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ABSTRACT. Independence algebras were introduced in the early 1990s by spe-
cialists in semigroup theory, as a tool to explain similarities between the trans-
formation monoid on a set and the endomorphism monoid of a vector space.
It turned out that these algebras had already been defined and studied in the
1960s, under the name of v*-algebras, by specialists in universal algebra (and
statistics). Our goal is to complete this picture by discussing how, during the
middle period, independence algebras began to play a very important role in
logic.

1. INTRODUCTION

There is an impressive body of deep results on independence algebras produced
by experts in logic, semigroup theory and universal algebra. The aim of this paper
is to survey some of the applications of the classification of independence algebras
to questions in logic, and conversely, some applications of results in logic to the
classification of independence algebras. Our motivation is to make better known
the interactions between the two subjects, which have largely been ignored by both
sides. Finally, we explain how independence algebras have recently attracted the
attention of people working in both logic and group theory, and also in semigroups
and rings. At the heart of these interactions are different approaches to extend-
ing van der Waerden’s notion of independence. We begin with some motivational
remarks about independence algebras and explain some connections with other
branches of algebra.

The monoid of all endomorphisms of a vector space V' (that is to say, the monoid
of all homomorphisms of V' into itself) and the monoid of all endomorphisms of a
set X (where X is construed as an algebra with no operations and the monoid
consists of all mappings of X into itself) have much in common. To describe some
of their similarities, it is helpful to use a bit of (common) notation and terminology.
Specifically, if S is one of these two monoids, and if @ and b are in S, then ab denotes
the (functional) composition of @ and b. The range of a is, by definition, the set
of values ia (= a(7)), where i ranges over the domain of a (the space V' or the set
X). The rank of a is the dimension of its range in the case of a vector space V,
and the cardinality of its range in the case of a set X. (The dimension of a vector
space is the cardinality of some — any — basis, and the dimension of a set is the
cardinality of the set.) The kernel of a is the set of pairs (7, j) such that ia = ja.
The function a is idempotent if aa = a. We write

aS ={ac:ce S} and Sb={cb:ce S},

and we write U for the group of units in S, that is to say, the set of mappings in
S that have a (compositional) inverse. If T' is a subset of S, then (T') denotes the
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subsemigroup of S generated by T (the smallest subsemigroup of S that includes
T).

If S is one of the two endomorphism monoids mentioned above, then the following
properties hold for all a,b € S (where functions are written on the right of their
arguments):

(1) aS =0bS if and only if @ and b have the same kernel;

(2) Sa = Sbif and only if a and b have the same range;

(3) SasS = SbS if and only if a and b have the same rank;

(4) SaS = SbS if and only if there exists a ¢ in S such that aS = ¢S and
Sc = Sb;

(5) the semigroup S\ U is generated by the set of its idempotent elements when
the dimension of the underlying algebra (V or X) is finite (see [24, 48] and
also [4, 7, 17, 23, 61]);

(6) if a € S\ U, then ({a} UU) \ U is generated by the set of its idempotent
elements when the dimension of the underlying algebra is finite (see [3, 6,
9, 10});

(7) there exists an injective mapping a and a surjective mapping b in S such
that S = (U U {a,b}) when the dimension of the underlying algebra is
infinite (see [2, 8, 46, 47]);

(8) the subsemigroup of S consisting of all elements of finite rank is a completely
semisimple semigroup, that is to say, it is regular and its principal factors
are all completely 0-simple or completely simple (see [41]).

These examples (and many other) were floating around when Sullivan [66] wrote
down a list of similarities and dissimilarities of the two monoids, and posed the
problem of finding a general theory that could explain both the similarities and the
dissimilarities (see also [27]). About the same time, Fountain, Gould and Lewin
(see [31, 32, 41]) developed a general class of algebras for which the corresponding
endomorphism monoids have properties (1)—(5) and (8) above. They called these
algebras independence algebras, as the definition relies upon a universal algebraic
notion of independence. (For a detailed account on the origins of independence
algebras see [5].)

As Fountain, Gould and Lewin later learned, their discovery of independence
algebras was in fact a rediscovery. Already in the late 1950s, Edward Marczewski
and his collaborators investigated general notions of independence that contain, as
special cases, many of the well-known independence notions occurring throughout
mathematics. This eventually led them to the introduction of independence alge-
bras under the name of v*-algebras. In the 1990s, when Fountain, Gould and Lewin
rediscovered v*-algebras, there were already quite a number of papers written about
them. In particular they had been described, up to (term) definitional equivalence,
in a series of papers, the most important of which is Urbanik [67].

Therefore the usual official history of independence algebras (or v*-algebras —
the algebras are the same, so we will use the two names interchangeably) goes as
follows.

(1) They were introduced and thoroughly studied in the 1960s by experts in
universal algebra; they appeared as a class of algebras closely linked to
some abstract notions of independence.
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(2) Many years later, they were rediscovered (and successfully used) by experts
in semigroup theory to explain the similarities (and later the dissimilarities)
between the endomorphism monoids of vector space and sets.

The purpose of this paper is to complete this picture by explaining how and why
v*-algebras attracted the attention of experts in logic.

In Section 2, we discuss algebraic notions of independence, and in particular
we give several characterizations of the notion of an independence algebra. In
Section 3, we review some of the basic notions of logic that will be involved in our
discussion. In Section 4, we explain how logicians in the 1970s became interested
in independence algebras and we state their main results. In Section 5, we explain
how independence algebras have recently attracted the attention of people working
in logic and group theory.

2. INDEPENDENCE ALGEBRAS

One of the important general notions of independence is defined in terms of
closure systems. A closure system is a pair (A4,cl), consisting of a set A and a
(unary) function cl, the closure operator, mapping the power set of A (the class of all
subsets of A) into itself, that satisfies the following conditions for all subsets X and
Y of A: (1) X C cl(X); (2) cl(cl(X)) = cl(X); (3) if X C Y, then cl(X) C cl(Y).
Subsets X with the property that cl(X) = X are said to be closed. The closure
system is algebraic if, whenever z € cl(X), then = € cl(Y") for some finite subset ¥’
of X.

A subset X of (the universe of) a closure system (A, cl) is called C-independent
if a & cl(X\ {a}) for all a in X. The closure system itself is said to satisfy the
exchange property if, for every subset X of A and for all elements a, b of A, whenever
a € cl(X U{b}), but a & cl(X), then b € cl(X U{a}). (In certain logical contexts,
a closure system satisfying the exchange property is called a pre-geometry.) The
exchange property can actually be formulated in a number of different ways, as the
following lemma indicates.

Lemma 2.1. ([53] p.50, Exercise 6) For a closure system (A,cl), the following
conditions are equivalent:

(1) the exchange property holds;

(2) for every subset X of A and every element a in A, if X is C-independent
and a is not in cl(X), then X U{a} is C-independent;

(3) for every subset X of A, if Y is a mazimal C-independent subset of X, then
c(X) = cl(Y);

(4) for subsets X, Y of A with Y C X, if Y is C-independent, then there is a
C-independent set Z with Y C Z C X and cl(Z) = cl(X).

It follows from part (4) of the lemma, that when the exchange property holds,
the closure system has a maximal C-independent set. Such a set is called a basis.
Moreover, every basis has the same cardinality, and this cardinality is called the
dimension of the system.

Every algebra naturally gives rise to a subalgebra closure system. We conceive
of an algebra A as a nonempty set (the universe), together with a collection of
finitary operations, and we use the same symbol A to denote both the algebra and
its universe. For each subset X of A, the (subalgebra) closure of X is the subalgebra
of A generated by X, that is to say, the smallest subalgebra of A that includes X.
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It is denoted by (X). The system (A, ()) is a closure system and in fact it is an
algebraic closure system.

Here are some examples. If A is a vector space and X is a subset of A, then
(X) is the subspace generated by X. If G is a group, then a G-set is an algebra
(A, fg)gec, with one unary operation f, for each element g in the group, that
satisfies the equations af. = a and (afy)fn = afgn for all a in A and all g,h in G
(where e is the identity element of the group, and gh is the composition of g with
h). These unary operations form a group of permutations of A, and the closure
(X) of a subset X of A is the orbit of X under these permutations. If the group G
is trivial (so that A is essentially a set without operations, except for the identity
function), then the closure of X is always just X, and the dimension of X is its
cardinality.

A matroid algebra is an algebra such that the exchange property holds for its
subalgebra closure system. G-sets with a subalgebra of distinguished constants
that contain all fixed points, and vectors spaces over skew fields with a subspace of
distinguished constants are examples of matroid algebras.

There is another notion of independence for algebras A that was introduced
by Marczewski in [50]. A subset X of A is said to be M-independent if every map
from X to A can be extended to some homomorphism from (X) to A. Although the
letter “M” stands for Marczewski, it can also be thought of as standing for mapping,
since the definition of M-independence involves extensions of mappings. It is not
difficult to check that M-independence implies C-independence among subsets of A,
but the converse does not hold in general (see [40]). An algebra A is said to be an
MC-algebra if in A the notions of C-independence and M-independence coincide,
that is to say, for every subset X of A, we have

X is C-independent if and only if X is M-independent.

MC-algebras appear in the literature under the name v**-algebras (see [56] and
[68]). Every absolutely free algebra is an example of an MC-algebra. (An algebra is
said to be absolutely free if it is free in the class of all algebras of the same similarity
type. See [68] for this and many other examples.)

A matroid algebra that is simultaneously an MC-algebra is called an indepen-
dence algebra or a v*-algebra. Familiar examples include free G-sets with a subalge-
bra of distinguished constants that include all fixed points (sets without operations
are a particular instance of this) and vector spaces over skew fields, with a subspace
of distinguished constants (see [20, 68]). Traditionally (see [31, 32, 41]), indepen-
dence algebras are defined as algebras A satisfying the exchange property and the
property

[ F ] for every subset X of A, if no element x in X belongs to (X \ {z}), then
every mapping from X into A can be extended to a homomorphism from
(X) into A.
Condition [F] just says that every C-independent set X is also M-independent. As
the converse holds in arbitrary algebras, the equivalence of our definition with the
traditional one is clear. (For other notions of independence, and for a discussion of
the induced classes of algebras defined by the identification of two different notions
of independence, see [11].)

Since an independence algebra is a matroid algebra, we can attach to any sub-

algebra a dimension (or rank) which is the cardinality of some (any) basis, that is
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to say, any C-independent generating set. Observe that the bases of an indepen-
dence algebra are just the minimal generating sets, or, equivalently, the maximal
C-independent sets.

Interestingly, in any MC-algebra two bases always have the same cardinality
(see [56]). The exchange property is therefore not needed in the definition of an
independence algebra to ensure that bases have the same cardinality. Rather, it
is needed to guarantee that bases really do exist. In fact, there are MC-algebras
without bases (see [44, §32, example after the proof of Theorem 4]). G. H. Wenzel
(see [44, p. 219, Exercise 30]) introduced the notion of a v'-algebra as an MC-
algebra in which every maximal C-independent set is a generating set. Clearly, each
v’-algebra has the key properties of v*-algebras, namely it has a basis and all bases
have the same cardinal. Moreover, the assumption that a maximal C-independent
set is set of generators seems weaker than the exchange property. However, as
Wenzel (and Urbanik) soon realized, every v’-algebra is a v*-algebra, and of course
vice versa (see [44, p. 219, Exercise 34] or Lemma 2.1 above).

The class of based MC-algebras — that is, MC-algebras with a C-independent
generating set — s strictly larger than the class of v*-algebras, since it contains
every absolutely free algebra (and these are, in general, not v*-algebras); for other
examples see [11, Section 9]. It might be of some interest to experts in logic,
semigroup theory, and universal algebra to investigate this broader class further.

Narkiewicz [55] gave two different characterizations of independence algebras.
Here is the first.

Proposition 2.2. An algebra A is a v*-algebra if and only if it satisfies the fol-
lowing two conditions.

(I) The set {a} is M-independent in A whenever a is an element of A that is
not a constant.

(1) If a set {aq,...,a,} is M-independent in A, but {a1,...,ant1} is not, then
the element an41 s generated by the set {ay,...,an}.

The second characterization was suggested to Narkiewicz by Swierezkowski.

Proposition 2.3. An algebra A is a v*-algebra if and only if it satisfies the fol-
lowing conditions.

(I) A is an MC-algebra.

(I1) In each subalgebra of A with a finite basis (i.e., a C-independent generating
set) consisting of k elements, every M -independent set of k elements forms
a basis for the subalgebra.

The striking similarities (and dissimilarities) between the endomorphism monoids
of vector spaces and sets suggested that there should be a general theory that could
explain the similarities, and this led to the discovery of independence algebras. Palfy
[58] introduced a class of algebras and proved a classification theorem for them that
is strikingly similar to Urbanik’s classification of v*-algebras. Jan Mycielski, in a
private communication, has suggested the problem of finding a general class of
algebras that contains both v*-algebras and Palfy’s algebras, and that admits a
classification theorem which includes the theorems of Urbanik and Palfy theorems
as special cases. Each algebra A in such a class of algebras should satisfy the fol-
lowing property: if ¢ is a non-constant unary term of A and there exists b € A such
that ¢(b) is not a constant, then ¢ is a bijection. (A term is said to be constant in
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A if it assumes the same value on every argument; an element in A is said to be a
constant if it belongs to the subalgebra of A generated by the empty set.) Palfy’s
algebras have this property by definition; and we now show that independence alge-
bras also have this property. Suppose A is an independence algebra of rank at least
one and consider any non-constant term ¢. If b is an element of A that is not a con-
stant, then {b} is M-independent (by Proposition 2.2) and so any map f : {b} — A
extends to a homomorphism from (b) into A. In particular, ¢(f(b)) = f(¢(b)) and
consequentely ¢(b) is not a constant since ¢ is non-constant. Hence (b) = (¢(b)) so
that b = q(¢(b)) for some unary term q. It follows that f(b) = qt(f(b)) for all maps
f:{b} — A so that x = gt(x), for all elements x € A, and hence gt = 1. Clearly ¢
is non-constant and so the same argument shows that pg = 1 for some unary term
p. It follows that p =t and thus ¢ is a bijection, as claimed.

Before closing this section, it is worth pointing out that many papers have re-
cently appeared in which the ideas that led specialists in semigroup theory to intro-
duce independence algebras in the first place have been extended. The motivation
for these extensions is the general problem of describing the rings R such that all
the non-invertible matrices with entries in R are products of idempotents. The idea
has been to consider a notion of independence less general than C-independence,
called PC-independence, and then to study matroid MPC-algebras (algebras in
which M = PC), and in particular to study the endomorphism monoid of these
algebras. As PC-independence is less general than C-independence the class of
MPC-algebras contains the class of MC-algebras. Although some techniques from
independence algebras can be transferred, this new situation involves significant
additional complications. For generalizations of independence algebras prompted
by this motivation see for example [28, 29, 30, 42, 43].

3. LoGic

The aim of this section is to introduce some concepts from logic that we shall
need, and to fix our notation. A first-order language consists of a set of symbols, and
sets of expressions (strings of these symbols) called terms, formulas, and sentences.
The logical symbols are: parentheses (which are used to ensure unique readability
of expressions); the usual sentential connectives = (read “not”), V (read “or”), A
(read “and”), — (read “implies”), and < (read “if and only if”); quantifiers V
(read “for all”) and 3 (read “there exists”); the symbol = (read “equals”); and a
countably infinite sequence of variables. The non-logical symbols are of two types:
operation symbols, each of some finite rank (constants are identified with operation
symbols of rank 0), and relation symbols, each of some finite rank. The set of terms
is defined recursively: every variable and every constant is a term; inductively, if
f is an operation symbol of rank n, and if ¢1,...,t, are terms, then ft;...t, is
a term. The set of formulas is also defined recursively: equations are expressions
of the form t; = to; atomic formulas are expressions that are either equations or
expressions of the form Rt;...t,, where ¢1, ..., t, are terms and R is a relation
symbol of rank n; inductively, if ¢; and ¢, are formulas, then so are

(_'d)l)v (¢1 \ ¢2)ﬂ (¢1 A ¢2)7 (¢1 - ¢2)7 (¢1 - ¢2)7 (3I¢1), (Vqu)l),

where x is any variable of the language. (When writing formulas below, we shall
not feel compelled to write explicitly every parenthesis.)
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Associated with a first-order language is also a set of rules (called rules of infer-
ence) for proving statements. A theory in the language is a set of formulas that is
closed under the rules of inference. If the theory has a set of axioms of a particular
form, then the theory is often said to be of that form. For instance a theory is
equational if it has a set of axioms that are equations, and it is quasi-equational if
if has a set of axioms of the form

(1A ANdn) — Pnya,

where the formulas ¢; are all equations.

A mathematical structure for a first-order language consists of a non-empty
set D, together with a collection of operations and relations corresponding to the
operation and relation symbols of the language: if f is an operation symbol of
rank n, then f? is an n-ary operation on D; if R is a relation symbol of rank n,
then RP is an n-ary relation on D. Such a structure is said to be a model of a
given theory in the language if every formula (or, equivalently, every axiom) of the
theory is true in the structure. The class of models of a given type of theory is
often called by the same name as the theory. For instance, the class of models of an
equational theory is called an equational class, or a variety, and the class of models
of a quasi-equational theory is called a quasi-equational class, or a quasi-variety.
With every structure for a first-order language one can associate a theory in that
language, namely the set of all formulas that are true in the structure. It is called
the theory of the structure.

Suppose D is a structure for a given first-order language. A subset E of the

universe of D is (first-order) definable in D from parameters (elements) by, ..., b, if
there is a formula ¢(x,y1,...,y,) in the language whose free variables are included
among &, Y1, - - -, Yn, and such that

E={a:¢(a,by,...,by,) is true in D}

(where ¢(a,by,...,b,) is the formula obtained from ¢ by replacing all free oc-
currences of the variables z,y1,...,y, with a,b1,...,b, respectively). When the
definable subset E contains just one element, say a, then we say that the element
a is definable in D from the parameters by, ..., b,. The notions of a definable sub-
set and a definable element lead naturally to two closure operators on D (more
precisely, on the class of all subsets of the universe of D). The algebraic closure
operator acl is defined on each subset X of D as follows: acl(X) is the union of
the finite sets that are definable in D using parameters from X; in other words, it
consists of those elements a in D such that a belongs to a finite subset of D that is
definable using parameters from X. For instance, in the field of complex numbers,
the algebraic closure of a set X is the set of complex roots of polynomials with
coefficients in X. The definable closure operator dcl is defined on each subset X of
D as follows: dcl(X) is the set of elements definable in D using parameters from
X. In the field of complex numbers, the definable closure of a set X is just the
subfield generated by X.

A notion related to definability is that of an elementary extension of D. A
structure D’ is an elementary extension of D if D is a substructure of D’ (that
is to say, the universe of D is a non-empty subset of the universe of D’ that is
closed under the operations of D’, and the operations and relations of D are the
restrictions to the universe of D of the corresponding operations and relations of
D’) with the following additional property: for each formula ¢(z,y1,...,ym) and
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parameters by,...,b,, in D, if ¢(x,b1,...,b,) defines a non-empty subset of D’,
then it defines a non-empty subset of D.

We now turn to more specialized notions of logic related to the study of cate-
gorical theories. Recall that a consistent mathematical theory (in any language) is
said to be (absolutely) categorical if all its models are isomorphic. For example,
Euclidean geometry as axiomatized by Hilbert, and arithmetic as axiomatized by
Dedekind and Peano, are both categorical (second order) theories. For first-order
theories, the notion of absolute categoricity does not play an important role. The
reason is that any first-order theory with an infinite model has models of arbitrarily
large cardinalities, and therefore cannot be categorical. For this reason, Lo$ [49]
proposed the following weaker notion: a theory is categorical in power x if it has a
model of power k, and if all models of power x are isomorphic. For instance, the
theory of vector spaces over a fixed finite field is categorical in every infinite power,
while the theory of vector spaces over the rational numbers is categorical in every
uncountable power, but not in power Xy. (Any two vector spaces over the ratio-
nal numbers that have the same uncountable cardinality x must have dimension
and therefore must be isomorphic; on the other hand, for each non-zero cardinal
number k < Ng, there is a countably infinite vector space of dimension x over the
rational numbers, and these vector spaces are not isomorphic to one another.) The
theory of atomless Boolean algebras is an example of a theory that is categorical in
power Ny, but not in uncountable powers. Inspired by Steinitz’s theorem that every
algebraically closed field is determined by the cardinality of its transcendence base
over the prime field, Los [49] conjectured, and Morley [54] proved, that a countable
first-order theory (that is, a theory in a first-order language with countably many
symbols) is categorical in one uncountable power if and only if it is categorical in
every uncountable power. Shelah [62] proved an analogous result for uncountable
first-order theories.

A notion that has proved very useful in the study of first-order theories categor-
ical in uncountable powers is that of a strongly minimal structure. A structure D
is said to be strongly minimal if, in every elementary extension of D, every subset
that is definable without using parameters is either finite or cofinite. This notion
was introduced by Marsh [51], and is related to Morley’s notion of a set of rank 1
and degree 1. The reason such structures are of interest to us is that, in this case,
the closure system (D, acl) satisfies the exchange property (with cl replaced by acl)
and is therefore a pre-geometry.

A geometry is a pre-geometry (A,cl) (a closure system satisfying the exchange
property) with the following additional properties: cl(@) = &, and cl({a}) = {a}
for each a in A. With each strongly minimal structure D, one can associate a
geometry (A4, cl) as follows:

A={acl({a}) :a € D\ cl(©)},
and if X is any subset of A, say X = {acl({a}) : @ € Y} (where Y is a subset of
D), then
cl(X) = {acl({a}) : a € acl(Y)}.
The following example illustrates some of the notions that have been discussed
in this section. Consider the theory ® of algebraically closed fields of characteristic

zero. (It is understood below that the characteristic is always zero.) The language
of @ is that of rings. There are four non-logical constants, all operation symbols:
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the nullary operation symbols 0 and 1, and the binary operation symbols + and -.
Any ring — for example, the ring Z of integers or the field R of real numbers — is
an appropriate structure for this language. The axioms of ® state that a model is a
field of characteristic zero, and that every non-zero polynomial has a root (see [18]).
An example of a model of ® is the field C of complex numbers. In fact, the theory
of C coincides with ®: a formula is in ® (and hence is true of all algebraically closed
fields) if and only if it is true in C. Note that R is not a model of ®. In fact, the
formula 22 + 1 = 0 has a solution in C but no solution in R.

The theory @ is categorical in power k for any uncountable cardinal . Indeed,
if C'is a model of ® of power k, then C has a transcendental basis (an independent
set of transcendental numbers) over the subfield of rational numbers, and C' is
determined up to isomorphism by the cardinality of this basis.

Also, as was proved by Tarski, the theory ® admits elimination of quantifiers in
the sense that every formula ¢ is provably equivalent to a (finite) Boolean combina-
tion of equations of the form ¢ = 0, where ¢ is a term — that is to say, a polynomial
— in the language of rings, and the variables that occur in ¢ occur freely in ¢
(see [18]). This property implies that every model of & — and in particular, the
field C of complex numbers — is strongly minimal. Indeed, by quantifier elimina-
tion, every formula with one free variable is equivalent to a Boolean combination of
polynomial equations in one variable. Since non-zero polynomial equations on one
variable have only finitely many solutions, it follows that every definable subset of
a model of ® is a (set-theoretic) Boolean combination of finite sets, and is there-
fore either finite or cofinite. Another consequence of quantifier elimination is that
in algebraically closed fields, definable sets are Boolean combinations of algebraic
varieties. A third consequence is that, if C' and C’ are algebraically closed fields,
then C’ is an elementary extension of C if and only if C is a subfield of C".

For every subset X of an algebraically closed field C, the definable closure del(X)
is the smallest subfield of C that includes X, that is to say, it is the subfield of
C generated by X; the algebraic closure acl(X) is the smallest algebraically closed
subfield of C' that includes X, that is to say, it is the algebraically closed subfield
of C' generated by X. The dimension associated with the algebraic closure system
(C, acl) is closely related to the dimension of algebraic varieties.

Other examples of strongly minimal structures are: G-sets with a subalgebra of
distinguished constants that includes all fixed points, and vector spaces over skew
fields with a subspace of distinguished constants. In the latter case, the operators
acl and dcl coincide, and the dimension of the associated algebraic closure system
coincides with the vector space dimension over the subspace.

4. QUASI-VARIETIES CATEGORICAL IN POWER

In logic, v*-algebras have played an important role in the study of first-order
theories categorical in power. In particular, Urbanik’s description in [67] of the
v*-algebras of dimension at least three was used by Givant in the early 1970s to
give a complete description of all varieties and quasi-varieties categorical in power
(see [38], [39] and the cited abstracts). A different, but related description was
discovered independently, and about the same time, by Palyutin (see [59]).

As the examples discussed in the preceding section make clear, for countable
first-order theories, categoricity in power Xy does not imply, and is not implied by,
categoricity in uncountable cardinalities. In 1971, Alfred Tarski, pondering this
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lack of symmetry, asked if, for varieties (equational classes), this distinction be-
tween Ny and uncountable cardinalities would disappear if one replaced the notion
of categoricity in power by a notion of freeness in power. (Recall that every variety,
and, more generally, every quasi-variety, contains free algebras with x free genera-
tors, for every cardinal k > 0.) A quasi-variety is said to be free in power k if it
has a model of power x, and if all models of power k are free (over the variety).
The relationship between the notions of categoricity and freeness in power is easy
to describe: in cardinalities larger than the size of the language, the two notions are
equivalent; as regards the cardinality of the language, a quasi-variety categorical in
that cardinality is necessarily free in that cardinality, but the reverse implication
fails.

Tarski observed that the variety of vector spaces over the rational numbers is free
in every infinite power (although it is not Ng-categorical), and he asked whether a
variety free in some infinite power is necessarily free in every infinite power (in which
it has a model). For countable languages, Baldwin, Lachlan, and McKenzie (see
[16]), and independently, Palyutin (see [1]) proved that a quasi-variety categorical in
power Ny is categorical (and hence free) in all higher powers. Baldwin and Lachlan,
and also Palyutin and Taitslin, proved that for quasi-varieties with a finite model of
power at least two, categoricity in power X; implies categoricity (and hence freeness)
in power Xy and in each finite cardinality in which there is a model. Givant [33],
[35] (see also [38]) proved (for languages of arbitrary cardinality) that if a quasi-
variety is free, but not categorical, in some infinite power, then it is categorical in
all higher powers and in fact each of its models is a v*-algebra. Similarly, he showed
that if a quasi-variety has a finite, non-trivial model, and if all its finite models are
free, then it is categorical in all infinite powers and each of its models is again a
v*-algebra. With the essential help of Urbanik’s theorem, Givant [34] (see also [38])
gave a complete description of these quasi-varieties.

Theorem 4.1. If K is a quasi-variety that is free, but not categorical, in some
infinite power, or else if it has a finite non-trivial model and all its finite models
are free, then K is (term) definitionally equivalent to one of the following:

(1) a quasi-variety of vector spaces over a fixed skew field, with a fized subspace
of distinguished constants;

(2) a quasi-variety of affine spaces over a fized skew field, with a fized subspace
of distinguished unary translation functions;

(3) a quasi-variety of G-sets over a fized group G with a fized subalgebra of
distinguished constants that contains all fized points, and such that each
unary operation has at most one fized point.

For varieties, the description assumes a simpler form.

Corollary 4.2. If K is a variety that satisfies the hypotheses of the preceding
theorem, then K is definitionally equivalent to one of the following:
(1) a variety of vector spaces over a fized skew field;
(2) a variety of affine spaces over a fized skew field;
(3) the variety of sets;
(4) the variety of sets with a distinguished constant.

It turns out that, contrary to Tarski’s hope, not every variety categorical in some
infinite power is necessarily free in all infinite powers in which there are models.
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For a concrete example, consider a variety or quasi-variety K of v*-algebras, for
example a variety of affine spaces over a fixed skew field, or the variety of sets.
For a given positive integer n, form the n-th Cartesian power of each algebra in K
(the product of each algebra with itself n times), and adjoin to the basic operations
of this power an n-ary decomposition function and n unary projection functions.
(These additional functions permit one to axiomatize the class of n-th powers of
algebras in K by means of a set of equations.) The resulting variety or quasi-variety
K, of n-th powers of algebras in K is categorical in suitably large infinite powers,
but when n > 2, it will not be free in all infinite powers (or in all finite powers) in
which there is a model.

In the case of the n-th powers of affine spaces over a fixed skew field, it is possible
to extend the preceding construction somewhat further by adjoining to each space
a unary operation that equationally determines a distinguished hyperplane of fixed
dimension k, where 0 < k < n. These classes are definitionally equivalent forms
of the class of affine spaces over the ring of n-by-n matrices with entries from the
skew field, and with a distinguished idempotent n-by-n matrix operation ¢ whose
first k£ diagonal entries are 1 and all other entries are 0. When k = 0, the resulting
class is definitionally equivalent to the class of n-th powers of vector spaces over
the skew field, or, equivalently, to the variety of modules over the ring of n-by-n
matrices with entries from the skew field.

Givant [36] (see also [38]) showed that for each quasi-variety categorical in some
infinite power, there is, roughly speaking, an equation that defines a v*-algebra
inside each model, and the models of the quasi-variety are obtained by the n-th
power construction (for some positive integer n) from a quasi-variety of v*-algebras.
In fact, he proved the following theorem (see [37] and [39]).

Theorem 4.3. A quasi-variety is categorical in some infinite power if and only if
it is definitionally equivalent to one of the following, for some positive integer n
and some integer k with 0 < k < n:

(1) a quasi-variety of affine spaces over the ring of n-by-n matrices with entries
from a fized skew field, with a fired subspace of distinguished unary trans-
lation functions, and with a distinguished unary n-by-n idempotent matriz
operation 0y as described above;

(2) a quasi-variety of the n-th powers of G-sets over a fixed group G with a fized
subalgebra of distinguished constants that contains all fixed points, and such
that each unary operation has at most one fixed point.

Again, the description simplifies for varieties.

Corollary 4.4. A wvariety is categorical in some infinite power if and only if it
is definitionally equivalent to one of the following, for some positive integer n and
some integer k with 0 < k < n:

(1) a variety of affine spaces over the ring of n-by-n matrices with entries from
a fized skew field, with a distinguished unary n-by-n idempotent matriz
operation 8y as described above;

(2) the variety of n-th powers of sets;

(3) the variety of n-powers of sets with a distinguished constant.
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5. THE CLASSIFICATION OF INDEPENDENCE ALGEBRAS

According to Urbanik’s theorem, every independence algebra (or v*-algebra) of
dimension at least 3 is, up to (term) definitional equivalence, either a free G-set
with a distinguished subalgebra of constants that contains all fixed points, or a
vector space over a skew field, with a distinguished subspace of constants, or an
affine space over a skew field, with a distinguished subspace of unary translation
functions. The case of dimension less than 3 was also considered by Gratzer and
Urbanik ([44] and [68]). Another perspective on the representation of indepen-
dence algebras is provided by a recent result of Cameron and Szabd [20] that we
now explain. Note however that the Cameron-Szabd theorem below (Theorem 5.1)
is not contained in Urbanik’s theorems, and vice versa. First, the theorem below
applies only to finite independence algebras, whereas Urbanik’s theorems apply to
all independence algebras. Second, the representation below is in terms of a no-
tion of “endomorphism” equivalence that will be defined below, whereas Urbanik’s
representation is in terms of the notion of term definitional equivalence. Third,
the theorem below covers all finite dimensional finite algebras, whereas the main
theorem of Urbanik is for algebras of dimension at least three — but, as pointed
out, there are other results, similar to Urbanik’s, for algebras of dimension less than
three.

An independence algebra A determines (and, in some sense, is determined by)
the collection of its subalgebras and the monoid S of its endomorphisms. Following
the terminology of [20], we say that two independence algebras A; and A, are
equivalent if there is a bijection 6 : A; — Ay such that: (1) both § and 6~ map
subalgebras to subalgebras; (2) if f; : A, — A; (for i = 1,2) are maps satisfying
f10 = 0 fs, then f; is an endomorphism of A; if and only if f5 is an endomorphism
of AQ.

The classification of finite independence algebras up to this equivalence is the
following.

Theorem 5.1 ([20]). Any finite algebra A is an independence algebra if and only
if it is equivalent to one of the following three types.

(1) Trivial finite independence algebras: A = (X x G)UC, where X is a set, G
a group, C a left G-set, and with nullary operations v. (c € C) with value
¢, and unary operations Ay (g € G) given by

Ag((z,h)) = (z,gh) forz € X, h € G,
Ag(e) = g(e) force C.

(2) Non-trivial finite independence algebras with (0) # 0: A = VW], where V
a vector space, W a subspace of V., and V[W] is the vector space V with a
distinguished constant w adjoined for each w € W.

(3) Non-trivial finite independence algebras with (§) = 0: A is either Aff(V)[+W]
for some vector space V', subspace W, and Aff(V)[+W] is the affine space
AfE(V) with a distinguished unary translation function 7,(x) = x + w ad-
joined for each w € W, or else A is an affine near field algebra.

(An independence algebra is trivial if the associated pre-geometry is trivial i.e.
the closure operator satisfies cl(X) = |,y cl({z}) for every subset X of the pre-
geometry. A near field is a structure that satisfies all of the field axioms except
commutative law for multiplication and the right distributivity law.)
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This result for the finite independence algebras relies on the classification of fi-
nite simple groups, and more precisely on the work of Maund [52] classifying the
geometric groups of rank at least 2 (see [20]). A geometric group is a permutation
group such that the pointwise stabilizer of any sequence of points acts transitively
on the points it does not fix (if any). The relevance of geometric groups to the
classification problem is due to the fact that the automorphism group of an inde-
pendence algebra is a geometric group ([20] Theorem 6.1).

The following theorem is related to the preceding one.

Theorem 5.2 ([20]). The subalgebra lattice of a finite dimensional independence
algebra is a Boolean lattice or a projective or affine geometry.

The same result, but for dimensions > 8, was obtained earlier by Zilber [76],
using his independent determination of the geometric groups of rank at least 7. His
approach does not use the classification of finite simple groups, but rather some
combinatorial results concerning the study and classification of strongly minimal
structures whose pre-geometry is non trivial and locally modular, i.e.,

dimelz(X UY) +dimclz(X NY) =dimclz(X) + dimclz(Y)

for all subsets X,Y and Z where (for any subset W) clz(W) is defined to be
(WU Z), and dim clz(W) is the dimension associated with the closure operator.
See [75] for the finite dimensional case which implies the infinite dimensional one,
and also the earlier works [70], [71], [73], [74] on the infinite dimensional case. All
of this is reproduced in monograph [78]. The work of Evans [25] is also a very good
source on arguments similar to Zilber’s.

Theorem 5.1 applies to finite independence algebras. The classification of infinite
independence algebras that are locally finite is as follows.

Theorem 5.3 ([20]). A non-trivial, locally finite, infinite independence algebra is
equivalent to VW] or to Aff(V)[+W] for some infinite vector space V' over a finite
field, and some finite-dimensional subspace W.

This theorem is already implicit in Zilber’s work from the 1980’s, which applies
to a more general context than that of algebras where dcl = acl. The proof uses
his determination of the geometric groups of rank at least 7, not Maund’s work.

The following is a related result due to Zilber [72] and, independently, to Cherlin,
Mills, and Neumann (who used the classification of finite simple groups in their
proof - see [60] for details).

Theorem 5.4. The geometry associated with an Ng-categorical, strongly minimal
structure is either trivial or a projective or affine geometry of infinite dimension
over some finite field.

Let A be a non-trivial (i.e. whose pre-geometry is non trivial) infinite indepen-
dence algebra that is locally finite. From A we construct a structure D in the
following way: the universe of D is the set A; there are no operations; the relations
of D are, for each natural number n, the n + l-ary relation R, on the universe
defined by

Ry (z1,...,2n, 1) if and only if 2 € ({z1,...,2,}).

It is easy to verify that the theory of D is categorical in power Ny and admits
elimination of quantifiers, that D itself is a strongly minimal structure, and that
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the pre-geometry (D, acl) coincides with (4, ()) (see [60] page 99 for details). It
follows from Theorem 5.4 that the geometry associated with D (and hence with A)
is equivalent to a projective or an affine geometry of infinite dimension over some
finite field.

For other important are related results connecting strongly minimal structures
and independence algebras see [76] and [77].

Strongly minimal structures and their associated pre-geometries play an impor-
tant role in logic. Here are three examples. (1) They were used to give a new proof
of Morley’s theorem that if a countable theory is categorical in some uncountable
cardinal, then it is categorical in every uncountable cardinal (see [15]). (2) Vari-
ants of strongly minimal structures and their associated pre-geometries were used
to prove the Manin-Mumford and Mordel-Lang conjectures from number theory
(see [18]). (3) Zilber’s theorem (Theorem 5.4) was proved to show that an infi-
nite structure D whose theory is categorical in every infinite cardinal is not finitely
axiomatizable (see [60]).

It is worth mentioning here the development of geometric stability theory, an
important branch of logic. Much of this development is only tangentially related
to the study of independence algebras, but there are connections. The notion of
a stable theory was introduced by Shelah in his analysis of uncountable theories
categorical in power. Roughly speaking, a theory is unstable (not stable) if in some
model it is possible to define a linear order on some infinite set of n-tuples. Thus,
any theory of linear orderings (with infinite models), any extension of the theory of
Boolean algebras, and the theory of Peano arithmetic are all examples of unstable
theories. Shelah proved that an unstable (countable) theory has the maximum pos-
sible number of non-isomorphic models in every uncountable cardinality A, namely
2. Within the class of stable theories Shelah isolated the subclass of superstable
theories, and its subclass of w-stable theories. The latter class was already intro-
duced by Morley under the name of totally transcendental theories. Shelah proved
that, in fact, a (countable) non-superstable theory has 2* models of cardinality \
for every uncountable cardinal A. Countable theories categorical in uncountable
powers are examples of w-stable theories, but there are other interesting examples
as well; for instance, the theory of differentially closed fields of characteristic zero,
and the theory of an abelian group that is a direct sum of a divisible abelian group
and an abelian group of bounded exponent (for example, (Z/3Z)¥ & (Z/2Z)%). An
example of a superstable theory that is not w-stable is the theory of (Z,+) of the
integers under addition, and an example of a stable theory that is not superstable
is the theory of (Z%,+).

One of the original problems in stability theory was the determination of the
number of non-isomorphic models of each appropriately large cardinality of a given
stable theory. One of Shelah’s key ideas was to analyze the models of such a
theory using an independence relation called nonforking. Shelah’s more general
independence relation, which can be introduced axiomatically, does not possess the
exchange property, but in some suitable cases it permits one to re-construct the
models from sets of realizations of “regular types” for which an exchange principle
holds. For details on all of this and much more see [63], [13], [19] and [60]; the
references [21] and [22] are also very useful.

Two related lines of research in mathematical logic that are worth mentioning
are: the solution of Vaught’s conjecture ([69]) for varieties by Hart, Starchenko and
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Valeriote [45], which depends very much on representation theorems and makes
use of some tame congruence theory; and Zilber’s generalization in [79] of the
notion of strongly minimality in order to study sentences in L, , that have as
models certain combinatorial geometries (matroids) with additional properties, one
of which turns out to be a special case of what Shelah ([64], [65]) calls excellence.
For the latter, see also [14] where it is shown that the excellence condition yields
directly something like an M-independence (where, however, the morphisms are not
just homomorphisms).

Acknowledgment: The authors would like to thank J. T. Baldwin, P. J. Cameron,
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