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1. Introduction 

Using the terminology in 2 (where the expression m-type is also explained) 
we will prove the following theorems: 

THEOREM 1. If there exist 

(i) a skew-Hadamard matrix H = U + I of order h, 

(ii) m-type matrices M = W + I and N = NT of order m, and 

(iii) three matrices X, Y, Z of order x == 3 (mod 4) satisfying 

(a) XyT, YZT and ZXT all symmetric, and 

(b) XXT = aIx+bJx 

yyT = {m+mx-mh-a} Ix+ {mh-m-b} Jx 
m-l m-l 

ZZT = (x+l)Ix- Jx 
then 

H = UxNxZ+I"xWxY+I"xImxX 

is an Hadamard matrix of order mxh. 

THEOREM 2. If all the conditions of theorem 1 are satisfied and in addition X 
is skew-type and Y and Z are symmetric then H is skew-Hadamard. 

We will show theorem 2 demonstrates the existence of previously unknown 
skew-Hadamard matrices of orders 552 and 3304. 

THEOREM 3. If h is the order of any skew-Hadamard matrix and pr (prime 
power) == 3 (mod 4) then there is a skew-Hadamard matrix of order h(pr + 1). 

Theorem 3 is due to Williamson [8; p. 67] we include a proof because we 
use the matrices of the proof elsewhere. 

THEOREM 4. If there exist 

(i) a skew-Hadamard matrix of order h, 
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(ii) four matrices X, y, z, W of order p == 1 (mod 4) satisfying 

(a) XyT, XZ T, XWT, YZT, YWT, ZWT all symmetric, and 

(b) XXT +yyT = 2(p+l)Ip-2Jp 

WWT = aIp+bJp 

ZZT = {m(p+ I-h-a)+a}Ip+{m(h-l-b)+b}Jp 

where m = 2 or 4, then there is an Hadamard matrix of order mph. 

[2] 

THEOREM 5. If h == 0 (mod 4) is the order of a skew-Hadamard matrix and 
2h + 3 is a prime then there is an Hadamard matrix of order 2h(h + 1). 

2. Preliminaries 

An Hadamard matrix H is a matrix of order n, all of whose elements are + 1 
and -1 and which satisfies HHT = nIno It is conjectured that an Hadamard 
matrix exists for n = 2 and for n = 4t, where t is any positive integer. Many 
classes of Hadamard matrices are known; most of these can be found by reference 
to [3], [6] and [7]. Hadamard matrices are known for all orders less than 188. 

An Hadamard matrix H = U + I is called a skew-Hadamard if UT = - U. It is 
conjectured that whenever there exists an Hadamard matrix of order n there exists 
a skew-Hadamard matrix of the same order. As the existence of certain skew
Hadamard matrices is essential for my results I list the order for which skew
Hadamard matrices are known to exist. 

I 2tIIki t, ri all positive integers, k i = p~i + 1 == 0 (mod 4), 
Pi a prime; from [9], 

II (p-l?+1 p the order of a skew-Hadamard matrix; from [2], 

m 2t(q+ 1) t ~ 1 an integer, q (prime power) == 5 (mod 8); from [5], 

IV 52 from [1], 

V 36 unpublished result of J. M. Goethals 

VI prep' + 1)(m-l) m of type I, p'(prime power) == 3 (mod 4), and 
(m-l )(p' + 1 )/m the order of a skew-Hadamard matrix; 
proved in corollary 9, 

VII prep' -3)(m-l) m of type I, p' (prime power) == 3 (mod 4) and 
(m-l)(p' -3)/m the order of a skew-Hadamard matrix; 
proved in corollary 9, 

VIII h(p' + 1) h the order of a skew-Hadamard matrix, 
p' (prime power) == 3 (mod 4), from [8], 

IX 2h h the order of a skew-Hadamard matrix. 
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The orders less than 1004 for which skew-Hadamard matrices are not yet 
known are: 

92, 100, 116,148,156, 172, 184, 188, 196,232,236,260,268,276,292,296,324, 
340, 356, 372, 376, 388, 392, 404, 412, 428, 436, 452, 472, 476, 484, 508, 516, 
520, 532, 536, 580, 584, 592, 596, 604, 612, 628, 652, 668, 676, 680, 708, 712, 716, 
724, 732, 756, 764, 772, 776, 784, 804, 808, 820, 836, 852, 856, 868, 872, 876, 892, 
900,904,908,916,932,940,944,952,956,964,980,988, and 996. 

We study skew-Hadamard matrices because the construction of [2], [4], [6], 
[7], [9] and this paper depend heavily on the existence of these special matrices. 
Also theorem 14.1.3 of [3], quite powerful theorem depends on skew-Hadamard 
matrices. 

A skew-type matrix A = U + I has U T = - U. 
A (v, k, A)-configuration is an arrangement of v elements Xl' X2 ,'" Xv into 

v sets Sl, S2, "', Sv such that every set contains exactly), elements in common. 
A (v, k, ),)-configuration can be characterized by its incidence matrix A = (aiJ 
defined by aij = 1 if Xj E Si and aij = -1 if Xj ¢= Si' This matrix A, of order v, 
consists entirely of l's and -1 's, and it can be seen that A satisfies the incidence 
equation. 

AAT = 4(k-),)I+(v-4(k-A))J 

where I is the identity matrix of order v and J is the matrix of order v with every 
element + 1. 

A set of elements D = {Xl' X2 ,"', x k } will be said to generate a circulant 

(1, -1) matrix A = (aiJ if aij = a1 • j - i+ 1 = 1 when j -1 + 1 ED (all numbers 
modulo v) and - 1 otherwise. A back-circulant matrix A = (a iJ of order v has 
ali = a1+j ,i-j where 1 +j and i-j are reduced to modulo v. 

LEMMA 6. (i) If there exists a circulant A of order v then there also exists a back 
circulant B of the same order. (ii) If A is circulant B back circulant, both of order v, 
then ABT is symmetric. 

PROOF. (i) trivial, (ii) this is Theorem 1 of [6] restated. 
Table 1 gives those known (v, k, A) configurations, together with their 

incidence equations, which have a circulant, (hence back circulant) incidence 
matrix. All are derived from difference sets, and we use the notation of Marshall 
Hall [3; p. 141 - 2] to indicate the type of the difference set. 

In the table p is a prime and p" a prime power. 
Table 2 gives those configurations from Marshall Hall [3; 291- 8] which 

are not already covered by Table 1 and in which v is an odd prime power. Each 
entry in Table 2 satisfies the conditions for (v, k, A) configurations, namely that 

A(v-l) = k(k-l) 
and that 



TABLE 1 

Type of 
(v, k, A)-configuration 

Difference generating A Incidence Equation AAT Comment 
Set 

(v, v, v) = J vJ 
-~ .. --------------

(v, v-I, v-2) = J-2/ 4/+ (v-4)J 
------ - -----------------------~--... 

S type 
(qr.+l_ 1 qn_1 qn-1_ I) 

q-I-' q~l-' q~T 
4q"-'/+ ~~ _4qn-l J ( n+ 1 1 ) 

q-I 
q =p' 

-- --.. - ---- -.- ----- ------- ---------------- --" _.- --------_. --------- ". 

Q type (4(-1,21-I,t-1) 4tI-J 4t =p+1 
------- ----- ------ ------- -- --- ---------- ---------- ."-

Ttype ( pq-I pq-3) 
pq, -2-'-4 (pq+l)!-J P = q+2, p, q prime 

- ------ ---------- -- ---------_.- -----------_ .. -------- - - ._------ -------

Btype 4x 2 -1-! x 2 
--( x

2 I) , , 4 (3x 2 + 1)1+ x 2 J P = 4x2 + 1 ; x odd 

----._------

Eo type 4x2 +9 x 2 +3 ---( X
2

+3) , , 4 (3x 2 -t-9)/-I-x2 J p = 4X2+9; x odd 

- --."--------- - ----------------- ----- -----_.- --------- --- .-------_ .. -

o type (64b 2 -1-9, 8b2 -I-I, b2) 4(7b2 -I- 1)/+(36b2 +5) p = 8a2+1 = 64b2 +9; a, b odd 
--------- .----------- -------"' --------- ----------

0
0 

type (64b 2 -1441, 8b 2 +56, b2 -1-7) 4(7b 2 +49)/+ (36b 2 +245)J p = 8a2 -1-49 = 64b 2 +441; a odd, b even 

w 
o o 

...... 
(1) 

'" '" ~ ... 
::E 
~ 
'" 

~ 
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should have a solution in the integers for x, y, z not all zero. 
No case has yet been found where these two conditions are both satisfied 

and the corresponding configuration has not been found by a systematic search. 

TABLE 2 

(u, k, },)-configuration Incidence equation Comment 

(31, 10,3) 281+3J Exists: but no circulant 
design exists 

(71, 15,3) 481+23J Solution Unknown 

(79, 13, 2) 441+35J Exists: but no circulant 
design exists 

(111,11, I) 401+71J Solution Unknown 

(25,9, 3) 241 +J Exists: but no circulant 
design exists 

(157, 13, 1) 481+109J Solution Unknown 

We now define the matrices needed to prove theorem 3. With q = p' (prime 
power) == 3 (mod 4), let ao = 0, a1 , •• " aq- 1 be the elements of GF(q) numbered 

so that ao = ° and aq - i = -ai' i = 1,"', q-l. Now put 

where X(x) is the character defined on GF(q) by X(o) = 0, X(x) = + 1 if x is a 
square and X(x) = -1 if x is not a square. 

Here 

Sji = x(aj-aJ = x(ai-aJ, 

and since -1 is a non-square if q == 3 (mod 4), ST = - S. By the properties of 
X it may be shown SST = qlq-Jq. 

Let R = (rij) i,j = 0," " q-I be the matrix of order q = p' defined by 

roo = 1 

ri,q-i = 1 

rij = ° 
i = 1, .. " q-I, 

otherwise. 

Then RT = R, and if we write RS = (ciJ, then COj = x(O-aJ and 

i = 1, .. " q-1, 

whence in all cases cij = X( - ai - a J and so RS is symmetric. 
Using ST = -S, SST = qI-J, RJ = J, and (RS)T = RS we have 

S(R+RSr = (R+RS)ST. 
Choose 

p = S + I and D = R + RS 
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then PDT = DPT. Then if 

(1) 
= r-~ 1 ... 11 

M : P 

-1 

and 
= r~ 1 ... 11 

N : D 

1 

MNT = NMT. M and N are of order pr + 1 and MMT = NNT = (pr + 1 )Ipr+ 1. 

Now if H = 1+ U is a skew-Hadamard matrix of order h then HHT = hIh = 
Ih + UU T

• Write M = 1+ V where V T = - V and consider 

K = I x M + U x N = Ih X Ih + Ih X V + U x N. 

It can be shown that K is a skew-Hadamard matrix of order h(pr + 1). 

DEFINITION. M and N will be called m-type matrices if M is a skew-Hadamard 
matrix, N is a symmetric Hadamard matrix and 

LEMMA 7. If M = W+I and N are m-type matrices then WNT = NWT. 

PROOF. Since MNT = NM T, we have 

MNT = (W +1)NT = WNT+ NT = WNT +N = NMT = N(WT +1) = NWT +N 

and so 

LEMMA 8. If m = 2t 11 (p? + 1) where t is a non-negative integer and p~i (prime 

power) == 3 (mod 4) then there are m-type matrices of order m. 

PROOF. (i) 

are two suitable matrices of order 2. 
(ii) M and N as defined in (l) are two suitable matrices of order 

pr + 1 == 0 (mod 4), pr a prime power. 
(iii) Let Mm = Wm + 1m and Nm be m-type matrices of order m and 

Mn = Wn + In and Nn be m-type matrices of order 11. 

Then 

is a skew-Hadamard matrix of order mn and 

is a symmetric Hadamard matrix of order mn. Now 
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Mmn N!n = (Im X Mn+ Wm X Nn)(N! X N~) 

= N!xMnN~ + WmN!x NnN~ 

= NmxNnM~+NmW;:xNnN~ 

= (Nm X Nn)(Im X M~ + W,;; X N~) 

303 

using lemma 7 

So Mmn and N mn are m-type matrices of order mn. 
(iv) Combining the results of (i), (ii) and (iii) we have the lemma for m > 1. 

But the case m = I is trivial. 

3. A construction with v == 3 (mod 4) 

PROOF OF THEOREM 1. Since H is skew-Hadamard U T = - U and UUT = 

(h-I)Ih.M= W+IandNbeingm-typemeans WT= -W, WWT = (m-I)Im' 
MNT = NMT, MMT = NN T = mIm and NT = N and lemma 7 shows 
WNT = NWT. 

HHT = (Ux NxZ+hx Wx y+Ihxlmx X) 

. (UT X NT X ZT + 1 h X WT X yT + 1 h X 1m X XT) 

= UUT X NNTx ZZT+lhx WWT X yyT +IhxImx XXT + UT X WNT X YZT 

+ U X NWT X ZyT + UT X NT X XZT + U x N X ZXT 

+Ih x WT x XyT +Ihx Wx YXT 

UUT X NNT XZZT +hX WWT x yyT +lhxImx XXT 

+(U + UT) X WNTx YZT +(UT + U) X Nx ZXT +lhx(W + WT) X XyT 

= (h-1)lh x mlm X {(X+ 1)lx-Jx} +lh X 1m X {(m+ mx- mh-a)lx 

+(mh - m- b)Jx} +lh X 1m X {alx+ bJx} 

= Imh X {[m(h-1)(x+ 1)+ m +mx- mhJlx- [m(h-l)- mh+ mJJx} 

= mxhlmxh 

which completes the proof. 

PROOF OF THEOREM 2. The Hadamard property has been proved above. To 
prove skew-type property let X = R + I where RT = - R then 

and 
H = UxNxZ+Ihx Wx y+IhxImxR+IhxImxIx = Q+I 

HT = UTx NTxZT +lhx WTx yT +lhxlm xRT +lhxlmxlx 

= - U X N x Z + Ih X - W x Y + Ih X 1m X - R + Ih X 1m X Ix 

= -Q+I. 
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Which completes the proof. 
We now investigate when the conditions of theorem 2 are satisfied. 

COROLLARY 9. Let p' and q~i be prime powers =: 3 (mod 4), t be positive integer 
and m = 2t II(q~i + I) then if there is a skew-Hadamard matrix of order 

(i) (m_I)(pr+l) (ii) (m-I)(pr-3) 

m m 

then there is a skew-Hadamard matrix of order 

(i) pr(pr+I)(m_I), (ii) pr(pr -3)(m-l) 

respectively. 

PROOF. m as given is, from lemma 8, the order of m-type matrices. Then if 
P and D are as defined in (1), the proof follows with 

(i) X = P, Y = J and Z = D, (ii) X = P, Y = K and Z = D, 

in theorem 2. 
With m = 2, pr = 23 and (i) of corollary 9 we find a skew-Hadamard matrix 

of order 552, and with m = 2, pr = 59 and (ii) of corollary 9 we obtain a skew
Hadamard matrix of order 3304; neither of these two matrices were previously 
known. 

Let H of order x + I be any Hadamard matrix written in the form 

(2) 

Then ppT = (x+ I)! -J and if 

(3) 

= l~ 1··· IJ H : p 

1 

E= FG 

where G is the back diagonal matrix, then FET = FGT FT = FGFT = EFT. 
Then using theorem I we have 

COROLLARY 10. If x+ I is the order of any Hadamard matrix and m is the 
order of m-type matrices then if there is a skew-Hadamard matrix of order. 

(i) (x+l)(m-l), 
( 
.. ) (x-3)(m-l) 
11 , (iii) x+l, (iv) x-3, 

m m 

then there is an Hadamard matrix of order 

(i) x(x+I)(m-I), (ii) x(x-3)(m-l), (iii) x(x+I), (iv) x(x-3). 

PROOF. The proof follows from theorem 1 with F and E as in (2) and (3) 
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and (i) X = F Y = J Z = E- (ii) X = F Y = K Z = E- (iii) X = J Y = F , , , , " " 
Z = E and m = 1; (iv) X = K, Y = F, Z = E and m = 1. 

(iii) and (iv) were given in [6]. 

COROLLARY 11. If there is a skew-Hadamard matrix of order 

(i) m(x-3)-4(qn-l_1) 
(ii) 

m(x+ 1_4qn-l) +4(qn-l -1) 

m m 

where m is the order of m-type matrices, q, y and y + 2 are odd primes, 
x = qn+qn-l + ... +q+ 1 == 3 (mod 4), and x = y(y+2) then there is an Hada

mard matrix of order 

(i) [m(x-3)-4(qn-l_l)]x (ii) [m(x+1-4qn-l)+4(qn-l_I)]x 

respectively. 

PROOF. If P is the circulant matrix generated by an (x, !(x+ 1), i(x+ 1)) 
configuration and Q is back circulant (from table 1) then the proof follows with 
(i) X = Q, Y = K, Z = P, (ii) X = K, Y = Q, Z = P in theorem 1. 

With m = 1 and n = 2 we obtain corollary 5 of [6] from (ii). 
The existence of a circulant incidence matrix for any of the entries with 

v == 3 (mod 4) in Table 2 will give Hadamard matrices. If a circulant (71, 15,3) 
configuration exists then there is an Hadamard matrix of order 1704. This would 
be a new order. 

4. A construction with v == 1 (mod 4) 

In this section q = pr (prime power) == 1 (mod 4). Let ao = 0, a1 , •• " aq - 1 be 
the elements of GF(q) numbered so that ao = ° and aq-i = ai' i = 1, .. " q-l. 
Now define F = (lij) by 

(4) 

Then by the properties of X and GF(q), F is a symmetric matrix satisfying 

FFT = prI -J. 

Write p for pr and define X and Y by 

(5) 
X = F+Ip 

Y = F-Ip. 

Then XyT = (F+Ip)(FT -Ip) = FFT -Ip = (F-Ip)(FT +Ip) = YX T and 

XXT = yyT = (FFT +2F+Ip)+(FFT -2F+lp) = 2(p+l)Ip-2Jp. 
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PROOF OF THEOREM 4. If m = 2 use 

M = [ Z W] 
-WZ 

and N = [X Y] 
Y -X 

for m = 4 use 

w 

l 

z 
-w Z 

M= -w W 

w 
-w 

z 
w 

wl w 
-w 

z 
and 

-w -w 

Then since ZWT and XyT are symmetric 

and 
MMT = {m(p+l-h)Ip+m(h-l)Jp}xlm 

NNT = {m(p+l)Ip-mJp}x1m. 

Now H is Hadamard so HHT = hIh = UUT +Ih and 

is the required Hadamard matrix of order mph since 

RRT = (U x N +Ih x M)(UT x NT +Ih X MT) 

= UUTx NNT + UTxMNT + Ux NMT +InxMMT 

= (h-1 )Ih x {m(p+ l)Ip- mJp} x 1m 

+Ih X {m(p+ 1-h)Ip+m(h-1)Jp} x 1m 

= mphImph 

Which completes the proof. 

[10] 

PROOF OF THEOREM 5. Szekeres' construction for primes == 3 (mod 4), see 
[5], gives two complementary difference sets of order h+ 1. Use one of these two 
sets to generate a circulant matrix, X, and the other to generate a back-circulant 
matrix, Y. Then with Z = J, W = J - 21, p = h + 1 and m = 2, theorem 4 gives 
the result. 

We now investigate when the conditions of theorem 4 are satisfied. We note 
that for p prime X and Y defined by (5) are circulant symmetric matrices. 

COROLLARY 12. Let pr be a prime power == 1 (mod 4), q be a prime power (may 
be a power of 2), x and a odd, and m = 2 or 4, then if there is a skew-Hadamard 

matrix of order 
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(i) pr_I; 

(1"1") 1 4qn-1 h n n-1 1 """ p+ - --; were p = q +q +" .. +q+ , n a posltzve lI1teger; 
m 

4 n-1 
(iii) p+ I-4q,,-1 + "-q-, with p as in (ii); 

m 

4( n-l_I) 
(iv) p+I_4qn-1+ q ,withp as in (ii); 

m 

(v) 3 4(qn-1_1) "h " ("") 
p - - , Wit P as 1I1 11 ; 

m 

5x2 +3 
(vi) --, wherep = 4x2 +1; 

2 

13x2 
- 5 

(vii) , where p = 4x2 + 1; 
4 

7x2 + 1 2 (viii) --, where p = 4x + 1; 
4 

5x2 + 11 
(ix) , where p = 4X2+9; 

2 

(x) 2(25b2 +3), where p = 8a2 +1 = 64b 2 +9, b odd; 

(xi) 2(25b2 +I73), where p = 8a2 +49 = 64b 2 +441, b even; 

(xii) 57b2 +390, where p and b are as in (x); 

(xiii) 43b2 +294, where p and b are as in (x); 

then there is an Hadamard matrix of order 

(i) 2pr(pr -1); 

(ii) [m(p+ 1)_4qn-1]p; 

(iii) [m(p + 1_4q,,-I) + 4q~-1 ]p; 

(iv) [m(p + 1_4qn-1 )+4(qn-1 -1 )]p; 

(v) [m(p-3)_4(qn-1_1)]p; 

(vi) (5x 2 + 3)(4x2 + 1); 

(vii) (13x 2 -5)(4x2 + 1); 

(viii) (7 x 2 + 1 )( 4x2 + 1 ); 

(ix) (5x 2 +11)(4x2+9); 

(x) 4(25b 2 + 3)(64b2 + 9); 

(xi) 4(25b2 + 172)(64b2 +441); 

307 
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(xii) 4(57b2 + 390)(64b2 +441); 

(xiii) 4(43b2 +294)(64b2 +441); 

respectively. 

Jennifer Wallis [12] 

PROOF. We use the notation of Table 1, and each matrix for Z and W if it is 
not J or J - 21 is back circulant. In cases (ii), (iii), (iv) and (v) m is not evaluated 
as q may be a power of 2. The corollary follows with the following substitutions 
in theorem 4: 

(i) m = 2, Z = J-21, W= J; 

(ii) Z = S, W= J; 

(iii) Z = J, W= S; 

(iv) Z = J-21, W= S; 

(v) Z = S, W = J-21; 

(vi) m = 2, Z= B, W=J; 

(vii) m = 4, Z= B, W = J-21; 

(viii) m = 4, Z = J-21, W=B; 

(ix) m = 2, Z = Bo, W= J; 

(x) m = 2, Z = 0, W= J-21; 

(xi) m = 2, Z = 00, W= J; 

(xii) m = 4, Z = 00, W = J-21; 

(xiii) m = 4, Z = J-21, W= 00' 

The result in (i) comes from [7]. 
Although the entries in table 2 give Hadamard matrices they do not yield 

any new orders. 
This corollary gives no new orders less than 4000 but it appears highly likely 

that higher order matrices may be obtained. 

Note added in proof (January 31st, 1970): We wish to thank R. Turyn and 
L. D. Baumert for pointing out some errors in the original forms of Tables 1 
and 2. 
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