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Abstract

In this paper we present V-measure, an ex-
ternal entropy-based cluster evaluation met-
ric. V-measure provides an elegant solu-
tion to many problems that affect previously
defined cluster evaluation measures includ-
ing 1) dependence on clustering algorithm
or data set, 2) accurate evaluation and com-
bination of two aspects of good clustering -
homogeneity and completeness, and 3) sym-
metry in the measurement of these for easy
interpretation. We draw comparisons be-
tween V-measure and a number of popular
cluster evaluation measures, as well as em-
pirically showing that V-measure satisfies a
number of desirable properties of clustering
solutions based on a simulated clustering re-
sults. We present the use of V-measure to
evaluate two example clustering tasks: doc-
ument clustering and pitch accent type clus-
tering.

I ntroduction

class should be elements of the same cluster. We be-
lieve that any externilmetric for evaluating a clus-
tering solution should determine to what degree both
of these criteria are satisfied.

The criteria of homogenity and completeness are
roughly in opposition; increasing the homogeneity
of a clustering solution often results in a decrease of
completeness. Consider, wo degenerate clustering
solutions. One, assigning every datapoint into a sin-
gle cluster guarantees perfect completeness — all of
the data points that are members of the same class
are trivially elements of the same cluster. However,
this cluster is as far from homogeneous as possible
— the maximum diversity of classes are represented
in this single cluster. Two, assigning each data point
to a distinct cluster guarantees perfect homogeneity
— each cluster trivially only contains members of a
single class. However, by virtue of each cluster con-
taining only a single member of a class the clustering
solution is as far from complete as possible.

In this paper, we present a new external clus-
ter evaluation metric, V-measure. V-measure is an
entropy-based metric which explicitly measures how
successfully the criteria of homogeneity and com-

Clustering techniques are particularly appealing fdpléteness have been satisfied. V-measure is com-
many natural language processing tasks.

However, evaluating the “goodness” of a cluster

puted as the harmonic mean of distinct homogeneity
and completeness scores. This is identical to the way

ing solution is a critical and difficult empirical prob- Precision and recall are commonly combined into F-
lem (?) and often lacks rigor?).

There are two criteria of a successful clusterin
solution. First, the homogeneity criteria: each clus:

measure®) for evaluation of information retrieval
esults. Just as F-measure scores can be weighted

%o favor the contributions of precision or recall, V-

ter should contain only data points that are membef@&asure can be weighted to favor the contributions

of a single class. Second, the completeness criteria’ 15y, ioysly

if the class labels of the datapoints are not

all of the data points that are members of a giveknowna prori, these criteria cannot be applied



of homogeneity and completeness. dent on the size of the dataset. Therefore, instead
In Section 2 we present the calculation of V-of taking the raw conditional entropy, we normalize
measure. We discuss some popular external clustéis value by the maximum reduction in entropy the
evaluation metrics and draw comparisons betweetustering information could provide, specifically,
these and V-measure in Section 3. We present soni&C, K'). Technically, this is a weak upper bound,
empirical desirable properties and describe the déf(C|K) < H(C) < H(C, K), however, normal-
gree to which are satisfied by V-measure and othézation by H(C') yields a measure that behaves in
measures in sectio??. In Section 5 we will show unintuitive, and undesirable ways.
two examples of the application of V-measure on Note thatH (C|K) is maximal when the cluster-
two clustering tasks: document clustering, and pitchng provided no new information — the class dis-

accent clustering. tribution within each cluster is even, and 0, when
each cluster contains only members of a single
2 Calculating V-Measure class, a perfectly homogenous clustering. In the

_ _ degenerate case whefé(C, K) = 0 we defined
In order to use an external clustering metric, clasgoth homogeneity and completeness to be 1. For
labels for each data point, or a reference partitiog perfectly homogenous solution the normalization
must be known a priori. The clustering task is to asyy (| k') /H(C, K) equals 0. Thus, to adhere to the

sign these data points to any number of clusters sug@vention of 1 being ‘good’ and 0 ‘bad’, we define
that each cluster contains all and only those dajgymogeneity as:

points that are members of the same class. Given

the ground truth class labels, it is trivial to determine

if this perfect clustering has been achieved. How- 1 if H(C,K) =0
ever, evaluating how far from perfect an incorrect = { 1— g Eglg else (1)
clustering solution is a more difficult task. We pro- ’

pose to measure this distance from perfection as thgere

weighted harmonic mean of two measures, evalu-

taing the degree to which the homogeneity and com- K| |C] A, A,
pleteness criteria described in Section 1 have been H(C|K) = - ZZ Wclog ﬁ
satisfied. k=1 c=1 D et Ack
For the purposes of the following discussion, as- K4, A,
sumeN data points, a set of classes, = {c¢;|i = H(C K) = —ZZ ]\Cf log ]\(}
1,...,n} and a set of clusterdy = {k;|1,...,m}. k=1c=1
Let A be the contingency table produced by the clus-
tering algorithm, such that = q;; such thata;; is Completeness:
the number of data points that are members of class Completeness is calculated symmetrically to ho-
¢; and elements of clustér;. mogeneity. In order to satisfy the completeness cri-
Homogeneity: teria, a clustering must assigil of those datapoints

In order to satisfy the homaogeneity criteria, a clusthat are members of a single class to a single clus-
tering must assigronly those datapoints that areter. To evaluate this we examine the distribution
members of a single class to a single cluster. Thaff cluster assignments within each class. In a per-
is the class distribution within each cluster shouldectly complete clustering, each of these distribu-
be totally skewed to a single class, that is, zero erions will be completely skewed to a single clus-
tropy. We determine how close a given clusterindger. Similar to the above, we can evaluate this by
is to this ideal by examining the conditional en-calculating the conditional entropy of the proposed
tropy of the class distribution given the proposedluster distribution given the class of the component
clustering. In the perfectly homogeneous case, thigatapoint,H (K|C). In the perfectly complete case,
value, H(C|K) = 0. However, in an imperfect H(K|C) = 0. However, in the worst case scenario,
situation the size of this value, in bits, is depeneach class is equally represented by every cluster



where H(K|C) is maximal. Therefore, symmetri- whereq is the number of classes, the number
cally to the calculation above, we define completeef clusters,n,. is the size of cluster, andni is the

ness as: number of data points in clagclustered in cluster
T.
1 if H(K,C)=0 Both Purity and Entropy plausable ways to eval-
c= { | _ HEIO)  glse (2)  uate the homogeneity of a clustering solution, how-
H(x.C) ever the completeness criterion is not measured at all
where by these metrics. Therefore the Purity and Entropy
ICl K] A A are likely to improve (increased Purity, decreased
H(K|C) = — Z Z ]\ka log % Entropy) monotonically with the number of clusters
e=1 k=1 D Ack used, up to a degenerate maximum where there are
H(K,C) = H(C,K) as many clusters as data points. This is certainly not

an ideal clustering, depite yielding high Purity and
low Entropy scores.

Finally, we calculate V-measure by by comput- . .
Another common external clustering evaluation

ing the weighted harmonic mean of homogeneit¥n ric | I tered t «clusteri
and completeness. Similarly with F-measuref if etric 1S generally retered 1o as “clustering accu-

is greater than 1 completeness is weighted mor: cy_.fThe (;_alcula;ugn Olf actc_urainlls\Alnsplreéd by
strongly in the calculation, if5 is less than 1, ho- & information retrieval metric of F-Measure)(

o . The formula for this clustering F-measure as de-
mogeneity is weighted more strongly. scribed in @) can be found in Fi%ure 3

(1+8)*hx*c

Vs = Let N be the number of data point§; the set of
classesK the set of clusters ang;; be the number
_ of members of class; € C that are elements of

of clusterk; € K.
"9

(Bxh)+c ®)
Notice that the computations of homogeneity
completeness and V-measure are completely ind
pendent of the number of classes, the number
clusters, the size of the data set and the clusterir
algorithm used. This allows these metrics to b
applied to and compared across any clustering s

D

e
0-

lution, regardless of the number of data points (n
invariance), the number of classes or the number
clusters. Moreover, by calculating homogeneity an
completeness separately, a more precise evaluati
of the performance of the clustering is offered.

F(C.K)=) %’ max{F(ci,k;)}  (6)
c;eC J

2 % R(Ci, ]{TJ) * P(Ci, ]{TJ)

Of

3 Existing External Clustering Evaluation
Techniques

There exist are a number of proposed external clu

tering measures. However, we find these to be lack-

ing in a variety of ways.
Two commonly used metrics are Purity and En
tropy (?), defined as,

1 ,
Purity = Z - mlax(nfn) 4)
r=1
b n 1 nl n’
_ T r T
Entropy = Z ;(_logq Z - lo n—r) )

r=1

F iy g ) =
d (C kj) R(Ci>k7j)+P(Civkj)
on R Ci,k' = %
( ]) ‘Ci’
i s
P(Chk') =
7 Ikl

S Figure 1: Calculation of clustering F-measure
This metric has a significant advantage over Pu-
rity and Entropy. Specifically, this is the capability
to measure both the homogeneity and completeness
of a clustering solution. Recall, equation (x), is cal-
culated as the portion of items from claisthat are
present in clustej. This is essentially a measure
of how complete clustey is with respect to class

1. Similarly, Precision, equation (y), is calculated
as the portion of clustef that is a member of class
1. This measures how homogenous clugtes with



respect to class
F-measure is a member of a class of extern

cluster evaluation functions that rely on a postt

processing step in which each cluster is assigned

Let Ni; be the number of pairs of data points thal
al are clustered together in both the targeé) &and hy-
pothesized K) clusterings. LetVyy be the number
to of pairs clustered separately in bathand K. Letn

a class. These metrics include misclassification in- be the size of the data set.
dex (MI) (?), H (?), L (?), D (?). There are two
major problems with these metrics. First of all, they
calculate the goodness not only of the given clug
tering solution, but also the cluster-class matching
Therefore, in order for the goodness of two clustel
ing solutions to be compared using one these me
rics, an identical post-processing algorithm must b
used. This problem can be trivially addressed by fi
ing the class-cluster matching function and includ-
ing it in the definition of the measure askh A sec-

ond more critical problem is the “problem of match- _ _ _
ing” (?). In calculating the similarity between a hy- Meila (?) reiterates a number of potential prob-

pothesized clustering and a ‘true’ clustering, thesiéms afflicting this class of measures posed by both
measures only consider the contributions from thod¢) and ). The most trivial of these problems is
clusters that are matched to a true set. The ufat these metrics tend not to vary over the interval

matched portion of each cluster is not evaluated ifif [0;1]. Transformations like those applied by the
the distance function. adjusted rand index and a minor adjustment to the

For example, consider figuf2?. In both cluster- Merkin metric (see Sectiofd?) are able to sidestep
ing solutions, 4/7 of each cluster is ‘matched’ to 4his problem. However, there is also a distributional

true cluster. However, the make of the unshaded r@roblem. The baseline for Fowlkes-Mallows varies
gions of each cluster are not included in any of thesgignificantly betweer0.6 and 0 when the ratio of

measures. Arguments regarding whether solution 8t points to clusters is greater than 3 (obviously
including nearly all real-world clustering problems).

or B is “better” can be deferred for the moment, rel¢U )
gardless, itis clear that these two clusterings are corimilarly, the Adjusted Rand Index, as demonstrated
siderably different. A clustering evaluation functionuSing Monte Carlo simulations ir?Y varies from
should measure this difference. Each of Nif, L 0.5 to 0.95. This variance in the metric’s baseline
and F-measure consider these solutions to be equRfOMPts Meila to ask if the assumption of linear-
alent with respect to the target clustering. !ty f_ollowmg nor_mallzatlon can .be. maintained. That
A second class of cluster evaluation techniquel$: If the behavior of the metric is so unstable be-
are based on combinatorial approach which exanforé normalization can users responsibly expect sta-
ines the number of pairs of data points that are cluf!€ behavior following normalization?
tered similarly in the target and hypothesized clus- A final class of cluster evaluation measures are
tering. That is, each pair of points can either 1) clusPased on information theory. These measures an-
tered together in both clusterings, 2) clustered seglyze the distribution of class and cluster member-
arately in both clusterings, 3) clustered together ighips in order to determine how successful a given
the hypothesized but not the target clustering or glustering solution is or how different two parti-
clustered together in the target but not in the hypotHions of a data set are. We have already examined
esized clustering. Based on these 4 values, a numiséte member of this class of measurdsytropy.
of measures have been proposed including Rand Ifirom a coding theory perspectiv&ntropy is the
dex (?), Adjusted Rand Index?], T statistic ¢), Jac- Weighted average of the code lengths of each clus-
ard (?), Fowlkes-Mallows ?) and Merkin ¢). We ter. V-measure (see Section 2) is also a member of
reproduce the calculation of Rand Index in Figure 3his class.
as an example of this class of evaluation measures. One significant advantage that information theo-

N1+ Noo

HER) = —Dp

(7)

).

Rand Index can be interpreted as the probability th
t- a pair of points is clustered similarly (together o
€ separately) irC' and K.

Figure 2: Calculation of Rand Index



retic evaluation measures have is that they providdistinguish between hypothesized and target cluster-
an elegant solution to the “problem of matching”.ings.
By examining the relative sizes of the classes and
clusters being evaluated, these measures all evaluate VI(C,K)=H(C|K)+ H(K|C) (9)
the entire membership of each cluster — not only a
‘matched’ portion. VI has a number of very useful properties. First
The Qo measure described ir?)( uses condi- of all, VI satisfies the metric axioms. Specifically,
tional entropy,H (C| K) to calculate the goodness of1) it is always non-negative and only equals zero of
a clustering solution. That s, given the hypothesize@' = K, 2) it is symmetric, 3) the triangle inequality
partition, what is number of bits necessary to reprdiolds. This quality allows users to intuitively un-
sent the true clustering. & = K, H(C|K) = 0. derstand how/I values combine and relate to one
However, this term — like th@urity and Entropy another. Secondly, it is “convexly additive”. That
measures — only evaluates the homogeneity of a sis-to say, if a cluster is split, the distance from the
lution. To account for the completeness of the hynew cluster to the original is the distance induced by
pothesized clustering, Dom includes a model cogbe split times the size of the cluster. This property
term calculated using a coding theory argument. Thguarantees that all changes to the metric are “local”:
clustering quality measure presented is then the cdéte impact of splitting or merging clusters is affected
of representing the datd#(C|K)) and the cost of only by those clusters involved, and its size is rela-
representing the model. The motivation for this igive to the size of these clusters.
an appeal to parsimony; given identical conditional Another property of VI is that it is:-invariant:
entropies,H (C|K), the clustering solution with the the number of data points in the cluster do not af-
fewest clusters should be preferred. fect the value of the measurd/I depends on the
relative sizes of the partitions @ and K, not on
. K| W) + (O] — 1 the nu?berdogpoihnts in these partitions. However,
_ 1 - V1 is bound by the maximum number of clusters
Qo(C. K) = H(CIK)+ > log < IC]—1 > in C or K, k*. Without manual modification how-
(8) ever,k* =n,where each cluster contains only a sin-
We believe V-measure provides two significangle data point. Thus, while technically-invariant,
advantages that allow for it to serve as a more us#ie possible values df I are very influenced by the
ful diagnostic tool thanQ,. First of all, @y does number of data points being clustered. This makes it
not explicitly calculate the degree of completenesglifficult to compareV I values across data sets and
of the clustering algorithm. The cost term captureslustering algorithms without fixing* as VI will
some of this information because a partition withvary over different ranges. However, it is a trivial
fewer clusters is likely to be more complete than anodification to modifyV'I such that it varies over
clustering solution with more clusters. Howev@;  [0,1]. Normalizing,V' I by log n or 1/21log k* guar-
does not explicitly address the interaction betweeantee this range. Meila?( raises two potential
the conditional entropy and the cost of represenproblems with these. First of all, the former nor-
ing the model. While this is an application of themalization shouldn’t be applied if data sets of dif-
minimum description length(MDL) principle (?; ?), ferent sizes are to be compared — it negatesnthe
it does not provide a intuitive manner for assessingvariance of the metric. Secondly, if two authors
the two competing criteria of homogeneity and comapply the latter normalization and do not use the
pleteness. That is, at what point does an increase gfime value fok*, their results will not be compa-
conditional entropy (homogeneity) justify a reduc+able. Moreover, wher& I is always measured in
tion in the number of clusters (completeness). bits, these normalizations are measured in arbitrary
Another information based clustering measure ignits.
variation of information V1) (?). VI is presentedas  While VI demonstrates a number of useful nu-
a distance metric for comparing partitions (or clusmeric properties, these last encumbers its applica-
terings) of the same data/ I, therefore, does not tion in comparing results across disparate cluster-

k=1



ings of disparate data sets. Homogenefy &nd e Choise| Number of “noisy” classeSChoise| <
completeness’] as described in section 2 bothrange  |C|

over [0,1] and are completely-invariant andk*-
invariant. Regarding the measurement unit.&nd
¢, they are each measured as a ratio of bit lengths, ® €1 The error mass within “useful” class-cluster
while this is technically an ‘arbitrary’ unit, it has pairs

greater intuitive appeal than a more opportunistic e e, The error mass within noisy clusters
normalization. While/’T has a number of very use-
ful distance properties when analyzing a single data

set across a r:umb_er. of settings, we believe the im- o construction of a clustering solution begins
pact ofn or k£* to limit its usefulness as a general,, i+, 5 matching of "useful” clusters to "useful”

purpose clustering evaluation metric. classed There aréK,| = | K| — |Knoise| “useful”
V-measure has another advantage as a clusteripgsiers andC.,| = |C| — |Croise| “useful” classes.

evaluation measure ovér/ andQo. By evaluat- propapility mass of — ¢ is evenly distributed across
ing homogeneity and completeness in a symmetrisach match. Error mass ef is evenly distributed

cal, complementary manner, the calculation of Vacross each pair of non-matching useful class/cluster
measure makes their relationship clearly observablsairs. Error mass of, is distributed across every
Separate analyses of homogeneity and completg;sise”-cluster/ “useful’-class pair. Error massef
ness are not possible with any other cluster evalys gistributed across every cluster/noise’-class pair.

ation measure. Moreover, by using the harmonigp, example solution, along with its generating pa-
mean to combine homogeneity and completeness,meters is given in Figure 3.

V-measure can be made sensitive to priorities of

e ¢ Error probability;e = €1 + €5 + €3.

e ¢3 The error mass within noisy classes

one criteria over another depending on the cluster- Cy |1 Cy [ C5 | Croiser
ing task and goals. Similar sensitivity is not possi- K, 33|/ 33| 6 9
ble with @y or VI. While this sacrifices any pos- Ky 6 | 6 | 33 9
sibility of satisfying the metric axioms in its gen- Kooiser | 12 | 12| 12 9

eral form, we don't believe that a cluster evaluation
measure should necessarily be symmetric. Knowkigure 3: Sample parametric clustering solution
edge of which partitioning is the target and which isvith |K| = 3, |Kpeise] = 1,|C| = 3, |Choise] =
hypothesized allows insight into not only “how sim-1,¢; = .1,e2 = .2,e3 = .15
ilar” the two are, but also “in what way”.

The desirable properties proposed by Dom are P1-
4 Desirable Properties P5 in Table 1. Dom did not include the parameter

) . ) and error term for “noise” classes, therefore P6, P7
Dom (?) describes a parametric technique for 9€Nsere not evaluated i)

erating example clustering solutions. He then pro- . . .
T T . We systematically varied each parameter keeping
ceeds to define five “desirable properties” that CIU‘IC| — 5 fixed
tering accuracy measures should display, based on' '
the parameters used to generate Fhe clustering solu-, |K,|: 10 values: 2, 3,..., 11
tion. We evaluate V-measure against these and two
additional desirable properties. ® [Knoise|: 7 values: 0, 1,..., 6
The parameters used in generating a clustering so-e |C,ise|: 7 values: 0, 1,...,6

lution are as follows. o ¢1: 4 values: 0, 0.066, 0.133, 0.2
e |C| The number of classes e ¢y 4values: 0,0.1, 0.2, 0.3
e |K| The number of clusters e ¢3. 4values: 0,0.1,0.2,0.3
® ‘Knoise, Number of “noisy” clusters; Topemtion of this matching is omitted in the interest of

| Knoise| < | K| space. Interested readers are encouraged to refe. to (



We evaluated the behavior of V-Measure, Randpr at least one data point. This resulted in a feature
Merkin, Fowlkes-Mallows, Gamma, Jacard, @y, vector containing 484 tf*idf values for each docu-
Entropy, F-Measure against the desirable propertiesent. Results average-linkage hierarchical cluster
P1-P7. Based on the described systematic modificean be seen in Figure 4. Results from both k-means
tion of each parameter, only V-measure, VI apgl  and average linkage can be observed in Figure 5.
empirically satisfy all of P1-P7 in all experimental

conditions. 1 T - -
Homogeneity
Completeness —zzzzz-
: H V-M semeeee TS
5 Applications 08 e I
5.1 Document Clustering 0.6 | -

Clustering techniques have been used considerably , |
in clustering documents into topic clusters. We re-
produce this type of experiment here to demonstrate o, |
the use of V-measure. Using a subset of the TDT-4 ;
corpus (1884 English news wire and broadcast news o fsd i
. 10 100 1000 10000
documents that were manually labeled with one of number of clusters
12 topics), we ran clustering experiments using with
k-means ?) and average-linkage hierarchical clusfigure 4: Results of document clustering measured
tering (7). The topics and relative distributions areby V-Measure, homogeneity and completeness
as follows: Acts of Violence/War (22.3%), Elections
(14.4%), Diplomatic Meetings (12.9%), Accidents _ _
(8.75%), Natural Disasters (7.4%), Human Interest-2 Pitch Accent Clustering
(6.7%), Scandals (6.5%), Legal Cases (6.4%), Miitch accent is how speakers of Standard American
cellaneous (5.3%), Sports (4.7), New Laws (3.2%)English indicate that a word in an utterance is promi-
Science and Discovery (1.4%). nent. Moreover, words can be accented in different
We used stemmed, tf*idf-weighted term vectorsvays to indicate different types of emphas® and
extracted for each document as the clustering spadescourse structure?]. These different ways have
for these experiments. However, this yielded a vergeen categorized into discrete “pitch accent types”
high dimension space. In order to reduce this dimery the ToBI labeling scheme?). In this clustering
sionality, we performed a crude feature selectioexperiment, we extract a number of acoustic fea-
procedure. We included in the feature vector onlyures from accented words within the read portion
those terms that represented the highest tf*idf valuef the Boston Directions Corpus (BDC})(and ex-
amine how well clustering in these acoustic dimen-
P1 For |K,| < |C| and A|K,| < (|C] — |Ku)), sions correlates to ma_nually annotated pitch accent
AM types. The read portion of the BDC corpus con-

et >0
Al tains read transcripts of increasingly complicated di-
P2 For|K,| > |C|, &M <0 T _
ul = 1~ ATK, rection giving tasks. The speech is produced by
P3 % <0 four non-professional speakers (three male and one

female). The transcripts that were read by each

P4 5er =0, with equality only if| | = 1 speaker, were initially produced spontaneously at an

sM - - : . .
P5 3 <0, with equality only if [ K;oise| = 0 earlier session by the same speaker. We collapse all
P6 % <0 downsteped instances of pitch accents with corre-

sponding non-downsteped instances for these exper-
iments. This left a very skewed distribution with a
majority of H pitch accents. We therefore included a
Table 1: Desirable Properties of a cluster evaluatiorandomly selected 10% sample of H* accents. This
measure\/ left a more even distribution (see Table 2) of pitch

P7 S < 0, with equality only if| Crise| = 0



accent types for clustering. In figure 5 we are able to compare results across
the two clustering algorithms — k-means and hier-
| H* | L* [ L+H* [ L*+H | H+IH* | archical — as well as across data sets of different
| 35.4%] 32.1%] 26.5%| 2.8% | 2.1% | sizes and class distributions. We can observe similar
trends in the behavior of the clustering algorithms
across data sets. K-means tend to achieve an opti-
mal clustering with fewer clusters than the agglom-
We extract ten acoustic features from each agrative clustering approach. Moreover, on the doc-
cented word to serve as the clustering space for thignent clustering task, this optimal approach is con-
experiment. Using Praat’®) Get Pitch (ac)... func- siderably higher than the maximum yielded by the
tion, we calculated the mean FO aid-0, as well agglomerative approach. This allows us to conclude
as z-score speaker normalized versions of the samgat with the described features k-means is better
We included in the feature vector the relative locagyited to these tasks. While, neither shows over-
tion Of the maXimUm p|tCh Value in the WOI’d as Wellwhe|m|ng success — these are naive feature Spaces
as the distance between this maximum and the poighg algorithms — we can see that document clus-
of maximum intensity. Finally we calculated the rawering is a considerably easier clustering task than

and speaker normalized slope from the start of theitch accent type clustering, despite the larger fea-
word to the maximum pitch, and from the maximumy e space, and wider class distribution.

pitch to the end of the word.

Using this feature vector, we perform k-mean$ Conclusion
clustering and average-linkage hierarchical cluster- )
ing and evaluate how successfully these dimensiof¥e have presented a new external c.Igster evaluation
represent differences between pitch accent type®€tric, V-measure. We have empirically demon-

Table 2: Distribution of Pitch Accent Types

The results can be seen in Figure 5. strated V-measure’s satisfaction of some formal de-
sirability criteria, as well as it's ability to evaluate
07 . . . document and pitch accent clustering solutions with
os | e, | respect to the criteria of homogeneity and complete-
_ ness.
o5 A I hY T We believe that validity addresses some of the
04t ff WS, i problems that affect other cluster measures. 1) It

oal F | evaluates a clustering solution independent of the
B o clustering algorithm, size of the data set, number of

02 rf classes and number of clusters. 2) It does not re-

! i Pitch Accent K-Means
0.1 [ Pitch Accent Hierarchical -------

i Document K-Means - 1 quire its user to map each cluster to a class. There-
0 Lwasatwd Document Hierarchical - fore, it only evaluates the quality of the clustering,
1 10 100 1000 10000

not a post-hoc class-cluster mapping. 3) It evalu-
ates the clustering of every data point, avoiding the

Figure 5: Results of all clustering experiments eval-Problem of matching™. 4) By evaluating the crite-

uated using V-Measure ria of both homogeneity and completeness, validity
is more comprehensive than those that evaluate only
one. 5) Moreover, by evaluating these criteria sepa-

5.3 Discussion rately and explicitly, V-measure can serve as an el-

In figure 4, the relationship between homogeneiti%as?;r?r']&;gggﬁ;&;fo' providing greater insight into

and completeness is clearly observable; as the numl-
per of c_lusters increase we see homogeneity 'ncre%&'cknowledgments

ing which completeness decreases. V-measure, in

this case, is maximal approximately at the point imThe authors thank Martin Jansche, Sasha Blair-
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number of clusters
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