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Abstract—Road traffic is experiencing a drastic increase,
and vehicular traffic congestion is becoming a major problem,
especially in metropolitan environments throughout the world.
Additionally, in modern Intelligent Transportation Systems (ITS)
communications, the high amount of information that can be
generated and processed by vehicles will significantly increase
message redundancy, channel contention, and message collisions,
thus reducing the efficiency of message dissemination processes.
In this work, we present a V2X architecture to estimate traffic
density on the road that relies on the advantages of combining
V2V and V2I communications. Our proposal uses both the
number of beacons received per vehicle (V2V) and per RSU
(V2I), as well as the roadmap topology features to estimate
the vehicle density. By using our approach, modern Intelligent
Transportation Systems will be able to reduce traffic congestion
and also to adopt more efficient message dissemination protocols.

Index Terms—Vehicular Networks, VANETs, vehicle density
estimation, Road Side Unit, V2V, V2I, V2X.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) involve both traffic

management and vehicle communication capabilities. Specifi-

cally, modern ITS services can efficiently manage information

on the road, being able to offer drivers a variety of added

services such as safe, efficient, and smart driving.

Regarding transportation, road traffic is experiencing a

drastic increase, and vehicular traffic congestion is becoming

a major problem, especially in metropolitan environments

throughout the world. In particular, traffic congestion: (i)

reduces the efficiency of the transportation infrastructure, (ii)

increases travel time, fuel consumption, and air pollution, and

(iii) leads to increased user frustration and fatigue [1]. Tradi-

tionally, vehicle density has been one of the main metrics used

for assessing road traffic conditions. A high vehicle density

usually indicates congested traffic; however, the density of

vehicles in a city highly varies depending on the area and the

time during the day. Thus, knowing the density of a vehic-

ular environment is important since it allows applying traffic

congestion countermeasures focused on improving traffic flow,

reducing contamination, and increasing drivers’ comfort.

Regarding communications, Vehicular Networks (VNs)

are wireless communication networks that support cooper-

ative driving among communicating vehicles on the road.

VNs involve vehicle-to-vehicle (V2V) [2] and vehicle-to-

infrastructure (V2I) [3] communications, and have received

a remarkable attention in recent years. The specific char-

acteristics of vehicular networks favor the development of

attractive and challenging services and applications. Though

traffic safety has been the primary motive for the devel-

opment of these networks, VNs also facilitate applications

for managing the traffic flow, monitoring road conditions,

environmental protection, and mobile infotainment [4]. Most

of these applications could behave more efficiently if the

protocols involved become aware of the density of vehicles at

any given time, being able to adapt their behavior according

to this factor. Hence, knowing the traffic density in vehicular

scenarios is of great importance since it promotes using

the wireless channel more efficiently, thereby improving ITS

wireless-based services.

Currently, most of the vehicle density estimation approaches

are designed to use very specific infrastructure-based traffic

information systems, which require the deployment of vehicle

detection devices such as inductive loop detectors, or traffic

surveillance cameras [5], [6]. However, these approaches are

limited since they can only be aware of traffic density in a pri-

ori selected areas (i.e., the streets and junctions in which these

devices are already located), making it difficult to estimate the

vehicular density along a whole city. In addition, some of these

approaches are not able to perform accurate estimations in real

time (e.g., using cameras involves intensive image processing

and analysis). The use of V2I communications can address the

aforementioned problems [7].

Other authors, such as Stanica et al. [8] and Sanguesa et

al. [9], propose estimating the traffic density by using V2V

communications. According to these approaches, each vehicle

is able to estimate the number of nearby vehicles by taking

into account beacon information. However, such proposals are

only capable of obtaining information about density in their

neighborhood, while being unable to infer traffic density for

the whole scenario. Hence, vehicles are unable to determine

the best route to avoid traffic jams.

Since using V2V or V2I communication approaches sep-

arately presents some advantages, but also some drawbacks,

in this work we present a V2X architecture to estimate traffic



Fig. 1. Architecture of the V2X-based vehicle density estimation system.

density on the road that combines V2V and V2I communi-

cations. Unlike previous proposals, our approach maximizes

the advantages of V2V (accuracy, microscopic approach, etc.)

with the advantages of V2I (global information, macroscopic

approach, etc.). Our proposal uses both the number of beacons

received per vehicle (V2V) and per RSU (V2I), as well as the

roadmap topology features, to estimate the vehicle density. By

using our proposal, modern Intelligent Transportation Systems

will be able to reduce traffic congestion and also to adopt more

efficient message dissemination protocols.

This paper is organized as follows: In Section II we present

the V2X-d architecture. Section III presents the simulation

environment. Section IV details our V2X real-time density

estimation proposal. In Section V we compare our V2X-d

proposal with other density estimation approaches. Section

VI introduces the most important applications of the V2X-d

architecture. Finally, Section VII concludes this paper.

II. V2X-D ARCHITECTURE FOR ACCURATE DENSITY

ESTIMATION IN VEHICULAR ENVIRONMENTS

Figure 1 presents an overview of our proposed architecture.

As shown, each vehicle incorporates an On-Board Unit (OBU)

responsible of the wireless communication, hence providing

the necessary network interfaces to implement the density

estimation mechanism using the data exchanged by the ve-

hicles on the road, i.e., V2V communication. In addition, the

OBU must have access to positioning devices corresponding

to Global Navigation Satellite Systems (GNSS) such as the

Global Positioning System (GPS) [10], or the future Galileo

[11] system developed by the European Union. This infor-

mation may be critical to determine areas of interest for the

estimation, or to predict the vehicles’ movements to improve

future estimations.

The development of the V2I part of the vehicular commu-

nication requires the installation of additional infrastructure

nodes, called Road Side Units (RSUs), that provide support to

the vehicles and are able to offer additional services. RSU de-

ployment also allows communication between different areas

of the map if necessary, by connecting to a common backbone

[12].

Using this proposed architecture, the deficiencies of the

different systems used, i.e., V2V and V2I, can be addressed

through the combination of both technologies. Vehicles can

achieve a global awareness of the network around them,

whereas the RSUs can improve their information about traffic

at microscopic levels through the local information obtained

from the vehicles. This opens a wide variety of possibilities

to obtain an accurate vehicle density estimation, overcoming

blind spots or sparsely connected areas.

In order to achieve an accurate density estimation, we first

need to develop systems able to determine the density of

vehicles by using V2V and V2I communications. Moreover,

this system should provide adequate results independently of

the scenario in which the communication takes place. That is,

the estimation mechanism should adapt to the features of the

road topology.

III. SIMULATION ENVIRONMENT

All the simulations performed in this work were done using

the ns-2 simulator, where the PHY and MAC layers have

been modified to closely follow the IEEE 802.11p standard1,

which defines enhancements to 802.11 required to support ITS

applications. We assume that all the nodes are equipped with

an IEEE 802.11p interface tuned at the frequency of 5.9 GHz

for both V2V and V2I communications.

In terms of the physical layer, the data rate used for packet

broadcasting was 6 Mbit/s, as this is the maximum rate for

broadcasting in 802.11p. The MAC layer was also extended to

include four different priorities for channel access. Therefore,

application messages are categorized into four different Access

Categories (ACs), where AC0 has the lowest and AC3 the

highest priority.

Regarding V2I communications, we used the Uniform Mesh

deployment policy [12] to deploy RSUs in the maps. This

approach consists on distributing RSUs uniformly on the map.

The advantage of this deployment policy is that it achieves a

more uniform coverage area since the distance between RSUs

is the same, preventing RSUs to be deployed too closely, or

too sparsely. As for the mobility model, it has been obtained

with CityMob for Roadmaps (C4R) [13], a mobility generator

able to import maps directly from OpenStreetMap [14], and

generate ns-2 compatible traces. Table I shows the parameters

used for the simulations.

Table II shows the main features of each map for the cities

under study: the number of streets, the number of junctions,

the average segment size, and the number of lanes per street.

According to the results obtained in previous work [9], we

consider that the parameters that better correlate with the

complexity of the roadmap are the number of streets and the

1All these improvements and modifications are available at
http://www.grc.upv.es/software/



TABLE I
PARAMETERS USED FOR THE SIMULATIONS

Parameter Value

New York, Minnesota, Madrid,

roadmaps San Francisco, Los Angeles,

Amsterdam, Sydney, Liverpool,

Valencia, Rio de Janeiro, and Rome

roadmap size 2000m × 2000m
number of vehicles [100, 200, 300...1000]
warning messages priority AC3
beacon priority AC1
interval between messages 1 second

number of RSUs 9
RSU deployment policy Uniform Mesh [12]

MAC/PHY 802.11p

radio propagation model RAV [15]

mobility model Krauss [16]

channel bandwidth 6Mbps

max. transmission range 400m

TABLE II
MAP FEATURES

Map Streets Junctions
Avg. segment Lanes/

SJ Ratio
size (m.) street

New York 257 500 45.8853 1.5730 0.5140

Minnesota 459 591 102.0652 1.0144 0.7766

Madrid 628 715 83.0820 1.2696 0.8783

San Francisco 725 818 72.7065 1.1749 0.8863

Los Angeles 283 306 408.2493 1.1448 0.9379

Amsterdam 1494 1449 44.8973 1.1145 1.0311

Sydney 872 814 72.1813 1.2014 1.0713

Liverpool 1758 1502 49.9620 1.2295 1.1704

Valencia 2829 2233 33.3653 1.0854 1.2669

Rio de Janeiro 542 401 167.9126 1.1135 1.3516

Rome 1655 1193 45.8853 1.0590 1.3873

number of junctions. Hence, we added a column labeled as

SJ Ratio, which represents the result of dividing the number

of streets between the number of junctions. As shown, the

first 5 cities (New York, Minnesota, Madrid, San Francisco,

and Los Angeles) present an SJ ratio smaller than 1, which

indicates that they have a simple topology, while the rest of

the cities (Amsterdam, Sydney, Liverpool, Valencia, Rio de

Janeiro, and Rome) present a higher SJ value, which indicates

that they have a complex topology. According to this, complex

maps like Valencia obtain worse results in terms of vehicular

communications than simple maps such as Madrid, where the

wireless signal is able to reach a higher number of vehicles.

IV. OUR V2X DENSITY ESTIMATION SYSTEM

In this section, we proceed to obtain both V2V and V2I-

based functions to estimate traffic density, with the minimum

possible error. We consider necessary to obtain both estimation

functions, since the information provided by each one can

be applied in different kinds of applications. For instance,

applications with the goal of reducing broadcast storm prob-

lems and avoiding traffic overhead in vehicular networks only

need to know the traffic density within the neighborhood

of each vehicle. However, centralized systems that aim at

avoiding traffic jams need information about the entire area

being managed to be capable of rerouting vehicles to areas

with less traffic density.

TABLE III
V2V FUNCTION COEFFICIENTS

Coeff. Value

a -1.1138191190298828E+03

b -1.0800433554686800E+01

c 3.1832185406821718E+03

d -4.0336415134812398E-01

f -3.0203454502011946E+03

g 2.8542014049626700E-03

h 9.5199929660347175E+02

i 3.5319225007012626E+01

j 1.6230525995036607E-01

k -1.6615888771467137E+01

TABLE IV
V2V DENSITY ESTIMATION ERROR

Error Absolute Relative

Minimum -2.61203E+01 -2.28480E-01

Maximum 2.16953E+01 5.71311E-01

Mean -3.17620E-10 1.02334E-02

Std. Error of Mean 1.36030E+00 1.71408E-02

Median 1.69890E-01 -1.35912E-03

A. V2V-based density estimation

In order to propose a V2V-based method able to accurately

estimate the density of vehicles, we made a total of 4000

experiments. These experiments involved the simulation of

controlled scenarios (i.e., scenarios where the actual density

is known). According to the results obtained, we propose a

density estimation function capable of estimating the vehicular

density in every urban environment, at any instant of time.

To determine the best approach, we have tested some

different functions (exponential, logarithmic, etc.). With this

goal in mind, we performed a regression analysis by using

ZunZun [17] that allowed us to find the polynomial equation

offering the best fit to the data obtained through simulation.

Equation 1 shows the density estimation function, which is

able to estimate the number of vehicles per km2 in urban

scenarios, according to the number of beacons received, and

the SJ ratio (i.e., streets/junctions) of the selected roadmap.

f(x, y) = a+ bx+ cy + dx2 + fy2 + gx3 + (1)

+hy3 + ixy + jx2y + kxy2

In this equation, x is the number of beacons received

by each vehicle, and y is the SJ ratio obtained from

the roadmap. The values of the polynomial coefficients

(a, b, c, d, f, g, h, i, j, and k) are listed in Table III.

To determine the accuracy of our proposal, we proceed to

measure the estimated error. Table IV shows the different types

of errors calculated when comparing our density estimation

function with the values actually obtained. Note that the

average relative error is of only 1.02%.

B. V2I-based density estimation

Similarly to the V2V-based vehicle density estimation ap-

proach, we proceed to obtain a function to estimate vehicle

density. To this end, we performed a regression analysis that

allowed us to find an equation offering the best fit to the



TABLE V
V2I FUNCTION COEFFICIENTS

Coeff. Value

a 2.3037584774238823E+02

b 1.9069648769466475E+01

c -4.2946130569906342E+02

d 3.1880957532509228E+01

f 1.8795302200929001E+02

g -6.8125878716641097E+01

TABLE VI
V2I DENSITY ESTIMATION ERROR

Error Absolute Relative

Minimum -5.39939E+01 -1.22576E+00

Maximum 4.83735E+01 1.69779E+00

Mean 2.84849E-13 3.04107E-02

Std. Error of Mean 2.42242E+00 3.54373E-02

Median 2.37153E-01 1.58332E-03

data obtained through simulation. We select Equation 2 as the

V2I-based density estimation function, since it obtained the

smallest relative error.

f(x, y) = a+ b · ln(x) +
c

y
+ d · ln(x)2 +

f

y2
+

g · ln(x)

y
(2)

In this equation, x is the average number of beacons

received by each RSU, and y is the SJ ratio obtained from the

roadmap. The values of the coefficients (a, b, c, d, f, and g)
are listed in Table V.

To determine the accuracy of our proposal, we proceed

to measure the estimated error. Table VI shows the different

errors when comparing our density estimation function with

the values actually obtained through simulation. Note that the

average relative error is of only 3.04%. As expected, the V2I-

based vehicle density estimation approach presents a higher

estimation error than the V2V-based approach, but it is almost

negligible for the majority of ITS applications. In addition, the

use of V2I can enrich and complete the estimation obtained

by the V2V approach.

Moreover, by using our system, we are able to estimate

the vehicular density in more specific areas. For example, we

can identify areas where the traffic is more congested (i.e.,

areas where the RSUs receive a higher percentage of beacons).

According to this, an automatic traffic control system could

take advantage from V2I communication capabilities to adapt

the vehicles’ routes in order to redirect vehicles traveling in

more congested areas to those areas where the RSUs receive a

lower number of messages (i.e., less congested), thus avoiding

traffic jams.

V. COMPARISON WITH OTHER DENSITY ESTIMATION

APPROACHES

As mentioned above, other vehicular density estimation

proposals rely on the use of infrastructure elements such

as surveillance cameras, inductive loop detectors, or ambient

microphones to estimate the vehicle density (e.g., [1], [5], and

[6]). The use of V2I communications has also been studied

(e.g., [3], [7]). Those approaches require to deploy RSUs,

although they can provide attractive and value-added services

TABLE VII
V2V BEACONS-ONLY FUNCTIONS COEFFICIENTS

Coefficient Quadratic Cubic Quartic Preece-Baines

a 1.82943E+01 2.27684E+01 3.90472E+01 1.90872E+02

b 4.13673E+00 3.29413E+00 -1.38471E+00 1.63278E+02

c -2.15091E-02 7.02894E-03 2.97587E-01 2.56730E-02

d - -2.55584E-04 -6.47130E-03 4.40558E+01

f - - 4.27413E-05 6.86664E-01

TABLE VIII
V2I BEACONS-ONLY FUNCTIONS COEFFICIENTS

Coefficient Quintic Polynomial Quadratic Logarithmic

a 1.35094E+01 -3.34403E+02

b 2.34872E-02 2.02972E+02

c 8.79406E-01 -1.82578E+01

d -3.74059E-02 1.49093E+00

f 5.62751E-04 -

g -2.82498E-06 -

when compared to the former. On the contrary, the proposals

based on V2V communications do not require the deployment

of any infrastructure nodes, but, unlike our proposal, they

usually take into account just the number of beacons received

(e.g., [8], [18]), while omitting any data related to the map

topology where the vehicles are located.

A. Performance comparison of our V2V approach against

other V2V-based density estimation approaches

In order to assess the importance of the topology, we

compared our proposal with a beacon-based approach, where

the vehicular density is estimated by only using the number

of beacons received. To make a fair comparison, we followed

the same methodology in both approaches.

We tested four different density estimation functions which

are solely based on the number of beacons received, trying

to obtain the lowest value for the Sum of Squared Errors

(SSE). Specifically, we have tested three different polynomial

functions (i.e., quadratic, cubic, and quartic), and a non-

polynomial function (based on the Preece-Baines Growth

function). Equations 3-6 show these functions, and Table VII

shows their coefficients.

f(x) = a+ bx+ cx2 (3)

f(x) = a+ bx+ cx2 + dx3 (4)

f(x) = a+ bx+ cx2 + dx3 + fx4 (5)

f(x) =
a− 2 · (a− b)

(exp(c · (x − d)) + exp(f · (x− d)))
(6)

Table IX shows the sum of squared errors for each of the

functions tested. As shown, our V2V-d function yields more

accurate results, presenting the lower sum of squared absolute

error (6.33215E+03, two orders of magnitude lower than the

rest), and it has only an average error of 8.90 vehicles, whereas

the rest of the functions that only account for the number of

beacons show an average error ranging from 40.50 to 41.57
vehicles, depending on the selected function.



TABLE IX
COMPARISON BETWEEN OUR V2X-D AND THE BEACONS-ONLY DENSITY

ESTIMATION APPROACHES

Fitted function Sum of Squared Errors Avg. vehicles error

Beacons-only Quadratic 1.38234E+05 41.57

Beacons-only Cubic 1.37994E+05 41.53

Beacons-only Quartic 1.36094E+05 41.25

Beacons-only
1.31231E+05 40.50

Preece-Baines Growth

V2V-d 6.33215E+03 8.90

Quintic Polynomial 1.89925E+05 45.94

Quadratic Logarithmic 2.01613E+05 47.33

V2I-d 4.70035E+04 22.85

B. Performance comparison of our V2I approach against

other V2I-based density estimation approaches

Similarly to the V2V-based vehicle density estimation ap-

proach, we tested several density estimation functions which

are solely based on the number of beacons received, trying

to obtain the lowest value of SSE. In particular, we obtained

the quintic polynomial function shown in Equation 7, and the

quadratic logarithmic function shown in Equation 8.

f(x) = a+ bx+ cx2 + dx3 + fx4 + gx5 (7)

f(x) = a+ b · ln(dx) + c · ln(dx)2 (8)

The results presented in Table IX confirm that our V2I-d

function provides more accurate results than the other V2I

beacons-only density estimation functions, presenting a low

value for the Sum of Squared Errors (i.e., 4.70035E+04),

whereas the beacons-based functions present a Sum of

Squared Errors value of 1.89925E+05 (for the polynomial)

and 2.01613E+05 (for the logarithmic), i.e., one order of

magnitude higher than our proposal. Specifically, its average

error is of only 22.85 vehicles, whereas the rest of the

functions that only account for the number of beacons have an

error of 45.94 and 47.33 vehicles, respectively. As shown, the

V2V density estimation is more accurate, but, as stated before,

this approach also presents some drawbacks since it cannot be

used in traffic jam avoidance systems. Hence, we consider that

a method that combines both V2V and V2I communications

is necessary.

C. Qualitative comparison of our V2X-d approach against

other density estimation approaches

To conclude this section, Table X presents a summary of the

different vehicle density estimation methods focusing on their

main characteristics. As shown, there is no density estimation

approach that can fulfill all the desired capabilities needed by

traffic control authorities and modern ITS services, with the

exception of the proposed V2X-d approach.

Traditional infrastructure-based methods, such as surveil-

lance cameras or ambient microphones, are highly affected

by the environmental conditions (bad light, adverse weather,

etc.). Although inductive loop detectors can overcome these

problems, similarly to previous approaches, their area of

potential density estimation is relatively small (i.e., the streets

and junctions where the data acquisition devices are located),

they are not fault tolerant, and, obviously, they cannot be used

to mitigate broadcast storms since they do not involve wireless

communications.

V2I density estimation approaches exhibit good traffic con-

gestion control capabilities, but they are limited in other

important functions such as broadcast mitigation features,

or fault tolerance (e.g., whenever an RSU stops working

or malfunctions, the density estimation inside its target area

will become unavailable). As for V2V approaches, they can

overcome all these problems, but they cannot be used to

provide optimal routes to vehicles; notice that vehicle density

estimation is always limited since each vehicle obtains its own

neighbor density estimation. Our V2X-d architecture brings

together the benefits of both approaches (i.e., V2V and V2I),

providing great possibilities to authorities, transport agencies,

and drivers in terms of traffic control, travel time reduction,

vehicle emissions control, as well as better and faster wireless

communications.

VI. V2X-D APPLICATIONS

Our V2X-d architecture can support a wide variety of

useful ITS applications. In this section we present the most

remarkable ones that we envision.

• Reducing broadcast storm. Broadcasting messages

blindly may lead to packet collisions and channel con-

gestion and contention, which drastically reduces the

performance of message delivery schemes [19]. Using

the density estimated by means of V2V communication,

the vehicles can determine when they are competing with

a high number of vehicles for the channel, and thus

limiting the transmission of non-critical information to

avoid channel saturation.

• Avoiding traffic jams, reducing CO2 emissions. The

global knowledge provided by V2I communication and

the information exchanged by the RSUs allow detecting

areas with a high traffic density, thus more prone to traffic

jams. Vehicles can be informed about these areas, and

thus modify their routes to reach their destination sooner.

• Reducing the emergency services arrival time to the

location where an accident has taken place, routing these

emergency vehicles through streets with a small vehicle

density, or rerouting the rest of vehicles to improve the

emergency vehicles’ path time.

• Collecting historical data about more frequently traveled

zones, with the goal of increasing road maintenance in

areas with more traffic, or allowing authorities to better

plan future actions.

• Adjusting vehicle density estimation when vehicles or

RSUs are no able to collect all the needed information

separately. During RSU deployment, some areas may

fail to have RSU coverage, creating a blind spot that

will prevent achieving an accurate global estimation.

This could lead to discrepancies between the estimated

density and the real density of vehicles located in the



TABLE X
QUALITATIVE COMPARISON OF THE DIFFERENT DENSITY ESTIMATION APPROACHES

Feature Cameras
Loop

Microphones V2I V2V V2X-d
detectors

24/7 availability ✖ ✔ ✔ ✔ ✔ ✔

All-sound conditions ✔ ✔ ✖ ✔ ✔ ✔

Different light conditions ✖ ✔ ✔ ✔ ✔ ✔

All-Weather conditions ✖ ✔ ✖ ✔ ✔ ✔

Wide coverage ✖ ✖ ✖ ✔ ✖ ✔

Real-time estimation ✖ ✔ ✔ ✔ ✔ ✔

Traffic jams avoidance ✔ ✔ ✔ ✔ ✖ ✔

Broadcast storms mitigation ✖ ✖ ✖ ✖ ✔ ✔

Fault tolerant ✖ ✖ ✖ ✖ ✔ ✔

area. However, using the data collected by means of

V2V communication, the RSUs can complete the missing

information and adjust the estimation. This strategy can

also be used to overcome failures in the system, such as

damaged infrastructure elements, backbone errors, and so

on. Having both V2V and V2I communication available

helps at obtaining more insight about the traffic charac-

teristics, increasing the fault tolerance of the system.

VII. CONCLUSIONS

This paper proposes V2X-d, an architecture that allows

estimating vehicle density in urban environments at any given

time by combining both V2V and V2I communications. Our

proposal allows improving proactive traffic congestion mitiga-

tion mechanisms to better redistribute vehicles’ routes, while

adapting them to the specific traffic conditions. Additionally, it

allows implementing more efficient and adaptive information

dissemination schemes. Unlike existing proposals, our V2X-

d vehicular density estimation architecture accounts not only

for the number of beacons received, but also for the map

topology in the region where the vehicles are located. We

demonstrate how our approach is able to accurately predict

the vehicular density. Moreover, our proposal can solve the

problems associated to existing approaches, (e.g., those caused

by bad light conditions, adverse weather, etc.).
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