
This paper is included in the Proceedings of the 

29th USENIX Security Symposium.
August 12–14, 2020

978-1-939133-17-5

Open access to the Proceedings of the 

29th USENIX Security Symposium 

is sponsored by USENIX.

V0LTpwn: Attacking x86 Processor Integrity 
from Software

Zijo Kenjar and Tommaso Frassetto, Technische Universität Darmstadt; 

David Gens and Michael Franz, University of California, Irvine; 

Ahmad-Reza Sadeghi, Technische Universität Darmstadt

https://www.usenix.org/conference/usenixsecurity20/presentation/kenjar



V0LTpwn: Attacking x86 Processor Integrity from Software

Zijo Kenjar1, Tommaso Frassetto1, David Gens2, Michael Franz2, and Ahmad-Reza Sadeghi1

1Technical University of Darmstadt, Germany

{zijo.kenjar,tommaso.frassetto,ahmad.sadeghi}@trust.tu-darmstadt.de

2University of California, Irvine

{dgens,franz}@uci.edu

Abstract
Fault-injection attacks have been proven in the past to
be a reliable way of bypassing hardware-based security
measures, such as cryptographic hashes, privilege and
access permission enforcement, and trusted execution
environments. However, traditional fault-injection at-
tacks require physical presence, and hence, were often
considered out of scope in many real-world adversary
settings.

In this paper we show this assumption may no longer
be justified on x86. We present V0LTpwn, a novel
hardware-oriented but software-controlled attack that
affects the integrity of computation in virtually any ex-
ecution mode on modern x86 processors. To the best
of our knowledge, this represents the first attack on
the integrity of the x86 platform from software. The
key idea behind our attack is to undervolt a physical
core to force non-recoverable hardware faults. Under
a V0LTpwn attack, CPU instructions will continue to
execute with erroneous results and without crashes, al-
lowing for exploitation. In contrast to recently presented
side-channel attacks that leverage vulnerable speculative
execution, V0LTpwn is not limited to information dis-
closure, but allows adversaries to affect execution, and
hence, effectively breaks the integrity goals of modern
x86 platforms. In our detailed evaluation we success-
fully launch software-based attacks against Intel SGX
enclaves from a privileged process to demonstrate that
a V0LTpwn attack can successfully change the results of
computations within enclave execution across multiple
CPU revisions.

1 Introduction

Modern hardware platforms have a long history that
spans multiple decades. The need to ensure backwards
compatibility and the constant tweaking of existing de-
signs has burdened widely deployed hardware architec-
tures with legacy components that have become highly

complex, and far from flawless. In the recent past, we
have seen how seemingly minor implementation bugs at
the hardware level can have a severe impact on secu-
rity [14]. Attacks such as Meltdown [36], Spectre [33],
Foreshadow [58], and RIDL [62] demonstrate that at-
tackers can exploit these bugs from software to bypass
access permissions and extract secret data.

Furthermore, we have seen that the adverse effects
of hardware vulnerabilities are not limited to confiden-
tiality, but can also compromise integrity in principle:
the infamous Rowhammer bug [32] resulted in numer-
ous exploits [6, 24,43,48,50,56,60,63,65] leveraging bit
flips in flawed DRAM modules, which are deployed on
practically all computer systems today. While initial
defenses have been proposed to mitigate Rowhammer
from software [5, 8], fixing Rowhammer bugs ultimately
requires deploying new hardware.

With recent feature sizes shrinking to single-digit
nanometer scale, semiconductor companies face the grow-
ing problem of the so-called dark silicon. At run time
large parts of the chip will have to be left powered-off,
since the billions of transistors cannot be operated within
the thermal constraints and power budget the platform
was originally designed for. This prevented hardware
designers from leveraging Dennard scaling [17,53]; conse-
quently, manufacturers have moved to more intelligent,
on-demand thermal and voltage control on recent plat-
forms. This means that critical operational aspects of
the processor can now and are increasingly controlled
from software during run time. Unfortunately, this de-
velopment comes with severe consequences for computer
security.

In 2017 Tang et al. [55] showed that the intricacies of
low-level and fine-grained power management on ARM-
based mobile devices open up serious pitfalls, as they
were able to induce faults in the processor of a Nexus 6
smartphone, allowing them to bypass the isolation bound-
ary of TrustZone. So far, a similar scenario was deemed
unlikely on x86-based systems for several reasons: (i) x86-
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based power management traditionally does not expose
direct access to hardware regulators to software above
the BIOS level, (ii) desktops and servers are typically
not battery powered, and hence, feature less aggressive
and more coarse-grained power management, and finally
(iii) x86-based platforms deploy extensive safety measures
and implement strict architectural defenses to prevent,
detect, and recover from hardware faults at run time.
We elaborate on the differences between our work and
previous attacks in Section 8.

In this paper, we present V0LTpwn, the first software-
controlled fault-injection attack for x86-based platforms
(together with concurrent work [38,45]). Our attack is
able to directly affect processor execution regardless of
privilege level, execution mode, or hardware isolation.
As a result, V0LTpwn is also able to compromise the
integrity guarantees of Intel’s Software Guard Exten-
sions (SGX). SGX is a hardware security extension
which Intel promotes in cloud-based scenarios where
cloud providers should be considered untrusted [27].

The key idea behind our V0LTpwn attack is to un-
dervolt the physical target core that executes the victim
software (i.e., reduce its available voltage). We achieve
this by exploiting software-exposed but obscure power-
management interfaces of modern x86 platforms. We
analyze a number of CPUs of different Intel generations
and we show that all of them are prone to fault-injection
attacks despite deploying dedicated counter measures.
In particular, all of these processors feature an elaborate
set of management and safety mechanisms collectively
called Machine-Check Architecture (MCA) [28], provid-
ing detection and fallback routines for handling critical
hardware events such as core, uncore, interconnect, bus,
parity, and cache errors.

Processors leverage a number of model-specific regis-
ters to control and report such events across different
hardware layers. These events can then be forwarded as
machine-check exceptions to software handlers to store,
process, and react to critical failures. However, we show
that an adversary can still inject exploitable hardware
faults by carefully driving processor execution into un-
stable voltage domains. We construct a proof-of-concept
exploit in which the attacker injects such faults into a
running SGX enclave entirely from software. We analyze,
conduct, and evaluate this new attack through a number
of tests across multiple Intel CPUs.

Contrary to recent hardware-oriented attacks such
as Foreshadow [58], Spectre [33], RIDL [62] and Melt-
down [36] — which are limited to extracting information
through side channels — our attack enables an adver-
sary to manipulate enclave execution and compromise
its integrity. Through concurrent use of execution units
and by leveraging power-intensive instructions we pro-
voke resource contention which results in reliable and

reproducible faults in our tests. For this, we leverage
undocumented features, extending and customizing the
available software tools to enable detailed probing and
attacks on real-world code. Our findings show that the
deployed defenses (MCA, SGX isolation) are insufficient
in practice, leaving a large number of real-world system
vulnerable to V0LTpwn.

To summarize, our contributions include the following:

• Novel attack against x86 processors: we
present V0LTpwn, the first software-controlled fault-
injection attack for the x86 platform. Through
targeted undervolting from malicious software
V0LTpwn is able to alter computational results and
affect processor execution in victim software at run
time. We introduce several new techniques, such
as identifying fault-susceptible frequency settings,
instruction patterns, and stressing the logical part-
ner core to increase temperature and resource con-
tention while undervolting.

• Real-world impact and responsible disclo-

sure: we confirmed reproducible and exploitable
faults for code running within user processes, ker-
nel code, and SGX enclaves. Intel confirmed our
findings and proof-of-concept attack, assigned a
CVE [57], issued an advisory [30], and released a
microcode update.

• Extensive evaluation and proof-of-concept

implementation: we implement and demonstrate
an end-to-end exploit against recent processors that
support SGX, which is designed as a completely iso-
lated and trusted execution environment in the pres-
ence of potentially malicious software running on
the platform. By undervolting the processor while
the SGX enclave runs we are able to manipulate
its execution at run time and demonstrate manip-
ulation of computation through software-induced
faults. Our results show that we are able to induce
and exploit faults on multiple processors of differ-
ent micro-architectures despite extensive defensive
measures to prevent, detect, and recover from such
errors.

2 Background

In this section we explain the background information
required for the understanding of the rest of the paper.
First, we describe the principles of power management
on modern x86 processors. Second, we explain undocu-
mented software interfaces for overclocking. Third, we
discuss Intel’s Machine Check Architecture. Finally, we
briefly cover the basics of Intel SGX.
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2.1 Dynamic Voltage and Frequency

Scaling on the x86 platform

The performance and power consumption of processors
depends on frequency and voltage settings. For differ-
ent software workloads, modern processors incorporate
technologies for Dynamic Voltage and Frequency Scal-
ing (DVFS). In this context, processor vendors often
define performance states (P-states), which represent
distinct pairs of voltage level and clock frequency.

On recent Intel processors, DVFS techniques are in-
cluded in its Enhanced Intel Speedstep Technology (EIST).
EIST implements hardware control of P-states and con-
siders workload, sensor measurements, power constraints
as well as software hints when selecting P-states at run
time. For configuration and hints, a software interface
is provided using Model-Specific-Registers (MSR) [26],
which require supervisor privileges. Hardware control
of P-states can be deactivated, for instance, to allow an
operating system driver to manually transition the plat-
form to a different P-state. In Intel’s Software-Developer
Manual [26], a P-state is called a ratio, i.e., an 8-bit
value determining the frequency when multiplied with a
base clock of (typically) 100 Mhz. In this paper, we will
refer to P-states with the hexadecimal representation of
the ratio. For instance, P-state 0x20 (i.e., decimal value
32) represents a frequency of 3200 MHz.

Since the Skylake microarchitecture Intel introduced
Hardware-Controlled Performance States (HWP). HWP
offers a more fine-grained interface, i.e., the OS can define
operation ranges for high-performance and energy-saving
phases. In general, P-state definitions are model-specific
as the matching core voltage for a particular frequency
is defined by the hardware and may also be adjusted
dynamically by the voltage regulators of the processor
at run time.

2.2 Overclocking Interfaces

Overclocking is a common operation used to maximize
processor performance on x86 processors. For the en-
thusiast market, manufacturers release custom unlocked
processor models. Paired with a suitable mainboard,
users are able to adjust settings like clock multiplier,
voltage levels and power limits via the interfaces of the
BIOS/UEFI implementation.

As a recent development, Intel has exposed traditional
BIOS features to the operating system to enable real-time
overclocking. For instance, Intel’s Extreme Tuning Util-
ity (XTU) as well as ThrottleStop allow users to adjust
overclocking settings like voltage levels without a reboot
of the system under Microsoft Windows. Reverse engi-
neering has revealed the use of MSR OC Mailbox (0x150)
by these applications. Interestingly, the official documen-

PayloadCommandDomain1
63 42 40 39 32 31 0

Figure 1: MSR OC Mailbox (0x150) is used to adjust
voltage levels from software, including applications such
as Intel’s Extreme Tuning Utility (XTU) and Throt-
tleStop.

tation does not disclose this functionality. However, we
find references in drivers [1], presentations [46] and many
mainboard manuals. We assume Intel keeps this func-
tionality undocumented, because voltage manipulation
can easily damage the hardware, and hence, requires
extreme caution when applied from software.

To the best of our knowledge, MSR OC Mail-
box (0x150) has the structure depicted in Figure 1. Bit
[63] is fixed and must be set to 1 in all writes to this
MSR. Bits [42:40] represent a hardware domain which is
addressed by the command in bits [39:32]. The lower 32
bits have a variable structure and contain the command
payload. An important feature of MSR 0x150 is the
ability to modify voltages. For instance, a voltage offset
can be applied to the base voltage of a P-state. We
found this feature to be available on all recent Intel pro-
cessors. The actual voltage can be changed with 5 mV
granularity. This behavior conforms to voltage regulator
specifications [49], in which the voltages requests from
the processor to the regulator unit are encoded in 5 mV
steps. We verified this experimentally. The available set
of commands appears to be dependent on the microar-
chitecture [46]. An extended description of commands
is provided in Appendix A.

2.3 Intel’s Machine-Check Architecture

Semiconductor manufacturers achieve feature sizes
within single-digit nanometer scales while continuously
decreasing power-consumption per transistor to scale up
performance of the chip. Unfortunately, this also causes
these platforms to be increasingly sensitive to environ-
mental conditions, such as heat and electro-magnetic
radiation. This means that random hardware errors are
expected given sufficient uptime of a running system [35].
For this reason, modern processor hardware features
a set of intricate error-handling mechanisms to detect,
correct, and potentially recover from such situations.
One of these mechanisms is the Machine-Check Archi-
tecture (MCA), which was introduced by Intel starting
with the P5 architecture. MCA continuously monitors
individual hardware elements, such as cores, caches, in-
terconnects and buses, integrated controllers, etc., in
real-time and logs and reports any hardware-level er-
ror conditions to a set of well-defined registers. MCA
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offers a programmable interface which enables system
software to configure and handle trigger events based on
the generated alerts. Since serious error conditions may
not allow system software to conduct any recovery (e.g.,
through controlled shutdown), MCA supports additional
recovery options through external devices. However,
since this mode of operation requires additional, non-
standard setup we focus on system-level recovery using
MCA in this paper. In the case of Linux and Windows
the OS incorporates a driver that interfaces with the
MCA registers and error handlers. Error conditions can
then be logged, reported, and handled through a partic-
ular class of software interrupts, called Machine-Check
Exceptions (MCEs). Throughout our experiments we
leveraged MCEs to aid in identifying and reverse engi-
neering vulnerable code patterns. It is noteworthy to
mention that V0LTpwn injects non-recoverable error con-
ditions which cannot be corrected from system software,
and hence, bypasses MCA.

2.4 Intel Software Guard Extensions

Intel’s Software Guard Extensions (SGX) [27] allow de-
velopers to design hardware-protected areas, known as
enclaves, that contain sensitive code. Access to enclaves
is only allowed through specific entry points, known as
ecalls. Unauthorized access to SGX memory, known
as Enclave Page Cache, is disallowed by the processor.
Bus snooping attacks, which consist in physically moni-
toring the memory bus to extract memory values, are
mitigated through the use of memory encryption and
memory integrity techniques. SGX offers local and re-
mote attestation services.

SGX does not address side-channel attacks by design,
leaving to the developer the burden of developing side-
channel resilient code. Consequently, there have been a
number of works on side-channel and micro-architectural
attacks [9,21,22,37,59,64], and side-channel defenses [4,7,
11,23,47,52,54]. Critically, SGX does not protect against
undervolting attacks either, thus allowing V0LTpwn.

To the best of our knowledge, no previous work man-
aged to violate the integrity of computation in an SGX
enclave without resorting to software vulnerabilities.

3 The V0LTpwn Attack

In this Section we present the main principles of our
V0LTpwn attack, which injects faults in SGX enclaves
by undervolting the processor.

3.1 Adversary Model and Assumptions

Our adversary model and assumptions are consistent
with the SGX threat model. We assume:

Root access The attacker has control over a user pro-
cess with root privileges. This also enables an ad-
versary to query the target system, e.g., to learn
the exact model number of the processor.

DVFS The attacker has access to software-controlled
dynamic frequency scaling; all recent Intel x86 pro-
cessors support it using EIST [26] (see Section 2.1).
Moreover, we require the firmware to allow access
to MSR 0x150, which was the case for all machines
we tested.

Target binary The attacker has a copy of the intended
victim program binary for offline testing. This is a
common scenario in attacks against a well-known
program or algorithm (e.g., crypto).

Unlike traditional fault-injection attacks, V0LTpwn
requires no physical access to the target machine. Fi-
nally, V0LTpwn does not rely on any software vulnera-
bilities, and hence we do not need to make any specific
assumption about the security of the code running on
the platform (all code can be protected by defenses such
as control-flow [3] and data-flow integrity [10], or even
formally verified).

The goal of the attacker in this setting is to tamper with
the integrity of the code executing inside an SGX enclave.
While loading attacker-controlled code by corrupting
SGX’s setup process might be viable, we note that the
impact of malicious enclaves is actually limited since
enclaves are completely isolated from each other. Hence,
influencing execution of benign enclaves might often be
more valuable for an adversary.

3.2 Challenges

To implement V0LTpwn, we face the following challenges:

Symmetric Architecture Commodity multi-core pro-
cessors from Intel maintain a single voltage domain
that is shared between all physical cores of the sys-
tem, unlike ARM cores which can be regulated
independently. As a result, undervolting the core
where the victim code executes also undervolts the
core running the exploit, leading to potential faults
in the exploit code as well. We tackle this challenge
in V0LTpwn by partitioning cores and minimizing
noise throughout the system (see Section 4.1).

Processor Diversity Intel’s x86 processors are avail-
able for different markets ranging from laptops up
to high performance server systems. Although the
microarchitecture is the same, these processor mod-
els are operated with different voltage levels. We
address this challenge in V0LTpwn by conducting
a dedicated, offline analysis phase, for which we
developed a reproducible lab setup that allows us
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Figure 2: Overview of the V0LTpwn attack.

to apply attack parameters inferred from a differ-
ent (but similar) physical machine to the victim
machine (see Section 4.2).

Error Correction Unlike ARM processors, Intel pro-
cessors integrate the Machine Check Architecture
(MCA), which is able to correct errors which oc-
cur due to undervolting [41], as explained in Sec-
tion 2.3. Our attack bypasses MCA by generating
non-recoverable faults (see Section 4.3).

Undocumented Interfaces The hardware interfaces
to adjust the voltage (Section 2.2) are undocu-
mented. To use them, we had to rely on third-party
reverse-engineered partial documentation and piece
it together to develop a real-world setup running on
our systems.

3.3 Attack Workflow

As mentioned before, the goal of the attacker is to ex-
ploit hardware glitches in an undervolted processor to
influence the execution of an SGX enclave in a controlled
way. For this, the attacker needs information about the
victim’s binary as well as the response to undervolting
of the target processor model. Both of them can be
collected offline, without interacting with the target sys-
tem (Phase 1 in Figure 2). Afterwards, the attacker
needs to collect information about the physical cores in
the target system, to detect which core is more prone
to faults (Phase 2 in Figure 2). With the information
from Phases 1 and 2, the attacker can choose the most
appropriate core in the system and mount the attack
(Phase 3 ). We will explain these phases in the following.

Phase 1: Offline Analysis The attacker aims to de-
termine a voltage level low enough to generate glitches
without completely disrupting the operation of the CPU
(exploitable voltage window). In order to determine an
exploitable voltage window, the attacker progressively
reduces voltage levels until faults occur, but the system
does not freeze yet. During this test, the machine is
likely to freeze or crash multiple times, which might be
detected, if the test is performed on the target machine
directly. Since the exploitable voltage window is very
similar between processors of the same model, the at-
tacker can acquire another processor of the same model
and perform these initial tests on it.

Moreover, the attacker should minimize the duration
of undervolting to prevent crashes on the target machine.
Hence, the attacker analyzes the target binary, in order
to identify parts of the code most vulnerable to faults. To
this end, the attacker can scan the binary for instances
of known vulnerable patterns, which we describe in Sec-
tion 4.3. Next, the attacker observes the execution of
the target program on the attacker’s identical processor,
in order to estimate at which point of the execution the
binary will run the fault-prone code and for how long.

Phase 2: Online Core Fault Analysis In Phase 2,
the attacker sets up the target system for undervolting
and then probes each available core, one at a time, to
determine the specific fault patterns of that core. As
an example, the attacker can check how frequently the
core under test experiences faults under various test
conditions. This test must be done on the actual target
machine, since every physical core produces different
glitches while undervolted.

Phase 3: Attack In the previous phases, the attacker
has learned which code can be faulted and which system
conditions are required to induce the fault. The attacker
is now able to use this knowledge to set up the system,
start the target enclave, and undervolt the processor
while the enclave is running the desired code to provoke
glitches in the data, thus violating the integrity of the
execution.

Target System Setup The target platform needs to
be configured in a fault-prone configuration, using the
safe undervolting levels learned in Phase 1. Besides con-
trolling the voltage, the attacker needs to limit all sources
of noise, since the attack requires carefully balancing
the voltage level slightly above the critical threshold to
push it into fault-inducing territory at the right moment
in time. Since unexpected events during this critical
period can easily result in crashes or freezes, we organize
processes such that the victim enclave is running alone
on a core and disable various automatic management
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features of the hardware (as we describe in Section 4.1).
This way, the victim enclave runs alone, with minimal
interference, on a core of the attacker’s choice, e.g., the
most fault-prone.

Moreover, the attacker can further tweak the configu-
ration of the processor to improve the performance of
the attack. One option is to vary the temperature of the
core, e.g., by running stressing code until the desired
temperature is reached. Additionally, the attacker can
run especially crafted code (stressor) on the logical part-
ner of the core where the victim is executing, in order
to maximize resource contention.

4 Implementation

This section presents our systematic approach to identify
vulnerable conditions on Intel processors. First, we
outline the testing procedure we developed to test for
software-inducible faults on recent x86 platforms. Then
we present how we identified vulnerable code patterns
that yield reproducible bit flips on both Kaby Lake and
Coffee Lake processors we tested in our lab.

4.1 Attack Setup

To ensure reproducible results and prevent interference
from the run-time environment (i.e., noise) we first es-
tablish a setup in which disturbances from hardware
and software are reduced to a minimum (or ideally, com-
pletely disabled). In the following, we explain the indi-
vidual steps to achieve that.

Controlling Voltage and Frequency On Intel pro-
cessors, the voltage and frequency are determined by
the selected P-state of the cores. As the attacker, we
can control them via the EIST or HWP interfaces (see
Section 2.1). As a first step, we disable the operat-
ing system drivers which communicate with them. For
Linux this means disabling the modules acpi_cpufreq
and intel_pstate.

Second, we disable automatic hardware-based selec-
tion of P-states. In EIST, we have to set bit 0 of MSR
0x1AA to 1, which enables us to set the P-state directly
using MSR 0x199. A P-state can alternatively be en-
forced using HWP instead of EIST (e.g., if the firmware
enables it). This can then be achieved by setting the
minimal, maximal, and desired P-state in MSR 0x774
to the same value. Once a P-state is set, all cores of the
system are running at the same voltage level and clock
frequency. Small differences are measurable because
the on-die power regulation conducts small adjustments
based on sensor feedback and workload [2]. Having fixed
a P-state, we are now able to control the voltage levels
by sending commands via MSR 0x150 (OC Mailbox).

Attacker Core Victim Core

Logical Core

Target
Program

Logical Core

Stressor

Logical Core Logical Core

(Idle)
System

Processes

Attack Script

Figure 3: Core partitioning for V0LTpwn, in order to
minimize noise and maximize resource contention on the
target program.

Core Partitioning and Noise Reduction To en-
sure that the targeted core only runs the target appli-
cation — with minimal interference — we partition all
logical cores into two groups, attack and victim (Fig-
ure 3). This can be performed using the control group
feature on Linux via the cset user-space management
utility. We assign one core to the attack group, while
putting all the remaining physical cores in the victim
group. We then migrate all running processes to the
attack group to minimize noise on the cores of the victim
group. This will not always result in perfect idle situa-
tions, since migration can fail, e.g., for kernel threads.
This means individual cores of the victim group may still
contain more than one thread.

Reducing Hardware Interference Intel processors
have mechanisms deployed to ensure that thermal lim-
its and power constraints are obeyed. In general, these
mechanisms play an active role in high-performance sit-
uations by reducing the P-state. To prevent interference
at higher P-states, we disable them in our setup. Specif-
ically, we disable the Thermal Control Circuit, Thermal
Interrupt Control, PP0 and PP1 power limits as well as
the package counterparts in the respective MSRs [26].

4.2 Undervolting x86 Processors

In the undervolting process the attacker searches for
fault-prone voltage levels. Due to the shared voltage
domain on x86-based platforms, we cannot target individ-
ual cores which makes containing faults within one core
challenging (as opposed to, e.g., ARM-based platforms
where fine-grained DVFS allows undervolting physical
cores within their own voltage domain [44,55]). Hence,
our implementation makes use of a software-based ap-
proach which relies on two principles: core isolation and
selective probing. Core isolation is established through
our system setup as explained in the previous section. Se-
lective probing means that only one test core is executing
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1 buffer[] input;

2 reference = algorithm(input);

3
4 // undervolting starts here

5 loop {

6 result = algorithm(input);

7 if (reference != result){

8 print_difference(reference , result);

9 exit;

10 }

11 }

Listing 1: Pseudo-code of our automated testing proce-
dure.

1 _loop:

2 push %r10;

3 vpsllq %xmm3 , %xmm4 , %xmm6

4 vpsllq %xmm3 , %xmm5 , %xmm7

5 pop %r10;

6 jmp _loop;

Listing 2: Code of our most effective stressor.

candidate programs while the system core increasingly
undervolts and collects information about possible fault
occurrences. Moreover, our setup establishes tempera-
ture differences between the cores. The idle cores have
the lowest temperature. As the victim core is constantly
executing code, it has the highest temperature. Addi-
tionally, we use stressors on the logical partner core to
further increase the temperature. The temperature of
the attack core is lower than the victim core; since we
want to keep it as low as possible, the logical partner of
the attack core is kept idle.

Test Programs We developed a set of test programs,
which are based on the concept in Listing 1. The idea
is to have conditional checks on deterministic results
which stop execution when a deviation has been detected.
First, we deterministically compute a reference result
on Line 2. This step is conducted at normal operation
voltage. Next, we execute the same computation but in
a loop and using an undervolting setup. In each iteration
we compare the reference output with the output of the
previous iteration. Since the input is fixed and the target
instructions perform deterministic operations on that
input, any differences from the reference results indicates
that a fault has corrupted the result.

Stressors In order to stress the undervolted compo-
nents of the CPU, we looked for instruction sequences to
execute on the logical partner of the target core. While
the faults still happen frequently without stressors and
even with hyperthreading disabled, we find that a good
stressor improves the likelihood of faults. The best-
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Figure 4: Processor behavior when exposed to reduced
voltage. The voltage levels are only for illustrative pur-
poses, since they vary according to processor model and
P-state.

1 // logical vector operation

2 vpxor %xmm1 , %xmm2 , %xmm3

3 // data transfer to memory

4 vmovdqu %xmm3 , (%rsp)

Listing 3: An instance of the vulnerable pattern VP1.

performing stressor we found is in Listing 2. This stressor
was deployed and running in all of our experiments.

Fault Detection In addition to the test programs, we
relied on two more sources that indicated to us, when a
fault occurred. First, the Machine Check Architecture
(MCA), which delivers meta information about corrected
and uncorrected faults in MSR. During our testing
we monitored the respective MSR with existing tools
like mcelog. For information about uncorrected errors,
we were required to edit the MCE handler, either by
dynamically instrumenting it or by compiling our own
kernel.

Second, we monitor the operating system for processor
exceptions like Invalid Opcode or General Protection.
These exceptions might for instance be raised if the
induced fault tampers with instruction decoding and
therefore leads to the processor executing instructions
that are not part of the correct code.

4.3 Bit flips in SIMD Memory Transfer

In Figure 4, we depict the observed behavior of the
processor while it undergoes undervolting. As the volt-
age decreases, the processor starts to experience some
errors that the MCA is able to correct (Corrected Er-
rors). At a lower voltage, the system becomes unstable;
the processor starts encountering hardware exceptions
in interrupt handlers. However, between these two re-
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gions we encounter an exploit window, i.e., a voltage
level where the processor experiences uncorrected bit
flips that the MCA does not detect, but the system
is still stable enough. In order to explore the exploit
window, we implemented the concept in Listing 1 with
common encryption algorithms like AES and Twofish.
The programs continuously encrypt the same buffer and
do not lead to faults under nominal voltage conditions.
In our test setup, we executed the programs at different
P-states while undervolting the core domain. We found
some of the programs to be susceptible to faults when
reaching specific voltage levels. This means that the
comparison on Line 7 of Listing 1 revealed a difference
in the computed results due to flipped bits in the output
buffer. As depicted in Figure 4, the exploitable voltage
level is located approximately 5 mV above the point,
where the system starts to become unstable (e.g., due
to exceptions in the kernel).

By manually analyzing the programs, we found the
fault to affect two particular code patterns of SSE/AVX
instructions:

VP1 a parallel logic (e.g., xor) operation, followed by a
move instruction from a vector register to memory,
and

VP2 a parallel add operation, followed by a move in-
struction from a vector register to memory.

An instance of the pattern VP1 is presented in Listing 3.
On Line 2 of Listing 3, the exclusive OR (XOR) of regis-
ters xmm1 and xmm2 is computed and the result is stored
in register xmm3. On Line 4 the value of this register
is moved to memory, which in this case is indirectly
addressed by a pointer in the register rsp.

5 Attacking SGX Enclaves

In the following we describe two different attack scenarios:
first, our initial proof-of-concept attack that exploits bit
flips induced through undervolting in an enclave. Second,
we present an attack against a real-world SGX crypto
library developed by Intel.

5.1 From Bitflips to Attacks in SGX

We will now discuss how we leveraged the bit flips we
discussed in Section 4.3 for the V0LTpwn attack. To
illustrate the impact of bit flips on an SGX enclave, we
start by considering some simple example code which
first processes some input in memory and then branches
execution based on the result. We provide a stripped
down version of the relevant parts of the code in Listing 4,
highlighting the most important parts in the form of
inline assembly for clarity. In our example, the variables
a, b, and r represent 128-bit vectors encoding a particular

1 unsigned long a[2]={ULLONG_MAX , ULLONG_MAX};

2 unsigned long b[2]={ULLONG_MAX , ULLONG_MAX};

3
4 unsigned long r[2];

5
6 __asm__ __volatile__ (

7 "vmovdqu %1, %%xmm10;"

8 "vmovdqu %2, %%xmm11;"

9 "vpand %%xmm10 , %%xmm11 , %%xmm12;"

10 "vmovdqu %%xmm12 , %0;"

11 :: "m" (*r) , "m" (*a), "m" (*b)

12 : "%xmm10","%xmm11","%xmm12", "memory");

13
14 if(r[0] == ULLONG_MAX && r[1] == ULLONG_MAX){

15 do_normal_operation();

16 } else {

17 do_recovery();

18 }

Listing 4: The enclave code used in our control-flow
deviation PoC.

program value (in this case ULLONG_MAX which causes
every bit to be set to 1).

First, the enclave loads the two values a and b from
memory into registers xmm10 and xmm11 respectively. The
enclave then performs a logical AND of the values a and
b through the instruction on Line 9. It copies the result
back to memory (i.e., variable r) on Line 10. Next, en-
clave execution checks the result against the ULLONG_MAX
value on Line 14. In theory, this means that control flow
should never reach Line 17 in this particular example.
We would like to reiterate that this example code does
not suffer from any software bugs and under normal
circumstances enclave execution will always take the if
branch on Line 15. However, using our fault injection
attack we were able to force enclave execution into tak-
ing the else branch on Line 17 instead. We were able
to perform this attack with up to 99% success rate: we
provide detailed evaluation results about fault-inducing
parameters and reliability of this particular exploit sce-
nario in Section 6.3. Next, we are going to demonstrate
how bit flips can be exploited in real-world SGX code.

5.2 Attacking Real-World SGX Code

Implementation of multiple cryptographic ciphers are
prone to our fault injection attacks, including OpenSSL
and the crypto API of the Linux kernel. Hence, we
demonstrate the feasibility of real-world V0LTpwn at-
tacks by targeting an enclave running Intel’s OpenSSL
SGX library, which represents real-world crypto code
that is specifically designed and intended to run inside an
SGX enclave. We linked its latest Linux library version1

against an enclave that validates a hash-based message

1Branch lin_2.5_1.1.1c of the repository at https://github.

com/intel/intel-sgx-ssl.
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Processor Core
Target core start

temperature (°C)
Voltage

(V)
Offset

(mV)
32B payload 1KB payload

i7-7700K

0 40 0.705 -245 24.8 (σ=24.4) 0.0 (σ=0.0)
1 40 0.700 -250 1795.6 (σ=1096.5) 1983.8 (σ=364.2)
2 40 0.710 -240 821.2 (σ=321.0) 745.2 (σ=148.8)
3 40 0.710 -240 283.6 (σ=119.9) 235.2 (σ=51.6)

i7-8700K

0 47 0.760 -245 9621.6 (σ=146.7) 9548.7 (σ=314.4)
1 47 0.765 -275 35.2 (σ=15.9) 1320.2 (σ=243.3)
2 47 0.755 -285 2675.6 (σ=195.1) 119.4 (σ=28.2)
3 47 0.765 -270 0.0 (σ=0.0) 4.6 (σ=9.2)
4 47 0.760 -275 1496.8 (σ=148.1) 1552.8 (σ=189.5)
5 47 0.765 -245 57.4 (σ=114.3) 0.0 (σ=0.0)

Table 1: Success rates of our attack to the OpenSSL HMAC implementation. We ran every test 5 times and report
the average number of successes per 10 000 tries and the related standard deviation (σ), for every core and payload
size. In addition to absolute voltage levels, we present the offsets applied to MSR 0x150. We found that required
voltage offsets can vary slightly, as base voltage depends on a number of factors, such as active C-states, workload, as
well as temperature.
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Figure 5: Success rate of our OpenSSL HMAC attack
on various cores. The top graph refers to a payload size
of 32B, the bottom one 1KB.

authentication code (HMAC) using the cryptographic
hash function SHA256.

We evaluated this attack on a Core i7-7700K and a
Core i7-8700K processor. The microarchitecture of the
former is Kaby Lake, that of the latter is Coffee Lake. We
evaluated different message sizes and physical cores, while
running the stressor from Listing 2 on the logical partner
core. The results are summarized in Table 1, which
reports the expected number of successes per 10 000 tries

and the related standard deviation. For every core we
conducted five independent test runs with two different
message sizes (32B and 1KB). The adversary can reliably
induce faults during hash computation on at least one
physical core for each processor (namely core 1 for the
7700K and core 0 for the 8700K). An attacker utilizing
these cores is able to induce faults in up to 34% of the
HMAC validations on the 7700K and up to 99% on the
8700K. The other cores on the 7700K are unable to
function at the same low voltage as core 1, while faults
are rare at higher voltages. On the 8700K, cores 2 and 4
can function at the same low voltage as core 1 or even
lower, but they only have a success rate of up to 30%
and 16% respectively.

All in all, this shows that benign, real-world enclave
code is susceptible to faults that can be provoked from
software. This can be especially devastating from a secu-
rity perspective during secret key generation. Since the
computational security of public-key cryptography relies
on the assumption that some mathematical problem is
computationally hard, flipping a bit in one of the inter-
mediate results could potentially weaken the security of
the underlying cipher to enable real-world brute-forcing
attacks.2 Further, a number of recent works leverage
TEEs to implement higher-level smart contract proto-
cols [12, 13] or multi-party computation [18, 42]. Both
of these use cases depend heavily on cryptography and
we expect them to be highly affected by the V0LTpwn
attack.

2Further attack possibilities include denial of service when
encrypting data, such that decryption becomes impossible due to
a faulty key being used by the enclave.
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6 Evaluation and Results

In this section, we evaluate our V0LTpwn attack. In
particular, we analyze at which voltage levels faults
occur, how they manifest in memory (e.g., with respect
to locality), and how reliably bit flips can be exploited
within SGX.

6.1 Tested Platforms and Configura-

tions

For the evaluation we used multiple Intel processors from
different generations. In detail, we used the i7-7700 and
i7-7700K with the Kaby Lake microarchitecture and the
i7-8700K from the Coffee Lake generation3.

We conducted preliminary testing on these platforms
which we found to be prone to non-recoverable, software-
induced processor faults due to undervolting. Our plat-
forms are running the official Intel SGX SDK, PSW and
drivers in version 2.5 released in May 2019 for Ubuntu
18.04 (minimal installation).

We created an example SGX enclave which we build
in Hardware-PreRelease mode.

6.2 Fault-Inducing Voltage Level

To demonstrate that bit flips can be reproduced at arbi-
trary P-states, we evaluated the set {0x8, 0x10, 0x1B,
0x20, 0x24, 0x2A} on our test processors. We used the
same setup as described in Section 4 and executed a pro-
gram containing the vulnerable code pattern (Listing 3)
on every core. For every run, we measured the earliest
fault-prone voltage level. In Table 2, we present the re-
sults for the i7-7700K processors. In general, we observe
that every P-state has custom fault-prone voltage levels.
Depending on the P-state, the voltage offset, which has
to be applied to MSR 0x150, ranges between 250 mV
and 300 mV. For every P-state, we measure differences
of 5 to 10 mV between the cores.

Repeating the same procedure on the other processors
yields the same observations. However, every processor
model has individual fault-prone voltage levels. We
assume the cause lies in variations in the manufacturing
process and source materials. Regarding the V0LTpwn
attack, the result implicate that an attacker has to adapt
the attack parameters for every target processor.

P-state T (°C) Core 0 Core 1 Core 2 Core 3

0x08 32 0.540 0.545 0.535 0.545
0x10 33 0.585 0.585 0.580 0.585
0x1B 37 0.700 0.710 0.705 0.705
0x20 41 0.765 0.775 0.770 0.775
0x24 42 0.825 0.835 0.835 0.835
0x2A 50 0.930 0.935 0.930 0.935

Table 2: Fault-prone voltage levels (V) for different P-
states and cores of i7-7700K processor.
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Figure 6: Reliability results of our proof-of-concept on
the i7-7700K processor: success rate of the PoC exploit
in Listing 4.

6.3 Evaluation of the Control-flow Devi-

ation PoC

We evaluated our proof-of-concept control flow deviation
exploit (described in Section 5.1) on all cores of our i7-
7700K processor, spanning the whole range of available
P-states. We created an SGX enclave which runs the
code in Listing 4 10 000 times. We then tried running the
enclave in various undervolted environments for 100 000
times. Figure 6 shows the success rate of the attack, i.e.,
the percentage of runs in which the different branch was
executed in Listing 4. We tested two different stressors:
the stressor from Listing 2 and an AVX implementation
of the Twofish cipher [25]. The best-performing stressor
is the code from Listing 2; while using this stressor,
cores 1, 2, and 3 achieved success rates of 99%, 96% and
99% respectively at 700 mV and P-state 0x1B. Using
the Twofish code as a stressor, we could only achieve
up to 8% success rate on core 1 at P-state 0x1B, 6% at
P-state 0x20, and 2.5% on P-state 0x24. Cores 2 and 3

3Intel uses Stepping codes to differentiate between different
revisions of a microarchitecture. Our Kaby Lake processor has
Stepping 9 and our Coffee Lake has Stepping 10.
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Figure 7: Heat map of the location of bit flips inside
a 128-bit word, for 1000 faults on each core of each
processors.

reached a success rate of 2.5%. Core 0 did not show a
significant number of faults.

We could only obtain faults in P-states between 0x1B
(2700 MHz) and 0x24 (3600 MHz). Lower P-states yield
practically no successful attacks but only lead to recov-
erable errors. This is reasonable, since a lower P-state
effectively means that the processor is running at a lower
frequency (e.g., 800 MHz for P-state 0x8 and 1600 MHz
for P-state 0x10), and hence, requires overall less power
to execute instructions. Therefore, lowering the voltage
supply is not an effective measure to produce faults on
the lower frequency domain — at least not within the
limits available from software. Pushing the system to-
wards the high frequency limits did not produce better
exploit reliability after a certain point. While perhaps
counter-intuitive at first, this can be explained by two
facts: first, higher frequency domains naturally require
higher voltage levels. This means that the base voltage
that is supplied to the cores in that state will be higher.
However, the voltage offset the attacker is able to set
to reduce the voltage supply from software is limited
to a fixed range, and hence, affecting core voltage from
software in this way is less effective in the higher fre-
quency domain. Second, it has been known for a long
time that hardware becomes generally less stable as clock
frequency increases [51]. This means, any physical effect
interfering with normal processor execution has more
severe consequences for the overall system at higher clock
frequencies. For instance, in our tests we observed that
the system will more easily produce a hard crash than
issue machine-check exceptions in the higher frequency
domain.

Processor Core 1 BF 2 BF 3+ BF

i7-7700

0 905 83 12
1 709 199 92
2 405 444 151
3 855 122 23

i7-7700K

0 934 66 0
1 988 7 5
2 912 67 21
3 997 3 0

i7-8700K

0 942 32 26
1 2 0 998
2 589 275 136
3 999 1 0
4 586 410 4
5 614 239 147

Table 3: Breakdown of 1000 faults on various cores and
processors: for every core, the table shows how many
faults led to one bit flip, two bit flips, and three or more
bit flips

6.4 Fault Manifestation

Being able to induce faults in a reproducible way from
software allowed us to study the behavior and details
behind the generated faults. We analyzed the faults with
regards to their position on our three processors: i7-7700,
i7-7700K, and i7-8700K. We made several interesting
observations: first, all faults we observed manifested as
bit flips in the result of computation or memory trans-
fers. Second, bit flips affected different byte positions
within the respective 128-bit word used by the faulting
instructions (Figure 7). Since the minimal, vulnerable in-
struction patterns VP1 and VP2 utilize vector operations,
we focused on 128-bit words used by AVX instructions
in our subsequent analysis. Our tests show that faults
are significantly more likely for certain byte positions,
while other locations were never affected. The affected
bytes are different for each physical core we tested: for
instance, on core 3 of the 8700K faults were heavily
localized within byte 4, while the remaining cores were
affected by bit flips throughout several different byte po-
sitions. In contrast to this, core 1 was affected by bit flips
within all byte position. Interestingly, the number of bit
flips produced per fault also varied between cores (Ta-
ble 3). On the 7700K, physical cores were likely to yield
only a single bit flip, while on the 7700 we observed a
larger number of multi-bit errors. On the 8700K, we
observed both single-bit and multi-bit faults.

Perhaps most crucially, the affected byte locations
remained stable for a given physical core: the bit flip
positions were reproducible on each core at different
times and also consistent across different P-states.
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7 Discussion

Being able to compromise the integrity of computations
is a powerful tool in the hands of software adversaries.
So far, we were able to confirm successful fault-injection
attacks from software against certain vulnerable code
patterns, which have to be part of the victim code (List-
ing 3). These susceptible pieces of code we identified
are naturally used in many implementations, e.g., to
optimize the performance using SIMD instructions.

7.1 Fault-Susceptible Instructions

We also conducted another series of tests using non-
temporal instructions, such as movnti and movntq fol-
lowed by an sfence instruction as replacement. These
non-temporal instructions bypass the caches and access
memory directly. Our results showed that we still were
able to achieve reproducible bit flips and the patterns
did not change due to non-temporal move instructions.
We conclude that bit flips in the result must have been
introduced by the physical core as opposed to one of the
caching structures, e.g., execution units, the register file,
read or write buffers, or possibly one of the buses.

In our analysis we identified the respective, susceptible
vector operations in many real-world implementations
of cryptographic algorithms. As we demonstrate, we
were able to exploit these fault-susceptible instruction
patterns to achieve memory corruption in the absence
of software vulnerabilities by undervolting the processor.

7.2 Other Attack Scenarios

In this paper we demonstrated attacks against SGX
enclaves, however, other attack scenarios might be vi-
able within our threat model. For instance, an adver-
sary might try to break Mandatory Access Control on
SELinux [39] or other LSMs, which restrict and sepa-
rate privileged user-space access from kernel access, or
System Management Mode (SMM) code, which runs at
a even higher privilege level than the kernel. Further,
during our testing we noticed that the voltage setting
through MSR 0x150 remains in place after rebooting the
system (i.e., through warm reset). This opens up the
possibility of targeting bootloader code, which typically
represents the root of trust on modern platforms.

Another interesting aspect is that we occasionally ob-
served the Invalid Opcode processor exception while un-
dervolting our testing code. This exception is usually
raised if the processor encounters a malformed instruc-
tion. However, since our testing code only contained
valid, well-formed instructions, this exception must have
been introduced by our undervolting. The MCA logs
confirmed this observations by reporting instruction de-

code corrected errors, leading us to conclude that it is
possible to tamper with instruction decoding through
undervolting in principle. However, we leave an in-depth
investigation of this to future work.

7.3 Mitigations

We responsibly disclosed our findings to Intel, which
developed and recently released a mitigation against
malicious CPU voltage setting modification, consisting
of two parts: (1) a BIOS patch that includes a setting
to enable or disable the overclocking mailbox interface
configuration, and (2) a microcode update that adds the
current state of this setting to the SGX TCB attestation.
As a result, Intel’s Attestation Service will only accept
updated platforms with access to MSR 0x150 disabled.

7.4 Other Platforms

Currently, our attack focuses on Intel processors (which
support SGX) and we did not test or evaluate our at-
tack on AMD systems. While confidentiality of Intel
processors has been attacked in many prior publications,
V0LTpwn is — together with concurrent work [38,45] —
the first successful attack on processor integrity for the
x86 platform.

8 Related Work

Related attacks have been demonstrated against ARM-
based devices previously [44,55] and a number hardware-
oriented side-channel attacks were published recently for
x86 which do not involve fault injection. Further, concur-
rently to our work, Murdock et. al. and Qiu et. al present
similar attacks, Plundervolt [38], and the SGX version of
VoltJockey [45], both of which also abuse the MSR 0x150
to inject faults in SGX enclaves. They describe faults in
the integer multiplication and AES instructions, while
our work describes faults in vector instructions (which
we suspect are the root cause for the AES faults). While
both focus on confidentiality by leaking cryptographic
key material, V0LTpwn demonstrates control-flow devia-
tion during enclave execution. Moreover, we analyzed
desktop processors, while these works focus on laptop
processors. Finally, neither Plundervolt nor VoltJockey
investigate the effect of stressors, temperature, or spatial
locality of bit flips.

In this Section we first elaborate how V0LTpwn com-
pares to related attacks that were presented previously.
Second, we present a quick overview of the related tools
and methods for conducting fault-injection attacks from
software.
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8.1 Hardware-Oriented Exploits

For a direct comparison, we only focus on hardware
attacks that are within the scope of our threat model,
i.e., attacks that do not require physical presence but
can be launched remotely from software.

8.1.1 Software-Controlled Fault Injection

The CLKScrew [55] attack first demonstrated that sophis-
ticated power-management APIs on some ARM-based
devices allow an adversary to induce faults in the pro-
cessor entirely remotely. These findings were recently
reproduced independently by the TrustZone version of
VoltJockey [44]. In both cases, the authors were able to
break the TrustZone isolation boundary on a Nexus 6
smartphone. Unfortunately, the techniques used to con-
duct undervolting attacks on ARM are not transfer-
able to x86-based platforms for several reasons: first,
both Tang et al. and Qiu et al. found core voltage
and frequency to be exposed directly to software, with
practically no limitations or restrictions imposed by the
ARM architecture besides root access. This means, the
attacker is able to freely choose practically arbitrary
combinations of frequency and voltage pairs, allowing
them to construct and apply utterly unsafe settings en-
tirely from software to conduct their attack. By contrast,
the x86 platform offers only a fixed, pre-defined list of
selected P-states that are extensively tested for their
safety margins and common operating conditions by the
manufacturer prior to release. Hence, the attacker is
constrained to use one of these hand-picked frequency
voltage pair definitions to conduct a V0LTpwn.

Second, Intel deploys the Machine-Check Architecture
to explicitly check for and recover from hardware faults at
run time. Since Machine-Check Exceptions originating
from any core are broadcast to all cores, certain hard
glitches can effectively be converted into soft errors on-
the-fly on x86 and our evaluation shows that the attacker
has to push the victim core beyond a certain threshold
to ensure successful faults and exploitation. Further,
individual hardware components such as the caches and
the core have to be undervolted in lock-step for any
changes to take effect on x86. This means that faults
generated from any other of these other components
contribute to the early warning mechanism employed
by the Machine-Check Architecture. No such safety net
exists on ARM, significantly facilitating reliability of
faults and reproducible exploit scenarios.

Third, the core pinning technique introduced by Tang
et al. [55] ensures that faults are contained within a
chosen physical core, making it straightforward to launch
attacks against a target core from one of the running
system cores as an attacker. This technique works since
each core can effectively operate in its own P-state on

ARM. On x86 all physical cores operate within the same
P-state, which means that the same voltage settings
apply to the attacker as well as the victim core, and
hence, faults cannot simply be contained to any given
core. This is why we introduce several novel techniques
to ensure an overall stable system while being able to
force the victim core into a fault-provoking power domain
on x86.

Lastly, since power-management is one of the key
driving factors on mobile devices the related low-level
APIs and involved hardware mechanisms are extensively
documented and tooling is readily available, or even
built into the existing platform software [44, 55]. On
x86 practically no official documentation regarding low-
level power management of the platform exists, making it
hard to develop custom tools and even conducting simple
tests usually involves costly reverse engineering of micro-
architectural features, which can also differ between the
many processor generations.

8.1.2 Rowhammer

Rowhammer attacks [32] are similar in nature to
CLKScrew [55] and V0LTpwn in so far as they gen-
erate hardware faults from software that are also ex-
ploitable [6, 24, 31, 43, 48, 50, 56, 60, 63]. However, the
main difference from our work is that Rowhammer af-
fects DRAM, which is widely used for implementing
the memory modules on off-the-shelve computing hard-
ware. This means Rowhammer attacks cannot affect
memory inside the processor, such as cached memory
and register values. In contrast to this we show that
V0LTpwn directly impacts in-processor values and can
also divert control flow. Additionally, while several coun-
termeasures [5, 8, 56, 61] have been proposed to mitigate
Rowhammer from software, no defenses currently exist
to counter processor-based fault injection attacks.

8.1.3 Speculative Execution

Recently, several works independently demonstrated that
speculative execution (a processor feature to speed up ex-
ecution by increasing instruction-level parallelism) could
be exploited from software on certain platforms to extract
information through a side channel [33,36,58,62]. Unlike
attacks based on speculative execution remote-fault in-
jection attacks are not limited to information disclosure,
but directly affects the systems integrity, allowing an
adversary to manipulate data as well as execution.

8.2 Analyzing x86 Internals

Earlier work by Pandit et al. [40] analyzed voltage off-
sets with regards to safe operation limits, with a focus
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towards increased processor performance. In that con-
text, they analyzed error handling of the Machine Check
Architecture on AMD processors and found that during
undervolting they were able to operate it beyond safe
operation points. They also observed corrected machine
check errors when reaching a threshold voltage offset and
showed an increased error rate at higher CPU utilization.

Another study by Papadimitriou et al. [41] investi-
gated voltage offsets on mobile and desktop processors
from Intel. They used standard benchmarks to stress
cores while applying voltage offsets with Intel’s XTU ap-
plication and found that voltage can be decreased up to
15% while keeping the system in an overall stable condi-
tion. They observed differences in safe voltage offsets for
the analyzed processor models and calculated that safe
undervolting can lead to an increased energy-efficiency
of up to 20% and temperature reductions of up to 25%.

More recently, Koppe et al. [34] presented a frame-
work to analyze as well as synthesize x86 microcode on
certain (older) platforms. Christopher Domas presented
initial results on reverse engineering the x86 hardware
platform and published several tools [15,16] to automat-
ically uncover certain aspects and features (including
undocumented MSRs). Domas also discovered hardware
backdoors through hidden modes on certain VIA x86
processors using those tools.

Researchers from Positive Technologies achieved re-
mote code execution on Intel’s Converged Security and
Management Engine (Intel CSME) in 2018 [19]. In-
tel CSME runs on a separate physical chip from the
host CPU (but is located within the SoC package) and
remains powered on and connected to the systems pe-
ripherals even when the main CPU is in deep sleep. Intel
CSME has full platform access, drives all security-related
tasks on modern Intel SoCs (including SGX, TXT, AMT)
and was recently found to include a logic analyzer dubbed
Intel VISA [20], revealing how Intel patches hardware
vulnerabilities in microcode. A recently disclosed boot
ROM bug in CSME-enabled chips prior to Ice Lake al-
lows for escalation of privilege, denial of service, and
information disclosure [29].

9 Conclusions

In this paper we introduced V0LTpwn, a novel software-
controlled fault-injection attack that leverages frequency
and voltage control interfaces to compromise the integrity
of x86 processors. We find and discuss multiple code pat-
terns that are prone to bit flips and are commonly used
in crypto code. We show that V0LTpwn can generate
faults in real-world OpenSSL code running in an SGX
enclave with a success rate of up to 99%. We analyze the
success rate of V0LTpwn over a variety of parameters.
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A OC Mailbox Interface

In Table 4 we list the possible domain and command
encodings that are known to us. Not all x86 platforms
are designed for overclocking, so the commands may
not be available on all systems. However, we found the
voltage read/write commands 0x10/0x11 to be present
in all newer mobile and desktop platforms. The write
command is used to modify the voltage of the domain
unit and is present in the two modes offset (0x) and
static (0x1), which can be selected by bit [20] of the
payload. The offset mode applies the offset value located
in the bits [31:21] to the voltage of the domain. The
offset is encoded as an 11 bit signed value, allowing a
theoretical offset range from -1024 mV to 1023 mV. For
the domain Core (0x0), the offset is applied to the base
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Domain [42:40] Command [39:32]
0x0 Cores 0x10 Read Voltage Change
0x1 Core GPU 0x11 Write Voltage
0x2 LLC/Ring
0x3 System Agent

Table 4: Relevant domain and command encodings for
using MSR OC Mailbox (0x150) from software.

voltage of every P-state. As an example, writing the
value 0x80000011f3800000 to the OC Mailbox MSR,
will apply an offset of -100 (0xf38) mV to every P-state.

In static mode, the domain voltage can be set to a fixed
value that is encoded in the bits [19:8] of the payload.
This 11 bit unsigned value is divided by 1024 by the
hardware, allowing to set a static voltage from 0 to 2V.
In the rest of the paper, only the offset mode is used to
control the voltage. When we use the term undervolting
we mean applying a negative offset via this command
through the MSR OC Mailbox (0x150). We would like to
emphasize again that any details related to MSRs can in
principle depend on the micro-architectural generation
and model version of the processor.
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