that can receive transaction from the test bench from one side and

on the other side operate as a master device on the bus an behave and send commands to the

device under test [15].



Chapter 3

System Verification

3.1 State of the art

Hardware description languages are tools used by engineers to specify abstract models of dig-

ital circuits to translate them into real hardware, as the design progresses towards completion,

hardware verification is performed using Hardware verification languages like SystemVerilog.

The purpose of verification is to demonstrate the functional correctness of a design. Verification

is achieved by means of a testbench, which is an abstract system that provides stimulus to the

inputs of design under test (DUT). Functional verification shows that design implementation is

in correspondence to the specification. Typically, the testbench implements a reference model

of the functionality that needs to be verified and compare the results from that model with the

results of the design under test. The role of functional verification is to verify if the design meets

the specification but not to prove it [16].

The traditional approach to functional verification relies on directed tests. Verification engi-

neers conceive and apply a series of critical stimulus directly to the device under test, and check

if the result is the expected one. This approach produces quick initial results because little ef-
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fort is required for setting up the verification infrastructure. But as design complexity grows, it

becomes a tedious and time-consuming task to write all the tests needed to cover 100% of the

design. Random stimuli help to cover the unlikely cases and expose the bugs. However, in or-

der to use random stimuli, the test environment requires automating process to generate random

stimulus, there is a need of a block that predicts, keeps track of result and analyses them: a score-

board. Additionally, functional coverage is a process used, to check what cases of the random

stimulus were covered and what states of the design have been reached. This kind of testbench

may require a longer time to develop, however, random based testing can actually promote the

verification of the design by covering cases not achieved with directed tests [16].

3.2 UVM Overview

The UVM methodology is as a portable, open-source library from the Accellera Systems Initia-

tive, and it should be compatible with any HDL simulator that supports SystemVerilog. UVM

is also based on the OVM library which provides some background and maturity to the method-

ology. A key feature of UVM includes re-usability though the UVM API and guidelines for a

standard verification environment. The environment is easily modifiable and understood by any

verification engineer that understands the methodology behind it [17].

3.3 UVM Class Hierarchy

Figure 3.1 shows a simple UVM testbench class hierarchy. The following UVM components

make up the hierarchy.
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Figure 3.1: UVM hierarchy

3.3.1 UVM Testbench Top

The UVM testbench typically includes one or more instantiations design under test modules and

interfaces which connect the DUT with the testbench. Transaction Level Modeling (TLM) inter-

faces in UVM provide communication methods for sending and receiving transactions between

components. A UVM Test is dynamically instantiated at run-time, allowing the UVM testbench

to be compiled once and run with many different tests [18].
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3.3.2 UVM Test

The UVM test is the top-level UVM component class under UVM testbench. The UVM Test

typically performs keys tasks like: configures values in config class and apply appropriate stim-

ulus by invoking UVM sequences through the environment to the DUT. Base test class instan-

tiates and configure the top-level environment; further individual tests will extend the base test

to define scenario-specific environment configurations such as which sequences to run, coverage

parameters, etc [18].

3.3.3 UVM Environment

The UVM environment is a container component class that groups together interrelated UVM

verification components such as scoreboards, agents or even other environments. The top-level

environment is a reusable component that encapsulates all the lower level verification compo-

nents are targeting the DUT. There can be multiple tests that can instantiate the top-level envi-

ronment class to generate and send different traffic for the selected configuration. UVM Test

can override the default configuration of the top-level environment. Master UVM environment

can also instantiate other child environments. Each interface to the DUT can have the sepa-

rate environment. For example, UVM would be used to create reusable interface environments

such as PCIe environment, USB environment, cluster environments, e.g., a CPU environment, IP

interface environment, etc [18].

3.3.4 UVM Agent

The UVM agent is a container component class. Agent groups together different verification

components that are dealing with a particular interface of DUT. The Agent includes other com-

ponents such as sequencer that manages stimulus flow, the driver that applies stimulus to the
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DUT input and monitor that senses the DUT outputs. UVM agents can also include other com-

ponents, like a TLM model, protocol checkers, and coverage collectors. The sequencer collects

the sequences and sends to the driver. The driver then converts a transaction sequence into signal-

level at DUT interface. Agent can operate in two kinds of mode active agent and passive agent.

Active agent can generate stimulus, whereas passive agents only sense the DUT (sequencer and

driver are disabled). Driver has a bidirectional interface to the DUT, while the Monitor has only

unidirectional interface[18].

3.3.5 UVM Sequence Item

A UVM sequence item is the lowest object present under the UVM hierarchy. The sequence-item

defines the transaction data items and constraints imposed on them; for example, AXI transaction

and it is used to develop sequences. The concept of the transaction was created to isolate Driver

from data generation but to deal with DUT interface pin wiggling activities at the bit level.

UVM sequence items can include variables, constraints, and even function call for operating on

themselves[18].

3.3.6 UVM Sequence

After creating a UVM sequence item, the verification environment has to generate sequences

using the sequence item that could be sent to the sequencer. Sequences are a collection of ordered

sequence items. The transactions are generated based on the need. Since the sequence item

variables are typically random type, sequence helps to constrain or restrict the set of values sent

to the DUT. Ultimately helps is reducing simulation time [18].
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3.3.7 UVM Driver

A UVM Driver is a component class where the transaction-level sequence item meets the DUT

clock/ bit/ pin-level activities. Driver pulls sequences from sequencer as inputs, then converts

those sequences into bit-level activities, and finally drive the data onto the DUT interface ac-

cording to the standard interface protocol. The functionality of driver is restricted to send the

appropriate data to the DUT interface. Driver can well off course monitor the transmitted data,

but that violates modularity aspects of UVM. Driver uses TLM port (seq_item_port) to receive

transaction items from sequencer and use interface to drive DUT signals[18].

3.3.8 UVM Sequencer

The UVM sequencer controls request and response flow of sequence items between sequences

generated and the driver component. UVM sequencer acts like an arbiter to control transaction

flow from multiple sequences. UVM sequencer use TLM interface method seq_item_export and

UVM driver use TLM interface method seq_item_import to connect with each other [18].

3.3.9 UVM Monitor

The UVM monitor does things opposite to that of UVM driver. Monitor takes the DUT signal-

level/bit-level values and converts into transactions to needs to be sent to the rest of the UVM

components such as scoreboard for analysis. Monitor uses analysis port to broadcasts the cre-

ated transactions. In order to adhere to the modularity of the UVM testbench, comparison with

expected output is usually performed in a different UVM component usually scoreboard. UVM

monitor can also perform processing on post converted transaction such as collecting the cover-

age, recording, logging, checking, etc. or delegate the work to other components using monitor’s

analysis port [18].
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3.3.10 UVM Scoreboard

The UVM scoreboard implements checker functionality. The checker usually verifies the DUT

response against an expected DUT response. The scoreboard receives output transactions from

the monitor through agent analysis ports, and can also receive expected output from a reference

module. Finally, the scoreboard compares both received DUT output data versus expected data.

A reference model can be written in C, C++, SystemC, or simply a SystemVerilog model. The

SystemVerilog Direct Programming Interface (SystemVerilog-DPI) API is used integrate refer-

ence models written in C, C++, etc., and allows them to communicate with the scoreboard [18].

3.4 UVM Transaction Level Communication Protocol

Transaction refers to a class object that includes necessary information needed for communica-

tion between two components. Simple example could be a read or write transaction on a bus.

Transaction-level modeling (TLM) is an approach that consists of multiple processes commu-

nication with each other by sending transaction back and forth through channels. The channels

could be FIFO or mailbox or queue. The advantages of TLM are it abstracts time, abstracts data

and abstracts function.

3.4.1 Basic Transaction Level Communication

TLM is basis for modularity and reuse in UVM. The communication happens through method

calls. A TLM port specifies the API or function call that needs to be used. A TLM export

supplies the implementation of the methods. Connections are between ports and exports and

not between components. The ports and exports are parameterized by the transaction type being

communicated. TLM supports both blocking (put, get/peek) and non-blocking (try_put, try_get/
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try_peek) methods. If there are multiple transaction that needs to be communicated TLM FIFO

are used. In this way the producer need not wait until consumer consumes each transaction.

3.4.2 Analysis ports and Exports

Analysis ports supports communication between one to many components. These are primarily

used by coverage collectors and scoreboards. The analysis port contains analysis exports con-

nected to it. When a UVM component class calls analysis port write method, then the analysis

port iterates through the lists and calls write method of appropriate connected export. Similar to

that of TLM FIFO Analysis ports also extends the feature to support multiple transaction.

3.5 UVM Phases

All the UVM classes in section 3.3 have different simulation phases. UVM uses phases as or-

dered steps of execution. Phases are implemented as methods. When deriving a new component

class, the testbench simulation will go through different steps to connect, construct and configure

each components of the testbench component hierarchy. Moreover, if a particular phase is not

needed in some of the component class, it is possible to ignore that particular phase, and the

compiler will include in its compilation process. UVM phases are represented in Figure 3.2 [19].

3.5.1 Build Phase

The build phase instantiate UVM components under the hierarchy. Build phase is the only top-

down phase among all other UVM phases. For example, the build phase of the env class will

construct the classes for the agent and scoreboard [19].
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Figure 3.2: UVM Phases

3.5.2 Connect Phase

The connect phase connects UVM subcomponents of a class. Connect phase is executed from

the bottom up. In this phase, the testbench components are connected using TLM connections.

Agent connect phase would connect the monitor to the scoreboard.
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3.5.3 End of Elaboration Phase

Under this phase actions such as checking connections, setting up address range, initializing

values or setting pointers and printing UVM testbench topology etc. are performed.

3.5.4 Start of Simulation Phase

During start of simulation environment is already configured and ready to simulate. In this phase

actions such as setting initial runtime configurations, setting verbosity level of display statements,

orienting UVM testbench topology to check for correctness etc., are performed.

3.5.5 Normal Run Phase

The run phase is the main execution phase, actual simulation of code will happen here. Run

phase is a task and it will consume simulation time. The run phases of all components in an

environment run in parallel. Any component can use either the run phase or the 12 individually

scheduled phase. This phase starts at time 0. It is a better practice to use normal run phase task

for drivers, monitors and scoreboards.

3.5.6 Scheduled Run Phase

Any component can use either the run phase or the 12 individually scheduled phase.

3.5.6.1 Pre Reset Phase

Actions that need to be performed before the DUT is reset are done in this phase. Starts at 0ns

and coincides with the run phase start time.
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3.5.6.2 Reset Phase

In this phase, the actual reset of the DUT occurs. This can be accomplished by running a se-

quence at the reset interface agent. Often, the reset logic is driven from the top level itself.

3.5.6.3 Post Reset Phase

Post reset actions are done in this phase, like verifying that the device under test is in a specific

state.

3.5.6.4 Pre Configure Phase

This phase determines the configuration of the device under test.

3.5.6.5 Configure Phase

Sets the device under test to the desired state as determined in pre configure phase. This would

typically be register writes, table writes, memory initialization required for the device under test.

3.5.6.6 Post Configure Phase

Follows the configure phase.

3.5.6.7 Pre Main Phase

This phase executes before the main phase.

3.5.6.8 Main Phase

This phase executes and runs the actual test cases.



3.5 UVM Phases 19

3.5.6.9 Post Main Phase

Post main phase performs additional tests to verify that device under test behaved correctly based

on the main phase.

3.5.6.10 Pre Shutdown Phase

This phase gets ready for shutdown.

3.5.6.11 Shutdown Phase

Shutdown phase performs all end of test checks.

3.5.6.12 Post Shutdown Phase

This phase performs anything that needs to happen after the end of checks are done. Components

running in the run phase would end at the same time as the post-shutdown phase of components

running in the scheduled phase mode.

3.5.7 Extract Phase

In this phase, actions such as extracting data from scoreboard and DUT (zero-time back door),

preparing final statistics and closing file handlers etc. are performed.

3.5.8 Check Phase

Check phase checks the emptiness of the scoreboard, expected FIFOs and any backdoor accesses

to memory content.
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3.5.9 Report Phase

The reporting phase is used to furnish simulation results, also write the outputs to file.

3.5.10 Final Phase

Finally, this phase closes all file handles and display any messages.

3.6 UVM Macros

UVM macros are important aspect of the methodology. It is basically implemented methods that

are useful in classes and in variables. Some of the most commonly used Marcos are:

• ‘uvm_component_utils - This macro registers is used when new ‘uvm_component classes

are derived.

• ‘uvm_object_utils – Similar to ‘uvm_component_utils but instead used with ‘uvm_object.

• ‘uvm_field_int - Registers a variable into factory. And implements functions like com-

pare(), print(), and copy().

• ‘uvm_info – During simulation time this macro is used to print useful messages from the

UVM environment .

• ‘uvm_error - Sends messages with an error tag to the output log.



Chapter 4

System Architecture

4.1 WISHBONE Interface

The WISHBONE System-on-Chip Interconnection Architecture shown in Figure 4.1 for portable

and flexible IP Cores enables a design methodology for use with semiconductor IP cores. The

WISHBONE interface alleviates System-on-Chip integration problems and results in faster de-

sign reuse by allowing different IP cores are connected to form a System-on-Chip. As defined,

the WISHBONE bus uses both MASTER and SLAVE interfaces as part of the architecture. IP

cores with MASTER interfaces initiate bus cycle transactions, and the participating IP cores with

SLAVE interfaces can receive the designated bus cycles transactions. MASTER and SLAVE

IP cores communicate through an interconnection interface called the INTERCON. The IN-

TERCON is best thought of as a cloud that contains circuits and allows the communication

with SLAVEs. INTERCON includes Point-to-point interconnection, Data flow interconnection,

Shared bus interconnection and Crossbar switch interconnection [6]. WISHBONE Bus protocols

include the implementation of an arbitration mechanism in centralized or distributed bus arbiters.

The bus contention issue during the configuration of WISHBONE bus protocol is settled with
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Figure 4.1: Wishbone Interface

the help of a Handshaking protocol and through the deployment of various arbitration schemes

such as TDMA, Round Robin, CDMA, Token Passing, Static Priority etc. These strategies are

applied based on the specific application in WISHBONE Bus [20].

4.2 WISHBONE I/O Registers

Table. 4.1 refers to the wishbone interface signals used for our Serial Peripheral Interface com-

munication.

• wb_clk_i: All internal WISHBONE logic are sampled at the rising edge of the wb_clk_i

clock input.
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Table 4.1: WISHBONE I/O Ports
Port Width Direction Description

wb_clk_i 1 Input Master clock input

wb_rst_i 1 Input Asynchronous active low reset

wb_int_o 1 Output Interrupt signal request

wb_cyc_i 1 Input Valid bus cycle

wb_stb_i 1 Input Strobe/core select

wb_adr_i 32 Input Address bit

wb_we_i 1 Input Write enable

wb_dat_i 32 Input Data input

wb_dat_o 32 Output Data output

wb_ack_o 1 Output Normal bus termination

wb_stall_o 1 Output Stall communication

• wb_rst_i: wb_rst_i is active low asynchronous reset input and forces the core to restart. All

internal registers are preset, to a default value and all state-machines are set to an initial

state.

• wb_int_o: The interrupt request output is asserted back to the host system when the core

needs its service.

• wb_cyc_i: When the cycle input wb_cyc_i is asserted, it indicates that a valid bus cycle is

in progress. It needs to become true on (or before) the first wb_stb_i clock and stays true

until the last wb_ack_o. The logical AND function of wb_cyc_i and wb_stb_i indicates a

valid transfer cycle to/from the core. This logic is usually taken care of by the bus master.

• wb_stb_i: The strobe input wb_stb_i is true for any bus transaction request. While wb_stb_i

is true, the other wishbone slave inputs wb_we_i, wb_addr_i, wb_data_i, and wb_sel_i are

valid and reference the current transaction. The transaction is accepted by the slave core

any time when wb_stb_i is true, and at the same time, wb_stall_o is false.
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• wb_adr_i: The address array input wb_adr_i passes the binary coded address to the core.

The MSB is at the higher number of the array. Of the all possible 32 address lines, the

slave might only be interested in the relevant slave address

• wb_we_i: When the signal wb_we_i asserted, it indicates that the current bus cycle is a

write cycle. When de-asserted, it indicates that the current bus cycle is a read cycle.

• wb_dat_i: The data array input wb_dat_i is used to pass binary data from the current

WISHBONE Master to the core.

• wb_dat_o: The data array output wb_dat_o is the data returned by the slave to the bus

master as a result of any read request.

• wb_ack_o: When asserted, the acknowledge output wb_ack_o indicates the normal termi-

nation of a valid bus cycle. There must be only one clock cycle with wb_ack_o high.

• wb_stall_o: Controls the flow of data into the slave. It will be true in any cycle when

the slave can’t accept a request from the bus master, and false any time a request can be

accepted. It allows the slave core to control the flow of requests that need to be serviced

based on master inputs.

4.3 Serial Peripheral Interface

A Serial Peripheral Interface (SPI) module allows synchronous, serial and full duplex commu-

nication between a Microcontroller unit and peripheral devices and was developed by Motorola

in the mid 1980s. Figure 4.2 represents the structural connection between master and slave core.

The SPI bus is usually used to send and receive data between microcontrollers and other small

peripherals units such as shift registers, sensors, SD cards, etc. When compared to other proto-
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Figure 4.2: SPI Protocol

cols, the SPI protocol has the advantage of relatively high transmission speed, simple to use, an

uses a small number of signal pins. Usually, the protocol divides devices into master and slave

for transmitting and receiving the data. The protocol uses a master device to generate separate

clock and data signal lines, along with a chip-select line to select the slave device for which the

communication has to be established. If there is more than a slave device present, the master

device must have multiple chip select interfaces to control the devices [21].

4.4 Data Transmission

The SPI bus interface consists of four logic signals lines namely Master Out Slave In (MOSI),

Master In Slave Out (MISO), Serial Clock (SCLK) and Slave Select (SS).

Master Out Slave In (MOSI) - The MOSI is a unidirectional signal line and configured as an
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output signal line in a master device and as an input signal line in a slave device. It is responsible

for transmission of data in one direction from master to slave.

Master In Slave Out (MISO) - The MOSI is a unidirectional signal line and configured as

input signal line in a master device and as an output signal line in a slave device. It is responsible

for transmission of data in one direction from slave to master. When a particular slave is not

selected, the MISO line will be in high impedance state.

Slave Select (SS) - The slave select signal is used as a chip-select line to select the slave

device. It is an active low signal and must stay low for the duration of the transaction.

Serial Clock (SCLK) - The serial clock line is used to synchronize data transfer between both

output MOSI and input MISO signal lines. Based on the number of bytes of transactions between

the Master and Slave devices, required number of bit clock cycles are generated by the master

device and received as input on a slave device [3].

In the standard SPI protocol, when the communication is initiated, the master device con-

figures the system clock (known as SCLK) to a frequency less than or equal to the maximum

possible frequency the slave device supports. The usual frequencies for the communication are

in the range of 1-100 MHz. Standard SPI protocol supports single master and multiple devices.

The master then transmits appropriate chip-select bit to Logic 0 to select the slave device, since

the chip-select line is active low. Thus the communication between master and slave is estab-

lished, unless the current communication cycle is discarded by the master controlling of slave

devices are not possible. The clock (SCLK) is used by all the SPI signals to synchronize. The

transmissions involve two shift register of a pre-configured word size are present one each at

master and slave ends. As shown in Figure 4.3 both the shift registers act as a ring buffer [22].

While shifting out the data usually the least significant bit from the master is sent to the most

significant bit position of the slave receive register, and at the same time, the least significant bit

of the slave goes to the vacant least significant bit. Both master and slave register acting in a left
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Figure 4.3: Shift Register

shift register fashion and the register values are exchanged with respect to SCLK [6]. If more

data needs to be exchanged, then the shift registers are loaded with new data, the and the process

is repeated. Finally, after the data values are transmitted then master stops toggling the SCLK

and it deselects the slave [22].

4.5 Hardware Architecture

The designed SPI Master IP core is compatible with the SPI protocol and bus principle. At the

host side, the design is equivalent to the slave devices of wishbone bus specification complaint.

The overall structure of the Wishbone complaint SPI Master core device can be divided into three

functional units(Figure 4.4): Clock generator, Serial Interface and Wishbone Interface [23].

4.5.1 Design of Clock Generation module (spi_clk_gen)

The clk_gen is responsible for the generation of the clock signal from the external system clock

wb_clk_i, in accordance with different frequency factor of the clock register and produce the

output signal s_clk_o. Since there is no response mechanism for Serial Peripheral Interface, in
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Figure 4.4: SPI Master Architecture

order to ensure the reliability of timing, the clk_gen module can generate reliable serial clock

transmission with odd or even frequency division in the register. Clock divider is essential part

of digital ASIC and FPGA design, the idea here is to produce frequency relevant to the com-

munication system. Even frequency division is achieved in order to save resources. The core

generates the s_clk_o by dividing the wb_clk_i; Arbitrary clock output frequency is achieved by

changing the value of the divider. The expression of s_clk_o and wb_clk_i is as follows [22].

fsclk = fwbclk/(DIV IDER+1)∗2
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4.5.2 Serial data transfer module design (spi_shift)

Serial data transfer module forms the data transfer core module. It is responsible for converting

input parallel data into serial output data to transmit at MOSI and convert input MISO serial data

into parallel out. The Receive and Transmit register share same flip-flops. It means that what data

is received from the input data line in one data transfer will be transmitted on the output line in

the next transfer if no write access to the transmit register was performed between the transfers.

The advantage of this is it uses fewer hardware resources, therefore, lesser power consumption.

[27] SPI Master core in host side acts as a slave device to receive input data, and at the same time

as the master device transmits output data [22].

4.5.3 Top-level module (spi)

The role of the top-level module is to get the basic structure of high-speed reusable SPI bus

sub-components to work smoothly. Therefore, the top-level of the SPI module controls normal

operation of clock generator module and serial data transmission module [22].

4.6 SPI Registers

The SPI master core uses the register [24] mentioned in the Table 4.2

4.6.1 RxX Register

The Data Receive registers hold the value of data received from the last executed transfer. CTRL

register holds the character length field for example if CTRL [9:3] is set to 0x10, bit RxL[15:0]

holds the received data. Registers Rx1, Rx2 and Rx3 are not used If character length is less or

equal to 32 bits, likewise Registers Rx2 and Rx3 are not used if character length is less than 64
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Table 4.2: SPI Master core registers

Name Address Width Access Description

Rx0 0x00 32 R Data receive register 0

Rx1 0x04 32 R Data receive register 1

Rx2 0x08 32 R Data receive register 2

Rx3 0x0C 32 R Data receive register 3

Tx0 0x00 32 R/W Data transmit register 0

Tx1 0x04 32 R/W Data transmit register 1

Tx2 0x08 32 R/W Data transmit register 2

Tx3 0x0C 32 R/W Data transmit register 3

CTRL 0x10 32 R/W Control and status register

DIVIDER 0x14 32 R/W Clock divider register

SS 0x18 32 R/W Slave select register

bits and so on.

4.6.2 TxX Register

The Data Receive registers hold the value of data transmitted from the transfer. CTRL register

holds the character length field for example if CTRL [9:3] is set to 0x10, bit TxL[15:0] holds the

received data. Registers Tx1, Tx2 and Tx3 are not used If character length is less or equal to 32

bits, likewise Registers Tx2 and Tx3 are not used if character length is less than 64 bits and so

on.

4.6.3 ASS Register

If ASS bit is set, the ss_pad_o signal is generated automatically. When the transfer is started by

setting CTRL[GO_BSY], the slave select signal which is selected in SS register is asserted by

the SPI controller and is de-asserted after the transfer is finished. If ASS bit is cleared, then the
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slave select signals are asserted and de-asserted by writing and clearing the bits in SS register.

4.6.4 DIVIDER Register

The value in this field divides the frequency of the system clock (wb_clk_i) to generate the serial

clock(s_clk) on the output sclk_pad_o. The desired frequency is obtained according to equation1.

4.6.5 SS Register

When CTRL[ASS] bit is cleared, writing 0x1 to any of the bit locations of this field sets the

proper ss_pad_o line to an active state and writing 0x0 sets the line back to the inactive state.

When CTRL [ASS] bit is set, writing 1 to any bit location of this field will select appropriate

ss_pad_o line to be automatically driven to an active state for the duration of the transfer, and

will be driven to an inactive state for the rest of the time.

4.6.6 IE Register

When this bit is set, the interrupt output is set active once after a transfer is finished. The Interrupt

signal is cleared after a Read or Write to any register.

4.6.7 LSB Register

When LSB bit is set to 0x1, the least significant bit is sent first on the line (bit TxL[0]), and the

first bit received from the line will be put in the least significant bit position in the Rx register

(bit RxL[0]). When this bit is cleared, the MSB is transmitted /received first (CHAR_LEN field

in the CTRL register selects which bit in TxX/RxX register).
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4.6.8 Tx_NEG Register

When Tx_NEG bit is set, the mosi_pad_o signal is sent on the falling edge of a sclk_pad_o clock

signal, or otherwise, the mosi_pad_o signal is sent on the rising edge of sclk_pad_o.

4.6.9 Rx_NEG Register

When Rx_NEG bit is set, the miso_pad_i signal is received on the falling edge of a sclk_pad_o

clock signal, or otherwise, the miso_pad_i signal is received on the rising edge of sclk_pad_o.

4.6.10 GO_BSY Register

Writing 0x1 to this bit starts the transfer and remains set during the transfer. Automatically

cleared after the transfer is finished. Writing 0x0 to this bit has no effect.

4.6.11 CHAR_LEN Register

This field specifies the number of bits to be transmitted in one transfer. Can send up to 64 bits in

one transfer.

CHAR_LEN = 0x01 . . . 1 bit

CHAR_LEN = 0x02 . . . 2 bits

. . .

CHAR_LEN = 0x7f . . . 127 bits

CHAR_LEN = 0x00 . . . 128 bits
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4.7 Limitation of Standard SPI and Advancements

Standard SPI communication is a single-master communication. Therefore all the communi-

cation can only have one master device active at any time. This limits the functional aspects

of the devices that are connected to the SPI topology. To overcome this more advanced designs

adopt the parameterization method, identify the master/slave devices automatically and use Time

Sharing Multiplex (TSM) technology to control the same slave device at the same time [25].



Chapter 5

Test Methodology and Results

5.1 Testbench Components

The SPI master core is verified along with the SPI slave model. Initially, the SPI master and slave

have configured appropriately (for example at the master end no. of bits-32, transmit-posedge,

receive-negedge). The basic idea of the verification is to send data from both master and slave

ends. And after the transfer is completed verify the exchanged data at both the ends. The Figure.

5.1 shows the testbench module approach. Below each of the components is explained.

5.1.1 Test top

The top-level module is responsible for integrating the testbench module with the device un-

der test. This module instantiates two interfaces, one for the master and another for the slave.

Then the master interface is wired with SPI master core and likewise slave interface with SPI

slave model. The top module also generates the clock and registers the interface into the con-

fig database so that other subscribing blocks can retrieve. Finally, the module calls the run_test

function which starts to run the uvm_root.
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Figure 5.1: UVM Testbench model

5.1.2 spi_interface

The interface block declares all the WISHBONE slave logic signals. The communication with

the master and slave core happens through WISHBONE bus function model. The block also

samples the input and output signals using two different clocking blocks, one for driver and

another for the monitor. Clocking block helps to synchronize all logic signals to a particular

clock. It also helps to separate the timing details from the structural, functional and procedural

elements of the testbench.
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5.1.3 spi_package

The package class typically includes all SystemVerilog testbench components and make the

scope available to the entire build process.

5.1.4 spi_test

The test class is created by extending the uvm_test class. Then the class is registered to factory

using uvm_component_utils macro. In the build phase, the lower level SPI environment class

is created and configured. Instead of the run phase, the test class contains two of the twelve

scheduled phases. Reset phase typically resets the device under test. The main phase used to

create the sequences and start running the sequencer for the required number of tests. Whenever

there needs to be a blocking phase execution, phase raise objection is invoked and like to unblock

phase drop objection is used.

5.1.5 spi_environment

SPI environment is a container component containing the agent and scoreboard. It is created

using uvm_env virtual base class. In the build phase components within the environment are

instantiated. And in the connect phase, the connections are made between components.

5.1.6 spi_agent

Currently, there is only one agent container component is used within the project. The SPI agent

container is configured as an active component. SPI agent is created using uvm_agent virtual

base class. In the build phase, the agent builds Sequencer, Driver and Monitor components. In

the connect phase, the driver and sequencer are connected.
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5.1.7 spi_sequence_item

The data flows through the testbench from component to component in the form of packets

called as transaction class or sequence item. The SPI sequence item class is created by extending

the uvm_sequence_item class. The transaction packet consists of register configuration items

(control, divider, and slave select) and data items (input, output and expected) for both master

and slave. Then register the class and properties to factory using uvm_object_utils macro. A

constructor function is defined for the sequence item. Randomization is applied to sequence

items.

5.1.8 spi_sequence

The user-defined SPI sequence class uses uvm_sequence as its virtual base class. This class

is a parameterized class with the parameter being the SPI sequence item associated with this

sequence. Body() method is called, and code within this method gets executed when the sequence

is run. Objections are typically raised and dropped in the pre_body() and post_body() methods

of a sequence. Within the body() method the register sequence items and the data sequence items

are constrained randomized.

5.1.9 spi_sequencer

SPI sequencer is the component that runs the sequences. The sequencer has a built-in port called

sequence_item_export to communicate with the driver. Through this port, the sequencer can

send a request item to the driver and receive a response item from the driver. This class is

parameterized with SPI sequence item.
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Figure 5.2: UVM Sequencer Driver Communication

5.1.10 spi_driver

SPI driver is the component along with WISHBONE bus function model that takes the generated

sequence item from the sequencer and drives it into the DUT according to WISHBONE protocol.

The driver is created extending uvm_driver. In order to drive the data virtual interface handle is

passed to the driver during the build phase. The SPI driver initially calls the WISHBONE reset

method. Then a forever thread is created. In this thread initially, the driver gets the next sequence

item from sequencer using the seq_item_port method. This synchronizes with the body function

of the sequence as given in the Figure 5.2 and packet is driven into the DUT using the bus

function model. In the end, the driver waits for transfer complete interrupt to repeat the thread

loop.
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5.1.11 spi_monitor

SPI monitor senses the response from the DUT. In order to monitor the data, virtual interface han-

dle is passed to monitor during the build phase. The monitor is created extending uvm_monitor.

Initially, the monitor waits for the first SPI data transfer to begin. Then In the forever thread, the

monitor waits for the SPI data transfer to complete. SPI monitor uses WISHBONE bus function

model to read the response data from DUT. The sequence-item data packet containing the actual

and expected output is now broadcast to the environment using analysis write port. The monitor

then waits again for a new transfer to being, and this process repeats in a loop.

5.1.12 spi_scoreboard

SPI scoreboard is the component which has transaction level checkers and coverage collec-

tors to verify the functional correctness of a given DUT. Scoreboard class is extended from the

uvm_scoreboard base class. TLM analysis FIFOs to connect to the monitor. In the run phase, the

input packet is retrieved from the driver, while the output packet is retrieved from the monitor.

Then the transaction level functional coverage method is performed using a sampling method to

get the coverage. In the end, then when the report phase is invoked the results are displayed.

5.1.13 wishbone_bfm

The WISHBONE bus function model at the driver side transfers the transaction level packets

into WISHBONE specific pin level data. At the monitor side, it receives the pin level activities

WISHBONE and wraps into transaction packets for higher level modules to use. WISHBONE

bus function module implements three methods write, read and reset. The bus function module

is non-synthesizable code and written using SystemVerilog.
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5.2 Testbench Results

The functional verification of the SPI core controller was carried out successfully with the fol-

lowing results.

5.2.1 SPI Master Controller Synthesis Benchmarking

The project aims to create a functional verification environment for SPI controller. For this

purpose the IP core was reused from Opencores, but with some modification. The logic synthesis

of the module was performed in the TSMC 180nm, 65nm and SAED 32nm technology. Area,

Power and Timing of the final module were captured Table 5.1

Table 5.1: Synthesis Report

Type Technology node 32 nm 65 nm 180 nm

Sequential Area (µm2) 2096.68 2520.35 18990.41

Area Combinational Area (µm2) 2527.97 2209.68 17071.08

Buf/Inv Area (µm2) 314.37 71.28 1862.78

Total Area (µm2) 5847.47 4730.03 36061.50

Internal Power (µW ) 32.59 47.34 335.80

Power Switching Power (µW ) 1.844 3.58 74.86

Leakage Power (µW ) 452.2 0.189 0.145

Total Power (µW ) 486.6 51.11 410.8

Timing Slack (ns) 18.375 17.958 12.983

DFT Coverage 100% 100% 100%

Latency (Clock cycles)
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5.2.2 Data Transactions

The results published are for below Table 5.2 configuration for a regression run of 10 Million

tests.

Table 5.2: Test Configuration

Data Transfer Sent First Transmit Receive

32bit MSB posedge negedge

5.2.2.1 WISHBONE to SPI Master communication using BFM

The communication between the WISHBONE and SPI master is performed using WISHBONE

bus function model. The model mainly implements read, write and reset functionalities w.r.t

WISHBONE B.3 protocol. In the below Figure. 5.3 shows the WISHBONE protocol. Initially

when there is a write data is involved cycle, strobe and write enable signals along with select lines

of WISHBONE are asserted to 0x1 by the bus master. The WISHBONE address and data at the

same time is placed on the bus. The bus model waits until a receive acknowledgment from the

slave is received. Then the bus master frees the bus by terminating the cycle signal to 0x0. For

example, if the control register needs to be configured, then control register address 0x10 is sent

along with the data value 0x2200, referred at reference 1 in the Figure. 5.3. Correspondingly, the

SPI control select flag is selected, and in the next cycle, the value is written to the local control

register of the device under test.

5.2.2.2 SPI Master-Slave communication

The master and slave communication in Figure. 5.4 is synchronized to sclk_pad clock, which

is synchronized to the wb_clk base clock. Before the start of transfer, the master and slave

configure its control register. Control register contains flags like tx_negedge/rx_posedge, which
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Figure 5.3: WISHBONE to SPI communication

determines the sampling edge of send and receive signal. These two flags should have opposite

values to each other since the SPI read input and write output takes place at the same single

buffer in a shift register fashion. The master also configures its divider register and slave select

register. Once all SPI registers are initially set up, then go flag of the control signal is asserted,

which starts the transfer. The testbench uses the flag transfer in progress to synchronize driver

and monitor respective forever loop part. Finally as given in Figure. 5.4 after 32 clock cycles,

the transfer in progress signal is de-asserted and thus informs the end of communication for the

WISHBONE interface to collect the data.

5.2.3 Coverage

Functional coverage is essential to any verification plan, in the project it the coverage is retrieved

using Cadence Integrated Metrics Centre tool. Functional coverage is a way to tell the effec-

tiveness of the test plan. Functional coverage infers results such if an end to end code checked

if an important set of values corresponding to interface or design requirement and boundary
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Figure 5.4: SPI Master - Slave communication

conditions have been exercised or not. 100% Functional coverage combined with 100% Code

coverage indicates the exhaustiveness of the verification plan coverage.

5.2.3.1 Code Coverage

Tools such as Cadence Integrated Metrics Centre can automatically calculate the code coverage

metric. Code coverage tracks information such what lines of code or expression or block have

been exercised. However, code coverage is not exhaustive and cannot detect conditions that or

not present in the code. To address these deficiencies, we go for functional coverage.

Figure 5.5: Top Level Code Coverage

Figure. 5.5 shows the code coverage for the SPI Top level module. Block coverage is not
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100% because not all sections of the code are covered for example for transactions above 32bit

higher order SPI receive buffers are not covered. Expression coverage is 100% except for the

WISHBONE interrupt acknowledgment section. Finally, toggle coverage is low because for all

the input, output wires and registers possible inputs zero’s and ones are not covered.

Figure 5.6: Clock Level Code Coverage

Figure. 5.6 shows the code coverage for the SPI Top level module.

Figure 5.7: Shift Level Code Coverage

Figure. 5.7 shows the code coverage for the SPI Top level module. Block coverage is less

because not all possible data transfer rates are exercised.

5.2.3.2 Functional Coverage - Signal Level

Signal level functional coverage at Figure. 5.8 is usually applied in the monitor component of the

UVM test bench. Signal level exercise the checking at the DUT output pin level. At SPI signal
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level below three coverpoints are incorporated:

Figure 5.8: Signal Coverage

• cp_dut_mosi: In this coverpoint mosi output line between the master and slave is checked.

It has two bins of low bit(0x0) and high bit(0x1). Both the bins are covered 100%

• cp_dut_miso: In this coverpoint miso output line between the master and slave is checked.

It has two bins of low bit(0x0) and high bit(0x1). Both the bins are covered 100%

• cp_mosi_miso: This coverpoint gives the cross cover of the both cp_dut_mosi and cp_dut_mosi.

It results in total of 2x2 bins. However, only 50% of the bins are hit because the sampling

for cross cover happens at the wb_clk master clock and not the sclk clock signal.

5.2.3.3 Functional Coverage - Transaction Level

Transaction level functional coverage at Figure. 5.9 is usually applied in the scoreboard compo-

nent of the UVM test bench. Signal level exercises the checking at the DUT transaction class
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outputs. At SPI signal level below six coverpoints are incorporated:

Figure 5.9: Transaction Coverage

• cp_sg_mosi_in: This coverpoint exercises input packets expected master data. Auto bin

max value of 50 for this coverpoint owing to reduced regression time availability. Ideally,

this should be auto bin max.

• cp_sg_mosi_out: This coverpoint exercises output packets expected master data. Auto bin

max value of 50 for this coverpoint owing to reduced regression time availability. Ideally,

this should be auto bin max.

• cp_sg_miso_in: This coverpoint exercises input packets expected slave data. Auto bin max

value of 50 for this coverpoint owing to reduced regression time availability. Ideally, this

should be auto bin max.

• cp_sg_miso_out: This coverpoint exercises output packets expected slave data. Auto bin
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max value of 50 for this coverpoint owing to reduced regression time availability. Ideally,

this should be auto bin max.

• cr_mosi_master: Cross cover of cp_sg_mosi_in and cp_sg_mosi_out is checked in this

coverpoint. It verifies if the actual DUT output is equal to expected DUT output. Only 2%

of the bins are covered because between actual and expected only one of the 50 bins would

be covered and also 50/50*50=2%.

• cr_miso_master: Cross cover of cp_sg_miso_in and cp_sg_miso_out is checked in this

coverpoint. It verifies if the actual DUT output is equal to expected DUT output. Only 2%

of the bins are covered because between actual and expected only one of the 50 bins would

be covered and also 50/50*50=2%.



Chapter 6

Conclusion

In this work, a reusable SystemVerilog based UVM environment is created for an SPI master core

controller. The verification environment is built around WISHBONE System on Chip bus thus

making both core IP, and verification IP easy to integrate. Configuration capability is provided to

configure the testbench to suit different protocol characteristics. The testbench enables to verify

and validate the full duplex data transfer between the master core and slave core for various

character lengths and data formats respectively.

An SPI slave model was created to enhance the SPI master core verification as end to end

feasible. In addition, a WISHBONE BFM was successfully established to form the link between

the testbench components and the device under test. The WISHBONE BFM provides basic

read and write functionalities. Functional coverage was successfully integrated into the testing

environment in order to achieve coverage driven verification metrics.
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6.1 Future Work

• The SPI master controller can be enhanced to include First In-First-Out buffers to accept

data at different clock rates.

• The SPI master controller can be extended to advanced WISHBONE B4 specification.

• The tests can be further extended to other configurations of SPI master controller so that

100% code coverage can be achieved.



References

[1] W. Ni and J. Zhang, “Research of reusability based on UVM verification,” in 2015 IEEE

11th International Conference on ASIC (ASICON), Nov 2015, pp. 1–4.

[2] K. Fathy and K. Salah, “An Efficient Scenario Based Testing Methodology Using UVM,”

in 2016 17th International Workshop on Microprocessor and SOC Test and Verification

(MTV), Dec 2016, pp. 57–60.

[3] P. Rajashekar Reddy, P. Sreekanth, and K. Arun Kumar, “Serial Peripheral Interface-Master

Universal Verification Component using UVM,” International Journal of Advanced Scien-

tific Technologies in Engineering and Management Sciences, vol. 3, p. 27, 06 2017.

[4] R. Prasad and C. S. Rani, “UART IP CORE VERIFICATION BY USING UVM,” IRF

International Conference, 15 2016.

[5] P. Roopesh D, P. Siddesha K, and B. M. Kavitha Narayan, “RTL DESIGN AND VERI-

FICATION OF SPI MASTER-SLAVE USING UVM,” International Journal of Advanced

Research in Electronics and Communication Engineering, vol. 4, p. 4, 08 2015.

[6] K. Aditya, M. Sivakumar, F. Noorbasha, and P. B. Thummalakunta, “Design and Functional

Verification of A SPI Master Slave Core Using SystemVerilog,” International Journal Of

Computational Engineering Research, 05 2018.



References 51

[7] N. Anand, G. Joseph, S. S. Oommen, and R. Dhanabal, “Design and implementation of a

high speed Serial Peripheral Interface,” in 2014 International Conference on Advances in

Electrical Engineering (ICAEE), Jan 2014, pp. 1–3.

[8] T. Liu and Y. Wang, “IP design of universal multiple devices SPI interface,” in Anti-

Counterfeiting, Security and Identification (ASID), 2011 IEEE International Conference

on. IEEE, 2011, pp. 169–172.

[9] D. Ahlawat and N. K. Shukla, “DUT Verification Through an Efficient and Reusable En-

vironment with Optimum Assertion and Functional Coverage in SystemVerilog,” Interna-

tional Journal of Advanced Computer Science and Applications, vol. 5, no. 4, 2014.

[10] N. Gopal, “SPI Controller Core: Verification,” SSRG International Journal of VLSI & Sig-

nal Processing, vol. 2, 09 2015.

[11] Z. Zhou, Z. Xie, X. Wang, and T. Wang, “Development of verification envioronment for

SPI master interface using SystemVerilog,” in Signal Processing (ICSP), 2012 IEEE 11th

International Conference on, vol. 3. IEEE, 2012, pp. 2188–2192.

[12] J. Francesconi, J. A. Rodriguez, and P. M. Julian, “UVM based testbench architecture for

unit verification,” in Micro-Nanoelectronics, Technology and Applications (EAMTA), 2014

Argentine Conference on. IEEE, 2014, pp. 89–94.

[13] A. K. Swain and K. Mahapatra, “Design and verification of WISHBONE bus interface for

System-on-Chip integration,” in India Conference (INDICON), 2010 Annual IEEE. IEEE,

2010, pp. 1–4.

[14] A. K. Oudjida, M. L. Berrandjia, A. Liacha, R. Tiar, K. Tahraoui, and Y. N. Alhoumays,

“Design and test of general-purpose SPI Master/Slave IPs on OPB bus,” in Systems Signals

and Devices (SSD), 2010 7th International Multi-Conference on. IEEE, 2010, pp. 1–6.



References 52

[15] Mahendra.B.M and Ramachandra.A.C, “Bus Functional Model Verification IP Develop-

ment of AXI Protocol,” International Conference on Engineering Technology and Science,

vol. 3, 02 2014.

[16] P. Araujo, “Development of a reconfigurable multi-protocol verification environment using

UVM methodology,” FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO,

pp. 1 – 149, 06 2014.

[17] C. Spear and G. Tumbush, SystemVerilog for Verification: A Guide to Learning the Test-

bench Language Features, 3rd ed. Springer Publishing Company, Incorporated, 2012.

[18] A. B. Mehta, ASIC/SoC Functional Design Verification: A Comprehensive Guide to Tech-

nologies and Methodologies, 1st ed. Springer Publishing Company, Incorporated, 2017.

[19] IEEE, “IEEE Standard for Universal Verification Methodology Language Reference Man-

ual,” IEEE Std 1800.2-2017, pp. 1–472, May 2017.

[20] M. Sharma and D. Kumar, “Wishbone bus Architecture - A Survey and Comparison,”

CoRR, vol. abs/1205.1860, 2012. [Online]. Available: http://arxiv.org/abs/1205.1860

[21] IEEE, “IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and

Verification Language,” IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pp. 1–

1315, Feb 2018.

[22] D. V. Veda Patil, Vijay Dahake and E. Pinto, “Implementation of SPI Protocol in FPGA,”

International Journal Of Computational Engineering Research, vol. 3, pp. 142 – 147, 01

2013.

[23] S. Ananthula, M. K. Kumar, and J. K. Bhandari, “Design and Verification of Serial Periph-

http://arxiv.org/abs/1205.1860


References 53

eral Interface,” International Journal of Engineering Development and Research (IJEDR),

vol. 1, pp. 130 – 136, Dec. 2014.

[24] Srot and Simon, SPI Master core specification, 2004. [Online]. Available: https:

//opencores.org/project/spi

[25] R. Herveille, SPI Core Specifications, 2003. [Online]. Available: https://opencores.org/

project/simple_spi

https://opencores.org/project/spi
https://opencores.org/project/spi
https://opencores.org/project/simple_spi
https://opencores.org/project/simple_spi


Appendix I

Source Code

I.1 SPI Top

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : s p i

5 * /

6 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 ‘ i n c l u d e " s r c / s p i _ d e f i n e s . v "

8 ‘ i n c l u d e " s r c / t i m e s c a l e . v "

9 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 module s p i

11 (
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12 / * Wishbone s i g n a l s * /

13 wb_clk_i , w b _ r s t _ i , wb_adr_i , wb_dat_ i , wb_dat_o , wb_se l_ i ,

14 wb_we_i , wb_s tb_ i , wb_cyc_i , wb_ack_o , wb_err_o , wb_int_o ,

15

16 / * SPI s i g n a l s * /

17 ss_pad_o , sc lk_pad_o , mosi_pad_o , miso_pad_i ,

18

19 / * Scan I n s e r t i o n * /

20 scan_ i n0 , scan_en , t e s t_mode , scan_ou t0 , t i p / / , r e s e t , c l k

21 ) ;

22 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−Wishbone s i g n a l s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

23 i n p u t wb_c lk_ i ; / / m a s t e r

c l o c k i n p u t

24 i n p u t w b _ r s t _ i ; / /

s y n c h r o n o u s a c t i v e h i gh r e s e t

25 i n p u t [ 4 : 0 ] wb_adr_ i ; / / l ower

a d d r e s s b i t s

26 i n p u t [32 −1:0] wb_da t_ i ; / / d a t a b u s

i n p u t

27 o u t p u t [32 −1:0] wb_dat_o ; / / d a t a b u s

o u t p u t

28 i n p u t [ 3 : 0 ] w b _ s e l _ i ; / / b y t e

s e l e c t i n p u t s
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29 i n p u t wb_we_i ; / / w r i t e

e n a b l e i n p u t

30 i n p u t w b _ s t b _ i ; / / s t o b e /

c o r e s e l e c t s i g n a l

31 i n p u t wb_cyc_i ; / / v a l i d

bus c y c l e i n p u t

32 o u t p u t wb_ack_o ; / / bus

c y c l e acknowledge o u t p u t

33 o u t p u t wb_err_o ; / /

t e r m i n a t i o n w/ e r r o r

34 o u t p u t wb_in t_o ; / /

i n t e r r u p t r e q u e s t s i g n a l o u t p u t

35 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−SPI s i g n a l s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

36 o u t p u t [ ‘ SPI_SS_NB−1:0] s s_pad_o ; / / s l a v e

s e l e c t

37 o u t p u t s c l k _ p a d _ o ; / / s e r i a l

c l o c k

38 o u t p u t mosi_pad_o ; / / m a s t e r

o u t s l a v e i n

39 i n p u t miso_pad_ i ; / / m a s t e r

i n s l a v e o u t

40 / / i n p u t r e s e t ; / / sys t em

r e s e t
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41 / / i n p u t c l k ; / / sys t em

c l o c k

42 i n p u t s c a n _ i n 0 ; / / t e s t

s can mode d a t a i n p u t

43 i n p u t scan_en ; / / t e s t

s can mode e n a b l e

44 i n p u t t e s t _ m o d e ; / / t e s t

mode s e l e c t

45 o u t p u t s c a n _ o u t 0 ; / / t e s t

s can mode d a t a o u t p u t

46 o u t p u t t i p ;

47 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48 r e g [32 −1:0] wb_dat_o ;

49 r e g [32 −1:0] wb_dat ;

50 r e g wb_ack_o ;

51 r e g wb_in t_o ;

52 r e g [ ‘ SPI_CTRL_BIT_NB−1:0] c t r l ;

53 r e g [ ‘ SPI_DIVIDER_LEN−1:0] d i v i d e r ;

54 r e g [ ‘ SPI_SS_NB−1:0] s s ;

55 r e g s c a n _ o u t 0 ;

56 / / I n t e r n a l s i g n a l s

57 w i r e [ ‘SPI_MAX_CHAR−1:0] rx ; / / Rx

r e g i s t e r
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58 w i r e rx_negedge ; / / miso i s

sampled on n e g a t i v e edge

59 w i r e t x _ n e g e d g e ; / / mosi i s

d r i v e n on n e g a t i v e edge

60 w i r e [ ‘ SPI_CHAR_LEN_BITS−1:0] c h a r _ l e n ; / / c h a r

l e n

61 w i r e go ; / / go

62 w i r e l s b ; / / l s b

f i r s t on l i n e

63 w i r e i e ; / /

i n t e r r u p t e n a b l e

64 w i r e a s s ; / /

a u t o m a t i c s l a v e s e l e c t

65 w i r e s p i _ d i v i d e r _ s e l ; / / d i v i d e r

r e g i s t e r s e l e c t

66 w i r e s p i _ c t r l _ s e l ; / / c t r l

r e g i s t e r s e l e c t

67 w i r e [ 3 : 0 ] s p i _ t x _ s e l ; / / t x _ l

r e g i s t e r s e l e c t

68 w i r e s p i _ s s _ s e l ; / / s s

r e g i s t e r s e l e c t

69 r e g t i p ; / /

t r a n s f e r i n p r o g r e s s

70 w i r e pos_edge ; / /

r e c o g n i z e posedge of s c l k
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71 w i r e neg_edge ; / /

r e c o g n i z e negedge of s c l k

72 w i r e l a s t _ b i t ; / / marks

l a s t c h a r a c t e r b i t

73 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

74 s p i _ c l o c k _ g e n c l o c k _ g e n ( . c l k _ i n ( wb_c lk_ i ) , . r s t ( w b _ r s t _ i ) , .

go ( go ) , . e n a b l e ( t i p ) , . l a s t _ c l k ( l a s t _ b i t ) ,

75 . d i v i d e r ( d i v i d e r ) , . c l k _ o u t (

s c l k _ p a d _ o ) , . pos_edge ( pos_edge ) ,

76 . neg_edge ( neg_edge ) ) ;

77 / / . s c a n _ i n 0 ( s c a n _ i n 0 ) , . s can_en (

scan_en ) , . t e s t _ m o d e ( t e s t _ m o d e ) , .

s c a n _ o u t 0 ( s c a n _ o u t 0 ) , . r e s e t ( r e s e t

) , . c l k ( c l k ) ) ;

78 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

79 s p i _ s h i f t s h i f t ( . c l k _ s h i f t ( wb_c lk_ i ) , . r s t ( w b _ r s t _ i ) , . l e n (

c h a r _ l e n [ ‘ SPI_CHAR_LEN_BITS−1 : 0 ] ) ,

80 . l a t c h ( s p i _ t x _ s e l [ 3 : 0 ] & {4{ wb_we_i } } ) , .

b y t e _ s e l ( w b _ s e l _ i ) , . l s b ( l s b ) ,

81 . go ( go ) , . pos_edge ( pos_edge ) , . neg_edge (

neg_edge ) , . rx_negedge ( rx_negedge ) ,

82 . t x _ n e g e d g e ( t x _ n e g e d g e ) , . t i p ( t i p ) , . l a s t (

l a s t _ b i t ) , . p_ i n ( wb_da t_ i ) , . p_ou t ( rx ) ,
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83 . s _ c l k ( s c l k _ p a d _ o ) , . s _ i n ( miso_pad_ i ) , .

s _ o u t ( mosi_pad_o ) ) ;

84 / / . s c a n _ i n 0 ( s c a n _ i n 0 ) , . s can_en ( scan_en ) , .

t e s t _ m o d e ( t e s t _ m o d e ) , . s c a n _ o u t 0 ( s c a n _ o u t 0

) , . r e s e t ( r e s e t ) , . c l k ( c l k ) ) ;

85 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Address decoder

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

86 a s s i g n s p i _ d i v i d e r _ s e l = wb_cyc_i & w b _ s t b _ i & ( wb_adr_ i [ ‘

SPI_OFS_BITS ] == ‘ SPI_DIVIDE ) ;

87 a s s i g n s p i _ c t r l _ s e l = wb_cyc_i & w b _ s t b _ i & ( wb_adr_ i [ ‘

SPI_OFS_BITS ] == ‘SPI_CTRL ) ;

88 a s s i g n s p i _ t x _ s e l [ 0 ] = wb_cyc_i & w b _ s t b _ i & ( wb_adr_ i [ ‘

SPI_OFS_BITS ] == ‘ SPI_TX_0 ) ;

89 a s s i g n s p i _ t x _ s e l [ 1 ] = wb_cyc_i & w b _ s t b _ i & ( wb_adr_ i [ ‘

SPI_OFS_BITS ] == ‘ SPI_TX_1 ) ;

90 a s s i g n s p i _ t x _ s e l [ 2 ] = wb_cyc_i & w b _ s t b _ i & ( wb_adr_ i [ ‘

SPI_OFS_BITS ] == ‘ SPI_TX_2 ) ;

91 a s s i g n s p i _ t x _ s e l [ 3 ] = wb_cyc_i & w b _ s t b _ i & ( wb_adr_ i [ ‘

SPI_OFS_BITS ] == ‘ SPI_TX_3 ) ;

92 a s s i g n s p i _ s s _ s e l = wb_cyc_i & w b _ s t b _ i & ( wb_adr_ i [ ‘

SPI_OFS_BITS ] == ‘ SPI_SS ) ;

93 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Read from r e g i s t e r s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

94 a lways @( wb_adr_ i o r rx o r c t r l o r d i v i d e r o r s s )

95 b e g i n
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96 c a s e ( wb_adr_ i [ ‘ SPI_OFS_BITS ] )

97 ‘ i f d e f SPI_MAX_CHAR_128

98 ‘ SPI_RX_0 : wb_dat = rx [ 3 1 : 0 ] ;

99 ‘ SPI_RX_1 : wb_dat = rx [ 6 3 : 3 2 ] ;

100 ‘ SPI_RX_2 : wb_dat = rx [ 9 5 : 6 4 ] ;

101 ‘ SPI_RX_3 : wb_dat = {{128− ‘SPI_MAX_CHAR{1 ’ b0 }} , rx

[ ‘SPI_MAX_CHAR−1 : 9 6 ] } ;

102 ‘ e l s e

103 ‘ i f d e f SPI_MAX_CHAR_64

104 ‘ SPI_RX_0 : wb_dat = rx [ 3 1 : 0 ] ;

105 ‘ SPI_RX_1 : wb_dat = {{64− ‘SPI_MAX_CHAR{1 ’ b0 }} , rx

[ ‘SPI_MAX_CHAR−1 : 3 2 ] } ;

106 ‘ SPI_RX_2 : wb_dat = 32 ’ b0 ;

107 ‘ SPI_RX_3 : wb_dat = 32 ’ b0 ;

108 ‘ e l s e

109 ‘ SPI_RX_0 : wb_dat = {{32− ‘SPI_MAX_CHAR{1 ’ b0 }} , rx

[ ‘SPI_MAX_CHAR−1 : 0 ] } ;

110 ‘ SPI_RX_1 : wb_dat = 32 ’ b0 ;

111 ‘ SPI_RX_2 : wb_dat = 32 ’ b0 ;

112 ‘ SPI_RX_3 : wb_dat = 32 ’ b0 ;

113 ‘ e n d i f

114 ‘ e n d i f

115 ‘SPI_CTRL : wb_dat = {{32− ‘SPI_CTRL_BIT_NB{1 ’ b0 }} ,

c t r l } ;
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116 ‘ SPI_DIVIDE : wb_dat = {{32− ‘SPI_DIVIDER_LEN{1 ’ b0 }} ,

d i v i d e r } ;

117 ‘ SPI_SS : wb_dat = {{32− ‘SPI_SS_NB{1 ’ b0 }} , s s } ;

118 d e f a u l t :

119 wb_dat = 32 ’ bx ;

120 e n d c a s e

121 end

122 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Wb d a t a out

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

123 a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

124 b e g i n

125 i f ( w b _ r s t _ i )

126 wb_dat_o <= 32 ’ b0 ;

127 e l s e

128 wb_dat_o <= wb_dat ;

129 end

130 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Wb acknowledge

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

131 a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

132 b e g i n

133 i f ( w b _ r s t _ i )

134 wb_ack_o <= 1 ’ b0 ;

135 e l s e

136 wb_ack_o <= wb_cyc_i & w b _ s t b _ i & ~wb_ack_o ;

137 end
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138 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Wb e r r o r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

139 a s s i g n wb_err_o = 1 ’ b0 ;

140 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−I n t e r r u p t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

141 a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

142 b e g i n

143 i f ( w b _ r s t _ i )

144 wb_in t_o <= 1 ’ b0 ;

145 e l s e i f ( i e && t i p && l a s t _ b i t && pos_edge )

146 wb_in t_o <= 1 ’ b1 ;

147 e l s e i f ( wb_ack_o )

148 wb_in t_o <= 1 ’ b0 ;

149 end

150 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−D i v i d e r r e g i s t e r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

151 a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

152 b e g i n

153 i f ( w b _ r s t _ i )

154 d i v i d e r <= { ‘ SPI_DIVIDER_LEN{1 ’ b0 } } ;

155 e l s e i f ( s p i _ d i v i d e r _ s e l && wb_we_i && ! t i p )

156 b e g i n

157 ‘ i f d e f SPI_DIVIDER_LEN_8

158 i f ( w b _ s e l _ i [ 0 ] )

159 d i v i d e r <= wb_da t_ i [ ‘ SPI_DIVIDER_LEN −1 : 0 ] ;
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160 ‘ e n d i f

161 ‘ i f d e f SPI_DIVIDER_LEN_16

162 i f ( w b _ s e l _ i [ 0 ] )

163 d i v i d e r [ 7 : 0 ] <= wb_da t_ i [ 7 : 0 ] ;

164 i f ( w b _ s e l _ i [ 1 ] )

165 d i v i d e r [ ‘ SPI_DIVIDER_LEN−1:8] <= wb_da t_ i [ ‘

SPI_DIVIDER_LEN −1 : 8 ] ;

166 ‘ e n d i f

167 ‘ i f d e f SPI_DIVIDER_LEN_24

168 i f ( w b _ s e l _ i [ 0 ] )

169 d i v i d e r [ 7 : 0 ] <= wb_da t_ i [ 7 : 0 ] ;

170 i f ( w b _ s e l _ i [ 1 ] )

171 d i v i d e r [ 1 5 : 8 ] <= wb_da t_ i [ 1 5 : 8 ] ;

172 i f ( w b _ s e l _ i [ 2 ] )

173 d i v i d e r [ ‘ SPI_DIVIDER_LEN−1:16] <= wb_da t_ i [ ‘

SPI_DIVIDER_LEN −1 : 1 6 ] ;

174 ‘ e n d i f

175 ‘ i f d e f SPI_DIVIDER_LEN_32

176 i f ( w b _ s e l _ i [ 0 ] )

177 d i v i d e r [ 7 : 0 ] <= wb_da t_ i [ 7 : 0 ] ;

178 i f ( w b _ s e l _ i [ 1 ] )

179 d i v i d e r [ 1 5 : 8 ] <= wb_da t_ i [ 1 5 : 8 ] ;

180 i f ( w b _ s e l _ i [ 2 ] )

181 d i v i d e r [ 2 3 : 1 6 ] <= wb_da t_ i [ 2 3 : 1 6 ] ;

182 i f ( w b _ s e l _ i [ 3 ] )
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183 d i v i d e r [ ‘ SPI_DIVIDER_LEN−1:24] <= wb_da t_ i [ ‘

SPI_DIVIDER_LEN −1 : 2 4 ] ;

184 ‘ e n d i f

185 end

186 end

187 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C t r l r e g i s t e r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

188 a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

189 b e g i n

190 i f ( w b _ r s t _ i )

191 c t r l <= { ‘ SPI_CTRL_BIT_NB{1 ’ b0 } } ;

192 e l s e i f ( s p i _ c t r l _ s e l && wb_we_i && ! t i p )

193 b e g i n

194 i f ( w b _ s e l _ i [ 0 ] )

195 c t r l [ 7 : 0 ] <= wb_da t_ i [ 7 : 0 ] | {7 ’ b0 , c t r l [ 0 ] } ;

196 i f ( w b _ s e l _ i [ 1 ] )

197 c t r l [ ‘ SPI_CTRL_BIT_NB−1:8] <= wb_da t_ i [ ‘

SPI_CTRL_BIT_NB −1 : 8 ] ;

198 end

199 e l s e i f ( t i p && l a s t _ b i t && pos_edge )

200 c t r l [ ‘ SPI_CTRL_GO ] <= 1 ’ b0 ;

201 end

202 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−C t r l r e g i s t e r decode

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

203 a s s i g n rx_negedge = c t r l [ ‘SPI_CTRL_RX_NEGEDGE ] ;
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204 a s s i g n t x _ n e g e d g e = c t r l [ ‘ SPI_CTRL_TX_NEGEDGE ] ;

205 a s s i g n go = c t r l [ ‘ SPI_CTRL_GO ] ;

206 a s s i g n c h a r _ l e n = c t r l [ ‘ SPI_CTRL_CHAR_LEN ] ;

207 a s s i g n l s b = c t r l [ ‘ SPI_CTRL_LSB ] ;

208 a s s i g n i e = c t r l [ ‘ SPI_CTRL_IE ] ;

209 a s s i g n a s s = c t r l [ ‘ SPI_CTRL_ASS ] ;

210 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−S l a v e s e l e c t r e g i s t e r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

211 a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

212 b e g i n

213 i f ( w b _ r s t _ i )

214 s s <= { ‘ SPI_SS_NB{1 ’ b0 } } ;

215 e l s e i f ( s p i _ s s _ s e l && wb_we_i && ! t i p )

216 b e g i n

217 ‘ i f d e f SPI_SS_NB_8

218 i f ( w b _ s e l _ i [ 0 ] )

219 s s <= wb_da t_ i [ ‘ SPI_SS_NB −1 : 0 ] ;

220 ‘ e n d i f

221 ‘ i f d e f SPI_SS_NB_16

222 i f ( w b _ s e l _ i [ 0 ] )

223 s s [ 7 : 0 ] <= wb_da t_ i [ 7 : 0 ] ;

224 i f ( w b _ s e l _ i [ 1 ] )

225 s s [ ‘ SPI_SS_NB−1:8] <= wb_da t_ i [ ‘ SPI_SS_NB

−1 : 8 ] ;

226 ‘ e n d i f
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227 ‘ i f d e f SPI_SS_NB_24

228 i f ( w b _ s e l _ i [ 0 ] )

229 s s [ 7 : 0 ] <= wb_da t_ i [ 7 : 0 ] ;

230 i f ( w b _ s e l _ i [ 1 ] )

231 s s [ 1 5 : 8 ] <= wb_da t_ i [ 1 5 : 8 ] ;

232 i f ( w b _ s e l _ i [ 2 ] )

233 s s [ ‘ SPI_SS_NB−1:16] <= wb_da t_ i [ ‘ SPI_SS_NB

−1 : 1 6 ] ;

234 ‘ e n d i f

235 ‘ i f d e f SPI_SS_NB_32

236 i f ( w b _ s e l _ i [ 0 ] )

237 s s [ 7 : 0 ] <= wb_da t_ i [ 7 : 0 ] ;

238 i f ( w b _ s e l _ i [ 1 ] )

239 s s [ 1 5 : 8 ] <= wb_da t_ i [ 1 5 : 8 ] ;

240 i f ( w b _ s e l _ i [ 2 ] )

241 s s [ 2 3 : 1 6 ] <= wb_da t_ i [ 2 3 : 1 6 ] ;

242 i f ( w b _ s e l _ i [ 3 ] )

243 s s [ ‘ SPI_SS_NB−1:24] <= wb_da t_ i [ ‘ SPI_SS_NB

−1 : 2 4 ] ;

244 ‘ e n d i f

245 end

246 end

247 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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248 a s s i g n ss_pad_o = ~ ( ( s s & { ‘ SPI_SS_NB{ t i p & a s s } } ) | ( s s & { ‘

SPI_SS_NB { ! a s s } } ) ) ;

249 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

250 endmodule

251 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.2 SPI Clock

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : s p i _ c l o c k

5 * /

6 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 ‘ i n c l u d e " s r c / s p i _ d e f i n e s . v "

8 ‘ i n c l u d e " s r c / t i m e s c a l e . v "

9 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 module s p i _ c l o c k _ g e n ( c l k _ i n , r s t , go , enab l e , l a s t _ c l k ,

d i v i d e r , c l k _ o u t , pos_edge , neg_edge ) ;

11 / / s can_ i n0 , scan_en , t e s t_mode , s c a n _ o u t 0 , r e s e t , c l k ) ;

12 i n p u t c l k _ i n ; / / i n p u t c l o c k (

sys tem c l o c k )

13 i n p u t r s t ; / / r e s e t

14 i n p u t e n a b l e ; / / c l o c k e n a b l e

15 i n p u t go ; / / s t a r t t r a n s f e r

16 i n p u t l a s t _ c l k ; / / l a s t c l o c k
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17 i n p u t [ ‘SPI_DIVIDER_LEN −1:0] d i v i d e r ; / / c l o c k d i v i d e r (

o u t p u t c l o c k i s d i v i d e d by t h i s v a l u e )

18 o u t p u t c l k _ o u t ; / / o u t p u t c l o c k

19 o u t p u t pos_edge ; / / p u l s e marking

p o s i t i v e edge of c l k _ o u t

20 o u t p u t neg_edge ; / / p u l s e marking

n e g a t i v e edge of c l k _ o u t

21

22 r e g c l k _ o u t ;

23 r e g pos_edge ;

24 r e g neg_edge ;

25 r e g [ ‘SPI_DIVIDER_LEN −1:0] c n t ; / / c l o c k c o u n t e r

26 w i r e c n t _ z e r o ; / / c o n t e r i s e q u a l

t o z e r o

27 w i r e c n t _ o n e ; / / c o n t e r i s e q u a l

t o one

28 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29 a s s i g n c n t _ z e r o = c n t == {‘SPI_DIVIDER_LEN {1 ’ b0 } } ;

30 a s s i g n c n t _ o n e = c n t == {{‘SPI_DIVIDER_LEN−1{1’ b0 }} , 1 ’ b1 } ;

31 / *−−−−−−−−−−−−−−−−−−−−−−−−−−Coun te r c o u n t s h a l f p e r i o d

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /

32 a lways @( posedge c l k _ i n o r posedge r s t )

33 b e g i n
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34 i f ( r s t )

35 c n t <= {‘SPI_DIVIDER_LEN {1 ’ b1 } } ;

36 e l s e

37 b e g i n

38 i f ( ! e n a b l e | | c n t _ z e r o )

39 c n t <= d i v i d e r ;

40 e l s e

41 c n t <= c n t − {{ ‘SPI_DIVIDER_LEN−1{1’ b0 }} , 1 ’ b1 } ;

42 end

43 end

44 / *−−−−−−−−−−−−−−−−c l k _ o u t i s a s s e r t e d e v e r y o t h e r h a l f p e r i o d

−−−−−−−−−−−−−−−−−−−−−−−−* /

45 a lways @( posedge c l k _ i n o r posedge r s t )

46 b e g i n

47 i f ( r s t )

48 c l k _ o u t <= 1 ’ b0 ;

49 e l s e

50 c l k _ o u t <= ( e n a b l e && c n t _ z e r o && ( ! l a s t _ c l k | | c l k _ o u t ) )

? ~ c l k _ o u t : c l k _ o u t ;

51 end

52 / *−−−−−−−−−−−−−−−−−−−−−−−− Pos and neg edge s i g n a l s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /

53 a lways @( posedge c l k _ i n o r posedge r s t )

54 b e g i n

55 i f ( r s t )
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56 b e g i n

57 pos_edge <= 1 ’ b0 ;

58 neg_edge <= 1 ’ b0 ;

59 end

60 e l s e

61 b e g i n

62 pos_edge <= ( e n a b l e && ! c l k _ o u t && c n t _ o n e ) | | ( ! ( |

d i v i d e r ) && c l k _ o u t ) | | ( ! ( | d i v i d e r ) && go && ! e n a b l e

) ;

63 neg_edge <= ( e n a b l e && c l k _ o u t && c n t _ o n e ) | | ( ! ( |

d i v i d e r ) && ! c l k _ o u t && e n a b l e ) ;

64 end

65 end

66 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

67 endmodule

68 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.3 SPI Shift

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : s p i _ s h i f t

5 * /

6 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 ‘ i n c l u d e " s r c / s p i _ d e f i n e s . v "

8 ‘ i n c l u d e " s r c / t i m e s c a l e . v "

9 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 module s p i _ s h i f t ( c l k _ s h i f t , r s t , l a t c h , b y t e _ s e l , l en , l s b , go

, pos_edge , neg_edge , rx_negedge , tx_negedge , t i p , l a s t ,

11 p_in , p_out , s _ c l k , s_ in , s _ o u t ) ; / / s can_ in0 ,

scan_en , t e s t_mode , s c a n _ o u t 0 , r e s e t , c l k )

;

12 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 i n p u t c l k _ s h i f t ; / / sys t em c l o c k

14 i n p u t r s t ; / / r e s e t



I.3 SPI Shift 74

15 i n p u t [ 3 : 0 ] l a t c h ; / / l a t c h s i g n a l f o r

s t o r i n g t h e d a t a i n s h i f t r e g i s t e r

16 i n p u t [ 3 : 0 ] b y t e _ s e l ; / / b y t e s e l e c t

s i g n a l s f o r s t o r i n g t h e d a t a i n s h i f t r e g i s t e r

17 i n p u t [ ‘SPI_CHAR_LEN_BITS−1:0] l e n ; / / d a t a l e n i n

b i t s ( minus one )

18 i n p u t l s b ; / / l b s f i r s t on

t h e l i n e

19 i n p u t go ; / / s t a r t

s t a n s f e r

20 i n p u t pos_edge ; / / r e c o g n i z e

posedge of s c l k

21 i n p u t neg_edge ; / / r e c o g n i z e

negedge of s c l k

22 i n p u t rx_negedge ; / / s _ i n i s

sampled on n e g a t i v e edge

23 i n p u t t x _ n e g e d g e ; / / s _ o u t i s

d r i v e n on n e g a t i v e edge

24 o u t p u t t i p ; / / t r a n s f e r i n

p r o g r e s s

25 o u t p u t l a s t ; / / l a s t b i t

26 i n p u t [ 3 1 : 0 ] p_ in ; / / p a r a l l e l i n

27 o u t p u t [ ‘SPI_MAX_CHAR−1:0] p_ou t ; / / p a r a l l e l o u t

28 i n p u t s _ c l k ; / / s e r i a l c l o c k

29 i n p u t s _ i n ; / / s e r i a l i n
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30 o u t p u t s _ o u t ; / / s e r i a l o u t

31 r e g s _ o u t ;

32 r e g t i p ;

33 r e g [ ‘SPI_CHAR_LEN_BITS : 0 ] c n t ; / / d a t a b i t

c o u n t

34 r e g [ ‘SPI_MAX_CHAR−1:0] d a t a ; / / s h i f t

r e g i s t e r

35 w i r e [ ‘SPI_CHAR_LEN_BITS : 0 ] t x _ b i t _ p o s ; / / n e x t b i t

p o s i t i o n

36 w i r e [ ‘SPI_CHAR_LEN_BITS : 0 ] r x _ b i t _ p o s ; / / n e x t b i t

p o s i t i o n

37 w i r e r x _ c l k ; / / rx c l o c k

e n a b l e

38 w i r e t x _ c l k ; / / t x c l o c k

e n a b l e

39 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

40 a s s i g n p_ou t = d a t a ;

41 a s s i g n t x _ b i t _ p o s = l s b ? { ! ( | l e n ) , l e n } − c n t : c n t − {{

‘SPI_CHAR_LEN_BITS {1 ’ b0 }} ,1 ’ b1 } ;

42 a s s i g n r x _ b i t _ p o s = l s b ? { ! ( | l e n ) , l e n } − ( rx_negedge ? c n t

+ {{‘SPI_CHAR_LEN_BITS {1 ’ b0 }} ,1 ’ b1 } : c n t ) :

43 ( rx_negedge ? c n t : c n t − {{

‘SPI_CHAR_LEN_BITS {1 ’ b0 }} ,1 ’ b1 } ) ;
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44

45 a s s i g n l a s t = ! ( | c n t ) ;

46 a s s i g n r x _ c l k = ( rx_negedge ? neg_edge : pos_edge ) && ( ! l a s t

| | s _ c l k ) ;

47 a s s i g n t x _ c l k = ( t x _ n e g e d g e ? neg_edge : pos_edge ) && ! l a s t ;

48 / *−−−−−−−−−−−−−−−−−−−−−−−−−−C h a r a c t e r b i t c o u n t e r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /

49 a lways @( posedge c l k _ s h i f t o r posedge r s t )

50 b e g i n

51 i f ( r s t )

52 c n t <= {‘SPI_CHAR_LEN_BITS+1{1 ’ b0 } } ;

53 e l s e

54 b e g i n

55 i f ( t i p )

56 c n t <= pos_edge ? ( c n t − {{‘SPI_CHAR_LEN_BITS {1 ’ b0

}} , 1 ’ b1 } ) : c n t ;

57 e l s e

58 c n t <= ! ( | l e n ) ? {1 ’ b1 , {‘SPI_CHAR_LEN_BITS {1 ’ b0 }}}

: {1 ’ b0 , l e n } ;

59 end

60 end

61 / *−−−−−−−−−−−−−−−−−−−−−−−−−−T r a n s f e r i n p r o g r e s s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /

62 a lways @( posedge c l k _ s h i f t o r posedge r s t )

63 b e g i n
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64 i f ( r s t )

65 t i p <= 1 ’ b0 ;

66 e l s e i f ( go && ~ t i p )

67 t i p <= 1 ’ b1 ;

68 e l s e i f ( t i p && l a s t && pos_edge )

69 t i p <= 1 ’ b0 ;

70 end

71 / *−−−−−−−−−−−−−−−−−−−−−−−−Sending b i t s t o t h e l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /

72 a lways @( posedge c l k _ s h i f t o r posedge r s t )

73 b e g i n

74 i f ( r s t )

75 s _ o u t <= 1 ’ b0 ;

76 e l s e

77 s _ o u t <= ( t x _ c l k | | ! t i p ) ? d a t a [ t x _ b i t _ p o s [

‘SPI_CHAR_LEN_BITS −1 : 0 ] ] : s _ o u t ;

78 end

79 / *−−−−−−−−−−−−−−−−−−−R e c e i v i n g b i t s from t h e l i n e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−* /

80 a lways @( posedge c l k _ s h i f t o r posedge r s t )

81 b e g i n

82 i f ( r s t )

83 d a t a <= {‘SPI_MAX_CHAR{1 ’ b0 } } ;

84

85 ‘ i f d e f SPI_MAX_CHAR_128
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86 e l s e i f ( l a t c h [ 0 ] && ! t i p )

87 b e g i n

88 i f ( b y t e _ s e l [ 3 ] )

89 d a t a [ 3 1 : 2 4 ] <= p_ in [ 3 1 : 2 4 ] ;

90 i f ( b y t e _ s e l [ 2 ] )

91 d a t a [ 2 3 : 1 6 ] <= p_ in [ 2 3 : 1 6 ] ;

92 i f ( b y t e _ s e l [ 1 ] )

93 d a t a [ 1 5 : 8 ] <= p_ in [ 1 5 : 8 ] ;

94 i f ( b y t e _ s e l [ 0 ] )

95 d a t a [ 7 : 0 ] <= p_ in [ 7 : 0 ] ;

96 end

97 e l s e i f ( l a t c h [ 1 ] && ! t i p )

98 b e g i n

99 i f ( b y t e _ s e l [ 3 ] )

100 d a t a [ 6 3 : 5 6 ] <= p_ in [ 3 1 : 2 4 ] ;

101 i f ( b y t e _ s e l [ 2 ] )

102 d a t a [ 5 5 : 4 8 ] <= p_ in [ 2 3 : 1 6 ] ;

103 i f ( b y t e _ s e l [ 1 ] )

104 d a t a [ 4 7 : 4 0 ] <= p_ in [ 1 5 : 8 ] ;

105 i f ( b y t e _ s e l [ 0 ] )

106 d a t a [ 3 9 : 3 2 ] <= p_ in [ 7 : 0 ] ;

107 end

108 e l s e i f ( l a t c h [ 2 ] && ! t i p )

109 b e g i n

110 i f ( b y t e _ s e l [ 3 ] )
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111 d a t a [ 9 5 : 8 8 ] <= p_ in [ 3 1 : 2 4 ] ;

112 i f ( b y t e _ s e l [ 2 ] )

113 d a t a [ 8 7 : 8 0 ] <= p_ in [ 2 3 : 1 6 ] ;

114 i f ( b y t e _ s e l [ 1 ] )

115 d a t a [ 7 9 : 7 2 ] <= p_ in [ 1 5 : 8 ] ;

116 i f ( b y t e _ s e l [ 0 ] )

117 d a t a [ 7 1 : 6 4 ] <= p_ in [ 7 : 0 ] ;

118 end

119 e l s e i f ( l a t c h [ 3 ] && ! t i p )

120 b e g i n

121 i f ( b y t e _ s e l [ 3 ] )

122 d a t a [ 1 2 7 : 1 2 0 ] <= p_ in [ 3 1 : 2 4 ] ;

123 i f ( b y t e _ s e l [ 2 ] )

124 d a t a [ 1 1 9 : 1 1 2 ] <= p_ in [ 2 3 : 1 6 ] ;

125 i f ( b y t e _ s e l [ 1 ] )

126 d a t a [ 1 1 1 : 1 0 4 ] <= p_ in [ 1 5 : 8 ] ;

127 i f ( b y t e _ s e l [ 0 ] )

128 d a t a [ 1 0 3 : 9 6 ] <= p_ in [ 7 : 0 ] ;

129 end

130 ‘ e l s e

131

132 ‘ i f d e f SPI_MAX_CHAR_64

133 e l s e i f ( l a t c h [ 0 ] && ! t i p )

134 b e g i n

135 i f ( b y t e _ s e l [ 3 ] )
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136 d a t a [ 3 1 : 2 4 ] <= p_ in [ 3 1 : 2 4 ] ;

137 i f ( b y t e _ s e l [ 2 ] )

138 d a t a [ 2 3 : 1 6 ] <= p_ in [ 2 3 : 1 6 ] ;

139 i f ( b y t e _ s e l [ 1 ] )

140 d a t a [ 1 5 : 8 ] <= p_ in [ 1 5 : 8 ] ;

141 i f ( b y t e _ s e l [ 0 ] )

142 d a t a [ 7 : 0 ] <= p_ in [ 7 : 0 ] ;

143 end

144 e l s e i f ( l a t c h [ 1 ] && ! t i p )

145 b e g i n

146 i f ( b y t e _ s e l [ 3 ] )

147 d a t a [ 6 3 : 5 6 ] <= p_ in [ 3 1 : 2 4 ] ;

148 i f ( b y t e _ s e l [ 2 ] )

149 d a t a [ 5 5 : 4 8 ] <= p_ in [ 2 3 : 1 6 ] ;

150 i f ( b y t e _ s e l [ 1 ] )

151 d a t a [ 4 7 : 4 0 ] <= p_ in [ 1 5 : 8 ] ;

152 i f ( b y t e _ s e l [ 0 ] )

153 d a t a [ 3 9 : 3 2 ] <= p_ in [ 7 : 0 ] ;

154 end

155 ‘ e l s e

156 e l s e i f ( l a t c h [ 0 ] && ! t i p )

157 b e g i n

158 ‘ i f d e f SPI_MAX_CHAR_8

159 i f ( b y t e _ s e l [ 0 ] )

160 d a t a [ ‘SPI_MAX_CHAR−1:0] <= p_ i n [ ‘SPI_MAX_CHAR−1 : 0 ] ;
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161 ‘ e n d i f

162 ‘ i f d e f SPI_MAX_CHAR_16

163 i f ( b y t e _ s e l [ 0 ] )

164 d a t a [ 7 : 0 ] <= p_ in [ 7 : 0 ] ;

165 i f ( b y t e _ s e l [ 1 ] )

166 d a t a [ ‘SPI_MAX_CHAR−1:8] <= p_ i n [ ‘SPI_MAX_CHAR−1 : 8 ] ;

167 ‘ e n d i f

168 ‘ i f d e f SPI_MAX_CHAR_24

169 i f ( b y t e _ s e l [ 0 ] )

170 d a t a [ 7 : 0 ] <= p_ in [ 7 : 0 ] ;

171 i f ( b y t e _ s e l [ 1 ] )

172 d a t a [ 1 5 : 8 ] <= p_ in [ 1 5 : 8 ] ;

173 i f ( b y t e _ s e l [ 2 ] )

174 d a t a [ ‘SPI_MAX_CHAR−1:16] <= p_ in [ ‘SPI_MAX_CHAR

−1 : 1 6 ] ;

175 ‘ e n d i f

176 ‘ i f d e f SPI_MAX_CHAR_32

177 i f ( b y t e _ s e l [ 0 ] )

178 d a t a [ 7 : 0 ] <= p_ in [ 7 : 0 ] ;

179 i f ( b y t e _ s e l [ 1 ] )

180 d a t a [ 1 5 : 8 ] <= p_ in [ 1 5 : 8 ] ;

181 i f ( b y t e _ s e l [ 2 ] )

182 d a t a [ 2 3 : 1 6 ] <= p_ in [ 2 3 : 1 6 ] ;

183 i f ( b y t e _ s e l [ 3 ] )
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184 d a t a [ ‘SPI_MAX_CHAR−1:24] <= p_ in [ ‘SPI_MAX_CHAR

−1 : 2 4 ] ;

185 ‘ e n d i f

186 end

187 ‘ e n d i f

188 ‘ e n d i f

189 e l s e

190 d a t a [ r x _ b i t _ p o s [ ‘SPI_CHAR_LEN_BITS −1 : 0 ] ] <= r x _ c l k ?

s _ i n : d a t a [ r x _ b i t _ p o s [ ‘SPI_CHAR_LEN_BITS − 1 : 0 ] ] ;

191 end

192 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

193 endmodule

194 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.4 Defines

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : s p i _ d e f i n e s

5 * /

6 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 / *

8 Number o f b i t s used f o r d i v i d e r r e g i s t e r . I f used i n sys tem

wi th

9 low f r e q u e n c y of sys tem c l o c k t h i s can be r e d u c e d .

10 Use SPI_DIVIDER_LEN f o r f i n e t u n i n g t h e e x a c t number .

11 * /

12

13 / / ‘ d e f i n e SPI_DIVIDER_LEN_8

14 ‘ d e f i n e SPI_DIVIDER_LEN_16

15 / / ‘ d e f i n e SPI_DIVIDER_LEN_24

16 / / ‘ d e f i n e SPI_DIVIDER_LEN_32

17

18 ‘ i f d e f SPI_DIVIDER_LEN_8

19 ‘ d e f i n e SPI_DIVIDER_LEN 8 / / Can be s e t from 1 t o 8

20 ‘ e n d i f
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21 ‘ i f d e f SPI_DIVIDER_LEN_16

22 ‘ d e f i n e SPI_DIVIDER_LEN 16 / / Can be s e t from 9 t o 16

23 ‘ e n d i f

24 ‘ i f d e f SPI_DIVIDER_LEN_24

25 ‘ d e f i n e SPI_DIVIDER_LEN 24 / / Can be s e t from 17 t o

24

26 ‘ e n d i f

27 ‘ i f d e f SPI_DIVIDER_LEN_32

28 ‘ d e f i n e SPI_DIVIDER_LEN 32 / / Can be s e t from 25 t o

32

29 ‘ e n d i f

30 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

31 / *

32 Maximum nuber o f b i t s t h a t can be send / r e c e i v e d a t once .

33 Use SPI_MAX_CHAR f o r f i n e t u n i n g t h e e x a c t number , when u s i n g

34 SPI_MAX_CHAR_32 , SPI_MAX_CHAR_24 , SPI_MAX_CHAR_16 ,

SPI_MAX_CHAR_8 .

35 * /

36

37 ‘ d e f i n e SPI_MAX_CHAR_128

38 / / ‘ d e f i n e SPI_MAX_CHAR_64

39 / / ‘ d e f i n e SPI_MAX_CHAR_32

40 / / ‘ d e f i n e SPI_MAX_CHAR_24
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41 / / ‘ d e f i n e SPI_MAX_CHAR_16

42 / / ‘ d e f i n e SPI_MAX_CHAR_8

43

44 ‘ i f d e f SPI_MAX_CHAR_128

45 ‘ d e f i n e SPI_MAX_CHAR 128 / / Can on ly be s e t t o 128

46 ‘ d e f i n e SPI_CHAR_LEN_BITS 7

47 ‘ e n d i f

48 ‘ i f d e f SPI_MAX_CHAR_64

49 ‘ d e f i n e SPI_MAX_CHAR 64 / / Can on ly be s e t t o 64

50 ‘ d e f i n e SPI_CHAR_LEN_BITS 6

51 ‘ e n d i f

52 ‘ i f d e f SPI_MAX_CHAR_32

53 ‘ d e f i n e SPI_MAX_CHAR 32 / / Can be s e t from 25 t o

32

54 ‘ d e f i n e SPI_CHAR_LEN_BITS 5

55 ‘ e n d i f

56 ‘ i f d e f SPI_MAX_CHAR_24

57 ‘ d e f i n e SPI_MAX_CHAR 24 / / Can be s e t from 17 t o

24

58 ‘ d e f i n e SPI_CHAR_LEN_BITS 5

59 ‘ e n d i f

60 ‘ i f d e f SPI_MAX_CHAR_16

61 ‘ d e f i n e SPI_MAX_CHAR 16 / / Can be s e t from 9 t o 16

62 ‘ d e f i n e SPI_CHAR_LEN_BITS 4

63 ‘ e n d i f
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64 ‘ i f d e f SPI_MAX_CHAR_8

65 ‘ d e f i n e SPI_MAX_CHAR 8 / / Can be s e t from 1 t o 8

66 ‘ d e f i n e SPI_CHAR_LEN_BITS 3

67 ‘ e n d i f

68 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

69 / *

70 Number o f d e v i c e s e l e c t s i g n a l s . Use SPI_SS_NB f o r f i n e t u n i n g

t h e

71 e x a c t number .

72 * /

73 ‘ d e f i n e SPI_SS_NB_8

74 / / ‘ d e f i n e SPI_SS_NB_16

75 / / ‘ d e f i n e SPI_SS_NB_24

76 / / ‘ d e f i n e SPI_SS_NB_32

77

78 ‘ i f d e f SPI_SS_NB_8

79 ‘ d e f i n e SPI_SS_NB 8 / / Can be s e t from 1 t o 8

80 ‘ e n d i f

81 ‘ i f d e f SPI_SS_NB_16

82 ‘ d e f i n e SPI_SS_NB 16 / / Can be s e t from 9 t o 16

83 ‘ e n d i f

84 ‘ i f d e f SPI_SS_NB_24
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85 ‘ d e f i n e SPI_SS_NB 24 / / Can be s e t from 17 t o

24

86 ‘ e n d i f

87 ‘ i f d e f SPI_SS_NB_32

88 ‘ d e f i n e SPI_SS_NB 32 / / Can be s e t from 25 t o

32

89 ‘ e n d i f

90 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

91 / *

92 B i t s o f WISHBONE a d d r e s s used f o r p a r t i a l d e c o d i n g of SPI

r e g i s t e r s .

93 * /

94 ‘ d e f i n e SPI_OFS_BITS 4 : 2

95 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

96 / * R e g i s t e r o f f s e t * /

97 ‘ d e f i n e SPI_RX_0 0

98 ‘ d e f i n e SPI_RX_1 1

99 ‘ d e f i n e SPI_RX_2 2

100 ‘ d e f i n e SPI_RX_3 3

101 ‘ d e f i n e SPI_TX_0 0

102 ‘ d e f i n e SPI_TX_1 1
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103 ‘ d e f i n e SPI_TX_2 2

104 ‘ d e f i n e SPI_TX_3 3

105 ‘ d e f i n e SPI_CTRL 4

106 ‘ d e f i n e SPI_DIVIDE 5

107 ‘ d e f i n e SPI_SS 6

108 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

109 / * Number o f b i t s i n c t r l r e g i s t e r * /

110 ‘ d e f i n e SPI_CTRL_BIT_NB 14

111 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

112 / * C o n t r o l r e g i s t e r b i t p o s i t i o n * /

113 ‘ d e f i n e SPI_CTRL_ASS 13

114 ‘ d e f i n e SPI_CTRL_IE 12

115 ‘ d e f i n e SPI_CTRL_LSB 11

116 ‘ d e f i n e SPI_CTRL_TX_NEGEDGE 10

117 ‘ d e f i n e SPI_CTRL_RX_NEGEDGE 9

118 ‘ d e f i n e SPI_CTRL_GO 8

119 ‘ d e f i n e SPI_CTRL_RES_1 7

120 ‘ d e f i n e SPI_CTRL_CHAR_LEN 6 : 0

121 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.5 Test Top

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : t b _ t o p

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 ‘ i n c l u d e " uvm_macros . svh "

8 ‘ i n c l u d e " s p i _ p k g . sv "

9 ‘ i n c l u d e " s p i _ i f . sv "

10 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 module t e s t ;

12 i m p o r t uvm_pkg : : * ;

13 i m p o r t s p i _ p k g : : * ;

14

15 s p i _ i f m a s t e r ( c l o c k ) ; / / I n t e r f a c e d e c l a r a t i o n

16 s p i _ i f s l a v e ( c l o c k ) ; / / I n t e r f a c e d e c l a r a t i o n

17 / *−−−−−−−−−−−−−−−−−−SPI m a s t e r core−−−−−−−−−−−−−−−−−−−−−−−−−−−

* /

18 s p i t o p (

19 / * t b t o DUT c o n n e c t i o n * /

20 . wb_c lk_ i ( c l o c k ) ,

21 . w b _ r s t _ i ( r s t n ) ,

22 . wb_adr_ i ( m a s t e r . a d r [ 4 : 0 ] ) ,
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23 . wb_da t_ i ( m a s t e r . dou t ) ,

24 . w b _ s e l _ i ( m a s t e r . s e l ) ,

25 . wb_we_i ( m a s t e r . we ) ,

26 . w b _ s t b _ i ( m a s t e r . s t b ) ,

27 . wb_cyc_i ( m a s t e r . cyc ) ,

28 . wb_dat_o ( m a s t e r . d i n ) ,

29 . wb_ack_o ( m a s t e r . ack ) ,

30 . wb_err_o ( m a s t e r . e r r ) ,

31 . wb_in t_o ( m a s t e r . i n t p ) ,

32 . s c a n _ i n 0 ( s c a n _ i n 0 ) ,

33 . s c a n _ o u t 0 ( s c a n _ o u t 0 ) ,

34 . scan_en ( scan_en ) ,

35 . t e s t _ m o d e ( t e s t _ m o d e ) ,

36 / * m a s t e r t o s l a v e c o n n e c t i o n * /

37 . s s_pad_o ( s s ) ,

38 . s c l k _ p a d _ o ( s c l k ) ,

39 . mosi_pad_o ( mosi ) ,

40 . miso_pad_ i ( miso ) ,

41 . t i p ( m a s t e r . p i t )

42 ) ;

43 / *−−−−−−−−−−−−−−−−−−SPI s l a v e core−−−−−−−−−−−−−−−−−−−−−−−−−−−* /

44 s p i _ s l a v e s p i _ s l a v e (

45 / * t b t o DUT c o n n e c t i o n * /

46 . wb_c lk_ i ( c l o c k ) ,

47 . w b _ r s t _ i ( r s t n ) ,
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48 . wb_adr_ i ( s l a v e . a d r [ 4 : 0 ] ) ,

49 . wb_da t_ i ( s l a v e . dou t ) ,

50 . w b _ s e l _ i ( s l a v e . s e l ) ,

51 . wb_we_i ( s l a v e . we ) ,

52 . w b _ s t b _ i ( s l a v e . s t b ) ,

53 . wb_cyc_i ( s l a v e . cyc ) ,

54 . wb_dat_o ( s l a v e . d i n ) ,

55 . wb_ack_o ( s l a v e . ack ) ,

56 . wb_err_o ( s l a v e . e r r ) ,

57 . wb_in t_o ( s l a v e . i n t p ) ,

58 . s c a n _ i n 0 ( s c a n _ i n 0 ) ,

59 . scan_en ( scan_en ) ,

60 . t e s t _ m o d e ( t e s t _ m o d e ) ,

61 . s c a n _ o u t 0 ( s c a n _ o u t 0 ) ,

62 / * s l a v e t o m a s t e r c o n n e c t i o n * /

63 . s s _ p a d _ i ( s s ) ,

64 . s c l k _ p a d _ i ( s c l k ) ,

65 . mos i_pad_ i ( mosi ) ,

66 . miso_pad_o ( miso )

67 ) ;

68 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

69 i n i t i a l b e g i n

70 $ t i m e f o r m a t ( −9 ,2 , " ns " , 16) ;

71 $se t_cove rage_db_name ( " s p i " ) ;

72
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73 ‘ i f d e f SDFSCAN

74 $ s d f _ a n n o t a t e ( " s d f / s p i _ t s m c 1 8 _ s c a n . s d f " , t e s t . t o p ) ;

75 ‘ e n d i f

76 g e n e r a t e _ c l o c k ( ) ;

77 r e g _ i n t f _ t o _ c o n f i g _ d b ( ) ;

78 i n i t a l i z e _ d u t ( ) ;

79 / / r e s e t _ d u t ( ) ; / / c o u l d a l s o be c a r r i e d o u t

i n s i d e p r e _ r e s e t _ p h a s e

80 r u n _ t e s t ( ) ;

81 end

82 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

83 t a s k g e n e r a t e _ c l o c k ( ) ;

84 f o r k

85 f o r e v e r b e g i n

86 c l o c k = ‘LOW;

87 #(CLOCK_PERIOD / 2 ) ;

88 c l o c k = ‘HIGH ;

89 #(CLOCK_PERIOD / 2 ) ;

90 end

91 j o i n _ n o n e

92 e n d t a s k : g e n e r a t e _ c l o c k

93 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

94 f u n c t i o n vo id r e g _ i n t f _ t o _ c o n f i g _ d b ( ) ;
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95 / / R e g i s t e r s t h e I n t e r f a c e i n t h e c o n f i g u r a t i o n b l o c k so t h a t

o t h e r b l o c k s can use i t r e t r i v e d u s i n g g e t

96 uvm_config_db #( v i r t u a l s p i _ i f ) : : s e t ( n u l l , " * " , " m_if " , m a s t e r )

;

97 uvm_config_db #( v i r t u a l s p i _ i f ) : : s e t ( n u l l , " * " , " s _ i f " ,

s l a v e ) ;

98 e n d f u n c t i o n : r e g _ i n t f _ t o _ c o n f i g _ d b

99 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

100 f u n c t i o n vo id i n i t a l i z e _ d u t ( ) ;

101 t e s t _ m o d e = 1 ’ b0 ;

102 s c a n _ i n 0 = 1 ’ b0 ;

103 s c a n _ i n 1 = 1 ’ b0 ;

104 scan_en = 1 ’ b0 ;

105 e n d f u n c t i o n : i n i t a l i z e _ d u t

106 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

107 t a s k r e s e t _ d u t ( ) ;

108 r s t n <= ‘LOW;

109 r e p e a t ( RESET_PERIOD ) @( posedge c l o c k ) ;

110 r s t n <= ‘HIGH ;

111 r e p e a t ( RESET_PERIOD ) @( posedge c l o c k ) ;

112 r s t n = ‘LOW;

113 / /−>RST_DONE ;

114 e n d t a s k : r e s e t _ d u t

115 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

116 endmodule : t e s t
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117 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



I.6 Interface 96

I.6 Interface

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : Package

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 i n t e r f a c e s p i _ i f ( i n p u t b i t c l k ) ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 / / Wishbone s i g n a l s

10

11 l o g i c [ 4 : 0 ] a d r ; / / l ower a d d r e s s

b i t s

12 l o g i c [32 −1:0] d i n ; / / d a t a b u s i n p u t

13 l o g i c [32 −1:0] dou t ; / / d a t a b u s o u t p u t

14 l o g i c [ 3 : 0 ] s e l ; / / b y t e s e l e c t

i n p u t s

15 l o g i c we ; / / w r i t e e n a b l e

i n p u t

16 l o g i c s t b ; / / s t o b e / c o r e

s e l e c t s i g n a l

17 l o g i c cyc ; / / v a l i d bus

c y c l e i n p u t
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18 l o g i c ack ; / / bus c y c l e

acknowledge o u t p u t

19 l o g i c e r r ; / / t e r m i n a t i o n w/

e r r o r

20 l o g i c i n t p ; / / i n t e r r u p t

r e q u e s t s i g n a l o u t p u t i n p u t

21 l o g i c p i t ;

22 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 c l o c k i n g d r i v e _ c b @( posedge c l k ) ;

24 i n p u t din , ack , e r r , i n t p , p i t ;

25 o u t p u t adr , dout , s e l , we , s t b , cyc ;

26 e n d c l o c k i n g : d r i v e _ c b

27 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

28 c l o c k i n g m o n i t o r _ c b @( posedge c l k ) ;

29 i n p u t din , ack , e r r , i n t p , p i t ;

30 o u t p u t adr , dout , s e l , we , s t b , cyc ;

31 e n d c l o c k i n g : m o n i t o r _ c b

32 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

33 e n d i n t e r f a c e : s p i _ i f

34 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.7 Package

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : Package

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 package s p i _ p k g ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 i m p o r t uvm_pkg : : * ;

10

11 / / ‘ i n c l u d e " uvm_macros . svh "

12 ‘ i n c l u d e " s p i _ t b _ d e f i n e s . sv "

13 ‘ i n c l u d e " s p i _ s e q u e n c e _ i t e m . sv "

14 ‘ i n c l u d e " wb_bfm . sv "

15 ‘ i n c l u d e " s p i _ d r i v e r . sv "

16 ‘ i n c l u d e " s p i _ m o n i t o r . sv "

17 ‘ i n c l u d e " s p i _ s e q u e n c e r . sv "

18 ‘ i n c l u d e " s p i _ a g e n t . sv "

19 ‘ i n c l u d e " s p i _ c o v e r a g e . sv "

20 ‘ i n c l u d e " s p i _ s c o r e b o a r d . sv "

21 ‘ i n c l u d e " s p i _ s e q u e n c e . sv "

22 ‘ i n c l u d e " s p i _ e n v . sv "

23 ‘ i n c l u d e " s p i _ t e s t . sv "
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24 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 endpackage : s p i _ p k g

26 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.8 Test

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : T e s t

5 * /

6 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ t e s t e x t e n d s u v m _ t e s t ;

8 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ uvm_componen t_u t i l s ( s p i _ t e s t )

10 s p i _ e n v env ;

11 s p i _ s e q u e n c e h_seq ;

12 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 f u n c t i o n new ( s t r i n g name=" s p i _ t e s t " , uvm_component p a r e n t ) ;

14 s u p e r . new ( name , p a r e n t ) ;

15 e n d f u n c t i o n : new

16 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

18 s u p e r . b u i l d _ p h a s e ( phase ) ;

19 ‘ uvm_info ( g e t _ f u l l _ n a m e ( ) , " B u i l d phase c a l l e d i n

s p i _ t e s t " ,UVM_LOW)

20 / * B u i l d e n v i r o n m e n t component * /

21 env = s p i _ e n v : : t y p e _ i d : : c r e a t e ( " env " , t h i s ) ;

22 e n d f u n c t i o n : b u i l d _ p h a s e
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23 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

24 f u n c t i o n vo id c o n n e c t _ p h a s e ( uvm_phase phase ) ;

25 s u p e r . c o n n e c t _ p h a s e ( phase ) ;

26 ‘ uvm_info ( g e t _ f u l l _ n a m e ( ) , " Connect phase c a l l e d i n

s p i _ t e s t " ,UVM_LOW)

27 e n d f u n c t i o n : c o n n e c t _ p h a s e

28 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29 t a s k r e s e t _ p h a s e ( uvm_phase phase ) ;

30 phase . r a i s e _ o b j e c t i o n ( t h i s ) ;

31 r s t n <= ‘LOW;

32 r e p e a t ( RESET_PERIOD ) @( posedge c l o c k ) ;

33 r s t n <= ‘HIGH ;

34 r e p e a t ( RESET_PERIOD ) @( posedge c l o c k ) ;

35 r s t n = ‘LOW;

36 phase . d r o p _ o b j e c t i o n ( t h i s ) ;

37 e n d t a s k : r e s e t _ p h a s e

38 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

39 v i r t u a l t a s k main_phase ( uvm_phase phase ) ;

40 ‘ uvm_info ( g e t _ f u l l _ n a m e ( ) , " i n main phase " ,UVM_LOW)

41 phase . r a i s e _ o b j e c t i o n ( t h i s ) ;

42 h_seq = s p i _ s e q u e n c e : : t y p e _ i d : : c r e a t e ( " h_seq " ) ;

43 r e p e a t ( 1 0 0 )

44 h_seq . s t a r t ( env . a g e n t . s e q u e n c e r ) ;

45 phase . d r o p _ o b j e c t i o n ( t h i s ) ;

46 e n d t a s k : main_phase
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47 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

48 e n d c l a s s : s p i _ t e s t

49 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.9 Environment

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : Envi ronment

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ e n v e x t e n d s uvm_env ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ u v m _ c o m p o n e n t _ u t i l s ( s p i _ e n v )

10 s p i _ a g e n t a g e n t ;

11 s p i _ s c o r e b o a r d s c o r e b o a r d ;

12 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 f u n c t i o n new ( s t r i n g name=" s p i _ e n v " , uvm_component p a r e n t ) ;

14 s u p e r . new ( name , p a r e n t ) ;

15 e n d f u n c t i o n : new

16 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

18 s u p e r . b u i l d _ p h a s e ( phase ) ;

19 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " B u i l d phase c a l l e d i n

s p i _ e n v i r o n m e n t " ,UVM_LOW)

20 / * B u i l d a g e n t and s c o r e b o a r d components * /

21 a g e n t = s p i _ a g e n t : : t y p e _ i d : : c r e a t e ( " a g e n t " , t h i s ) ;
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22 s c o r e b o a r d = s p i _ s c o r e b o a r d : : t y p e _ i d : : c r e a t e ( "

s c o r e b o a r d " , t h i s ) ;

23 e n d f u n c t i o n : b u i l d _ p h a s e

24 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 f u n c t i o n vo id c o n n e c t _ p h a s e ( uvm_phase phase ) ;

26 s u p e r . c o n n e c t _ p h a s e ( phase ) ;

27 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " Connect phase c a l l e d i n

s p i _ e n v i r o n m e n t " ,UVM_LOW)

28 / * Connect t h e a n a l y s i s p o r t f o r m o n i t o r and d r i v e r

r e s p e c t i v e l y w i t h s c o r b o a r d * /

29 a g e n t . m o n i t o r . d u t _ o u t _ p k t . c o n n e c t ( s c o r e b o a r d . mon2sb ) ;

30 a g e n t . d r i v e r . d u t _ i n _ p k t . c o n n e c t ( s c o r e b o a r d . d r v2 sb ) ;

31 e n d f u n c t i o n : c o n n e c t _ p h a s e

32 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

33 e n d c l a s s : s p i _ e n v

34 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.10 Agent

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : Agent

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ a g e n t e x t e n d s uvm_agent ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ u v m _ c o m p o n e n t _ u t i l s ( s p i _ a g e n t )

10 s p i _ s e q u e n c e r s e q u e n c e r ;

11 s p i _ m o n i t o r m o n i t o r ;

12 s p i _ d r i v e r d r i v e r ;

13 s p i _ v i f m_vif , s _ v i f ;

14 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 f u n c t i o n new ( s t r i n g name=" s p i _ a g e n t " , uvm_component p a r e n t ) ;

16 s u p e r . new ( name , p a r e n t ) ;

17 e n d f u n c t i o n : new

18 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

20 s u p e r . b u i l d _ p h a s e ( phase ) ;

21 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " B u i l d phase c a l l e d i n

s p i _ a g e n t " ,UVM_LOW)
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22 i f ( ! uvm_conf ig_db #( v i r t u a l s p i _ i f ) : : g e t ( t h i s , " " , " m_if

" , m_vif ) )

23 ‘ u v m _ f a t a l ( "NO_VIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r

: " , g e t _ f u l l _ n a m e ( ) , " . m_vif " } )

24 i f ( ! uvm_conf ig_db #( v i r t u a l s p i _ i f ) : : g e t ( t h i s , " " , " s _ i f

" , s _ v i f ) )

25 ‘ u v m _ f a t a l ( "NO_VIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r

: " , g e t _ f u l l _ n a m e ( ) , " . s _ v i f " } )

26 s e q u e n c e r = s p i _ s e q u e n c e r : : t y p e _ i d : : c r e a t e ( " s e q u e n c e r " ,

t h i s ) ;

27 d r i v e r = s p i _ d r i v e r : : t y p e _ i d : : c r e a t e ( " d r i v e r " , t h i s ) ;

28 d r i v e r . m_vif = m_vif ;

29 d r i v e r . s _ v i f = s _ v i f ;

30 m o n i t o r = s p i _ m o n i t o r : : t y p e _ i d : : c r e a t e ( " m o n i t o r " , t h i s ) ;

31 m o n i t o r . m_vif = m_vif ;

32 m o n i t o r . s _ v i f = s _ v i f ;

33 e n d f u n c t i o n : b u i l d _ p h a s e

34 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 f u n c t i o n vo id c o n n e c t _ p h a s e ( uvm_phase phase ) ;

36 s u p e r . c o n n e c t _ p h a s e ( phase ) ;

37 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " Connect phase c a l l e d i n

s p i _ a g e n t " ,UVM_LOW)

38 d r i v e r . s e q _ i t e m _ p o r t . c o n n e c t ( s e q u e n c e r . s e q _ i t e m _ e x p o r t )

;

39 e n d f u n c t i o n : c o n n e c t _ p h a s e
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40 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

41 e n d c l a s s : s p i _ a g e n t

42 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.11 Sequence Item

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : Sequence I tem

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ s e q u e n c e _ i t e m e x t e n d s uvm_sequence_i tem ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 / * R e g i s t e r c o n f i g u r a t i o n * /

10 rand l o g i c [ 3 1 : 0 ] m a s t e r _ c t r l _ r e g ;

11 rand l o g i c [ 3 1 : 0 ] s l a v e _ c t r l _ r e g ;

12 rand l o g i c [ 3 1 : 0 ] d i v i d e r _ r e g ;

13 rand l o g i c [ 3 1 : 0 ] s l a v e _ s e l e c t _ r e g ;

14 rand l o g i c [ 3 1 : 0 ] s t a r t _ d u t _ r e g ;

15 / *DUT o u t p u t * /

16 l o g i c [ 3 1 : 0 ] o u t _ m a s t e r _ d a t a ;

17 l o g i c [ 3 1 : 0 ] o u t _ s l a v e _ d a t a ;

18 / * Expec ted d a t a * /

19 rand l o g i c [ 3 1 : 0 ] e x p _ m a s t e r _ d a t a ;

20 rand l o g i c [ 3 1 : 0 ] e x p _ s l a v e _ d a t a ;

21 / *DUT i n p u t * /

22 rand l o g i c [ 3 1 : 0 ] i n _ m a s t e r _ d a t a ;

23 rand l o g i c [ 3 1 : 0 ] i n _ s l a v e _ d a t a ;
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24 l o g i c [ 3 1 : 0 ] q ;

25 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

26 ‘ u v m _ o b j e c t _ u t i l s _ b e g i n ( s p i _ s e q u e n c e _ i t e m )

27 ‘ u v m _ f i e l d _ i n t ( m a s t e r _ c t r l _ r e g ,UVM_ALL_ON)

28 ‘ u v m _ f i e l d _ i n t ( s l a v e _ c t r l _ r e g ,UVM_ALL_ON)

29 ‘ u v m _ f i e l d _ i n t ( d i v i d e r _ r e g ,UVM_ALL_ON)

30 ‘ u v m _ f i e l d _ i n t ( s l a v e _ s e l e c t _ r e g ,UVM_ALL_ON)

31 ‘ u v m _ f i e l d _ i n t ( s t a r t _ d u t _ r e g ,UVM_ALL_ON)

32 ‘ u v m _ f i e l d _ i n t ( o u t _ m a s t e r _ d a t a ,UVM_ALL_ON)

33 ‘ u v m _ f i e l d _ i n t ( o u t _ s l a v e _ d a t a ,UVM_ALL_ON)

34 ‘ u v m _ f i e l d _ i n t ( e x p _ m a s t e r _ d a t a ,UVM_ALL_ON)

35 ‘ u v m _ f i e l d _ i n t ( e x p _ s l a v e _ d a t a ,UVM_ALL_ON)

36 ‘ u v m _ f i e l d _ i n t ( i n _ m a s t e r _ d a t a ,UVM_ALL_ON)

37 ‘ u v m _ f i e l d _ i n t ( i n _ s l a v e _ d a t a ,UVM_ALL_ON)

38 ‘ u v m _ f i e l d _ i n t ( q ,UVM_ALL_ON)

39 ‘ u v m _ o b j e c t _ u t i l s _ e n d

40 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

41 f u n c t i o n new ( s t r i n g name=" s p i _ s e q u e n c e _ i t e m " ) ;

42 s u p e r . new ( name ) ;

43 e n d f u n c t i o n : new

44 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 e n d c l a s s : s p i _ s e q u e n c e _ i t e m

46 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.12 Sequence

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : Sequence

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ s e q u e n c e e x t e n d s uvm_sequence # ( s p i _ s e q u e n c e _ i t e m ) ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ u v m _ o b j e c t _ u t i l s ( s p i _ s e q u e n c e )

10 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 f u n c t i o n new ( s t r i n g name=" s p i _ s e q u e n c e " ) ;

12 s u p e r . new ( name ) ;

13 e n d f u n c t i o n : new

14 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 v i r t u a l t a s k body ( ) ;

16 r e q = s p i _ s e q u e n c e _ i t e m : : t y p e _ i d : : c r e a t e ( " r e q " ) ;

17 s t a r t _ i t e m ( r e q ) ;

18 / / c o n f i g u r e _ d u t _ r e g i s t e r ( ) ;

19 s e t _ d u t _ d a t a ( ) ;

20 f i n i s h _ i t e m ( r e q ) ;

21 e n d t a s k : body

22 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 v i r t u a l f u n c t i o n vo id c o n f i g u r e _ d u t _ r e g i s t e r ( ) ;
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24 a s s e r t ( r e q . r andomize ( ) w i th { r e q . m a s t e r _ c t r l _ r e g == 32 ’

h00002208 ;

25 r e q . s l a v e _ c t r l _ r e g == 32 ’

h00000200 ;

26 r e q . d i v i d e r _ r e g == 32 ’

h00000000 ;

27 r e q . s l a v e _ s e l e c t _ r e g == 32 ’

h00000001 ;

28 r e q . s t a r t _ d u t _ r e g == 32 ’

h00000320 ;

29 } ) ;

30 e n d f u n c t i o n : c o n f i g u r e _ d u t _ r e g i s t e r

31 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32 v i r t u a l f u n c t i o n vo id s e t _ d u t _ d a t a ( ) ;

33 a s s e r t ( r e q . r andomize ( ) w i th {

34 r e q . d i v i d e r _ r e g == 32 ’

h00000000 ;

35 r e q . m a s t e r _ c t r l _ r e g == 32 ’

h00002208 ;

36 r e q . s l a v e _ c t r l _ r e g == 32 ’

h00000200 ;

37 r e q . s l a v e _ s e l e c t _ r e g == 32 ’

h00000001 ;

38 r e q . s t a r t _ d u t _ r e g == 32 ’

h00000320 ;
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39 / / r e q . i n _ m a s t e r _ d a t a == 32 ’

h87654321 ;

40 / / r e q . i n _ s l a v e _ d a t a == 32 ’

h11223344 ;

41 r e q . e x p _ m a s t e r _ d a t a == r e q .

i n _ s l a v e _ d a t a ;

42 r e q . e x p _ s l a v e _ d a t a == r e q .

i n _ m a s t e r _ d a t a ;

43 } ) ;

44 e n d f u n c t i o n : s e t _ d u t _ d a t a

45 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

46 e n d c l a s s : s p i _ s e q u e n c e

47 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.13 Sequencer

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : Sequence r

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ s e q u e n c e r e x t e n d s uvm_sequencer # ( s p i _ s e q u e n c e _ i t e m ) ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ u v m _ c o m p o n e n t _ u t i l s ( s p i _ s e q u e n c e r )

10 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 f u n c t i o n new ( s t r i n g name=" s p i _ s e q u e n c e r " , uvm_component

p a r e n t ) ;

12 s u p e r . new ( name , p a r e n t ) ;

13 e n d f u n c t i o n : new

14 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 e n d c l a s s : s p i _ s e q u e n c e r

16 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.14 Driver

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : D r i v e r

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ d r i v e r e x t e n d s uvm_dr ive r # ( s p i _ s e q u e n c e _ i t e m ) ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ u v m _ c o m p o n e n t _ u t i l s ( s p i _ d r i v e r )

10 s p i _ v i f m_vif , s _ v i f ;

11 s p i _ s e q u e n c e _ i t e m p a c k e t ;

12 u v m _ a n a l y s i s _ p o r t # ( s p i _ s e q u e n c e _ i t e m ) d u t _ i n _ p k t ;

13 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

14 f u n c t i o n new ( s t r i n g name=" s p i _ m o n i t o r " , uvm_component p a r e n t

) ;

15 s u p e r . new ( name , p a r e n t ) ;

16 d u t _ i n _ p k t = new ( " d u t _ i n _ p k t " , t h i s ) ;

17 e n d f u n c t i o n : new

18 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

20 s u p e r . b u i l d _ p h a s e ( phase ) ;

21 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " B u i l d phase c a l l e d i n

s p i _ d r i v e r " ,UVM_LOW)
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22 i f ( ! uvm_conf ig_db #( v i r t u a l s p i _ i f ) : : g e t ( t h i s , " " , " m_if

" , m_vif ) )

23 ‘ u v m _ f a t a l ( "NO_VIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r

: " , g e t _ f u l l _ n a m e ( ) , " . m_vif " } )

24 i f ( ! uvm_conf ig_db #( v i r t u a l s p i _ i f ) : : g e t ( t h i s , " " , " s _ i f

" , s _ v i f ) )

25 ‘ u v m _ f a t a l ( "NO_VIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r

: " , g e t _ f u l l _ n a m e ( ) , " . s _ v i f " } )

26 e n d f u n c t i o n : b u i l d _ p h a s e

27 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

28 t a s k r u n _ p h a s e ( uvm_phase phase ) ;

29 p a c k e t = s p i _ s e q u e n c e _ i t e m : : t y p e _ i d : : c r e a t e ( " p a c k e t

" ) ;

30 wb_bfm : : w b _ r e s e t ( m_vif ) ;

31 wb_bfm : : w b _ r e s e t ( s _ v i f ) ;

32 f o r k

33 f o r e v e r b e g i n

34 s e q _ i t e m _ p o r t . g e t _ n e x t _ i t e m ( r e q ) ;

35 d r i v e _ t r a n s f e r ( r e q ) ;

36 $ c a s t ( packe t , r e q . c l o n e ( ) ) ;

37 p a c k e t = r e q ;

38 d u t _ i n _ p k t . w r i t e ( p a c k e t ) ;

39 s e q _ i t e m _ p o r t . i t em_done ( ) ;

40 w a i t ( m_vif . m o n i t o r _ c b . p i t ==1 ’ b0 ) ;

41 end
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42 j o i n _ n o n e

43 e n d t a s k : r u n _ p h a s e

44 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 t a s k d r i v e _ t r a n s f e r ( s p i _ s e q u e n c e _ i t e m seq ) ;

46 wb_bfm : : wb_wr i te ( m_vif , 0 , SPI_DIVIDE , seq . d i v i d e r _ r e g ) ;

/ / s e t d i v i d e r r e g i s t e r

47 wb_bfm : : wb_wr i te ( m_vif , 0 , SPI_SS , seq . s l a v e _ s e l e c t _ r e g ) ;

/ / s e t s s 0

48 wb_bfm : : wb_wr i te ( m_vif , 0 , SPI_TX_0 , seq . i n _ m a s t e r _ d a t a ) ;

/ / s e t m a s t e r d a t a r e g i s t e r

49 wb_bfm : : wb_wr i te ( m_vif , 0 , SPI_CTRL , seq . m a s t e r _ c t r l _ r e g )

; / / s e t m a s t e r c t r l r e g i s t e r

50 wb_bfm : : wb_wr i te ( s _ v i f , 0 , SPI_CTRL , seq . s l a v e _ c t r l _ r e g ) ;

/ / s e t s l a v e c t r l r e g i s t e r

51 wb_bfm : : wb_wr i te ( s _ v i f , 0 , SPI_TX_0 , seq . i n _ s l a v e _ d a t a ) ;

/ / s e t s l a v e d a t a r e g i s t e r

52 wb_bfm : : wb_wr i te ( m_vif , 0 , SPI_CTRL , seq . s t a r t _ d u t _ r e g ) ;

/ / s t a r t d a t a t r a n s f e r

53 e n d t a s k : d r i v e _ t r a n s f e r

54 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

55 e n d c l a s s : s p i _ d r i v e r

56 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.15 Monitor

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : Moni to r

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ m o n i t o r e x t e n d s uvm_monitor ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ u v m _ c o m p o n e n t _ u t i l s ( s p i _ m o n i t o r )

10 s p i _ v i f m_vif , s _ v i f ;

11 s p i _ s e q u e n c e _ i t e m p a c k e t ;

12 u v m _ a n a l y s i s _ p o r t # ( s p i _ s e q u e n c e _ i t e m ) d u t _ o u t _ p k t ;

13 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

14 f u n c t i o n new ( s t r i n g name=" s p i _ m o n i t o r " , uvm_component p a r e n t

) ;

15 s u p e r . new ( name , p a r e n t ) ;

16 d u t _ o u t _ p k t = new ( " d u t _ o u t _ p k t " , t h i s ) ;

17 e n d f u n c t i o n : new

18 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

20 s u p e r . b u i l d _ p h a s e ( phase ) ;

21 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " B u i l d phase c a l l e d i n

s p i _ m o n i t o r " ,UVM_LOW)
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22 i f ( ! uvm_conf ig_db #( v i r t u a l s p i _ i f ) : : g e t ( t h i s , " " , " m_if "

, m_vif ) )

23 ‘ u v m _ f a t a l ( "NO_VIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r

: " , g e t _ f u l l _ n a m e ( ) , " . m_vif " } )

24 i f ( ! uvm_conf ig_db #( v i r t u a l s p i _ i f ) : : g e t ( t h i s , " " , " s _ i f

" , s _ v i f ) )

25 ‘ u v m _ f a t a l ( "NO_VIF" ,{ " v i r t u a l i n t e r f a c e must be s e t f o r

: " , g e t _ f u l l _ n a m e ( ) , " . s _ v i f " } )

26 e n d f u n c t i o n : b u i l d _ p h a s e

27 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

28 t a s k r u n _ p h a s e ( uvm_phase phase ) ;

29 p a c k e t = s p i _ s e q u e n c e _ i t e m : : t y p e _ i d : : c r e a t e ( " p a c k e t

" ) ;

30 w a i t ( m_vif . m o n i t o r _ c b . p i t ==1 ’ b1 ) / / w a i t _ t o _ s t a r t

31 f o r e v e r b e g i n

32 w a i t ( m_vif . m o n i t o r _ c b . p i t ==1 ’ b0 ) / / w a i t _ t o _ c o m p l e t e

33 wb_bfm : : wb_read ( m_vif , 1 , SPI_RX_0 , p a c k e t .

o u t _ m a s t e r _ d a t a ) ;

34 wb_bfm : : wb_read ( s _ v i f , 1 , SPI_RX_0 , p a c k e t .

o u t _ s l a v e _ d a t a ) ;

35 d u t _ o u t _ p k t . w r i t e ( p a c k e t ) ;

36 w a i t ( m_vif . m o n i t o r _ c b . p i t ==1 ’ b1 ) ; / / w a i t _ t o _ s t a r t

37 end

38 e n d t a s k : r u n _ p h a s e

39 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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40 e n d c l a s s : s p i _ m o n i t o r

41 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.16 Wishbone Bus Funtion Model

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : wishbone bus f u n c t i o n

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s wb_bfm e x t e n d s uvm_objec t ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ u v m _ o b j e c t _ u t i l s ( wb_bfm )

10 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 f u n c t i o n new ( s t r i n g name = " wb_bfm " ) ;

12 s u p e r . new ( name ) ;

13 e n d f u n c t i o n : new

14 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 s t a t i c t a s k w b _ r e s e t ;

16 i n p u t s p i _ v i f v i f ;

17 v i f . a d r <= { aw i d t h {1 ’ bx } } ;

18 v i f . dou t <= { dwid th {1 ’ bx } } ;

19 v i f . cyc <= 1 ’ b0 ;

20 v i f . s t b <= 1 ’ bx ;

21 v i f . we <= 1 ’ hx ;

22 v i f . s e l <= { dwid th / 8 { 1 ’ bx } } ;

23 e n d t a s k : w b _ r e s e t
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24 / *−−−−−−−−−−−−−−−−Wishbone r e a d c y c l e−−−−−−−−−−−−−−−−−−−−−−−−* /

25 s t a t i c t a s k wb_read ;

26 i n p u t s p i _ v i f v i f ;

27 i n p u t i n t e g e r d e l a y ;

28 i n p u t l o g i c [ aw i d t h −1:0] a ;

29 o u t p u t l o g i c [ dwid th −1:0] d ;

30

31 b e g i n

32 / / w a i t i n i t i a l d e l a y

33 r e p e a t ( d e l a y ) @( v i f . m o n i t o r _ c b ) ;

34 / / a s s e r t wishbone s i g n a l s

35 r e p e a t ( 1 ) @( v i f . m o n i t o r _ c b ) ;

36 v i f . m o n i t o r _ c b . a d r <= a ;

37 v i f . m o n i t o r _ c b . dou t <= { dwid th {1 ’ bx } } ;

38 v i f . m o n i t o r _ c b . cyc <= 1 ’ b1 ;

39 v i f . m o n i t o r _ c b . s t b <= 1 ’ b1 ;

40 v i f . m o n i t o r _ c b . we <= 1 ’ b0 ;

41 v i f . m o n i t o r _ c b . s e l <= { dwid th / 8 { 1 ’ b1 } } ;

42 @( v i f . m o n i t o r _ c b ) ;

43 / / w a i t f o r acknowledge from s l a v e

44 w a i t ( v i f . m o n i t o r _ c b . ack ==1 ’ b1 )

45 / / n e g a t e wishbone s i g n a l s

46 r e p e a t ( 1 ) @( v i f . m o n i t o r _ c b ) ;

47 v i f . m o n i t o r _ c b . cyc <= 1 ’ b0 ;

48 v i f . m o n i t o r _ c b . s t b <= 1 ’ bx ;
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49 v i f . m o n i t o r _ c b . a d r <= { aw i d t h {1 ’ bx } } ;

50 v i f . m o n i t o r _ c b . dou t <= { dwid th {1 ’ bx } } ;

51 v i f . m o n i t o r _ c b . we <= 1 ’ hx ;

52 v i f . m o n i t o r _ c b . s e l <= { dwid th / 8 { 1 ’ bx } } ;

53 d = v i f . m o n i t o r _ c b . d i n ;

54

55 end

56 e n d t a s k : wb_read

57 / *−−−−−−−−−−−−−−−−Wishbone w r i t e c y c l e−−−−−−−−−−−−−−−−−−−−−−−−

* /

58 s t a t i c t a s k wb_wri te ;

59 i n p u t s p i _ v i f v i f ;

60 i n p u t i n t e g e r d e l a y ;

61 i n p u t l o g i c [ aw i d t h −1:0] a ;

62 i n p u t l o g i c [ dwid th −1:0] d ;

63

64 b e g i n

65 / / w a i t i n i t i a l d e l a y

66 r e p e a t ( d e l a y ) @( v i f . d r i v e _ c b ) ;

67 / / a s s e r t wishbone s i g n a l

68 v i f . d r i v e _ c b . a d r <= a ;

69 v i f . d r i v e _ c b . dou t <= d ;

70 v i f . d r i v e _ c b . cyc <= 1 ’ b1 ;

71 v i f . d r i v e _ c b . s t b <= 1 ’ b1 ;

72 v i f . d r i v e _ c b . we <= 1 ’ b1 ;
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73 v i f . d r i v e _ c b . s e l <= { dwid th / 8 { 1 ’ b1 } } ;

74 @( v i f . d r i v e _ c b ) ;

75 / / w a i t f o r acknowledge from s l a v e

76 / /@( v i f . d r i v e _ c b ) ;

77 w a i t ( v i f . d r i v e _ c b . ack ==1 ’ b1 )

78 / / n e g a t e wishbone s i g n a l s

79 r e p e a t ( 2 )

80 @( v i f . d r i v e _ c b ) ;

81 v i f . d r i v e _ c b . cyc <= 1 ’ b0 ;

82 v i f . d r i v e _ c b . s t b <= 1 ’ bx ;

83 v i f . d r i v e _ c b . a d r <= { aw i d t h {1 ’ bx } } ;

84 v i f . d r i v e _ c b . dou t <= { dwid th {1 ’ bx } } ;

85 v i f . d r i v e _ c b . we <= 1 ’ hx ;

86 v i f . d r i v e _ c b . s e l <= { dwid th / 8 { 1 ’ bx } } ;

87 end

88 e n d t a s k : wb_wr i te

89 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

90 e n d c l a s s : wb_bfm

91 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.17 Scoreboard

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : S c o r e b o a r d

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ s c o r e b o a r d e x t e n d s uvm_scoreboard ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ u v m _ c o m p o n e n t _ u t i l s ( s p i _ s c o r e b o a r d )

10 ‘ u v m _ a n a l y s i s _ i m p _ d e c l ( _exp_pk t )

11 ‘ u v m _ a n a l y s i s _ i m p _ d e c l ( _ a c t _ p k t )

12 uvm _ana l y s i s_ i m p_exp_pk t # ( s p i _ s e q u e n c e _ i t e m , s p i _ s c o r e b o a r d )

d r v2 sb ;

13 u v m _ a n a l y s i s _ i m p _ a c t _ p k t # ( s p i _ s e q u e n c e _ i t e m , s p i _ s c o r e b o a r d )

mon2sb ;

14 s p i _ s e q u e n c e _ i t e m d r v _ p k t [ $ ] ;

15 s p i _ s e q u e n c e _ i t e m mon_pkt [ $ ] ;

16 s p i _ s e q u e n c e _ i t e m i p _ p k t ;

17 s p i _ s e q u e n c e _ i t e m op_pkt ;

18 s t a t i c s t r i n g r e p o r t _ t a g ;

19 s p i _ c o v e r a g e s p i _ c o v g ;

20 i n t p a s s = 0 ;

21 i n t f a i l = 0 ;
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22 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 f u n c t i o n new ( s t r i n g name=" s p i _ s c o r e b o a r d " , uvm_component

p a r e n t ) ;

24 s u p e r . new ( name , p a r e n t ) ;

25 r e p o r t _ t a g = $ s f o r m a t f ( "%0s " , name ) ;

26 d r v2 sb = new ( " d r v2 sb " , t h i s ) ;

27 mon2sb = new ( " mon2sb " , t h i s ) ;

28 e n d f u n c t i o n : new

29 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30 f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

31 s u p e r . b u i l d _ p h a s e ( phase ) ;

32 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " B u i l d phase c a l l e d i n

s p i _ s c o r e b o a r d " ,UVM_LOW)

33 s p i _ c o v g = s p i _ c o v e r a g e : : t y p e _ i d : : c r e a t e ( " s p i _ c o v g

" , t h i s ) ;

34 e n d f u n c t i o n : b u i l d _ p h a s e

35 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

36 f u n c t i o n vo id c o n n e c t _ p h a s e ( uvm_phase phase ) ;

37 s u p e r . c o n n e c t _ p h a s e ( phase ) ;

38 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " Connect phase c a l l e d i n

s p i _ s c o r e b o a r d " ,UVM_LOW)

39 e n d f u n c t i o n : c o n n e c t _ p h a s e

40 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

41 f u n c t i o n vo id w r i t e _ e x p _ p k t ( s p i _ s e q u e n c e _ i t e m tmp_pkt ) ;

42 s p i _ s e q u e n c e _ i t e m p k t ;
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43 $ c a s t ( pkt , tmp_pkt . c l o n e ( ) ) ;

44 / / ‘uvm_info ( r e p o r t _ t a g , $ s f o r m a t f ( " Rece ived p a c k e t from

d r i v e r %0s " , p k t . s p r i n t ( ) ) ,UVM_LOW)

45 d r v _ p k t . push_back ( p k t ) ;

46 uvm_tes t_done . r a i s e _ o b j e c t i o n ( t h i s ) ;

47 e n d f u n c t i o n : w r i t e _ e x p _ p k t

48 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

49 f u n c t i o n vo id w r i t e _ a c t _ p k t ( s p i _ s e q u e n c e _ i t e m tmp_pkt ) ;

50 s p i _ s e q u e n c e _ i t e m p k t ;

51 $ c a s t ( pkt , tmp_pkt . c l o n e ( ) ) ;

52 / / ‘uvm_info ( r e p o r t _ t a g , $ s f o r m a t f ( " Rece ived p a c k e t from

DUT %0s " , p k t . s p r i n t ( ) ) ,UVM_LOW)

53 mon_pkt . push_back ( p k t ) ;

54 e n d f u n c t i o n : w r i t e _ a c t _ p k t

55 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

56 t a s k r u n _ p h a s e ( uvm_phase phase ) ;

57 / / f o r k

58 f o r e v e r b e g i n

59 w a i t ( mon_pkt . s i z e ( ) ! = 0 ) ;

60 op_pk t = mon_pkt . p o p _ f r o n t ( ) ;

61 i p _ p k t = d r v _ p k t . p o p _ f r o n t ( ) ;

62 / / i f ( d r v _ p k t . s i z e ( ) ==0)

63 / / ‘ u v m _ e r r o r ( " Expec ted p a c k e t was n o t r e c e i v e d i n

s c o r e b o a r d " ,UVM_LOW)

64 pe r fo rm _check ( i p _ p k t , op_pk t ) ;
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65 p e r f o r m _ c o v e r a g e ( i p _ p k t ) ;

66 uvm_tes t_done . d r o p _ o b j e c t i o n ( t h i s ) ;

67 end

68 / / j o i n _ n o n e

69 / / d i s a b l e f o r k ;

70 e n d t a s k : r u n _ p h a s e

71 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

72 f u n c t i o n vo id p e r f o r m _ c o v e r a g e ( s p i _ s e q u e n c e _ i t e m p k t ) ;

73 s p i _ c o v g . p e r f o r m _ c o v e r a g e ( p k t ) ;

74 e n d f u n c t i o n : p e r f o r m _ c o v e r a g e

75 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

76 f u n c t i o n vo id pe r fo rm _check ( s p i _ s e q u e n c e _ i t e m i p _ p k t ,

s p i _ s e q u e n c e _ i t e m op_pk t ) ;

77 i f ( i p _ p k t . e x p _ m a s t e r _ d a t a == op_pk t . o u t _ m a s t e r _ d a t a &&

i p _ p k t . e x p _ s l a v e _ d a t a == op_pk t . o u t _ s l a v e _ d a t a )

78 b e g i n

79 / / ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " Mas te r PASSED" ,UVM_MEDIUM)

80 / / ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , " S l a v e PASSED" ,UVM_MEDIUM)

81 p a s s ++;

82 end

83 e l s e

84 b e g i n

85 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , $ s f o r m a t f ( " S l a v e FAILED : exp

d a t a=%0h and o u t d a t a=%0h " , i p _ p k t . e x p _ s l a v e _ d a t a ,

op_pk t . o u t _ s l a v e _ d a t a ) ,UVM_MEDIUM)
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86 ‘uvm_info ( g e t _ f u l l _ n a m e ( ) , $ s f o r m a t f ( " Mas te r FAILED : exp

d a t a=%0h and o u t m a s t e r d a t a=%0h " , i p _ p k t .

e x p _ m a s t e r _ d a t a , op_pk t . o u t _ m a s t e r _ d a t a ) ,UVM_MEDIUM)

87 f a i l ++;

88 end

89 e n d f u n c t i o n : pe r fo rm _check

90 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

91 f u n c t i o n vo id e x t r a c t _ p h a s e ( uvm_phase phase ) ;

92 e n d f u n c t i o n : e x t r a c t _ p h a s e

93 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

94 f u n c t i o n vo id r e p o r t _ p h a s e ( uvm_phase phase ) ;

95 i f ( f a i l ==0)

96 b e g i n

97 $ d i s p l a y

98 ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−32b i t −−MSB F i r s t −−TX:

posedge−−RX: negedge−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;

99 $ d i s p l a y

100 ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−TEST

PASSED−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;

101 $ d i s p l a y

102 ( "

*********************************************************************

" ) ;

103 u v m _ r e p o r t _ i n f o ( " S c o r e b o a r d Re po r t " , $ s f o r m a t f ( " T r a s a c t i o n s PASS

= %0d FAIL = %0d " , pass , f a i l ) ,UVM_MEDIUM) ;
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104 $ d i s p l a y

105 ( "

*********************************************************************

" ) ;

106 $ d i s p l a y

107 ( "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

" ) ;

108 $ d i s p l a y

109 ( "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

" ) ;

110 end

111 e l s e

112 b e g i n

113 $ d i s p l a y

114 ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−32b i t −−MSB F i r s t −−TX:

posedge−−RX: negedge−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;

115 $ d i s p l a y

116 ( "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−TEST

FAILED−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" ) ;

117 $ d i s p l a y

118 ( "

*********************************************************************

" ) ;
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119 u v m _ r e p o r t _ i n f o ( " S c o r e b o a r d Re po r t " , $ s f o r m a t f ( " T r a s a c t i o n s PASS

= %0d FAIL = %0d " , pass , f a i l ) ,UVM_MEDIUM) ;

120 $ d i s p l a y

121 ( "

*********************************************************************

" ) ;

122 $ d i s p l a y

123 ( "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

" ) ;

124 $ d i s p l a y

125 ( "

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

" ) ;

126 end

127 e n d f u n c t i o n : r e p o r t _ p h a s e

128 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

129 e n d c l a s s : s p i _ s c o r e b o a r d

130 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.18 Coverage

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : c o v e r a g e

5 * /

6 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 c l a s s s p i _ c o v e r a g e e x t e n d s uvm_component ;

8 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 ‘ u v m _ c o m p o n e n t _ u t i l s ( s p i _ c o v e r a g e )

10

11 s p i _ s e q u e n c e _ i t e m c _ p k t ;

12 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 c o v e r g r o u p s p i _ t r a n s _ c g ;

14

15 cp_du t_mos i : c o v e r p o i n t c _ p k t . e x p _ m a s t e r _ d a t a

16 {

17 b i n s b y t e 7 = { [ 0 : 2 5 5 ] } ;

18 b i n s by t e 15 = { [ 2 5 6 : 6 5 5 3 5 ] } ;

19 b i n s by t e 23 = { [ 6 5 5 3 6 : 1 6 7 7 7 2 1 5 ] } ;

20 b i n s by t e 31 = { [ 16 7 7 72 1 6 : $ ] } ;

21 }

22 endgroup : s p i _ t r a n s _ c g

23 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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24 f u n c t i o n new ( s t r i n g name=" s p i _ c o v g " , uvm_component p a r e n t =

n u l l ) ;

25 s u p e r . new ( name , p a r e n t ) ;

26 s p i _ t r a n s _ c g = new ( ) ;

27 e n d f u n c t i o n : new

28 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29 f u n c t i o n vo id p e r f o r m _ c o v e r a g e ( s p i _ s e q u e n c e _ i t e m p k t ) ;

30 t h i s . c _ p k t = p k t ;

31 s p i _ t r a n s _ c g . sample ( ) ;

32 e n d f u n c t i o n : p e r f o r m _ c o v e r a g e

33 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

34 e n d c l a s s : s p i _ c o v e r a g e

35 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.19 SPI Slave Model

1 / *

2 * Author : Deepak S i d d h a r t h P a r t h i p a n

3 * RIT , NY, USA

4 * Module : s p i _ s l a v e _ m o d e l

5 * /

6 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 ‘ i n c l u d e " s r c / s p i _ d e f i n e s . v "

8 ‘ i n c l u d e " s r c / t i m e s c a l e . v "

9 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 module s p i _ s l a v e (

11 / / Wishbone s i g n a l s

12 wb_clk_i , w b _ r s t _ i , wb_adr_i , wb_dat_ i , wb_dat_o , wb_se l_ i ,

13 wb_we_i , wb_s tb_ i , wb_cyc_i , wb_ack_o , wb_err_o , wb_int_o ,

14

15 / / SPI s i g n a l s

16 s s _ p a d _ i , s c l k _ p a d _ i , mos i_pad_i , miso_pad_o ,

17

18 / / Scan I n s e r t i o n

19 scan_ i n0 , scan_en , t e s t_mode , s c a n _ o u t 0 ) ; / / , r e s e t , c l k ) ;
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20 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21 / / Wishbone s i g n a l s

22 i n p u t wb_c lk_ i ; / / m a s t e r

c l o c k i n p u t

23 i n p u t w b _ r s t _ i ; / /

s y n c h r o n o u s a c t i v e h i gh r e s e t

24 i n p u t [ 4 : 0 ] wb_adr_ i ; / / l ower

a d d r e s s b i t s

25 i n p u t [32 −1:0] wb_da t_ i ; / / d a t a b u s

i n p u t

26 o u t p u t [32 −1:0] wb_dat_o ; / / d a t a b u s

o u t p u t

27 i n p u t [ 3 : 0 ] w b _ s e l _ i ; / / b y t e

s e l e c t i n p u t s

28 i n p u t wb_we_i ; / / w r i t e

e n a b l e i n p u t

29 i n p u t w b _ s t b _ i ; / / s t o b e /

c o r e s e l e c t s i g n a l

30 i n p u t wb_cyc_i ; / / v a l i d

bus c y c l e i n p u t

31 o u t p u t wb_ack_o ; / / bus

c y c l e acknowledge o u t p u t
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32 o u t p u t wb_err_o ; / /

t e r m i n a t i o n w/ e r r o r

33 o u t p u t wb_in t_o ; / /

i n t e r r u p t r e q u e s t s i g n a l o u t p u t

34

35 / / SPI s i g n a l s

36 i n p u t [ ‘SPI_SS_NB −1:0] s s _ p a d _ i ; / / s l a v e

s e l e c t

37 i n p u t s c l k _ p a d _ i ; / / s e r i a l

c l o c k

38 i n p u t mos i_pad_ i ; / / m a s t e r

o u t s l a v e i n

39 o u t p u t miso_pad_o ; / / m a s t e r

i n s l a v e o u t

40

41 i n p u t s c a n _ i n 0 ; / / t e s t

s can mode d a t a i n p u t

42 i n p u t scan_en ; / / t e s t

s can mode e n a b l e

43 i n p u t t e s t _ m o d e ; / / t e s t

mode s e l e c t

44 o u t p u t s c a n _ o u t 0 ; / / t e s t

s can mode d a t a o u t p u t

45
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46 w i r e rx_negedge ; / / s l a v e

r e c e i v i n g on negedge

47 w i r e t x _ n e g e d g e ; / / s l a v e

t r a n s m i t i n g on negedge

48 w i r e s p i _ t x _ s e l ; / / t x _ l

r e g i s t e r s e l e c t

49

50 r e g [32 −1:0] wb_dat_o ;

51 r e g [32 −1:0] wb_dat ;

52 r e g wb_ack_o ;

53 r e g wb_in t_o ;

54 r e g [ ‘SPI_CTRL_BIT_NB−1:0] c t r l ;

55 r e g miso_pad_o ;

56

57 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

58 / / Address d e c o d e r

59 a s s i g n s p i _ c t r l _ s e l = wb_cyc_i & w b _ s t b _ i & ( wb_adr_ i [

‘SPI_OFS_BITS ] == ‘SPI_CTRL ) ;

60

61 a s s i g n rx_negedge = c t r l [ ‘SPI_CTRL_RX_NEGEDGE ] ;

62 a s s i g n t x _ n e g e d g e = c t r l [ ‘SPI_CTRL_TX_NEGEDGE ] ;

63 a s s i g n c h a r _ l e n = c t r l [ ‘SPI_CTRL_CHAR_LEN ] ;

64 a s s i g n i e = c t r l [ ‘SPI_CTRL_IE ] ;
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65

66 a s s i g n s p i _ t x _ s e l = wb_cyc_i & w b _ s t b _ i & ( wb_adr_ i [

‘SPI_OFS_BITS ] == ‘SPI_TX_0 ) ;

67 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

68 / / Wb d a t a o u t

69 a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

70 b e g i n

71 i f ( w b _ r s t _ i )

72 wb_dat_o <= 32 ’ b0 ;

73 e l s e

74 wb_dat_o <= wb_dat ;

75 end

76 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

77 / / Wb acknowledge

78 a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

79 b e g i n

80 i f ( w b _ r s t _ i )

81 wb_ack_o <= 1 ’ b0 ;

82 e l s e

83 wb_ack_o <= wb_cyc_i & w b _ s t b _ i & ~wb_ack_o ;

84 end
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85 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

86 / / Wb e r r o r

87 a s s i g n wb_err_o = 1 ’ b0 ;

88

89 / / I n t e r r u p t

90 / * a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

91 b e g i n

92 i f ( w b _ r s t _ i )

93 wb_in t_o <= 1 ’ b0 ;

94 e l s e i f ( i e && ! s s _ p a d _ i && l a s t _ b i t && pos_edge ) / / t h e r e

needs t o be r i s i n g edge d e t e c t o r

95 wb_in t_o <= 1 ’ b1 ;

96 e l s e i f ( wb_ack_o )

97 wb_in t_o <= 1 ’ b0 ;

98 end * /

99 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

100 / / C t r l r e g i s t e r

101 a lways @( posedge wb_c lk_ i o r posedge w b _ r s t _ i )

102 b e g i n

103 i f ( w b _ r s t _ i )

104 c t r l <= {‘SPI_CTRL_BIT_NB {1 ’ b0 } } ;
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105 e l s e i f ( s p i _ c t r l _ s e l && wb_we_i && (! (& s s _ p a d _ i ) ) ) / / !

s s _ p a d _ i Because d u r i n g no t r a n s f e r we go t o t r i s t a t e

mode

106 b e g i n

107 i f ( w b _ s e l _ i [ 0 ] )

108 c t r l [ 7 : 0 ] <= wb_da t_ i [ 7 : 0 ] | {7 ’ b0 , c t r l [ 0 ] } ;

109 i f ( w b _ s e l _ i [ 1 ] )

110 c t r l [ ‘SPI_CTRL_BIT_NB−1:8] <= wb_da t_ i [

‘SPI_CTRL_BIT_NB −1 : 8 ] ;

111 end

112 end

113 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

114 a lways @( posedge ( s c l k _ p a d _ i && ! rx_negedge ) o r negedge (

s c l k _ p a d _ i && rx_negedge ) o r posedge w b _ r s t _ i o r posedge (

wb_c lk_ i && (& s s _ p a d _ i ) ) )

115 b e g i n

116 i f ( w b _ r s t _ i )

117 wb_dat <= 32 ’ b0 ;

118 e l s e i f ( ! (& s s _ p a d _ i ) )

119 wb_dat <= { wb_dat [ 3 0 : 0 ] , mos i_pad_ i } ;

120 e l s e i f ((& s s _ p a d _ i ) && s p i _ t x _ s e l )

121 wb_dat <= wb_da t_ i ;

122 e l s e
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123 wb_dat <= wb_dat ;

124 end

125 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

126 a lways @( posedge ( s c l k _ p a d _ i && ! t x _ n e g e d g e ) o r negedge (

s c l k _ p a d _ i && t x _ n e g e d g e ) )

127 b e g i n

128 miso_pad_o <= wb_dat [ 3 1 ] ;

129 end

130 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

131 endmodule

132 / /

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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I.20 Test defines

1 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 / *

3 *

4 * Author : Deepak S i d d h a r t h P a r t h i p a n

5 * RIT , NY, USA

6 * Module : s p i t b d e f i n e s

7 *

8 * /

9 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 ‘ d e f i n e LOW 0

11 ‘ d e f i n e HIGH 1

12

13 p a r a m e t e r CLOCK_PERIOD = 5 0 ;

14 p a r a m e t e r RESET_PERIOD = 2 5 ;

15

16 p a r a m e t e r dwid th = 3 2 ;

17 p a r a m e t e r aw i d t h = 3 2 ;

18

19 p a r a m e t e r SPI_RX_0 = 5 ’ h0 ;

20 p a r a m e t e r SPI_RX_1 = 5 ’ h4 ;

21 p a r a m e t e r SPI_RX_2 = 5 ’ h8 ;

22 p a r a m e t e r SPI_RX_3 = 5 ’ hc ;

23 p a r a m e t e r SPI_TX_0 = 5 ’ h0 ;
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24 p a r a m e t e r SPI_TX_1 = 5 ’ h4 ;

25 p a r a m e t e r SPI_TX_2 = 5 ’ h8 ;

26 p a r a m e t e r SPI_TX_3 = 5 ’ hc ;

27 p a r a m e t e r SPI_CTRL = 5 ’ h10 ;

28 p a r a m e t e r SPI_DIVIDE = 5 ’ h14 ;

29 p a r a m e t e r SPI_SS = 5 ’ h18 ;

30

31 l o g i c scan_ i n0 , s can_ i n1 , scan_en , t e s t _ m o d e ;

32 l o g i c c lock , r s t n ;

33 l o g i c [ 7 : 0 ] s s ;

34 l o g i c [ 3 1 : 0 ] q ;

35 l o g i c s c l k , mosi , miso ;

36 l o g i c t i p ;

37

38 t y p e d e f v i r t u a l s p i _ i f s p i _ v i f ;

39 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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