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32 Prof. J. 1=[. Poynting on 

now took ten seconds less for its ascent. After a day's repose 
it rose again in the oil with its original velocity. 

13. The fundamental formul0e g~ven in this paper admit of 
easy extension to other cases. I have, for example, found in 
the ascent of a hollow glass bulb a good indication of the 
maximum density of water, and of the amount of dissolved 
matter in saline solutions; and it could obviously be applied to 
determine the specific gravity of solid bodies. 

The experiments which I have recorded show clearly that 
the rate of ascent of a solid through a liquid depends, not only 
upon the density of the liquid, but upon some other property 
--probably the viscosity. When the ascending solid approxi- 
mates in diameter to the diameter of the reservoir, special retar- 
dation occurs, and some newlaw controls the motion. The com- 
mencement of this retardation is earlier with oils than with 
water, earlier with water than with alcohol and water--earlier, 
in short, when viscosity is greater. In reservoirs of sufficient 
diameter, the rate is inversely proportional to the square of 
the altered condition. 

My thanks are due to Messrs. Ellis and Smith for their aid 
in this investigation. 

Glasgow, March 1881. 

V. C]tange of State: Solid-Liquid. By  J. tt. PoY~IN~, 
Late Fellow of Trinity College, Cambridge, Professor of 
Physics, ~lason College, Birmingham*. 

[Plate I.] 

T WO distinct types of change of state from solid to liquid 
have usually been recognized. The most familiar of 

these is the ice-water type, in which, as the temperature rises, 
the solid remains quite solid up to the melting-point ; when 
this is reached it begins to melt at the surface, and the tem- 
perature remains constant till the whole is liquid, when the 
temperature again rises. Corresponding to this change of 
state there is a definite latent heat. In the second class of 
bodies, of which sealing-wax and phosphorus are examples, 
there is a gradual softening as the temperature rises ; and this 
softening takes place throughout tl~e mass. There is no definite 
arrest of the rise of tempel:ature, and no definite latent heat. 

It  has sometimes been supposed that the ice-water type is 
merely a limiting case of the sealing-wax type, where the 
softening takes place, but through a very small range of tem- 
perature. Prof. Forbes held this view, and by it attempted 
to explain regelation ; but subsequent experiments have not 

* Communicated by the Physical Society. 
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Change of State: Solid-Liquid. 33 

supported the theory, and I believe it is now generally aban- 
doned. 

Sinee~ in the ice-water form of change of state, fusion only 
takes place at the surfac% it seems much more probable that 
it is an exchange phenomenon analogous to the change which 
takes place when water is evaporating~ according to the kinetic 
theory. Just as in the case of water-steam, a steady state is 
reached when the number of molecules escaping from the sur- 
face of the water into the gas is equal to the number passing 
from the gas into the water, so in the case of water-ice a steady 
state (that is to say, the melting-point of ice) is probably 
reached when the number of molecules passing from the ice 
into the water is equal to the number passing from the water 
to the ice. For the analogue of the sealing-wax type of melt- 
ing we must probably take the change of state which takes 
place in a liquid-gas above its critical point, where it changes 
gradually from a state rather liquid than gaseous to a state 
certainly gaseous. 

In this paper I shall attempt to support this view of solid- 
liquid change of state. The following is a summary of the 
argument and the conclusions arrived at. 

1~ is assumed that the maximum vapour-tension of a sub- 
stance at any temperature is an indication of the number of 
molecules crossing its surface in a condition to escape. Now 
Regnault's experiments show that at 0 ° ice and water have 
the same vapour-tension; that is, the number of molecules 
crossing the surface of the ice ready to escape is equal to the 
number crossing the surface of the water in the same condition. 
Hence, when the two are in contact at 0 o, the interchange of 
molecules is equal. For temperatures below 0 °, Kirchhoff has 
shown that the vapour-tension of water is greater than that of 
ice, and above 0 ° it is less than that of ice--if  ice can exist. 
(Another proof of this theorem is here given.) It is, then, easy 
to give a general explanation of the phenomena of melting 
and fl'eezing by supposing that, if the temperature is not at 
the melting-point, the substance in the state with the greater 
vapour-tension will lose at the expense of the state with the 
less vapour-tension. 

To explain the alteration of the melting-point by pressure, 
we must suppose that pressure alters the vapour-tension, and 
therefore the rate of escape of molecules, and that this altera- 
tion is different for the two states. Sir William Thomson has 
shown that a liquid in a capillary tube is in equilibrium with 
its vapour at a greater or less tension than at the plane sur- 
face according as the surface is convex or concave, upwards, 
and has given a formula for the difference. Accompanying 

-Phil. Mug. S. 5. Vol. 12. No. 72. July 1881. D 
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34 Prof. J.  H. Poynting o n  

this curvature of surface is a difference of pressure in the 
liquid; and I suppose the variation of vapour-tension to be due 
to the difference of pressure. A proof is given of Sir W. 
Thomson's formula, which seems to bring out more clearly the 
connexion of the phenomenon with the pressure, and which 
seems to apply to solids as well as liquids. According to this 
formula, the steady s~ate (the melting-point) may be reached 
at any temperature if the pressure can be so adjusted that the 
vapour-tensions in the two states at that temperature and 
pressure are equal. The resulting lowering of the melting- 
point by pressure agrees in amount with that given by the 
well-known formula of Prof. J. Thomson. 

It follows from this mode of regarding the subject, that, if 
in any way the ice can be subjected to pressure while the water 
in contact with it is not so subjected, then the lowering of the 
melting-point per atmosphere is about 11~ times as great as 
~; vhen both are compressed. I give the results of some expe- 
riments which I have made to test this, and which certainly 
seem to indicate that the fall of melting-point is much greater 
than the amount usually supposed if the ice alone be compressed. 

The isothermals for ice-water are then discussed. It has 
been supposed that, if we could employ a sufficiently low tern= 
perature and high pressure, then ice would pass continuously 
into water ; that is, the isothermals would have no horizontal 
part corresponding to a mixture of ice and water, and we 
should have a critical point. Assuming, however, that a mix- 
ture of ice and water completely freed from foreign gases can 
be subjected to great negative pressure or tension, ig seems 
probable that there is another critical point at a temperature 
above 0 ° and at a high negative pressure ; that is, the water- 
ice line is a closed curve. We know that below 0 ° the water 
isothermals can be prolonged below the horizontal portion, 
since water is unfrozen in certain cases,--and that the ice iso- 
thermals can be prolonged above the horizontal portion; for ic% 
at 0 ° say, can be suddenly compressed without melting in the 
interior. This suggests that the true form of the isothermals 
is a continuous curve, of the nature which Prof. J. Thomson 
has suggested in the case of liquids and their vapours. 

If  we suppose that the curves are continuous in the same 
manner for ice-water above 0°~ then Prof. Carnelley's ~ Hot 
I ce "  would seem to be represented by the prolongations up- 
wards of the ice isothermals beyond the horizontal line to 
where they meet the line of no pressure. The critical point, 
which certain assumptions roughly fix at about 14 ° C., would 
then be an upper limit, or rather abo~ e the limit, to the tem- 
perature of hot ice in a vacuum. 
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Change of State: Solld-Liquid. 35 

In conclusion, it is pointed out that the sealing-wax type of 
melting is probably similar to the change of ice into water 
below the lower, or above the upper, critical points, if these 
exist. 

Melting and Freezing of the Ice-water Type at ordinary 
Temperatures and -Pressures. 

It seems to have been conclusively proved by experiment that, 
in bodies of the ice-water type, change of state, either from solid 
to liquid, or the revers% takes place only at the surface, or at a 
surface separating dissimilar portions. This would also seem to 
follow from the fact that the change of state always requires a 
certain finite amount of energy to be abstracted from, or sup- 
plied to, the mass without alteration of temperature. In the 
middle of a homogeneous body, where the temperature varies 
gradually, we must have the energy per unit of volume a con- 
tinuous quantity as we pass from point to point. Hence~ when 
at any point there is sufficient energy per unit of volume to 
change the state, either the surrounding temperature must be 
far above the ordinary temperature for change of star% or the 
surrounding substance must occupy an intermediate condition 
between the two states. On the ibrmer supposition we should 
certainly not have the ordinary change of state, though some- 
thing of the sort may:occur in the case of Dr. Carnelley's "hot  
ice ;" and in the latter we should have the sealing-wax typ% 
and no signs of this have been observed. 

Since, then~ change of state is a surface phenomenon, we are 
led at once to connect it with the escape of molecules which we 
know to be always taking place from the surfac% as indicated 
by the definite vapour-tension which the body possesses, 
whether solid or liquid. Now Regnault's experiments have 
shown that at 0 ° ice and water have the same vapour-tension, 
and at the same time a mixture of ice and water at that tem- 
perature maintains the same proportion between the two con- 
stituents as long as no heat is allowed to pass into or out of it; 
that is, as many molecules escape from the water into the ice 
as pass in the opposite direction from the ice into the water. 
We seem, then, to be justified in assuming that the number of 
molecules coming up to a given surface with a su~cient velocity 
to escape is indicated by the maximum vapour-pressure at that 
temperature. 

~ow suppose that we have a mixture of ice and water 
below 0 °. Kirehhoff has shown (Pogg. Ann. ciii. p. 206) 
that below 0 ° the vapour-tension of water exceeds that of ice 
by "044 millim, of mercury per degree; and his reasoning 
will equally prove that it falls below i t b y  the same amount 
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36 Prof. J. H. Poynting on 

above 0 °, if ice can exist at such a temperature. Prof. J.  
Thomson has subsequently (Brit. Assoc. Report, 1872, lo. 24; 
Proc. Roy. Soc. 1873; 'Nature,' ix. p. 392) arrived at a similar 
conclusion independently. A proof differing in arrangement 
fi'om Kirchhoff's, and following out rather the line indicated 
by Thomson, will be given below. 

In a mixture, then, of ice and water below 0 °, since the 
water has the greater vapour-tension, more molecules will 
cross the surface from the water to the ice than in the opposite 
direction. The ice will therefore gain, while the water loses. 
At the same time the molecules will possess less energy when 
arranged as ice. Hence the temperature of the whole will 
rise, and this rise will go on till 0 ° is reached, when there is 
once more equilibrium--or till the whole is converted to ice, 
if that condition be previously reached. This seems sufficiently 
to explain the action of a small piece of ice dropped into water 
below 0°; and the fact that the change of state is a surface 
phenomenon seems to show that the presence of some ice is 
necessary to commence change of state. 

If  a mixture of ice and water at 0 ° be supplied with heat, 
as soon as the temperature rises ever so little above 0 ° the 
equilibrium of exchange is destroyed; for the vapour-tension 
of ice becomes greater than that of water, and therefore the 
number of molecules entering the water from the ice is greater 
than the number going in the opposite direction. But since 
the water arrangement requires more energy, heat is absorbed, 
and the mixture has a tendency to fall back to 0 °. 

Before going on to discuss the effect of pressure on the 
melting-point, I give a proof, with a somewhat more general 
result, of Kirchhoff's formula, 

d~ / d~  
= "044 millim, of mercury, 

dt dt 
where ~ is the maximum vapom--tension of ice, and ~ that of 
water. 

Start with a volume v of water at temperature -- t °. Let it 
evaporate, always at the temperature --t  °, in a cylinder which 
it does not wet, at its maximum vapour-tension ~, which we 
suppose to be Tmaintained by a piston. Let the ultimate 
volmne of the ~ ater-vapour be V. Then the external work done 
in the expansion is ~ (V--v).  

Now let the vapour further expand, always at the same 
temperature and in equilibrium with the pressure, till we have 
reached a volume W at the maximmn vapour-tension ~ of 
ice. Assuming Boyle's law to hold, the work done in this 

is ~W~log-~ ~, ; and this would be 0 if ~ = ~ q  expansion 
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Change of State: Solid-Liguid. 37 

~ow introduce a particle of ice at --t ° into the cylinder, 
and condensation into ice will go on till all the vapour has dis- 
appeared. I f  the ultimate volume of the ice is v ~, the work 
done on the substance is z~(V'-v~). 

Increase the pressure from ~r' to z~ +p  till the melting- 
point is lowered to --t  °. If  a z is the coefficient of cubic com- 

pressibility o£ ice, p • ~-~'v is the work done in the compression. 

Introducing a drop of water, allow the whole to melt into 
water under the pressure ~'+p, the work done during the 
melting being 

(~' +p){ ¢(1 - -p£)--v(1  --p~)}, 

where i¢ is the coefficient of cubic compressibility for water. 
Now let the water expand to its original volume v by gra- 

dually reducing the pressure to ~. The external work done 

is P~ ~v. 

We now have the substance in its original state; and the 
cycle through which it has been taken was reversible at every 
step ; therefore 

~-~Q --0. 

But T is constant; therefore 
j'dQ=o. 

Then the total external work is zero, or 

~(V -v) + ~'V' log ~ --~'(V'--v ~) 

}_-o. 
By means of the equation 

~V = ~'V/, 
and neglecting products of ~ and ~, this reduces to 

~Vlog-~=p{v'(1--P~2 )-.v(l--~-~) } +(~-~')v. (X) 

Neglecting the term (~--t#)v, and putting for ~ V  ¢ooVoaT, 
where ~0Vo are the pressure and volume at 0 ° C., and T the 
absolute temperature, we have 

~. P{v'(1--P~)--v(l--~-~)} 
~ , = e  ~ o V o ~ T  . . . . (2) 

For temperatures near 0 ° C, we may neglect products ofp  
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38 Prof. J .  H. Poynfing on 

and #, and we obtain as an approximation 

or 

At 0 °, 

_z  + p(cgv),  

V ! - -  V 

~ - ~ '  = p - v r -  . . . . . . . .  

v ' - v = ' 0 8 7 ,  W=209037,  

(a) 

and the pressure required to lower the melting-point t ° is 
760t mfllim, by the well-known formula. Substituting in 

equation (3), we get 
- - ~ ' -  '044 t, 

o r  
deo/ d~ 

= '044  millim, of mercury, (4) 
dt dt 

which is Kirchhoff's result. 
I f  the temperature be much below 0 ° C., we cannot make 

these approximations without further examination, as the terms 
containing tc and £ in (2) may rise into importance. 

It  may be noticed that (2) could be used as an equation to 
determine p, the pressure required to produce a fall of the 
melting-point to T, if there were any accurate experimental 
method of measuring ~r and z~. 

Effect of Pressure on the Melting-Toint. 
If we are right in regarding the change from the solid to 

the liquid state as an exchange phenomenon in which the rate 
of exchange is indicated by the vapour-tension, we ought to 
be able to show that the pressure which lowers the melting- 
point to a certain temperature will so alter the rate at which 
the two states of the substance give off molecules from their 
surfaces~ that at that temperature there will be an equilibrium 
of exchange. That is, we ought to be able to show that pressure 
alters the vapour-tensions of the two states, but alters them by 
different amounts, so that the equatityof vapour-tensions now 
occurs at the new melting-point. 

Now in the ordinary case, where the vapour-tension is mea- 
sured we have the substance only under the pressure of its 
own vapour; but in the rise or fall of a liquid in a capillary 
tube we may have a substance in contact with its own vapour 
when the substance is at a very different pressure from the 
vapour in contact with it. 

Sir William Thomson has shown (Proc. Roy. Soc. Edinb. 
1870, vol, vii. p. 63 ; Maxwell's ' Heat~' 1877, p. 287) that if 
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C]~ange of State: Solid-Liquid. 39 

a liquid rises in a capillary tube so that its surface is concave 
upwards, and (we may add) the pressure of the liquid is less 
than at the plane surfac% then the equilibrium vapour-tension 
is less than at the plane surface. If  the liquid falls in the tube, 
so that the surface is convex and the pressure greater than 
at the plane sm'face, then the equilibrium vapour-tension is 
greater. It has been supposed that this difference of vapour- 
tensions is due to the curvature of the surface; and Fitzgerald 
has suggested that we may thus perhaps obtain a connexion 
between "two apparently unrelated quantities," the evapo- 
ration and the surface-tension (Phil. Mag. [5J viii. p. 384). 
But while a very slight impurity in a liquid can greatly alter 
the surface-tension~ it has not been shown that it alters the 
evaporation to the same degree. I think that we must look 
for the explanation elsewhere than in the curvature of the 
surface; and I shall endeavour to show that we may account 
for the effect by the difference of pressures of the liquid at the 
curved and plane surfaces. The curvature of the surface is 
then, as it were, an accidental accompaniment of the difference 
of pressure, and not the cause of the variation in the vapour- 
tension. We might therefore expect to find the variation 
taking place also at flat surfaces if the pressure be altered, 
and with solid as well as with liquid bodies. We cannot 
directly investigate the vapour-tension of flat surfaces under 
pressure ; but I shall assume that we may here take, instead, 
the rate at which exchange takes place when the solid and liquid 
are in contact with each other. 

Sir W. Thomson's formula is 
2T~ 

P = ~ - -  r (p--~) '  . . . . .  (5) 

where 
p is the vapour-tension in contact withthe concave surface, 
~r is the vapour-tension in contact with the plane surfac% 
T is the surface-tension of the liquid, 
p and o- the densities of the liquid and its vapour respectively~ 
r the radius of curvature of the curved surface. 
If P be the difference between the hydrostatic pressures 

just beneath the curved surface and just beneath the plane 
surface, equation (5) may easily be put in the form 

p=~- -P~ ,  . . . . . . .  (6) 

or a pressure P in the liquid increases the vapour-tension by 

an amount P ~-. 
P o" 

The follo~ ing~proof of this formula,p - ~ - -  P ~, is, I believe, 
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40 Prof. J .  H. Poynting o~ 

applicable to both solids and liquids, and obtains a more 
general form for the result. 

Let  a volume v of a body (solid or liquid) be in a perfectly 
conducting cylinder (fig. 1, Plate I.) so arranged that the tem- 
perature is always constant. A porous plug, which the sub- 
stance if  liquid does not wet, is in the cylinder ; and the hQles 
in the plug are to be so fine that any required pressure can be 
applied to the liquid without forcing it beyond the further sur- 
face of the plug, the curved surface of the liquid there with- 
standing the pressure. A piston to which pressure can be 
applied is in contact with the substance ; and beyond the plug 
is another movable piston to which any pressure can be applied, 
the arrows in the figure indicating the direction in which the 
external pressures are applied to the pistons. 

Let the volmne of the substance in the denser state at the 
pressure of its normal vapour-tension ~r for the given tempera- 
ture be v. Let V be the volume of the whole as vapour at the 
pressure ~r. Let the equilibrium vapour-tension when the 
denser state is subjected to a greater pressure ~r + P be p, and 
let the volume of the whole as vapour at the pressure p be 
V/. Let the coefficient of cubic compressibility be x. Now 
take the body through the following cycle. 

Increase the pressure t o ,  + P on the left-hand piston, and 
then let the substance evaporate, through the plug to the right 
hand, pushing out the piston there at pressure p till the whole 
is evaporated to a volume V/. I fp  be greater than ~, let the 
vapour expand from V/, always in equilibrium with the pres- 
sure, finally arriving at a volume V and pressure ~r. Now 
cover the porous plug, and, if necessary, commence condensa- 
tion by introducing a small amount of the substance. Push 
in the right-hand pisten at the pressure ~r till the whole is 
condensed to volume v. 

We have now conducted the substance through a cycle each 
step of which is reversible*. Then 

S -o 
" It seems difficult to imagine a plug which would satisfy the condition 

of reversibility for the solid under g~eat pressure in contact with its vapour. 
Perhaps the following would answer the requirements, if an ordinary 
porous plug is insufficient. Suppose the solid in a finely-divided state~ 
and contained in a liquid which wets it but is of a very slightly greater 
specific gravity~ and whose vapour-tension is negligible. Dtu~ng evapo- 
ration turn the cylinder with the vapour-cliamber upwards. The particles 
of solid will rise up through the pores~ and a small ~action of their surface 
will protrude, but they will otherwise be subjected to a pressure ~-bp. 
:For condensation reverse the cylinder. As the solid condenses on the 
surface it will rise up as fast as it is formed, and so increase the volume 
of the chamber and force back the piston. 
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Change of State : Solid.Liquid. 41 

But T is constant ; then 

5dQ=O, 
and the external work is, on the whole, zero. This gives us 

P 
- p W - - ~ V  log p 

(7) 

But since, at low temperatures such as we are here considering, 
Boyle's law is almost exact, we have 

~rV=pV' .  

Then, neglecting terms containing n~, 

- -V) '  ¢oVlogP =Pv(1  P~¢ 

o r  
Pv [ P ~  

. . . . . . . .  (8) 
fO 

For ordinary values of P this gives 
Pv P a  

P - - ~ =  V = -7" . . . . .  (9) 

which agrees with Sir W. Thomson's result in equation (6). 
I t  may be worth while to point out the following result of 

the reasoning on which the above proof is based. 
In a quantity of liquid at a uniform temperature, the num- 

ber of molecules interchanged across a sm'face will increase as 
we descend, owing to the increase of pressure. I f  near the 
surface the number be proportional to the vapour-tension at 
the surface, then at any depth the number will be proportional 
to the pressure in an atmosphere of vapour at that level ~ hich, 
at the level of the surface, has the pressure of the vapour in 
equilibrium ; that is, the liquid will behave as a non-vapori- 
zing solid through whose interspaees the vapour can move 
freely. 

Assuming, then, that equation (9) holds both for solids 
and liquids, let us apply it to the case of ice and water in con- 
tact with each other at a temperature - - t  ° and at a pressure P, 
such that - - t  ° is the melting-point. 

Let ~r be the nornml ~apour-tension of water at --t  °, 
~-' ,, ,, , ice at --t °, 
p be the altered vapour-tension of water, 
p '  ,, ,,- ,, ice, 

p the density of water, v its specific volume, 
pl ,, ,, ice, v ~ . . 

¢r ,, ,, their vapour, V its specific volume. 
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42 .Prof. J.  H. Poynting on 

Taking e and V as the same for ice and water as an approxi- 
mation, then equation (9) gives us 

p = ~ + r ~ - ~ + - V ,  U 
, , _ ~  _ pv , f  (10) 

p = ~  + v-d  = , e  + -V .  j 

Subtracting, we have 
_p--pZ=~r- - ,~ . ' - -pV@ v' . . . . .  (11) 

But by equation (3) we have 
f - - V t ~ V  

~- -~  = F -  V -  ; 
then 

p - p ' = o  . . . . . . . . .  

Or, under the pressure P at the melting-point, the vapour- 
tension of ice equals that of water, and there is an equal inter- 
change of molecules taking place. According to this, then, 
we may thus regard the alteration of melting-point by pres- 
sure. The pressure increases the number of molecules given 
off from the surfaces in contact with each other in both states; 
but the increase is greater in the case of the less dense state. 
Now, in the case of ice-water, ice is the less dense state, and 
below 0 ° it has the less vapour-tension. Hence a sufficiently 
great increase of pressure, while increasing both vapour-ten- 
sions, can make that of ice overtake that of water, or can lower 
the melting-point. For paraffin, the liquid is the less dense 
state. Then, increase of pressure can only render the two 
vapour-tensions equal above the normal molting-point when 
the liquid vapour-tension is less than that of the Solid. 

Suppose now only one of the two states (the ice) to be 
subjected to increase of pressure. For instance, let the ice be 
compressed on a porous plate through which the water can 
circulate freely. Then the pressure increases the rate at which 
molecules escape from the ice into the water, but does not 
affect the rate of escape of the water-molecules into the ice, 
and a much less pressure will suffice to produce equilibrium 
of exchange for a given temperature below 0 ° than when both 
ice and water are subjected to the pressure. 

To calculate the fall in melting-point produced by a pres- 
sure 1 ~I on the ice alone, we have, instead of (10), 

% p = %  
P'v' ~" (la) 

P ' = ~ ' +  -V-" O 
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Change of State: Solid-Liqui& 43 

If  we have p=pl, we have the molting-point ; and in this case, 
by subtracting, we obtain 

~lvl 
~ - - ~ ' =  ¥ . . . . . . .  (14) 

lgow the pressure required to lower the malting-point to the 
same degree when both ice and water are compressed is given 
by 

,6~__,,~1.... ~P . v l m v  
v ; . . . . .  (15) 

or p/ V--v 
P v 

= '087 . . . . . . . .  (16) 

Or the fall in melting-point caused by a given pressure on the 
ice alone is about 11{ times as great as when both ice and 
water are compressed. "That is, 1 atmosphere lowers the 
melting-point about "0843 ° C., and 11"7 atmospheres lower it 
1 ° C. This result may be obtained in the same way as Prof. 
J. Thomson's formula, on the supposition that the process is 
reversible ; but as I was led to the result by the above consi- 
derations, I have given only this proof. 

This seems to have an importan~ bearing on ordinary cases 
of regelation, when two pieces of ice are brought into con- 
tact at one or two points. About that point the ice will 
be subjected to great pressure; but the melted water is 
not necessarily subject to the pressure, and accordingly the 
melting-point may be lowered by 11-} times as much as has 
been formerly supposed. I have made some experiments to 
test this result; and the best arrangement I have yet devised 
has been the following : - -A block of ice, fitting in a hollow 
iron cylinder with open ends, was laid on a bed of sand on 
the top of which was placed one junction of a copper-iron 
thermopile ; the other junction was placed in melting ice. 
When the two junctions reached the same temperatur% as 
indicated by a galvanometer in the thermopile circuit, pressure 
was applied to the ice by a hydraulic press. The water from 
the melting of the ice was able to escape freely through the 
sand, and was therefore only at atmospheric pressure. The 
results so far have been very variable, sometimes indicating 
no greater lowering of the melting-point than that usually 
assumed--'0073 ° per atmosphere. But in se~ eral cases the 
lowering has been decidedly greater. The following experi- 
ment gives the greatest value I have yet obtained for the low- 
ering of the melting-point. The galvanometer-deflection per 
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44 Prof. J .  H. Poynting on 

1 ° difference in the temperature was determined by separate 
experiments to be 9"4 divisions. 

T i i n e ,  
April 30. 

h in 
12 51 

12 53 

12 57 

1 30 

132 

P r e s s u r e ,  in 
tmospheres. 

18  

18 
18 

9 

9 

Galvanometer 
deflections, in 

divisions. 

4"5 

5"3 

5"0 

2'5 

3'3 

Temperature 
of the cooler 

junction. 

o 
- ' 4 8  C. 

- '56  

- "53 

- "27 

Calculated 
temperature, 
at "0073 p e r  
a t m o s p h e r e .  

- "13 

- - ' 1 3  

- ' 065  

- "065 

It  will be seen, by a comparison of the last two columns, 
that the lowering here was four or five times that given by the 
usual formula. Ihave not thought it necessary to give details 
of the other results, as I have not yet had time to investigate 
the causes of failure. I hope to pursue the subject shortly. 

Perhaps the following imaginar~i experiment may serve as 
a simple illustration of the last t~ o sections. Suppose two 
cylinders, one containing ice, the other water at the same tem- 
perature, to be connected above by a tube through which the 
vapour can pass~ and let them only be in contact with their 
own vapour. 

AL 0 ~, or rather at +'0073, their vapour-tensions being 
equal, as soon as the pressure reaches 4"6 millim, then the ice 
and water will remain unaltered in amount as long as no heat 
is allowed to pass into or out of the cylinders. I f  the tempe- 
rature be kept slightly below 0°~ then, since the vapour-ten- 
sion of water is now greater than that of ice, the water will 
gradually distil over into the ice-vessel and there condense as 
ice, the average temperature rising. If  the temperature be 
kept constant, however, the whole of the water will in time 
go over into the . . . . . .  ice-vessel. If  the temperature be slightly 
above 0 ° (supposing ~t possible still to keep the me sohd), then 
the ice has the greater vapour-tension and will gradually distil 
over into the water-vessel, and the average temperature will 
fall. In time, if the temperature be kept above 0 °, the whole 
of the ice will go over into the water-vessel. 

If, now, the ice and water be subjected to pressure by porous 
pistons which the water does not ~ et (the pressure in each 
cylinder being the same), then, if the temperature be 0 °, an 
increase of pressure will cause more evaporation from the ice 
than from the water; that is, the ice will distil over into the 
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Chanye of State : Solid-Liquid. 45 

water-cylinder and form water there. To obtain equilibrium 
again, the temperature must be lowered to such a point that 
the pressure makes the two vapour-tensions once more equal, 
when the ice and water will remain unaltered in amount that 
is, the melting-point will be reached. I f  now the ice alone 
be subjected to pressure, its vapour-tension will be increased 
while that of' the water remains the same. And now the 
pressure required to produce equilibrium of vapour-tensions 
at a given temperature below 0 ° will only be about 2-23rds 
of that required when both are subjected to the same pressure. 

The suppositions which I have made amount to this that 
if the space filled with vapour be abolished and the ice and 
water be brought directly into contact with each other, then the 
rate of escape of molecules will be the same as before in each 
case, or bear the same proportion to it. 

Isothermals of Ice-water : Critical Points. 

I f  we draw the isothermals for ice and water on a pressure- 
volume diagram, they are of the general form shown in fig. 2, 
though the figure is entirely out of proportion. 

I f  we may assume that the compressibility of water is con- 
siderably greater than that of ic% the horizontal part of the 
isothermals representing a mixture of ice and water will in- 
crease as the temperature falls below 0°~ at least just at first. 
Then, if we call the line passing through the points where the 
isothermals turn to or from the horizontal par~ the ice-water 
line, this line will at first diverge as the temperature falls. 
Now, while ice contracts on cooling, its coefficient of expan- 
sion between --19 ° and 0 ° being given as "000122 by Brunner, 
Despretz has shown that water expands on cooling below 0 ° 
even more than it expands for an equal rise above 8 ° . Hence 
the isothermals for ice and water approach each other at ordi- 
nary pressures as the temperature falls. 

Using Brunner's coefficient for ice, and for water H~lls- 
trSm's fbrmula (Jamin, Cours de Physique, vol. ii.)~ 

v0 --_ 1 + '000052939 t --"0000065322 t ~ + "00000001445 t 3, 
V t 

and supposing that water could be cooled without freezing, it 
will be found that between --120 ° and --130 ° ice and water 
would have the same specific volmne. This might lead us to 
suspect that the divergence of the two branches of the water- 
ice line would not continue if we could examine the isother- 
mals at very low temperatures and high pressures, and that, 
as the temperature fell, the two states would at some point 
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46 Prof. J.  H. Poynting o n  

begin to approach (that is, the horizontal part of the isother- 
reals would decrease), and that ultimately ice would pass gra- 
dually into watmr w{thout any abrupt change of volume (that 
!s, there would be a critical point). Below this critical point 
ice and water would probably be identical. 

A similar conclusion is arrived at from the latent-heat equa- 
tion. On the supposition that at the critical point the latent 
heat vanishes, the temperature given by that equation is 
--122°'5, with a pressure of over 16,000 atmospheres (Baynes, 
Thermodynamics,' p. 169). 

It  is usually assumed that we must stop the isothermal at 
the base-line of no pressure. But we know that water can be 
subjected to a negative pressure; as, for instance, when it rises 
in a capillary tube in a vacuum, or when it adheres to a baro- 
meter-tube at a height greater than that of the barometric 
column. It  seems probable that, if perfectly freed from foreign 
gases, it might even be subjected to a veryhigh negative pres- 
sure without the particles being torn asunder. So, too, a mix- 
ture of ice and water might probably be subjected to tension. 
It seems at least worth while to draw the isothermals for ice 
and water on such a supposition. 

Prof. J. Thomson's result for the alteration of the melting- 
point by pressure would hold for at least a short distance above 
0 ° when we replace pressure by tension. Assuming it to 
hold for 4°~ we should have to put on a tension of 4+=00733 
atmosphere = 545 atmospheres. But if the expansion of 
water under a tension equals its compression under an equal 
pressur% the expansion is about ~T~go per atmosphere*; so 
that the volmne of the water at 4 °, under a tension of 545 
atmospheres, will be 1"026. The ice, whose volume at 4 ° 
under no pressure would be 1"088, probably will not expand 
nearly so much under tension. The change of volume on 
melting will therefore probably be not very far from 

1'088--1"026='062, 
against a change at 0 ° of "087. Then the two branches of the 
ice-line will converge very considerably for temperatures above 
0 ° and with negative pressures. At this rate of convergence 
the meeting-point is at about 14 ° C. At higher temperature 
the ice would pass gradually into water--that is, we should 
here have another critical point,~the two critical points being 
at opposite ends of the closed curve which represents the 
water-ice line. 

* Might not the truth of this supposition be tested by the propagation 
of sound through the water above a barometric column at a negative 
pressure 
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Change of State : Solid-Liquid. 47 

On considering the isotherma]s below 0 °, it will be noticed 
that the water-isothermals, at least as far as that for - -20 °, 
can be prolonged downwards past the horizontal line to meet 
the line of no pressure; for Despretz succeeded in cooling water 
to --20 ° in thermometer-tubes without freezing. These pro- 
longations are represented by a a l, b b I, c e / (fig. 2). Similarly 
the ice-isothermals can be at least slightly prolonged upwards 
past the horizontal line. For, suppose we take a block of ice 
at 0 ° and suddenly subject it to great pressure. Since it ex- 
pands on heating, then sudden compression produces, if any 
thing, a slight rise in the temperature. At the same time the 
melting-point is lowered, and the ice begins to melt at the 
surface, and in time the whole will be lowered to the new 
melting-point. Bat  just  at first, and until it falls to that 
temperature, we have the ice on the prolongation of the iso- 
thermals upwards as at A A' or B B ~ in fig. 2. In a certain 
sense, then, we have "ho t  ice." 

Since, then, the water-isothermals may be prolonged down- 
wards and the ice-isothermals upwards, we may probably here 
adopt Prof. J.  Thomson's suggestion as to the true shape of 
the isothermals in the case of liquid-and-gas mixtures (Brit. 
Assoc. Report, 1871, p. 30 ; Maxwell's ~ Heat, '  p. 125). This 
is indicated by the dotted line for --2° in the figure. I f  the 
isothermals also have this shape above 0 ° (as indicated by the 
dotted line for the 4 ° isothermal), then at first the ice-isother- 
reals will be prolonged upwards to meet the line of no pres- 
sure, as, for instance, that of 4 ° at H. This seems to be the 
place where we must put Dr. Carnelley's "ho t  ice," on the 
diagram, if its temperature be really proved to be above 0 °. 

But  if the critical point for the higher temperature exist, it 
is evident that, before this temperature is reached, the prolon- 
gations of the ice-isothermals will cease to reach up to the line 
of no pressure, and the limit to the temperature of hot ice in 
a vacumn is that of the last isothermal which touches the line 
of no pressure. To obtain ice at still higher temperatures, it 
would apparently have to be subjected to great tension. If  
the above calculation for the critical point is at all near the 
truth, then the highest temperature possible for ice in a vacuum 
is something below 14 ° C. 

The view here advocated as to the nature of the melting of 
ice, would show that its fixity is as much a "constant acci- 
den t"  as the fixed boiling-point of water. I f  we have a piece 
of ice at any temperature and allow no water to form on its 
surface, then I see no reason why it should melt if heat be 
supplied to it by conduction from bodies which, when melted, 
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48 On Change of State : Solid-Ziquid. 
it does not wet. 1 think, then~ we ought to expect its tempe- 
rature to rise, as Dr. Carnelley has apparently found to be the 
case. 

Dr. Lodge has pointed out (' Nature,' Jan. 20, 1881) that, 
as far as we know, "there is no definite subliming-polnt for a 
solid, any more than there is a definite evaporating-point for a 
liquid." - Hence, with such a mode of supplying the heat as 
above described, the temperature might perhaps be expected 
to rise to that of the last isothermal which reaches the line of 
no pressure. When it has reached this point the whole will be 
in an unstable state, and we might expect a further supply of 
heat to cause a sudden change into water. If, however~ at 
any poin t in this process of raising the temperature the vapour- 
tension is allowed to rise nearly to its maximum, it will exceed 
that of water~ which has a lower maximum; then a layer of 
water will be formed on the ice, and we shall have melting 
with a tendency of the temperature towards 0 °. 

The Sealing-wax Type of Melting. 
We have seen that there is some reason to suppose that ice 

would pass gradually into water at a sufficiently low tempe- 
rature and with sufficiently high pressure; that is, there 
would be no abrupt, change of volmne at a consfant, tempera- 
ture, and no defimte latent heat. But these are just the cha- 
racteristics of the melting of substances of the sealing-wax 
type ; and I thinl~ it exceedingly probable that we have such 
substances at temperatures below their critical points, or at 
least that they are analogous to water-ice below its critical 
point. If  sealing-wax have a critical point, then if we start 
with some in the solid state at ordinary temperature~ and 
while raising the temperature we increase the pressure so as 
always to keep it solid till above the critical point, if we 
reduce the pressure again to a certain point and at the same 
time a small amount of liquid sealing-wax be introduced~ we 
ought to have a liquefaction of the whole with a finite expan- 
sion of volume; that is to say~ we should have changed the 
ordinary sealing-wax type of melting into the ice-water type. 
It  might, perhaps~ be possible to test the truth of this suppo- 
sition experimentally. 
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