
V-Measure: A conditional entropy-based external cluster evaluation
measure.

Andrew Rosenberg and Julia Hirschberg
Department of Computer Sciente

Columbia University
New York, NY 10027

{amaxwell,julia}@cs.columbia.edu

Abstract

In this paper we present V-measure, an ex-
ternal entropy-based cluster evaluation met-
ric. V-measure provides an elegant solu-
tion to many problems that affect previously
defined cluster evaluation measures includ-
ing 1) dependence on clustering algorithm
or data set, 2) accurate evaluation and com-
bination of two aspects of good clustering -
homogeneity and completeness, and 3) sym-
metry in the measurement of these for easy
interpretation. We draw comparisons be-
tween V-measure and a number of popular
cluster evaluation measures, as well as em-
pirically showing that V-measure satisfies a
number of desirable properties of clustering
solutions based on a simulated clustering re-
sults. We present the use of V-measure to
evaluate two example clustering tasks: doc-
ument clustering and pitch accent type clus-
tering.

1 Introduction

Clustering techniques are particularly appealing for
many natural language processing tasks.

However, evaluating the “goodness” of a cluster-
ing solution is a critical and difficult empirical prob-
lem (?) and often lacks rigor (?).

There are two criteria of a successful clustering
solution. First, the homogeneity criteria: each clus-
ter should contain only data points that are members
of a single class. Second, the completeness criteria:
all of the data points that are members of a given

class should be elements of the same cluster. We be-
lieve that any external1 metric for evaluating a clus-
tering solution should determine to what degree both
of these criteria are satisfied.

The criteria of homogenity and completeness are
roughly in opposition; increasing the homogeneity
of a clustering solution often results in a decrease of
completeness. Consider, wo degenerate clustering
solutions. One, assigning every datapoint into a sin-
gle cluster guarantees perfect completeness – all of
the data points that are members of the same class
are trivially elements of the same cluster. However,
this cluster is as far from homogeneous as possible
– the maximum diversity of classes are represented
in this single cluster. Two, assigning each data point
to a distinct cluster guarantees perfect homogeneity
– each cluster trivially only contains members of a
single class. However, by virtue of each cluster con-
taining only a single member of a class the clustering
solution is as far from complete as possible.

In this paper, we present a new external clus-
ter evaluation metric, V-measure. V-measure is an
entropy-based metric which explicitly measures how
successfully the criteria of homogeneity and com-
pleteness have been satisfied. V-measure is com-
puted as the harmonic mean of distinct homogeneity
and completeness scores. This is identical to the way
precision and recall are commonly combined into F-
measure(?) for evaluation of information retrieval
results. Just as F-measure scores can be weighted
to favor the contributions of precision or recall, V-
measure can be weighted to favor the contributions

1Obviously, if the class labels of the datapoints are not
knowna prori, these criteria cannot be applied



of homogeneity and completeness.
In Section 2 we present the calculation of V-

measure. We discuss some popular external cluster
evaluation metrics and draw comparisons between
these and V-measure in Section 3. We present some
empirical desirable properties and describe the de-
gree to which are satisfied by V-measure and other
measures in section??. In Section 5 we will show
two examples of the application of V-measure on
two clustering tasks: document clustering, and pitch
accent clustering.

2 Calculating V-Measure

In order to use an external clustering metric, class
labels for each data point, or a reference partition
must be known a priori. The clustering task is to as-
sign these data points to any number of clusters such
that each cluster contains all and only those data
points that are members of the same class. Given
the ground truth class labels, it is trivial to determine
if this perfect clustering has been achieved. How-
ever, evaluating how far from perfect an incorrect
clustering solution is a more difficult task. We pro-
pose to measure this distance from perfection as the
weighted harmonic mean of two measures, evalu-
taing the degree to which the homogeneity and com-
pleteness criteria described in Section 1 have been
satisfied.

For the purposes of the following discussion, as-
sumeN data points, a set of classes,C = {ci|i =
1, . . . , n} and a set of clusters,K = {ki|1, . . . ,m}.
LetA be the contingency table produced by the clus-
tering algorithm, such thatA = aij such thataij is
the number of data points that are members of class
ci and elements of clusterkj .

Homogeneity:
In order to satisfy the homogeneity criteria, a clus-

tering must assignonly those datapoints that are
members of a single class to a single cluster. That
is the class distribution within each cluster should
be totally skewed to a single class, that is, zero en-
tropy. We determine how close a given clustering
is to this ideal by examining the conditional en-
tropy of the class distribution given the proposed
clustering. In the perfectly homogeneous case, this
value, H(C|K) = 0. However, in an imperfect
situation the size of this value, in bits, is depen-

dent on the size of the dataset. Therefore, instead
of taking the raw conditional entropy, we normalize
this value by the maximum reduction in entropy the
clustering information could provide, specifically,
H(C,K). Technically, this is a weak upper bound,
H(C|K) ≤ H(C) ≤ H(C,K), however, normal-
ization by H(C) yields a measure that behaves in
unintuitive, and undesirable ways.

Note thatH(C|K) is maximal when the cluster-
ing provided no new information – the class dis-
tribution within each cluster is even, and 0, when
each cluster contains only members of a single
class, a perfectly homogenous clustering. In the
degenerate case whereH(C,K) = 0 we defined
both homogeneity and completeness to be 1. For
a perfectly homogenous solution the normalization
H(C|K)/H(C,K) equals 0. Thus, to adhere to the
convention of 1 being ‘good’ and 0 ‘bad’, we define
homogeneity as:

h =

{

1 if H(C,K) = 0

1 − H(C|K)
H(C,K) else

(1)
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Completeness:
Completeness is calculated symmetrically to ho-

mogeneity. In order to satisfy the completeness cri-
teria, a clustering must assignall of those datapoints
that are members of a single class to a single clus-
ter. To evaluate this we examine the distribution
of cluster assignments within each class. In a per-
fectly complete clustering, each of these distribu-
tions will be completely skewed to a single clus-
ter. Similar to the above, we can evaluate this by
calculating the conditional entropy of the proposed
cluster distribution given the class of the component
datapoint,H(K|C). In the perfectly complete case,
H(K|C) = 0. However, in the worst case scenario,
each class is equally represented by every cluster



whereH(K|C) is maximal. Therefore, symmetri-
cally to the calculation above, we define complete-
ness as:

c =

{

1 if H(K,C) = 0

1 − H(K|C)
H(K,C) else

(2)

where

H(K|C) = −

|C|
∑

c=1

|K|
∑

k=1

Ack

N
log

Ack
∑|K|

k=1 Ack

H(K,C) = H(C,K)

Finally, we calculate V-measure by by comput-
ing the weighted harmonic mean of homogeneity
and completeness. Similarly with F-measure, ifβ
is greater than 1 completeness is weighted more
strongly in the calculation, ifβ is less than 1, ho-
mogeneity is weighted more strongly.

Vβ =
(1 + β) ∗ h ∗ c

(β ∗ h) + c
(3)

Notice that the computations of homogeneity,
completeness and V-measure are completely inde-
pendent of the number of classes, the number of
clusters, the size of the data set and the clustering
algorithm used. This allows these metrics to be
applied to and compared across any clustering so-
lution, regardless of the number of data points (n-
invariance), the number of classes or the number of
clusters. Moreover, by calculating homogeneity and
completeness separately, a more precise evaluation
of the performance of the clustering is offered.

3 Existing External Clustering Evaluation
Techniques

There exist are a number of proposed external clus-
tering measures. However, we find these to be lack-
ing in a variety of ways.

Two commonly used metrics are Purity and En-
tropy (?), defined as,

Purity =
k

∑

r=1

1

n
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i
(ni

r) (4)

Entropy =

k
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n
(−
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log
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whereq is the number of classes,k the number
of clusters,nr is the size of clusterr, andni

r is the
number of data points in classi clustered in cluster
r.

Both Purity and Entropy plausable ways to eval-
uate the homogeneity of a clustering solution, how-
ever the completeness criterion is not measured at all
by these metrics. Therefore the Purity and Entropy
are likely to improve (increased Purity, decreased
Entropy) monotonically with the number of clusters
used, up to a degenerate maximum where there are
as many clusters as data points. This is certainly not
an ideal clustering, depite yielding high Purity and
low Entropy scores.

Another common external clustering evaluation
metric is generally refered to as “clustering accu-
racy”. The calculation of “accuracy” is inspired by
the information retrieval metric of F-Measure (?).
The formula for this clustering F-measure as de-
scribed in (?) can be found in Figure 3.

Let N be the number of data points,C the set of
classes,K the set of clusters andnij be the number
of members of classci ∈ C that are elements of
clusterkj ∈ K.

F (C,K) =
∑

ci∈C

|ci|

N
max
kj∈K

{F (ci, kj)} (6)

F (ci, kj) =
2 ∗ R(ci, kj) ∗ P (ci, kj)

R(ci, kj) + P (ci, kj)

R(ci, kj) =
nij

|ci|

P (ci, kj) =
nij

|kj |

Figure 1: Calculation of clustering F-measure

This metric has a significant advantage over Pu-
rity and Entropy. Specifically, this is the capability
to measure both the homogeneity and completeness
of a clustering solution. Recall, equation (x), is cal-
culated as the portion of items from classi that are
present in clusterj. This is essentially a measure
of how complete clusterj is with respect to class
i. Similarly, Precision, equation (y), is calculated
as the portion of clusterj that is a member of class
i. This measures how homogenous clusterj is with



respect to classi.
F-measure is a member of a class of external

cluster evaluation functions that rely on a post-
processing step in which each cluster is assigned to
a class. These metrics include misclassification in-
dex (MI) (?), H (?), L (?), D (?). There are two
major problems with these metrics. First of all, they
calculate the goodness not only of the given clus-
tering solution, but also the cluster-class matching.
Therefore, in order for the goodness of two cluster-
ing solutions to be compared using one these met-
rics, an identical post-processing algorithm must be
used. This problem can be trivially addressed by fix-
ing the class-cluster matching function and includ-
ing it in the definition of the measure as inH. A sec-
ond more critical problem is the “problem of match-
ing” (?). In calculating the similarity between a hy-
pothesized clustering and a ‘true’ clustering, these
measures only consider the contributions from those
clusters that are matched to a true set. The un-
matched portion of each cluster is not evaluated in
the distance function.

For example, consider figure??. In both cluster-
ing solutions, 4/7 of each cluster is ‘matched’ to a
true cluster. However, the make of the unshaded re-
gions of each cluster are not included in any of these
measures. Arguments regarding whether solution A
or B is “better” can be deferred for the moment, re-
gardless, it is clear that these two clusterings are con-
siderably different. A clustering evaluation function
should measure this difference. Each of MI,H, L
and F-measure consider these solutions to be equiv-
alent with respect to the target clustering.

A second class of cluster evaluation techniques
are based on combinatorial approach which exam-
ines the number of pairs of data points that are clus-
tered similarly in the target and hypothesized clus-
tering. That is, each pair of points can either 1) clus-
tered together in both clusterings, 2) clustered sep-
arately in both clusterings, 3) clustered together in
the hypothesized but not the target clustering or 4)
clustered together in the target but not in the hypoth-
esized clustering. Based on these 4 values, a number
of measures have been proposed including Rand In-
dex (?), Adjusted Rand Index (?), Γ statistic (?), Jac-
ard (?), Fowlkes-Mallows (?) and Merkin (?). We
reproduce the calculation of Rand Index in Figure 3
as an example of this class of evaluation measures.

Let N11 be the number of pairs of data points that
are clustered together in both the target (C) and hy-
pothesized (K) clusterings. LetN00 be the number
of pairs clustered separately in bothC andK. Let n
be the size of the data set.

R(C,K) =
N11 + N00

n(n − 1)/2
(7)

Rand Index can be interpreted as the probability that
a pair of points is clustered similarly (together or
separately) inC andK.

Figure 2: Calculation of Rand Index

Meila (?) reiterates a number of potential prob-
lems afflicting this class of measures posed by both
(?) and (?). The most trivial of these problems is
that these metrics tend not to vary over the interval
of [0, 1]. Transformations like those applied by the
adjusted rand index and a minor adjustment to the
Merkin metric (see Section??) are able to sidestep
this problem. However, there is also a distributional
problem. The baseline for Fowlkes-Mallows varies
significantly between0.6 and 0 when the ratio of
data points to clusters is greater than 3 (obviously
including nearly all real-world clustering problems).
Similarly, the Adjusted Rand Index, as demonstrated
using Monte Carlo simulations in (?) varies from
0.5 to 0.95. This variance in the metric’s baseline
prompts Meila to ask if the assumption of linear-
ity following normalization can be maintained. That
is, if the behavior of the metric is so unstable be-
fore normalization can users responsibly expect sta-
ble behavior following normalization?

A final class of cluster evaluation measures are
based on information theory. These measures an-
alyze the distribution of class and cluster member-
ships in order to determine how successful a given
clustering solution is or how different two parti-
tions of a data set are. We have already examined
one member of this class of measures,Entropy.
From a coding theory perspective,Entropy is the
weighted average of the code lengths of each clus-
ter. V-measure (see Section 2) is also a member of
this class.

One significant advantage that information theo-



retic evaluation measures have is that they provide
an elegant solution to the “problem of matching”.
By examining the relative sizes of the classes and
clusters being evaluated, these measures all evaluate
the entire membership of each cluster – not only a
‘matched’ portion.

The Q0 measure described in (?) uses condi-
tional entropy,H(C|K) to calculate the goodness of
a clustering solution. That is, given the hypothesized
partition, what is number of bits necessary to repre-
sent the true clustering. IfC = K, H(C|K) = 0.
However, this term – like thePurity andEntropy
measures – only evaluates the homogeneity of a so-
lution. To account for the completeness of the hy-
pothesized clustering, Dom includes a model cost
term calculated using a coding theory argument. The
clustering quality measure presented is then the cost
of representing the data (H(C|K)) and the cost of
representing the model. The motivation for this is
an appeal to parsimony; given identical conditional
entropies,H(C|K), the clustering solution with the
fewest clusters should be preferred.

Q0(C,K) = H(C|K)+
1

n

|K|
∑

k=1

log

(

h(k) + |C| − 1

|C| − 1

)

(8)
We believe V-measure provides two significant

advantages that allow for it to serve as a more use-
ful diagnostic tool thanQ0. First of all, Q0 does
not explicitly calculate the degree of completeness
of the clustering algorithm. The cost term captures
some of this information because a partition with
fewer clusters is likely to be more complete than a
clustering solution with more clusters. However,Q0

does not explicitly address the interaction between
the conditional entropy and the cost of represent-
ing the model. While this is an application of the
minimum description length(MDL) principle (?; ?),
it does not provide a intuitive manner for assessing
the two competing criteria of homogeneity and com-
pleteness. That is, at what point does an increase of
conditional entropy (homogeneity) justify a reduc-
tion in the number of clusters (completeness).

Another information based clustering measure is
variation of information (V I) (?). V I is presented as
a distance metric for comparing partitions (or clus-
terings) of the same data.V I, therefore, does not

distinguish between hypothesized and target cluster-
ings.

V I(C,K) = H(C|K) + H(K|C) (9)

VI has a number of very useful properties. First
of all, VI satisfies the metric axioms. Specifically,
1) it is always non-negative and only equals zero of
C = K, 2) it is symmetric, 3) the triangle inequality
holds. This quality allows users to intuitively un-
derstand howV I values combine and relate to one
another. Secondly, it is “convexly additive”. That
is to say, if a cluster is split, the distance from the
new cluster to the original is the distance induced by
the split times the size of the cluster. This property
guarantees that all changes to the metric are “local”:
the impact of splitting or merging clusters is affected
only by those clusters involved, and its size is rela-
tive to the size of these clusters.

Another property of VI is that it isn-invariant:
the number of data points in the cluster do not af-
fect the value of the measure.V I depends on the
relative sizes of the partitions ofC andK, not on
the number of points in these partitions. However,
V I is bound by the maximum number of clusters
in C or K, k∗. Without manual modification how-
ever,k∗ = n, where each cluster contains only a sin-
gle data point. Thus, while technicallyn-invariant,
the possible values ofV I are very influenced by the
number of data points being clustered. This makes it
difficult to compareV I values across data sets and
clustering algorithms without fixingk∗ asV I will
vary over different ranges. However, it is a trivial
modification to modifyV I such that it varies over
[0,1]. Normalizing,V I by log n or 1/2 log k∗ guar-
antee this range. Meila (?) raises two potential
problems with these. First of all, the former nor-
malization shouldn’t be applied if data sets of dif-
ferent sizes are to be compared – it negates then-
invariance of the metric. Secondly, if two authors
apply the latter normalization and do not use the
same value fork∗, their results will not be compa-
rable. Moreover, whereV I is always measured in
bits, these normalizations are measured in arbitrary
units.

While V I demonstrates a number of useful nu-
meric properties, these last encumbers its applica-
tion in comparing results across disparate cluster-



ings of disparate data sets. Homogeneity (h) and
completeness (c) as described in section 2 both range
over [0,1] and are completelyn-invariant andk∗-
invariant. Regarding the measurement unit ofh and
c, they are each measured as a ratio of bit lengths,
while this is technically an ‘arbitrary’ unit, it has
greater intuitive appeal than a more opportunistic
normalization. WhileV I has a number of very use-
ful distance properties when analyzing a single data
set across a number of settings, we believe the im-
pact ofn or k∗ to limit its usefulness as a general
purpose clustering evaluation metric.

V-measure has another advantage as a clustering
evaluation measure overV I and Q0. By evaluat-
ing homogeneity and completeness in a symmetri-
cal, complementary manner, the calculation of V-
measure makes their relationship clearly observable.
Separate analyses of homogeneity and complete-
ness are not possible with any other cluster evalu-
ation measure. Moreover, by using the harmonic
mean to combine homogeneity and completeness,
V-measure can be made sensitive to priorities of
one criteria over another depending on the cluster-
ing task and goals. Similar sensitivity is not possi-
ble with Q0 or V I. While this sacrifices any pos-
sibility of satisfying the metric axioms in its gen-
eral form, we don’t believe that a cluster evaluation
measure should necessarily be symmetric. Knowl-
edge of which partitioning is the target and which is
hypothesized allows insight into not only “how sim-
ilar” the two are, but also “in what way”.

4 Desirable Properties

Dom (?) describes a parametric technique for gen-
erating example clustering solutions. He then pro-
ceeds to define five “desirable properties” that clus-
tering accuracy measures should display, based on
the parameters used to generate the clustering solu-
tion. We evaluate V-measure against these and two
additional desirable properties.

The parameters used in generating a clustering so-
lution are as follows.

• |C| The number of classes

• |K| The number of clusters

• |Knoise| Number of “noisy” clusters;
|Knoise| < |K|

• Cnoise| Number of “noisy” classes;|Cnoise| <
|C|

• ǫ Error probability;ǫ = ǫ1 + ǫ2 + ǫ3.

• ǫ1 The error mass within “useful” class-cluster
pairs

• ǫ2 The error mass within noisy clusters

• ǫ3 The error mass within noisy classes

The construction of a clustering solution begins
with a matching of ”useful” clusters to ”useful”
classes2. There are|Ku| = |K|− |Knoise| “useful”
clusters and|Cu| = |C| − |Cnoise| “useful” classes.
Probability mass of1−ǫ is evenly distributed across
each match. Error mass ofǫ1 is evenly distributed
across each pair of non-matching useful class/cluster
pairs. Error mass ofǫ2 is distributed across every
“noise”-cluster/ “useful”-class pair. Error mass ofǫ3

is distributed across every cluster/“noise”-class pair.
An example solution, along with its generating pa-
rameters is given in Figure 3.

C1 C2 C3 Cnoise1

K1 33 33 6 9
K2 6 6 33 9
Knoise1 12 12 12 9

Figure 3: Sample parametric clustering solution
with |K| = 3, |Knoise| = 1, |C| = 3, |Cnoise| =
1, ǫ1 = .1, ǫ2 = .2, ǫ3 = .15

The desirable properties proposed by Dom are P1-
P5 in Table 1. Dom did not include the parameter
and error term for “noise” classes, therefore P6, P7
were not evaluated in (?).

We systematically varied each parameter keeping
|C| = 5 fixed.

• |Ku|: 10 values: 2, 3,. . . , 11

• |Knoise|: 7 values: 0, 1,. . . , 6

• |Cnoise|: 7 values: 0, 1,. . . , 6

• ǫ1: 4 values: 0, 0.066, 0.133, 0.2

• ǫ2: 4 values: 0, 0.1, 0.2, 0.3

• ǫ3: 4 values: 0, 0.1, 0.2, 0.3

2The operation of this matching is omitted in the interest of
space. Interested readers are encouraged to refer to (?).



We evaluated the behavior of V-Measure, Rand,
Merkin, Fowlkes-Mallows, Gamma, Jacard, VI,Q0,
Entropy, F-Measure against the desirable properties
P1-P7. Based on the described systematic modifica-
tion of each parameter, only V-measure, VI andQ0

empirically satisfy all of P1-P7 in all experimental
conditions.

5 Applications

5.1 Document Clustering

Clustering techniques have been used considerably
in clustering documents into topic clusters. We re-
produce this type of experiment here to demonstrate
the use of V-measure. Using a subset of the TDT-4
corpus (1884 English news wire and broadcast news
documents that were manually labeled with one of
12 topics), we ran clustering experiments using with
k-means (?) and average-linkage hierarchical clus-
tering (?). The topics and relative distributions are
as follows: Acts of Violence/War (22.3%), Elections
(14.4%), Diplomatic Meetings (12.9%), Accidents
(8.75%), Natural Disasters (7.4%), Human Interest
(6.7%), Scandals (6.5%), Legal Cases (6.4%), Mis-
cellaneous (5.3%), Sports (4.7), New Laws (3.2%),
Science and Discovery (1.4%).

We used stemmed, tf*idf-weighted term vectors
extracted for each document as the clustering space
for these experiments. However, this yielded a very
high dimension space. In order to reduce this dimen-
sionality, we performed a crude feature selection
procedure. We included in the feature vector only
those terms that represented the highest tf*idf value

P1 For |Ku| < |C| and ∆|Ku| ≤ (|C| − |Ku|),
∆M

∆|Ku|
> 0

P2 For |Ku| ≥ |C|, ∆M
∆|Ku|

< 0

P3 ∆M
∆|Knoise|

< 0

P4 δM
δǫ1

≤ 0, with equality only if|Ku| = 1

P5 δM
δǫ2

≤ 0, with equality only if|Knoise| = 0

P6 ∆M
∆|Cnoise|

< 0

P7 δM
δǫ3

≤ 0, with equality only if|Cnoise| = 0

Table 1: Desirable Properties of a cluster evaluation
measureM

for at least one data point. This resulted in a feature
vector containing 484 tf*idf values for each docu-
ment. Results average-linkage hierarchical cluster
can be seen in Figure 4. Results from both k-means
and average linkage can be observed in Figure 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

number of clusters

Homogeneity
Completeness

V-Measure

Figure 4: Results of document clustering measured
by V-Measure, homogeneity and completeness

5.2 Pitch Accent Clustering

Pitch accent is how speakers of Standard American
English indicate that a word in an utterance is promi-
nent. Moreover, words can be accented in different
ways to indicate different types of emphasis (?) and
discourse structure (?). These different ways have
been categorized into discrete “pitch accent types”
by the ToBI labeling scheme (?). In this clustering
experiment, we extract a number of acoustic fea-
tures from accented words within the read portion
of the Boston Directions Corpus (BDC) (?) and ex-
amine how well clustering in these acoustic dimen-
sions correlates to manually annotated pitch accent
types. The read portion of the BDC corpus con-
tains read transcripts of increasingly complicated di-
rection giving tasks. The speech is produced by
four non-professional speakers (three male and one
female). The transcripts that were read by each
speaker, were initially produced spontaneously at an
earlier session by the same speaker. We collapse all
downsteped instances of pitch accents with corre-
sponding non-downsteped instances for these exper-
iments. This left a very skewed distribution with a
majority of H pitch accents. We therefore included a
randomly selected 10% sample of H* accents. This
left a more even distribution (see Table 2) of pitch



accent types for clustering.

H* L* L+H* L*+H H+!H*

35.4% 32.1% 26.5% 2.8% 2.1%

Table 2: Distribution of Pitch Accent Types

We extract ten acoustic features from each ac-
cented word to serve as the clustering space for this
experiment. Using Praat’s (?) Get Pitch (ac)... func-
tion, we calculated the mean F0 and∆F0, as well
as z-score speaker normalized versions of the same.
We included in the feature vector the relative loca-
tion of the maximum pitch value in the word as well
as the distance between this maximum and the point
of maximum intensity. Finally we calculated the raw
and speaker normalized slope from the start of the
word to the maximum pitch, and from the maximum
pitch to the end of the word.

Using this feature vector, we perform k-means
clustering and average-linkage hierarchical cluster-
ing and evaluate how successfully these dimensions
represent differences between pitch accent types.
The results can be seen in Figure 5.
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Figure 5: Results of all clustering experiments eval-
uated using V-Measure

5.3 Discussion

In figure 4, the relationship between homogeneity
and completeness is clearly observable; as the num-
ber of clusters increase we see homogeneity increas-
ing which completeness decreases. V-measure, in
this case, is maximal approximately at the point in
which the two cross.

In figure 5 we are able to compare results across
the two clustering algorithms – k-means and hier-
archical – as well as across data sets of different
sizes and class distributions. We can observe similar
trends in the behavior of the clustering algorithms
across data sets. K-means tend to achieve an opti-
mal clustering with fewer clusters than the agglom-
erative clustering approach. Moreover, on the doc-
ument clustering task, this optimal approach is con-
siderably higher than the maximum yielded by the
agglomerative approach. This allows us to conclude
that with the described features k-means is better
suited to these tasks. While, neither shows over-
whelming success – these are naive feature spaces
and algorithms – we can see that document clus-
tering is a considerably easier clustering task than
pitch accent type clustering, despite the larger fea-
ture space, and wider class distribution.

6 Conclusion

We have presented a new external cluster evaluation
metric, V-measure. We have empirically demon-
strated V-measure’s satisfaction of some formal de-
sirability criteria, as well as it’s ability to evaluate
document and pitch accent clustering solutions with
respect to the criteria of homogeneity and complete-
ness.

We believe that validity addresses some of the
problems that affect other cluster measures. 1) It
evaluates a clustering solution independent of the
clustering algorithm, size of the data set, number of
classes and number of clusters. 2) It does not re-
quire its user to map each cluster to a class. There-
fore, it only evaluates the quality of the clustering,
not a post-hoc class-cluster mapping. 3) It evalu-
ates the clustering of every data point, avoiding the
“problem of matching”. 4) By evaluating the crite-
ria of both homogeneity and completeness, validity
is more comprehensive than those that evaluate only
one. 5) Moreover, by evaluating these criteria sepa-
rately and explicitly, V-measure can serve as an el-
egant diagnositic tool providing greater insight into
clustering behavior.
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