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Abstract— We present our approach for pose verification
with monocular cameras in 3-dimensional space based on the
image-based control paradigm. We describe the extensions
to our previous control system for mobile navigation that
allow us to estimate the complete set of pose parameters in
space. The major contribution of this approach is a sensor-
independent formulation of the image formation that allows
a flexible configuration with a variety of sensor systems
including standard cameras, omnidirectional cameras and
laser systems. Our second contribution is a way to re-
initialize the tracked landmarks during a multi-segment
navigation in applications with significant deviations from the
pre-taught trajectory as it is the case for handheld systems
and flying robots.

The presented system can be used as a guidance system for
visitors. The localization is based on known landmarks that
are in our case natural landmarks in the environment. These
landmarks correspond to the satellites of a GPS system. We
call it V-GPS (vision-based GPS) because of this similarity
in the concept. A camera carried by a person allows to
navigate along pre-specified paths through environments, like
galleries, hospitals, parks, and other public places.

I. MOTIVATION

Localization is an essential task in navigation systems.

It can be subdivided into two categories of the initial

localization and the relative localization. While the former

requires an identification of known reference structures

in the camera image to find the current pose relative

to a known, a-priori map [14], [3], often it is merely

necessary to register correctly the relative position changes

in consecutive image frames.

Since the projection in a monocular camera results in

a loss of one dimension, the estimation of the three-

dimensional parameters in space requires a metric refer-

ence to the surrounding world, a 3D model, that is used to

scale the result of the image processing back to Cartesian

coordinates. Assuming that the projective geometry of the

camera is modeled by perspective projection [12], a point,
cP = (x, y, z)T , whose coordinates are expressed with

respect to the camera coordinate frame c, will project onto

the image plane with coordinates p = (u, ν)T , given by

π(cP ) =

(

u

v

)

=
f

z

(

x

y

)

(1)

Points in the image correspond to an internal model of

the environment that is stored in 3D coordinates mP .

Localization with a monocular camera system is in this

case formulated as estimation of the transformation ma-

trix cxm such that an image point p = (u, ν)T corresponds

to an actual observation in the camera image for any

visible model point mP .

p = π(cxm(mP )) (2)

This method allows an initial localization at any posi-

tion in the world where a sufficient number of points of the

reference model can be matched to the points in the image.

The processing requires a generation and maintenance of

a 3D model of the scene together with a computational

intensive and error-prone correspondence search between

the model points and their projections in the image.

In many cases the initial position of the system is known

or not relevant, since the initial frame may define the

starting position. We propose a navigation system that

operates in the image space of the camera for this domain

of applications. The system maintains the correspondences

between the “model” and the world based on a simple

landmark tracking since both the model and the perception

are defined in the same coordinate frame of the camera

projection p = (u, ν)T .

We propose a navigation system similar to a GPS

system. It is based on a monocular camera that can be

carried by a person or mounted on a flying system. This

system operates on a set of known landmarks in the world,

similar to the satellites of the GPS system, whose positions

are a-priori known or learned in a teaching phase as

described in this paper. The goal is to build a system that

can be used as a 3D guidance system in public places,

where a desired path is presented to the system once

and, afterwards, the system can repeat it indefinitely. Our

method allows navigation in a local area, which is not

necessarily restricted to indoor environments. It helps the

operator to stay close to a pre-specified path.

In contrast to most image-based control systems our

approach needs to cope with significant deviations form

the pre-specified path. The generated signals are supposed

to be used as hints for a human to walk through a

building and they do not control the motion directly. The
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translational and especially orientation errors can become

significantly large. They may exceed the convergence

areas of typical image-based control systems based on

Image Jacobian matrices.

Our system is motivated by the same idea as the system

presented in [13], where a tracking approach for “2.5D

space” was proposed. The system is supposed to com-

pensate the drawbacks of classical position-based visual

servoing. In the approach presented in [13], 8 landmarks

are necessary to estimate the pose of an object in space.

A reduction to 4 points is only possible in case that 4 co-

planar points can be identified. The co-planarity constraint

is a special case that is difficult to enforce in all situations.

Additionally, a robust tracking of 8 landmarks in the image

is contradictory to our goal to build a compact system

running on standard hardware, like for example laptop

PCs.

Our pose estimation is based on a model-based ap-

proach that compares the 3D coordinates of the model with

the current image perception. In [6] a recursive model-

based object pose estimation is presented that is based

on orthographic projection of points onto camera image.

This approach is limited to configurations that can be

projected onto a planar image. In our case, we propose a

pose estimation method allowing robust pose verification

from 3 tracked landmarks that can be placed anywhere on

the sphere encapsulating the sensor (Section II-C). Our

approach operates in image coordinates of the camera

using a novel representation for the 3D model that does

not require any knowledge about the three-dimensional

position in the world.

The paper is structured as follows, in the following

section we present the algorithms used in the teaching

and replay step that are necessary for a correct function

of the system. We describe the way the system processes

the image data in the teaching step to build an internal

representation, a “model”, of the landmark positions that

is later used in the replay step to calculate a relative

pose error for the navigation system. In Section III we

evaluate the accuracy of the system for different landmark

configurations and its convergence speed to reduce an

initial error between the expected and the actual pose. We

conclude with an evaluation of the system performance

and our future plans.

II. APPROACH

We discussed already in [5] the properties of an ideal

generic sensor for navigation purposes. Images from dif-

ferent sensor systems, like conventional perspective cam-

eras, omnidirectional systems and laser range finders can

be transformed into a unified representation of this ideal

sensor that samples the world in spherical coordinates

(Fig. 1).
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Fig. 1. The position of an arbitrary point Pi is represented in the
spherical coordinate system (αi, βi, Di).

The position of an observed point Pi in space can be

described as

P ∗

i (αi, βi, Di) = Di ·







cosβi cosαi

sin βi

cosβi sinαi






(3)

assuming that the camera system is in the center of the

sphere (Fig. 1).

Camera-based implementations of the ideal sensor are

merely capable of measuring the two angles in spherical

coordinates for the landmark observations pi = (αi, βi). It

is not possible to estimate the value for Di directly from

the camera image.

In case that the camera motion is restricted to the

horizontal x-z plane (Fig. 1) we can write the Equation (3)

in a form that is independent of the camera position.

∀βi 6= 0 : Pi(αi, βi) = yi ·







cos αi

tan βi

1
sin αi

tan βi







using Di = yi

sin βi

(4)

The value yi is constant for a static landmark Pi observed

from any point within the x-z plane. The observed land-

mark must not be part of the x-z plane (βi 6= 0). This form

allows to express the 3D position of the tracked landmark

from any position within the x-z plane of operation using

the current observation (αi, βi)
T , if the value yi is known.

As we will show later, the restriction to the motion

in the x-z plane can be generalized to any motion, but

the presented formulation allows a simple and robust

generation of the reference model in the teaching step that

does not require any knowledge of the pose in space.

In [4] we presented a system based on the Image

Jacobian matrix that generates the navigation signals from

the error between the expected and the observed landmark

position for this kind of motion in the x-z plane. The

current approach extends the motion in the replay step to

an arbitrary motion in all 6 dimensions.

A. Sensor Model

As we mentioned already in the previous section our

approach uses the abstraction of an ideal generic sensor
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that can be mapped onto a variety of physical sensor

configurations. In the following subsections we list the

required transformations for the individual sensor types.

1) Standard Perspective Camera: We compute land-

mark observations p∗i by first normalizing for pixel spread

and focal length (that is, converting to a unit focal length

camera with the feature image coordinates (ui, νi)), and

then computing observed angles in the camera image as

αi = arctan ui = arctan
(

xi

zi

)

βi = arctan νi√
1+u2

i

= arctan yi√
x2

i
+z2

i

with ui = xi

zi

∧ νi = yi

zi

(5)

2) Omnidirectional Camera: Our algorithm uses the

angular representation of the imaged points p∗

i . This

representation is not necessarily bound to the planar image

of a conventional camera, but it can be used with any

geometry of the image plane as long as a single viewpoint

F in the projection is ensured. This can be achieved with

a hyperboloid mirror and a standard perspective camera

in an omnidirectional camera system [1].

f

l i g h t  r a y s
F

f

l i g h t  r a y s

Fig. 2. Spherical mirror does not have a single viewpoint.

In [2] a design of a hyperbolic mirror with the shape

y = f(r) =

√

b

1 − b
r2 + b (6)

was suggested to ensure the single viewpoint imaging

property. We calculate the following dependencies be-

tween the angles βi and γi, that represent the angle ob-

served by the perspective camera and the actual elevation

angle, from the shape function (6) of the mirror to be

cos γi = −2
√

b − (1 + b) sinβi

(1 + b) − 2
√

b sin βi

. (7)

The value
√

b is the distance between the image plane and

the tip of the mirror. This equation can easily be solved

for βi resulting in

βi = arcsin
(1 + b) · cos γi − 2

√
b

2
√

b cos γi − (1 + b)
(8)

The angle αi can be estimated for the whole 360◦ field

of view directly from the image to

αi = atan2

(

νi

ui

)

(9)

We use here as well as later in the text the atan2() function

instead of the arctan() function, because it calculates the

angle directly for the 360◦ range of values.

3) Laser Range Finder: A laser range finder is ca-

pable of direct distance measurements to the observed

landmark Di (Fig. 1) in addition to the two angles (αi, βi).
This allows the direct usage of the form presented in

Equation (3). Most laser range finders are capable merely

of a horizontal scan, which does not give any readings

at angles βi 6= 0. A full 3D laser system acquiring

(αi, βi, Di) is necessary for our system or the motion

needs to be restricted to the x-z plane in the replay step

as well.

The direct measurement of Di gives an important

advantage for the replay step described in Section II-C.1.

B. Teaching Step

As mentioned earlier in the text, our system calculates

the pose from the error between an expected position of

a landmark in the image and its actual current image

position. Although the resulting system allows a motion

in all 6 degrees of freedom, it is simpler to build a model

from a movement restricted to an x-z plane with a fixed

value Yp for y-coordinate of this plane that corresponds

to the average height of the user (Fig. 1).

1) Recording of the Landmark Positions: In our current

implementation the system starts with a selection of the

landmarks that are supposed to be used in the further

processing. This selection is done manually by the user,

who selects rectangular regions in the image that define the

landmarks. Once the landmarks are selected, SSD tracking

routines from our image processing library XVision [9] are

used to track their positions in consecutive image frames.

The system waits until it detects an initial motion and

then it starts recording the path. Images It are acquired

from a monocular camera in equidistant time intervals ∆T
and for each frame the position of the trackers in the image

pt
i is estimated. These positions are stored in a matrix Mp,

which is updated with each new frame t ∈ 1, ..., K.

Mp =









p1
1 p2

1 pK
1

p1
2 p2

2 · · · pK
2

. . .
p1

N p2
N · · · pK

N









, pt
i =

(

αi

βi

)

(10)

At the end of the teaching phase, which in our system

is recognized as a stop, the estimation step is performed

to calculate the values yi for all landmarks.
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Fig. 3. Tracking of selected patterns in an example scene.

2) Estimation of the Landmark Height (yi): There are

several options for estimating the height yi of a landmark.

The first one is to choose landmarks in specific height

relative to the sensor height Yp that is constant during

the teaching step. It is useful in situations where an

omnidirectional camera system is used that monitors the

upper hemisphere as a field of view and the landmarks

are markers on the ceiling or when the values yi are

measured and assigned manually by the person generating

the model.

The second alternative allows to estimate the values yi

for each tracked landmark Pi from the information col-

lected during the teaching step of the system, if the

odometry information is available during the generation

of the model. The odometry information gives us an

information about the relative motion T in a path segment,

where a specific point Pi was observed. This relative

motion of the robot is directly related to the pseudo-motion

of the static landmark described by the vector ∆ = −T
that can be observed in the sensor image for each tracked

point (Fig. 4).

D

P 1

P 1 '

x

z

y

y 1

a s

b s

Fig. 4. Relative motion of the robot appears in the image as a motion
of the tracked point P1 along a vector ∆ that is identical for all points.

The vector ∆ in Fig. 4 can be expressed in image

coordinates as follows

∆ = yi ·







cos αe

tan βe

− cos αs

tan βs

0
sin αe

tan βe

− sin αs

tan βs






(11)

The angles (αs, βs) describe the position of the tracked

point at the beginning of the path segment and (αe, βe)
are the observed angles at the end of the path. From

Equation (11) we can directly estimate the value yi using

the odometry information.

Although formulated for a single motion, better results

are obtained by formulating this system for several point

along the path segment and solving a least-squares prob-

lem.

C. Replay Step

A conventional perspective camera with an f=4mm lens

has a horizontal opening angle of approximately 82◦. This

limits the allowed rotations of the camera if the tracked

landmarks need to stay visible all the time. A landmark

can disappear due to several factors. It can disappear,

because it got occluded by the room structure, or because

the cone of the projected space cannot span over the

current set of landmarks any more, or the user may have

turned the camera too far. In any case it is obvious that the

desired field of view for the used camera should be as wide

as possible and omnidirectional cameras are preferred for

this kind of systems.

Independent of the used system, natural occlusions in

the world require a switch between different sets of land-

mark to allow navigation over a long path. We subdivide

the entire replay action into navigation in local segments,

where a specific set of landmarks is visible and a hand-off

action, where new landmarks are selected.

1) Navigation in a Local Segment: In a general case,

the camera can be rotated around the three Euler angles

(ϕx, ϕy, ϕz) defining the rotation matrix R̃ and translated

along the vector ~T from the expected position that defines

the origin of the current calculation. This transformation

defines the matrix cxm from Equation (2) to

cxm =

[

R̃ ~T
0T 1

]

(12)

We use the matrix cxm to describe the point transfor-

mation between the stored point location Pi(αi, βi, yi)
and the observed point P ∗

i . We can write the Cartesian

coordinates for P ∗

i using (3). The Cartesian coordinates

of the new point are known up to a scale λi due to the

camera projection. What we know about each landmark

are the two angles from the current observation (α∗

i , β
∗

i ).
These angles define the point to be along the following

vector

P ∗

i = λi ·







cosβ∗

i cosα∗

i

sin β∗

i

cosβ∗

i sin α∗

i






= λi · ~n∗

i (13)

The vector ~n∗

i in Equation (13) is a unit vector pointing

in the direction of the tracked landmark P ∗

i . Using (12)

and (13) we can write the following equation:

P ∗

i = λi · n∗

i = R̃ · Pi + ~T (14)
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A major problem in Equation (14) is the fact that

the exact solution depends on the knowledge of λi for

a specific landmark that corresponds to the knowledge

of D∗

i (known only in case of a laser range finder) for a

tracked landmark in Fig. 1. As mentioned already before

the system is used to correct the position of a handheld

camera. The major challenge in this case is the strongly

varying orientation angle of the camera, while the camera

may be almost at the correct Cartesian position. Using this

assumption we set λi for a frame t in our system to

λ̂t
i =

{

Di, t = 0 (initial step)
λt−1

i , t > 0
(15)

the distance to the expected landmark position Di from

the reference frame as an initial guess, or to the result

estimated for the previous frame. The closer this esti-

mate λ̂t
i is to the true value λt

i the faster the convergence

of the following algorithm. For λt
i = λ̂t

i we are be able to

calculate the pose directly. Since the following processing

is independent on the history of the previous frame we

will omit the t-index in the following equations.

Computing the absolute orientation is the process of

determining R̃ and ~T from corresponding pairs P ∗

i and

Pi. With three or more non-collinear points, R̃ and ~T can

be obtained as a solution to the following least-squares

problem as described in [8].

min
R̃,~T

n
∑

i=1

‖R̃Pi + ~T −P ∗

i ‖2, subject to RT R = I. (16)

Such a constrained least squares problem [7] can be

solved in closed form using quaternions [11], [15], or

singular value decomposition (SVD) [10], [16], [11], [15].

The SVD solution proceeds as follows. Let Pi and P ∗

i

denote lists of corresponding vectors and define

P̄ =
1

n

n
∑

i=1

Pi, P̄ ∗ =
1

n

n
∑

i=1

P ∗

i , (17)

that is, P̄ and P̄ ∗ are the centroids of {Pi} and {P ∗

i },

respectively. Define

P ′

i = Pi − P̄ , P ′∗

i = P ∗

i − P̄ ∗, (18)

and

M =

n
∑

i=1

P ′∗

i P ′

i
T
. (19)

In other words, 1

n
M is the sample cross-covariance matrix

between {Pi} and {P ∗

i }. It can be shown that, if R̃∗, ~T ∗

minimize (16), then they satisfy

R̃∗ = argmaxR̃tr(R̃T M) (20)

~T ∗ = P̄ ∗ − R∗P̄ . (21)

Let (U, Σ, V ) be a SVD of M, that is U tMV = Σ. Then

the solution to (16) is

R̃∗ = V UT (22)

Note that the optimal translation is entirely determined

by the optimal rotation, and all information for finding

the best rotation is contained in M as defined in (19).

Hence, only the position of the 3D points relative to their

centroids is relevant in the determination of the optimal

rotation matrix.

These two values from (21) and (22) are used to

calculate a new guess for P ∗

i (14).

These new better approximations are used to repeat the

whole calculation. The iteration is terminated once the

change in |∆ ~̂T | < ǫd is smalled than the required

accuracy ǫd.

We assumed the following order of rotations for the

matrix R̃. A point is rotated first around the y-axis (ϕy)
corresponding to an azimuthal rotation followed by a

rotation around the x-axis (ϕx) representing the tilt angle

of the system and a rotation around the optical axis (ϕz).
This results in the structure of the rotation matrix R̃
presented in (23) on the next page.

From (23) we can see that a multiplication with the

following vectors allows an easy recovery of the rotational

angles by back-substitution of vector rotation results, like

shown in for the most important heading angle ϕy . This

angle can be estimated to

ϕy = arctan
R̃31

R̃33

. (24)

2) Landmark Hand-off: We established in Section II-

C.1 that a minimum number of N=3 landmarks is nec-

essary to calculate the pose deviation to the expected

position from where the reference measurement Mp was

acquired (Section II-B.1). This position defines the origin

for the current frame. If the system is able to track the

minimum required number of landmarks then we can

calculate the position error ∆wt using Equations (21)

and (24). This position error is identical for all tracked

landmarks, because it represents the error in the robot

position. Therefore, we can use (14) to calculate the

correction values P ∗

i for an expected new landmark Pi.

An example for a correct prediction of the tracker

position is shown in Fig. 5 for a position error of

∆wt = (−1.3, 0,−1.3, π
10

)T . We used the position the

valid landmarks to estimate the position error ∆wt to

the expected position. The estimated value was used to

correct the saved position of the new landmarks shown

as a horizontal cross from their actual position shown

as a diagonal cross. In this example a simulation was

used to remove any detection and tracking errors. The

small deviation is due to the approximation used in our
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R̃ =









cosϕz cosϕy + sin ϕz sin ϕx sin ϕy sin ϕz cosϕx − cosϕz sinϕy + sin ϕz sin ϕx cosϕy

− sinϕz cosϕy + cosϕz sin ϕx sin ϕy cosϕz cosϕx sin ϕz sin ϕy + cosϕz sin ϕx cosϕy

cosϕx sin ϕy − sinϕx cosϕx cosϕy









(23)

approach. This correction allows a successful re-start of a

tracker at a new expected location to continue tracking.

−200 −100 0 100 200 300 400 500 600 700
−150

−100

−50

0

50

100

150

200

Fig. 5. Prediction of the actual feature position (diagonal cross) from
a saved expectation (horizontal cross) under consideration of a pose

error ∆wt = (−1.3,−1.3,
pi

10
)T that is estimated from the error in

the position of the remaining features during the segment switch.

III. RESULTS

The algorithm has been implemented on a laptop com-

puter with a Pentium-III 700MHz processor under Linux

OS. The system uses an IEEE1394 video camera for real-

time image acquisition. Both omnidirectional vision using

catadioptric systems and standard cameras are supported.

A. Restrictions on Camera Motion

In case of a configuration with a standard camera, the

frame rate of the camera together with a maximal allowed

shift of the tracked landmark between two camera frames

set a limit on the maximal rotation speed ϕ̇p∈x,y,z of the

camera system. An analog NTSC camera allows frame

rates up to 60 Hz allowing faster rotations of the camera,

but since the current system uses a notebook with an

IEEE1394 camera the frame rate is limited to 30 Hz.

The tracking is using an SSD-(sum of square

differences)-tracker from the XVision library. This tracker

type allows in our configuration a maximal landmark

displacement between two images of dt = 3 pixels. The

camera has a resolution of 640x480 pixels is equipped

with an f=4mm lens to allow a wide field of view. The

pixel-size of the camera chip is psx = 0.011mm.

The largest changes in the image are caused by the

rotation of the camera. The maximal shift of the landmarks

between frames results in following angular rotations for

a pixel around the center of the camera image.

∆ϕ = arctan
dt · psx

f
= 0.47◦ (25)

The maximal rotational velocity ωcam of the camera

depends on the frame rate rcam and is limited in our case

to

ωcam = ∆ϕ·rcam = arctan
dt · psx

f
·rcam = 14degrees/s

(26)

This values scales linear with the frame rate of the

sensor.

B. Error in the Pose Estimation

The following tests show the convergence of the pro-

posed vision-based pose estimation algorithm. In all tests a

set of 4 landmarks at the positions (0,1,3), (2,2,4), (2,-1,2)

and (1,2,3). The system was tested with an angular error

of ϕx = −20◦, ϕy = 50◦, ϕz = 10◦. The position was

varied at ±1m in x and z-direction around the pre-taught

position.

The Fig. 6 shows the remaining position error in the

transformation matrix in dependence on the deviation from

the expected position.

Fig. 6. Remaining position errors for a set of four landmarks at the
positions (0,1,3),(2,2,4),(2,-1,2),(1,2,3): (left) after 2 iterations in the
replay step; (right) after 20 iterations in the replay step.

The system has a wide convergence radius tested up

to several meters deviation and as shown in Fig. 7 the

accuracy deterioration can be compensated by additional

iterations through the algorithm described in Section II-C.

As already expected in Section II-C the system has a

very good convergence of the angular error. The increase

of the error in one of the corner is due to ill conditioned

configuration of landmarks for this specific pose.

The position errors on a real camera system are usually

an order of a magnitude smaller than the errors plotted in

the figures above. A real camera system was able to guide

robustly through our lab environment. The increasing posi-

tion errors in larger distances from the expected positions

can be neglected, because the system creates in all cases a

vector in the correct direction and just with slightly wrong
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Fig. 7. Number of iterations for the same set of landmarks as in Fig. 6
to keep the position accuracy ∆T < 0.1m.
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Fig. 8. Angular error for the landmark confi guration from Fig. 6 after:
(left) 2 iterations; (right) 20 iterations.

magnitude that improves with the decreasing distance to

the desired position. That means that once the system

comes closer to the reference point the error decreases.

IV. CONCLUSIONS AND FUTURE WORK

We have presented a navigation system capable of op-

eration under significant pose errors between the expected

and the actual position. Especially, its capability to operate

robustly under large rotational errors distinguish it from

pure Image Jacobian approaches. Due to the linearizations

in the Jacobian matrix the area of convergence is limited.

Storing the representation of the world as a combination

of invariant parameters for the teaching step together with

image parameters of the actual observations make this

approach very simple to implement and it does not require

any odometry information at all for model generation in

case the values Yp for the heights of the landmarks are

known.

The correspondence problem between the saved ref-

erences representing the desired path and the current

image is solved by tracking the landmarks in consecutive

images.
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