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Abstract—It is common nowadays for data owners to outsource
their data to the cloud. Since the cloud cannot be fully trusted,
the outsourced data should be encrypted. This however brings
a range of problems, such as: How should a data owner grant
search capabilities to the data users? How can the authorized data
users search over a data owner’s outsourced encrypted data?
How can the data users be assured that the cloud faithfully
executed the search operations on their behalf? Motivated by
these questions, we propose a novel cryptographic solution, called
verifiable attribute-based keyword search (VABKS). The solution
allows a data user, whose credentials satisfy a data owner’s access
control policy, to (i) search over the data owner’s outsourced
encrypted data, (ii) outsource the tedious search operations
to the cloud, and (iii) verify whether the cloud has faithfully
executed the search operations. We formally define the security
requirements of VABKS and describe a construction that satisfies
them. Performance evaluation shows that the proposed schemes
are practical and deployable.

I. INTRODUCTION

Cloud computing allows data owners to use massive data

storage and vast computation capabilities at a very low price.

Despite the benefits, data outsourcing deprives data owners of

direct control over their outsourced data. To alleviate concerns,

data owners should encrypt their data before outsourcing to the

cloud. However, encryption can hinder some useful functions

such as searching over the outsourced encrypted data while

enforcing an access control policy. Moreover, it is natural to

outsource the search operations to the cloud, while keeping

the outsourced data private. There is a need to allow the

data users to verify whether the cloud faithfully executed the

search operations or not. To the best of our knowledge, existing

solutions cannot achieve these objectives simultaneously.

A. Our Contributions

We propose a novel cryptographic primitive, called verifi-

able attribute-based keyword search (VABKS). This primitive

allows a data owner to control the search, and use of, its

outsourced encrypted data according to an access control

policy, while allowing the legitimate data users to outsource

the (often costly) search operations to the cloud and verify

whether or not the cloud has faithfully executed the search

operations. In other words, a data user with proper credentials

(corresponding to a data owner’s access control policy) can

(i) search over the data owner’s outsourced encrypted data,

(ii) outsource the search operations to the cloud, and (iii)

verify whether or not the cloud has faithfully executed the

search operations. We formally define the security properties

of VABKS and present a scheme that provably satisfies them.

The scheme is constructed in a modular fashion, by using

attribute-based encryption, bloom filter, digital signature, and

a new building-block we call attribute-based keyword search

(ABKS) that may be of independent value. Experimental

evaluation shows that the VABKS solutions are practical.

B. Related Work

To the best of our knowledge, no existing solution is

adequate for what we want to achieve. In what follows we

briefly review the relevant techniques.

Attribute-Based Encryption (ABE). ABE is a popular

method for enforcing access control policies via cryptographic

means. Basically, this technique allows entities with proper

credentials to decrypt a ciphertext that was encrypted accord-

ing to an access control policy [1]. Depending on how the ac-

cess control policy is enforced, there are two variants: KP-ABE

(key-policy ABE) where the decryption key is associated to

the access control policy [2], and CP-ABE (ciphertext-policy

ABE) where the ciphertext is associated to the access control

policy [3]. ABE has been enriched with various features

(e.g., [4]–[7]). In this paper, we use ABE to construct a new

primitive called attribute-based keyword search (ABKS), by

which keywords are encrypted according to an access control

policy and data users with proper cryptographic credentials can

generate tokens that can be used to search over the outsourced

encrypted data. This effectively prevents a data owner from

knowing the keywords a data user is searching for, while

requiring no interactions between the data users and the data

owners/trusted authorities. This is in contrast to [8], where the

data users interact with the data owners/trusted authorities to

obtain search tokens.

Keyword Search over Encrypted Data. This technique

allows a data owner to generate some tokens that can be used

by a data user to search over the data owner’s encrypted data.

Existing solutions for keyword search over encrypted data

can be classified into two categories: searchable encryption

in the symmetric-key setting (e.g., [9]–[18]) and searchable

encryption in the public-key setting (e.g., [8], [19]–[22]). Sev-

eral variants (e.g., [23]–[26]) have been proposed to support

complex search operations. Moreover, searchable encryption in

the multi-users setting has been investigated as well [12], [27],

where the data owner can enforce an access control policy

by distributing some (stateful) secret keys to the authorized



users. However, all these solutions do not solve the problem we

study, because (i) some of these solutions require interactions

between the data users and the data owners (or a trusted

proxy, such as a trapdoor generation entity [8]) to grant

search capabilities, and (ii) all these solutions (except [18])

assume that the server faithfully executed search operations. In

contrast, our solution allows a data user with proper credentials

to issue search tokens by which the cloud can perform keyword

search operations on behalf of the user, without requiring any

interaction with the data owner. Moreover, the data user can

verify whether or not the cloud has faithfully executed the

keyword search operations. This is true even for the powerful

technique called predicate encryption [28], [29], which does

not offer the desired verifiability.

Verifiable Keyword Search. Recently, verifiable keyword

search solutions have been proposed in [30]–[32], where each

keyword is represented as a root of some polynomial. It is

possible to check whether a keyword is present by evaluating

the polynomial on the keyword and verifying whether the

output is zero or not. However, these approaches work only

when keywords are sent in plaintext to the cloud, and are not

suitable for our purpose because the cloud should not learn

anything about the keywords. It is worth mentioning that the

secure verifiable keyword search in the symmetric-key setting

[18] can be insecure in the public-key setting because the

attacker can infer keywords in question via an off-line keyword

guessing attack (in lieu of the off-line dictionary attack against

passwords).

Paper Organization: Section II reviews some cryptographic

preliminaries. Section III defines ABKS and its security

properties, presents KP-ABKS and CP-ABKS schemes and

analyzes their security properties. Section IV defines VABKS

and its security properties, presents the VABKS construction

and analyzes its security. Section V evaluates the performance

of the ABKS and VABKS schemes. Section VI concludes the

paper.

II. PRELIMINARIES

Let a ← S denote selecting an element a from a set S
uniformly at random, || denote the concatenation operation and

string(S) denote the concatenation of elements of S ordered

by their hash values. Let U = {at1, . . . , atn} be a set of

attributes that are used to specify access control policies.

A. Cryptographic Assumption

Let p be an ℓ-bit prime, and G,GT be cyclic groups of

prime order p with generators g, gT , respectively. Let e be

a bilinear map: e : G × G → GT satisfying: (i) ∀a, b ←
Zp, e(ga, gb) = e(g, g)ab, (ii) e(g, g) 6= 1, and (iii) e can be

computed efficiently.

Decisional Linear Assumption (DL). Given (g, f, h, f r1,
gr2 , Q) where g, f, h,Q ← G, r1, r2 ← Zp, this assumption

says that any probabilistic polynomial-time algorithm A can

determine Q
?
= hr1+r2 at most with a negligible advantage in

security parameter ℓ, where “advantage” is defined as

|Pr[A(g, f, h, f r1 , gr2 , hr1+r2) = 1]−

Pr[A(g, f, h, f r1 , gr2 , Q) = 1]|.

Generic Bilinear Group [33]. Let ψ0, ψ1 be two random

encodings of the additive group Z
+
p , such that ψ0, ψ1 are

injective maps from Z
+
p to {0, 1}m, where m > 3 log(p). Let

G = {ψ0(x)|x ∈ Zp} and GT = {ψ1(x)|x ∈ Zp}. There is

an oracle to compute e : G×G→ GT . G is referred to as a

generic bilinear group. Let g denote ψ0(1), g
x denote ψ0(x),

e(g, g) denote ψ1(1), and e(g, g)y denote ψ1(y).
Pseudorandom Generator [34]. A pseudorandom genera-

tor H : {0, 1}ℓ → {0, 1}m, ℓ < m, is a deterministic algorithm

that takes as input an ℓ-bit seed and generates a m-bit string

that cannot be distinguished from a m-bit random string by

any polynormial-time algorithm (in ℓ).

B. Bloom Filter for Membership Query

A Bloom filter [35] is a data structure for succinctly

representing a static set, while allowing membership queries.

A m-bit Bloom filter is an array of m bits, which are all

initialized as 0. It uses k independent universal hash functions

H ′
1, . . . , H

′
k with the same range {0, . . . ,m − 1}. For each

element w ∈ S = {w1, . . . , wn}, the bits corresponding

to H ′
j(w) are set to 1, where 1 ≤ j ≤ k. To determine

whether w belongs to S or not, once can check whether

all of the bits corresponding to H ′
j(w) equal to 1, where

1 ≤ j ≤ k. If not, it is certain that w 6∈ S; otherwise,

w ∈ S with a high probability (i.e., there is a non-zero false-

positive rate). Suppose the hash functions are perfectly random

and n elements are hashed into a m-bit Bloom filter, the

false-positive rate is (1 − (1 − 1
m )kn)k ≈ (1 − e−kn/m)k.

Note that k = (ln 2)m/n hash functions lead to the minimal

false-positive rate (0.6185)m/n. A m-bit Bloom filter has two

associated algorithms:

• BF← BFGen({H ′
1, . . . , H

′
k}, {w1, . . . , wn}): This algo-

rithm generates a m-bit Bloom filter by hashing a data

set S = {w1, . . . , wn} with {H ′
1, . . . , H

′
k}.

• {0, 1} ← BFVerify({H ′
1, . . . , H

′
k},BF, w): This algo-

rithm returns 1 if w ∈ S, and 0 otherwise.

C. Access Trees for Representing Access Control Policies

Access trees can represent access control policies [2]. In an

access tree, a leaf is associated with an attribute and an inner

node represents a threshold gate. Let numv be the number of

children of node v, and label the children from the left to the

right as 1, . . . , numv . Let kv , 1 ≤ kv ≤ numv, be the threshold

value associated with node v, where kv = 1 represents the OR

gate and kv = numv represents the AND gate. Let parent(v)
denote the parent of node v, ind(v) denote the label of node

v, att(v) denote the attribute associated to leaf node v, lvs(T)
denote the set of leaves of access tree T, and Tv denote the

subtree of T rooted at node v (e.g., Troot = T).

Let F (Atts,Tv) = 1 indicate that an attribute set Atts

satisfies the access control policy represented by subtree Tv,

where F (Atts,Tv) can be evaluated iteratively as follows:



• In the case v is a leaf: If att(v) ∈ Atts, set F (Atts,Tv) =
1; otherwise, set F (Atts,Tv) = 0.

• In the case v is an inner node with children v1, . . . , vnumv
:

If there exists a subset I ⊆ {1, . . . , numv} such that |I| ≥
kv and ∀ j ∈ I, F (Atts,Tvj ) = 1, set F (Atts,Tv) = 1;

otherwise, set F (Atts,Tv) = 0.

Given an access tree T, we denote the algorithm for

distributing a secret s according to T by:

{qv(0)|v ∈ lvs(T)} ← Share(T, s).

This algorithm generates a polynomial qv of degree kv − 1
for each node v in a top-down fashion (for each leaf node

kv = 1):

• If v is the root of T (i.e., v = root), set qv(0) = s and

randomly pick kv − 1 coefficients for polynomial qv.

• If v is a leaf of T, set qv(0) = qparent(v)(ind(v)).
• If v is an inner node (but not the root), set qv(0) =
qparent(v)(ind(v)) and randomly select kv − 1 coefficients

for polynomial qv .

When the algorithm halts, each leaf v is associated with a

value qv(0), which is the secret share of s at node v.

Given an access tree T and a set of values {Eu1 ,

. . ., Eum
}, where u1, . . ., um are the leaves of T,

F ({att(u1), . . . , att(um)},T) = 1, Euj
= e(g, h)quj

(0)

for 1 ≤ j ≤ m, g, h ∈ G, e is a bilinear map, and

qu1(0), . . . , qum
(0) are secret shares of s according to T, the

algorithm for reconstructing e(g, h)s is denoted by

e(g, h)s ← Combine(T, {Eu1 , . . . , Eum
}).

This algorithm executes the following steps with respect to

node v in a bottom-top fashion according to T:

• If F ({att(u1), . . . , att(um)},Tv) = 0, then set Ev = ⊥.

• If F ({att(u1), . . . , att(um)},Tv) = 1, then execute the

following:

– If v is a leaf, set Ev = Euj
(0) = e(g, h)quj

(0)
where

v = uj for some j.
– If v is an inner node (including the root), for v’s

children nodes {v1, · · · , vnumv
}, there exists a set

of indices S such that |S| = kv , j ∈ S, and

F ({att(u1), . . . , att(um)},Tvj) = 1. Set

Ev =
∏

j∈S

E
∆vj
vj =

∏

j∈S

(e(g, h)qvj (0))∆vj = e(g, h)qv(0),

where ∆vj =
∏

l∈S,l 6=j
−j
l−j .

When the algorithm halts, the root of T is associated with

Eroot = e(g, h)qroot(0) = e(g, h)s.

III. ATTRIBUTE-BASED KEYWORD SEARCH (ABKS)

This new primitive allows a data owner to specify a policy

for controlling the keyword search operations over its out-

soured encrypted data. That is, a data user who possesses

attributes that satisfy the data owner’s policy can conduct

keyword search over the oursourced encrypted data. This

primitive naturally has two variants: KP-ABKS (key-policy

ABKS) where the cryptographic credentials are associated to

the access control policy, and CP-ABKS (ciphertext-policy

ABKS) where the ciphertext is associated to the access control

policy. To unify the presentation, let IEnc denote the input

to encryption function Enc and IKeyGen denote the input to

key generation function KeyGen. For CP-ABKS, IEnc and

IKeyGen are respectively the access tree and the attribute set; for

KP-ABKS, IEnc and IKeyGen are respectively the attribute set

and the access tree. Let F (IKeyGen, IEnc) = 1 denote IKeyGen
satisfies IEnc in CP-ABKS and IEnc satisfies IKeyGen in KP-

ABKS.

A. Definition and Security

The model of ABKS is: A data owner outsources its

encrypted keywords to the cloud, a data user generates search

tokens according to some keywords, and the cloud, who

receives search tokens from the user, conducts the search

operations over outsourced encrypted keywords.

Definition 1: ABKS consists of the following algorithms:

• (mk, pm) ← Setup(1ℓ): This algorithm initializes the

public parameter pm and generates a master key mk.

• sk ← KeyGen(mk, IKeyGen): This algorithm outputs cre-

dential sk for a user according to IKeyGen.

• cph← Enc(w, IEnc): This algorithm encrypts keyword w
to obtain ciphertext cph.

• tk← TokenGen(sk, w): This algorithm allows a data user

to generate a search token tk according to its credential

sk and keyword w.

• {0, 1} ← Search(cph, tk): This algorithm returns 1 if (i)

F (IKeyGen, IEnc) = 1 and (ii) ciphertext cph and token tk

correspond to the same keyword , and return 0 otherwise.

An ABKS scheme is correct if the following holds: Given

(mk, pm) ← Setup(1ℓ), sk ← KeyGen(mk, IKeyGen) and

F (IKeyGen, IEnc) = 1, cph ← Enc(w, IEnc) and tk ←
TokenGen(sk, w), Search(cph, tk) always returns 1.

The adversary model against ABKS is the following: data

owners and authorized data users are trusted, but the cloud is

trusted but curious (i.e., executing the protocol honestly but

attempting to infer private information as well). Intuitively,

security means that the cloud learn nothing beyond the search

results. Specifically, given a probabilistic polynomial-time

adversary A (modeling the cloud), an ABKS scheme is secure

if the following holds

• Selective security against chosen-keyword attack: Without

being given any matching search token, A cannot infer

any information about the plaintext keyword of a keyword

ciphertext in the selective security model, where A must

determine IEnc it intends to attack before the system is

boostrapped [36]. We formalize this security property via

the selective chosen-keyword attack game .

• Keyword secrecy: In the public-key setting, it is impos-

sible to protect the search tokens (aka. predicate privacy

[37]) against the keyword guessing attack. This is because

A can encrypt a keyword of its choice and check whether

the resulting keyword ciphertext and the target token



correspond to the same keyword, which is caused by the

use of “deterministic encryption.” Therefore, we use a

weaker security notion called keyword secrecy, assuring

that the probability A learning the keyword from the

keyword ciphertext and search tokens is negligibly more

than the probability of correct random keyword guess. We

formalize this security property via the keyword secrecy

game.

Selectively Chosen-Keyword Attack (SCKA) Game:

Setup: A selects a non-trivial challenge I∗Enc (a trivial chal-

lenge I∗Enc is one that can be satisfied by any data user who

does not have any credential), and gives it to the challenger.

Then the challenger runs Setup(1ℓ) to generate the public

parameter pm and the master key mk.

Phase 1: A can query the following oracles for polynomially

many times, and the challenger keeps a keyword list Lkw,

which is initially empty.

• OKeyGen(IKeyGen): If F (IKeyGen, I
∗
Enc) = 1, then abort;

otherwise, the challenger returns to A credential sk

corresponding to IKeyGen.

• OTokenGen(IKeyGen, w) : The challenger generates creden-

tial sk with IKeyGen, and returns to A a search token tk

by running algorithm TokenGen with inputs sk and w. If

F (IKeyGen, I
∗
Enc) = 1, the challenger adds w to Lkw.

Challenge phase: A chooses two keywords w0 and w1, where

w0, w1 /∈ Lkw. The challenger selects λ ← {0, 1}, computes

cph∗ ← Enc(wλ, I
∗
Enc), and delivers cph∗ to A. Note that the

requirement of w0, w1 /∈ Lkw is to prevent A from trivially

guessing λ with tokens from OTokenGen.

Phase 2: A continues to query the oracles as in Phase 1. The

restriction is that (IKeyGen , w0) and (IKeyGen, w1) cannot be the

input to OTokenGen if F (IKeyGen, I
∗
Enc) = 1.

Guess: A outputs a bit λ′, and wins the game if λ′ = λ.

Let |Pr[λ = λ′] − 1
2 | be the advantage of A winning the

above SCKA game. Thus, we have

Definition 2: An ABKS scheme is selectively secure against

chosen-keyword attack if the advantage of any A winning the

SCKA game is negligible in security parameter ℓ.

Keyword Secrecy Game:

Setup: The challenger runs Setup(1ℓ) to generate the public

parameter pm and the master key mk.

Phase 1: A can query the following oracles for polynomially

many times:

• OKeyGen(IKeyGen): The challenger returns to A credential

sk corresponding to IKeyGen. It adds IKeyGen to the list

LKeyGen, which is initially empty.

• OTokenGen(IKeyGen, w): The challenger generates creden-

tial sk with IKeyGen, and returns to A a search token tk

by running algorithm TokenGen with input sk and w.

Challenge phase: A chooses a non-trivial I∗Enc and gives

it to the challenger. The challenger selects w∗ from the

message space uniformly at random and selects I∗KeyGen such

that F (I∗KeyGen, I
∗
Enc) = 1. The challenger runs cph ←

Enc(w∗, I∗Enc) and tk ← TokenGen(sk, w∗) and delivers

(cph, tk) to A. We require that ∀IKeyGen ∈ LKeyGen,
F (IKeyGen, I

∗
Enc) = 0.

Guess: After guessing q distinct keywords, A outputs a

keyword w′, and wins the game if w′ = w.

Definition 3: An ABKS scheme achieves keyword secrecy

if the probability that A wins the keyword secrecy game is

at most 1
|M|−q + ǫ, where M is the keyword space, q is the

number of distinct keywords that the adversary has attempted,

and ǫ is a negligible in security parameter ℓ.

B. Construction

The basic idea underlying the construction is the following:

each keyword ciphertext and each search token has two parts,

one is associated to the keyword and the other is associated

to the attributes (or access control policy). If the attributes

satisfy the access control policy, one can determine whether

the search token and keyword ciphertext correspond to the

same keyword or not. Consider KP-ABKS as an example. Let

H1 : {0, 1}∗ → G be a hash function modeled as random

oracle and H2 : {0, 1}∗ → Zp be an one-way hash function.

A data user’s credentials are generated by letting t ← Zp,

Av = gqv(0)H1(att(v))
t, Bv = gt for each leaf v, where g

is a generator of G, qv(0) is the share of secret ac for leaf v
according to access tree T. The keyword ciphertext and search

token are generated as follows:

• Keyword w is encrypted into two parts: one is to “blend”

w with randomness r1, r2 ← Zp by letting W ′ =
gcr1 , W = ga(r1+r2)gbH2(w)r1 and W0 = gr2 where

ga, gb, gc ∈ G are public keys, and the other is associated

to attribute set Atts by letting Wj = H1(atj)
r2 for each

atj ∈ Atts. The two parts are tied together via r2.

• Given a set of credentials, a search token for keyword

w is generated with two parts: one is associated to w as

tok1 = (gagbH2(w))s and tok2 = gcs for some s ← Zp,

and the other is associated to the credentials by letting

A′
v = As

v, B
′
v = Bs

v for each v ∈ lvs(T). The two parts

are tied together via randomness s.

If the attribute set Atts satisfies the access tree T, the cloud

can use A′
v, B

′
v and W0,Wj to recover e(g, g)acr2s, which can

be used to test the keyword equality as elaborated below.

1) KP-ABKS Construction and Security Analysis: Let ℓ be

the primary security parameter. It consists of the following

algorithms.

Setup(1ℓ): Select a bilinear map e : G×G→ GT , where G
and GT are cyclic groups of order p, which is an ℓ-bit prime.

Let H1 : {0, 1}∗ → G be a hash function modeled as random

oracle and H2 : {0, 1}∗ → Zp be an one-way hash function,

select a, b, c← Zp and g ← G, and set

pm = (H1, H2, e, g, p, g
a, gb, gc, G,GT ),mk = (a, b, c).

KeyGen(mk,T): Execute Share(T, ac) to obtain secret share

qv(0) of ac for each leave v ∈ lvs(T) on access tree T.

For each leaf v ∈ lvs(T), pick t ← Zp, and compute

Av = gqv(0)H1(att(v))
t and Bv = gt. Set

sk = (T, {(Av, Bv)|v ∈ lvs(T)}).



Enc(w,Atts): Select r1, r2 ← Zp, and compute W ′ = gcr1 ,

W = ga(r1+r2)gbH2(w)r1 and W0 = gr2 . For each atj ∈ Atts,

compute Wj = H1(atj)
r2 . Set

cph = (Atts,W ′,W,W0, {Wj |atj ∈ Atts}).

TokenGen(sk, w): Select s ← Zp, and compute A′
v =

As
v, B

′
v = Bs

v for each v ∈ lvs(T). Compute tok1 =
(gagbH2(w))s and tok2 = gcs. Set

tk = (tok1, tok2,T, {(A
′
v, B

′
v)|v ∈ lvs(T)})

Search(tk, cph): Given attribute set Atts specified in cph,

select an attribute set S satisfying the access tree T spec-

ified in tk. If S does not exist, return 0; otherwise, for

each atj ∈ S, compute Ev = e(A′
v,W0)/e(B

′
v,Wj) =

e(g, g)sr2qv(0), where att(v) = atj for v ∈ lvs(T). Com-

pute e(g, g)sr2qroot(0) ← Combine(T, {Ev|att(v) ∈ S}) so

that Eroot = e(g, g)acsr2 . Return 1 if e(W ′, tok1)Eroot =
e(W, tok2), and 0 otherwise.

The scheme is correct because

e(W ′, tok1)Eroot = e(gcr1 , (gagbH2(w))s)Eroot

= e(g, g)acs(r1+r2)e(g, g)bcsH2(w)r1 ,

e(W, tok2) = e(ga(r1+r2)gbH2(w)r1, gcs)

= e(g, g)acs(r1+r2)e(g, g)bcsH2(w)r1

The scheme is secure because of the following theorems,

whose proofs are given in Appendix A and Appendix B,

respectively.

Theorem 1: Given the DL assumption and one-way hash

function H2, the KP-ABKS scheme is selectively secure

against chosen-keyword attack in the random oracle model.

Theorem 2: Given the one-way hash function H2, the KP-

ABKS scheme achieves keyword secrecy in the random oracle

model.

2) CP-ABKS Construction and Security Analysis: Let ℓ be

the primary security parameter. It consists of the following

algorithms.

Setup(1ℓ): Select a bilinear group e : G×G→ GT , where

G and GT are cyclic groups of order p, which is an ℓ-bit

prime. Let H1 : {0, 1}∗ → G be a hash function modeled as

random oracle and H2 : {0, 1}∗ → Zp be an one-way hash

function, select a, b, c← Zp and g ← G, and set

pm = (H1, H2, e, g, p, g
a, gb, gc, G,GT ),mk = (a, b, c).

KeyGen(mk,Atts): Select r ← Zp, compute A = g(ac−r)/b.

For each atj ∈ Atts, select rj ← Zp and computes Aj =
grH1(atj)

rj and Bj = grj . Set

sk = (Atts, A, {(Aj , Bj)|atj ∈ Atts}).

Enc(w,T): Select r1, r2 ← Zp, and compute W = gcr1 ,

W0 = ga(r1+r2)gbH2(w)r1 and W ′ = gbr2 . Compute secret

shares of r2 for each leave of access tree T as {qv(0)|v ∈
lvs(T)} ← Share(T, r2). For each v ∈ lvs(T), compute Wv =
gqv(0) and Dv = H1(att(v))

qv(0). Set

cph = (T,W,W0,W
′, {(Wv, Dv)|v ∈ lvs(T)}).

TokenGen(sk, w): Select s ← Zp, and compute tok1 =
(gagbH2(w))s, tok2 = gcs and tok3 = As = g(acs−rs)/b. For

each atj ∈ Atts, compute A′
j = As

j and B′
j = Bs

j . Set

tk = (Atts, tok1, tok2, tok3, {(A
′
j , B

′
j)|atj ∈ Atts}).

Search(tk, cph): Given attribute set Atts as specified in

tk, select an attribute set S that satisfies the access tree T

specified in cph. If S does not exist, return 0; otherwise,

for each atj ∈ S, compute Ev = e(A′
j ,Wv)/e(B

′
j , Dv) =

e(g, g)rsqv(0), where att(v) = atj for v ∈ lvs(T). Com-

pute e(g, g)rsqroot(0) ← Combine(T, {Ev|att(v) ∈ S})
and Eroot = e(g, g)rsr2 . Return 1 if e(W0, tok2) =
e(W, tok1)Eroote(tok3,W

′), and 0 otherwise.

Correctness of the scheme can be verified similarly to that of

KP-ABKS. Security of the scheme is assured by the following

theorems, The proof of the former one is deferred to Appendix

C, and the proof of the latter one is omitted because it is similar

to that of Theorem 2.

Theorem 3: Given the one-way hash function H2, the CP-

ABKS scheme is selectively secure against chosen-keyword

attack in the generic bilinear group model [33].

Theorem 4: Given the one-way hash function H2, the CP-

ABKS scheme achieves keyword secrecy in the random oracle

model.

IV. VERIFIABLE ATTRIBUTE-BASED KEYWORD SEARCH

In the model of ABKS, the party (e.g., cloud) is assumed to

execute the search operation faithfully (despite that the party

may attempt to infer useful information about the keywords).

VABKS achieves the goal of ABKS despite that the party

executing the search operation may be malicious.

A. Model

We consider the system model illustrated in Figure 1,

which involves four parties: a data owner, who outsources

its encrypted data as well as encrypted keyword-index to

the cloud; a cloud, which provides storage services and can

conduct keyword search operations on behalf of the data users;

a data user, who is to retrieve the data owner’s encrypted data

according to some keyword (i.e., keyword search); a trusted

authority, which issues credentials to the data owners/users.

The credentials are sent over authenticated private channels

(which can be achieved through another layer of mechanisms).

Data owner

Cloud

Search Token for Keyword X

Outsourcing

Data user (W/ or W/o credentials

satisfying data owner’s access  control policies)

Search result & proofTrusted authority 

(issuing credentials 

for  all  cloud users)

Y

X

F2
F1

F3

W

V

Keywords   Data files

Fig. 1. VABKS system model, where keywords X,Y and V,W may
correspond to different access control policies.



The data owners are naturally trusted. Both authorized and

unauthorized data users are semi-trusted, meaning that they

may try to infer some sensitive information of interest. The

cloud is not trusted as it may manipulate the search operations,

which already implies that the cloud may manipulate the

outsourced encrypted data.

B. Definition

Let FS = {F1, . . . ,Fn} be a set of data files. Let KGj ,

1 ≤ j ≤ l, be a set of keywords (also called “keyword group”)

that are encrypted with the same access control policy (i.e.,

access tree). Let KG = {KG1, . . . ,KGl}. For each keyword w,

let MP(w) be the set of identifiers identifying data files that

contain keyword w. Let MP = {MP(w)|w ∈ ∪li=1KGi}. Let

D = (KG,MP,FS) denote keyword-index and the data files.

Definition 4: A VABKS scheme consists of the following

algorithms:

• (mk, pm)← Init(1ℓ): This algorithm is run by the trusted

authority to initialize the system.

• sk ← KeyGen(mk, IKeyGen): This algorithm is run by

the trusted authority to issue credentials sk for data

users/owners.

• (Au, Index,Dcph) ← BuildIndex({IEnc}l, {I
′
Enc}n,D):

This algorithm is run by a data owner to encrypt D =
(KG,MP,FS) to data ciphertext Dcph, index ciphertext

Index and auxiliary information Au, where {IEnc}l is the

set of access control policies respectively for encrypting

the l keyword groups KG1, . . . ,KGl and {I ′Enc}n is the

set of access control policies respectively for encrypting

the n data files FS1, . . . ,FSn (It may happen that the

access control policies for keywords and their respective

data files are different).

• tk ← TokenGen(sk, w): This algorithm is run by an

authorized data user to generate a search token tk for

keyword w.

• (proof, rslt) ← SearchIndex(Au, Index,Dcph, tk): This

algorithm is run by the cloud to conduct the search

operations over encrypted index Index on behalf of a data

user. It outputs the search result rslt and a proof proof.

• {0, 1} ← Verify(sk, w, tk, rslt, proof): This algorithm is

run by the data user to verify that (rslt, proof) is valid

with respect to search token tk.

A VABKS scheme is correct if the following holds:

given (mk, pm) ← Init(1ℓ), sk ← KeyGen(mk, IKeyGen),
(Au, Index,Dcph) ← BuildIndex({IEnc}l, {I

′
Enc}n,D), tk ←

TokenGen(sk, w) and (proof, rslt)← SearchIndex(Au, Index,

Dcph, tk), Verify(sk, w, tk, rslt, proof) always returns 1.

Informally, security of VABKS is defined as the following

four requirements, where the cloud is the adversary A.

• Data secrecy: Given encrypted keywords and search

tokens, A still cannot learn any information (in a compu-

tational sense) about the encrypted data files. This defi-

nition can be formalized by the chosen-plaintext security

game, where two challenges D0 = (KG,MP,FS0),D1 =
(KG,MP,FS1) correspond to the same KG and MP, and

|FS0| = |FS1|.

• Selective security against chosen-keyword attack: Without

seeing corresponding search tokens, A cannot infer any

information about the keyword from the keyword cipher-

text. This property is extended from the selective security

against chosen-keyword attack of ABKS.

• Keyword secrecy: Given encrypted data files, the probabil-

ity that A learn the plaintext keyword from the keyword

ciphertext as well as the search tokens is no more than

that of a random guess. This property is extended from

the keyword secrecy of ABKS.

• Verifiability: If A returns an incorrect search result, it can

be detected by the user with an overwhelming probability.

We formalize this security property via the following

verifiability game.

Verifiability Game:

Setup: The challenger runs (pm,mk) ← Init(1ℓ). A selects

D = (KG,MP,FS), {IEnc}l and {I ′Enc}n and sends them

to the challenger. The challenger runs (Au, Index,Dcph) ←
BuildIndex({IEnc}l, {I

′
Enc}n,D), and gives (Au, Index,Dcph)

to A.

Phase 1: A can query the following oracles for polynomially

many times.

• OKeyGen(IKeyGen): The challenger returns to A credential

sk corresponding to IKeyGen.

• OTokenGen(IKeyGen, w): The challenger generates creden-

tial sk with IKeyGen, and returns to A a search token tk

by running algorithm TokenGen with inputs sk and w.

• OVerify(IKeyGen, w, tk, rslt, proof): The challenger gener-

ates credential sk with IKeyGen, returns γ to A by running

γ ← Verify(sk, w, tk, rslt, proof).

Challenge phase: A selects a non-trivial challenge I∗Enc and a

keyword w∗ and gives them to the challenger. The challenger

selects I∗KeyGen such that F (I∗KeyGen, I
∗
Enc) = 1, generates

credential sk∗ with I∗KeyGen and returns to A a search token

tk∗ by running tk∗ ← TokenGen(sk, w∗).
Guess: A outputs (rslt∗, proof∗) to the challenger. We say A
wins the game if 1 ← Verify(sk∗, w∗, tk∗, rslt∗, proof∗) and

rslt∗ 6= rslt, where (rslt, proof) is produced by the challenger

by running SearchIndex(Au, Index, tk∗).
Definition 5: A VABKS scheme is verifiable if the advantage

that any A wins the verifiability game is negligible in security

parameter ℓ.

C. Construction

A trivial solution for achieving verifiability is that a data

user downloads the keyword ciphertexts and conduct the

search operations locally. This solution incurs prohibitive

communication and computational overhead. As highlighted

in Figure 2, we instead let a data user outsource the key-

word search operation to the cloud, and then verify that the

cloud faithfully performed the keyword search operation. More

specifically, the data owner uses the signatures and bloom

filters as follows:

• A keyword signature is generated for each keyword

ciphertext and its associated data ciphertexts. It is used
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Fig. 2. Basic idea for achieving verifiability, where data files F1, F2, F3 were encrypted to cphF1 , cphF2 , cphF3 , keywords X,Y were encrypted to
cphX , cphY with access control policy 1, and keywords V,W were encrypted to cphV , cphW with access control policy 2. Given a search token tk, for
keyword group i, the cloud provides (σw, cphBFi) as the proof when it finds keyword ciphertext cphw that matches tk, and (cphBFi ,BF

′

i, σBFi) otherwise.

for preventing the cloud from returning incorrect data

ciphertexts as the search result.

• For each keyword group, one bloom filter is built from

its keywords. This allows a data user to check that the

searched keyword was indeed not in the keyword group

when the cloud returns a null search result, without

downloading all keyword ciphertexts from the cloud. A

random number is selected and encrypted with the same

access control policy as keywords. The random number

masks the bloom filter for preserving keyword privacy. A

bloom filter signature is generated for the masked bloom

filter and the random number ciphertext for assuring their

integrity.

• A global signature is obtained by signing random number

ciphertexts of all groups. It allows a data user to verify

the integrity of the random number ciphertexts.

• A local signature is generated for all keyword ciphertexts

within the same keyword group KGj . This signature

allows the user to validate the integrity of keyword

ciphertexts within the keyword group.

Figure 3 describes the VABKS scheme, which uses a

signature scheme Sig = (KeyGen, Sign,Verify), a symmet-

ric encryption scheme SE = (KeyGen,Enc,Dec), an ABE

scheme ABE = (Setup,KeyGen, Enc,Dec), where the latter

two encryption schemes are used to encrypt data files. The

VABKS scheme is built on top of an ABKS scheme ABKS =
(Setup, KeyGen,Enc,TokenGen, Search), which encrypts the

keywords. Note that ABE and ABKS can be their ciphertext-

policy variant or their key-policy variant, but for the same

type. This leads to two variants of VABKS.

Note that in the Verify algorithm of Figure 3, when an

authorized data user verifies a null search result for keyword

group {cphw|w ∈ KGi}, where the user searches keyword

w′, it can happen that 1← BFVerify({H ′
1, . . . , H

′
k},BFi, w

′)
due to the false-positive of the Bloom filter. To validate the

search result in this case, the Verify algorithm has to download

{cphw|w ∈ KGi}, and checks the keyword ciphertexts one by

one. We stress that this does not incur significant communica-

tion cost on average because we can set the false-positive rate

as low as possible by choosing appropriate m and k (i.e., upon

one search request, the “wasted” bandwidth communication

and computational cost are proportional to this false-positive

rate). For example, in our experiment we set the false-positive

rate to be 4.5× 10−9.

D. Security Analysis

Security of the VABKS scheme can be proven as the

following theorems, whose proofs are deferred to Appendix

D.

Theorem 5: If ABE and SE are secure against the chosen-

plaintext attack, the VABKS scheme achieves the data secrecy.

Theorem 6: If ABE is secure against chosen-plaintext at-

tack, H is a secure pseudorandom generator and ABKS is

selectively secure against chosen keyword attack, the VABKS

scheme is selectively secure against chosen-keyword attack.

Theorem 7: If ABE is secure against chosen-plaintext attack,

H is a secure pseudorandom generator and ABKS achieves

keyword secrecy, the VABKS scheme achieves keyword se-

crecy.

Theorem 8: If Sig is a secure signature, the VABKS con-

struction achieves the verifiability.

V. PERFORMANCE EVALUATION

We evaluate the efficiency of the ABKS schemes in terms

of both asymptotic complexity and actual execution time,

and the efficiency of the VABKS scheme in terms of actual

execution time. We do not consider the asymptotic complexity

of VABKS because it uses multiple building-blocks (e.g.,

signing and ABE schemes) that can be instantiated with any

secure solutions. Asymptotic complexity is measured in terms

of four kinds of operations: H1 denotes the operation of

mapping a bit-string to an element of G, Pair denotes the

pairing operation, E denotes the exponentiation operation in G,

and ET denotes the exponentiation operation in GT . We ignore

multiplication and hash operations (other than H1) because

they are much more efficient than the above operations [38].

We implemented ABKS and VABKS in JAVA, while using

the Java Pairing Based Cryptography library (jPBC) [38].



Init(1ℓ): Given security parameter ℓ, the attribute authority chooses k universal hash functions H ′
1, . . . , H

′
k, which are

used to construct a m-bit Bloom filter. Let H : {0, 1}ℓ → {0, 1}m be a secure pseudorandom generator, SE be a secure

symmetric encryption scheme, ABE be a secure ABE scheme and ABKS be a secure ABKS scheme. This algorithm executes

(ABE.pm,ABE.mk) ← ABE.Setup(1ℓ) and (ABKS.pm,ABKS.mk) ← ABKS.Setup(1ℓ). It sets the public parameter as

pm = (ABE.pm,ABKS.pm, H ′
1, . . . , H

′
k) and mk = (ABE.mk,ABKS.mk).

KeyGen(mk, IKeyGen): The attribute authority runs ABE.sk ← ABE.KeyGen(ABE.mk, IKeyGen) and ABKS.sk ←
ABKS.KeyGen(ABKS.mk, IKeyGen), sets sk = (ABE.sk,ABKS.sk), and sends sk to a data owner/user over an authenticated

private channel.

BuildIndex({IEnc}l, {I
′
Enc}n,D): The data owner runs (Sig.sk, Sig.pk) ← Sig.KeyGen(1ℓ), keeps Sig.sk private and makes

Sig.pk public. Given D = (KG = {KG1, . . . ,KGl},MP = {MP(w)|w ∈ ∪li=1KGi},FS = {F1, . . . ,Fn}), the data owner

executes as follows:

1) Encrypt each data file with hybrid encryption: ∀Fj ∈ FS, generate ciphertext cphFj
= (cphskj , cphSEj

) by running

SE.skj ← SE.KeyGen(1ℓ), cphSEj
← SE.Enc(SE.skj ,Fj), and cphskj ← ABE.Enc(I ′Encj , SE.skj).

2) Encrypt each keyword and generate keyword signature: Given KGi, 1 ≤ i ≤ l, for each w ∈ KGi,

run cphw ← ABKS.Enc(IEnci , w), set MP(cphw) = {IDcphFj
|IDFj

∈ MP(w)}, and generate σw ←

Sig.Sign(Sig.sk, cphw||string({cphFj
|IDcphFj

∈ MP(cphw)})), where IDFj
and IDcphFj

are identifiers for identifying

data file Fj and data ciphertext cphFj
, respectively.

3) Generate a bloom filter, a bloom filter signature and a local signature for each group KGi: Let BFi ←
BFGen({H ′

1, . . . , H
′
k},KGi), cphBFi

← ABE.Enc(IEnci ,M) for some randomly chosen M from the message

space of ABE, compute BF′
i = H(M)

⊗
BFi and generate σBFi

← Sig.Sign(Sig.sk,BF′||cphBFi
). Let σi ←

Sig.Sign(Sig.sk, string({cphw|w ∈ KGi})) .

4) Generate the global signature: Set σ = Sig.Sign(Sig.sk, cphBF1
|| . . . ||cphBFl

).
5) Let Au = (σ, σ1, . . . , σl, cphBF1

, . . . , cphBFl
, σBF1 , . . . , σBFl

, {σw|w ∈ ∪li=1KGi}), Index = ({cphw|w ∈
∪li=1KGi}, {MP(cphw)|w ∈ ∪

l
i=1KGi}) and Dcph = ({cphFj

|Fj ∈ FS}).

TokenGen(sk, w): Given credentials sk, a data user generates search token tk← ABKS.TokenGen(ABKS.sk, w).

SearchIndex(Au, Index,Dcph, tk): Let rslt be an empty set and proof = (σ) initially. The cloud enumerates
∏

i = {cphw|w ∈
KGi}, 1 ≤ i ≤ l, which are the keyword ciphertexts with respect to the same access control policy.

• For each cphw ∈
∏

i, it runs γ ← ABKS.Search(cphw, tk). If γ = 0, it continues to process the next keyword ciphertext

in
∏

i; otherwise, it adds the tuple (cphw, {cphFj
|IDcphFj

∈ MP(cphw)}) to rslt and (σw, cphBFi
) to proof.

• If there exist no γ = 1 after processing all cphw in
∏

i, then its adds (BF′
i, cphBFi

, σBFi
) to proof.

Verify(sk, w, tk, proof, rslt): The data user verifies the search result from the cloud as follows:

1) Verify the integrity of the random number ciphertexts: Let γ = Sig.Verify(Sig.pk, σ, cphBF1
|| . . . ||cphBFl

). If γ = 0,

then return 0; otherwise, continue to execute the following.

2) For i = 1, . . . , l, it executes as follows to verify that the cloud indeed returned the correct result for each keyword

group i:
Case 1: If (cphw, {cphFj

|IDcphFj
∈ MP(cphw)}) ∈ rslt, meaning there exists the keyword ciphertext cphw, which

corresponds to the same access control policy as what is specified by cphBFi
, having the same keyword specified

by tk, then it runs γ ← ABKS.Search(cphw, tk) and γ′ ← Sig.Verify(Sig.pk, σw, cphw||string({cphFj
|IDcphFj

∈

MP(cphw)})) to verify whether or not cphw matches tk and all the associated data ciphertexts are returned by the

cloud. If either γ = 0 or γ′ = 0, then return 0, otherwise, continue to i = i+ 1.

Case 2: If (BF′
i, cphBFi

, σBFi
) ∈ proof meaning that there is no matching keyword ciphertext, then it continues to

verify the integrity of the masked Bloom filter by running γ′ ← Sig.Verify(Sig.pk, σBFi
,BF′

i||cphBFi
). If γ′ = 0, return

0; otherwise, execute the following:

• If the data user is authorized, compute M ← ABE.Dec(ABE.sk, cphBFi
), BFi = H(M)

⊗
BF′

i. Execute δ ←
BFVerify({H ′

1, . . . , H
′
k},BFi, w) to check whether w or not is present in the keyword group as represented by

BFi.

– If δ = 0, meaning that w is not present in the keyword group as represented by BFi, then continue to i = i+1.

– If δ = 1, download
∏

i = {cphw|w ∈ KGi} and σi from the cloud, and run η ← Sig.Verify(Sig.pk, σi,
string({cphw|w ∈ KGi})). If η = 0, return 0; otherwise, run τ ← ABKS.Search(cphw, tk) by enumerating

cphw in cphw|w ∈ KGi}. If there exists some τ = 1 after processing all cphw (meaning that there exists some

cphw that matches tk), return 0; otherwise, continue to i = i+ 1.

• If the data user is unauthorized, then it continues to i = i+ 1 because cphBFi
cannot be decrypted.

Case 3: If none of the above two cases happens, return 0.

3) Return 1 if all tuples in the search result have been verified, and 0 otherwise.

Fig. 3. VABKS construction



In our implementation, the bilinear map is instantiated as

Type A pairing (ℓ = 512), which offers a level of security

equivalent to 1024-bit DLOG [38]. For both CP-VABKS and

KP-VABKS, we instantiated the symmetric encryption scheme

as AES-CBC, and the signature scheme with DSA provided

by JDK1.6. We instantiated ABKS, ABE as CP-ABKS, CP-

ABE [3] for CP-ABKS, and KP-ABKS, KP-ABE [2] for

KP-VABKS, respectively. Finally, we set the example access

control policy as “at1 AND . . . AND atN .”

A. Efficiency of ABKS

Asymptotic Complexity of the ABKS Schemes. Table I

describes the asymptotic complexities of the ABKS schemes.

We observe that in the CP-ABKS scheme, the complexity of

KeyGen is almost the same as that of Enc. In the KP-ABKS

scheme, KeyGen is more expensive than Enc. In both schemes,

the two Search algorithms incur almost the same cost.

complexity output size

KP-
KeyGen 3NE + NH1 2N |G|
Enc (S + 4)E + SH1 (S + 3)|G|

ABKS
TokenGen (2N + 2)E (2N + 2)|G|
Search (2S + 2)Pair + SET

CP-
KeyGen (2S + 2)E + SH1 (2S + 1)|G|
Enc (2N + 4)E + NH1 (2N + 3)|G|

ABKS
TokenGen (2S + 4)E (2S + 3)|G|
Search (2N + 3)Pair + NET

TABLE I
ASYMPTOTIC COMPLEXITIES OF CP-ABKS AND KP-ABKS, WHERE S IS

THE NUMBER OF A DATA USER’S ATTRIBUTES AND N IS THE NUMBER OF

ATTRIBUTES THAT ARE INVOLVED IN A DATA OWNER’S ACCESS CONTROL

POLICY (I.E., THE NUMBER OF LEAVES IN THE ACCESS TREE).

Actual Performance of the ABKS Schemes. To evaluate the

performance of the ABKS schemes, we ran the experiments

on a client machine with Linux OS, 2.93GHz Intel Core Duo

CPU (E7500), and 2GB RAM. We varied N , the number

of attributes that are involved in the example access control

policy, from 1 to 50 with step length 10. We ran each

experiment for 10 times to obtain the average execution time.

S/N

1 10 20 30 40 50

KP-
KeyGen 0.088 0.786 1.539 2.316 3.081 3.863

Enc 0.108 0.539 1.016 1.492 1.983 2.434

ABKS
TokenGen 0.073 0.331 0.627 0.917 1.211 1.504

Search 0.049 0.275 0.480 0.711 0.947 1.182

CP-
KeyGen 0.107 0.686 1.275 1.901 2.525 3.151

Enc 0.121 0.681 1.304 1.923 2.546 3.169

ABKS
TokenGen 0.088 0.349 0.673 0.932 1.228 1.513

Search 0.061 0.329 0.493 0.728 0.97 1.202

TABLE II
EXECUTION TIME (SECOND) OF THE ALGORITHMS IN THE KP -ABKS
AND CP -ABKS SCHEMES, WHERE N IS THE NUMBER OF ATTRIBUTES

INVOLVED IN THE EXAMPLE ACCESS CONTROL POLICY. THE NUMBER OF

DATA USER’S ATTRIBUTES IS ALSO SET TO N , NAMELY S = N IN THE

EXPERIMENTS.
Table II shows the execution time of the two ABKS

schemes. We observe that for both schemes, the keyword

encryption algorithm Enc (run by the data owner) is more

expensive than that of the keyword search algorithm Search

(run by the cloud) with the same N . However, the keyword

encryption algorithm is executed only once for each keyword,

whereas the keyword search algorithm will be performed as

many times as needed. Furthermore, we advocate that the data

users outsource the keyword search operations to the cloud

(i.e., taking advantage of the cloud’s computational resources).

B. Efficiency of VABKS with Real Data

To demonstrate the feasibility of VABKS in practice, we

evaluated it with real data, which consists of 2,019 distinct

keywords extracted from 670 PDF documents (papers) from

the ACM Digital Library with a total size of 778.1MB. We

set k = 28 and m = 10KB for Bloom filter so that
m
n = 10∗8∗1024

2019 ≈ 40 and the false-positive rate is around

4.5 × 10−9. We vary the access control policy ranging from

1 to 50 attributes with step-length 10. In each experiment, we

encrypted all keywords with the same access control policy.

The algorithms run by the data owner and the data users

(i.e. BuildIndex, TokenGen and Verify) were executed on a

client machine with Linux OS, 2.93GHz Intel Core Duo CPU

(E7500), and 2GB RAM. The algorithm run by the cloud (i.e.,

SearchIndex) was executed on a server machine (a laptop) with

Windows 7, Intel i5 2.60GHz CPU, and 8GB RAM.

Figure 4(a) shows the execution time of BuildIndex that

was run by the data owner. We observe that with the same

attribute/policy complexity, CP-VABKS is more costly than

that of KP-VABKS when running algorithm BuildIndex. Figure

4(b) plots the execution time of the algorithms run by the data

user and the cloud. We simulated that algorithm SearchIndex

needs to conduct search operations over 1,010 keyword cipher-

texts to find the matched keyword ciphertext. We observe that

the execution time of TokenGen and Verify is really small

compared with keyword search algorithm SearchIndex. This

again confirms that the data user should outsource keyword

search operations to the cloud. Figure 4(c) plots the size

of index and auxiliary information, including 2,019 keyword

ciphertexts, bloom filters and signatures. We also see that CP-

VABKS consumes around two times more storage space than

KP-VABKS with the same attribute/policy complexity. These

discrepancies should serve as a factor when deciding whether

to use CP-VABKS or KP-VABKS in practice.

VI. CONCLUSION

We have introduced a novel cryptographic primitive called

verifiable attribute-based keyword search for secure cloud

computing over outsourced encrypted data. This primitive

allows a data owner to control the search of its outsourced

encrypted data according to an access control policy, while the

authorized data users can outsource the search operations to

the cloud and force the cloud to faithfully execute the search

(as a cheating cloud can be held accountable). Performance

evaluation shows that the new primitive is practical. Our study

focused on static data. As such, one interesting open problem

for future research is to accommodate dynamic data.
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APPENDIX A

PROOF OF THEOREM 1

Proof 1: We show that if there is a polynomial-time ad-

versary A that wins the SCKA game with advantage µ, then

there is a challenger algorithm that solves the DL problem

with advantage µ/2. Given a DL instance (g, h, f, f r1 , gr2, Q),
where g, f, h,Q ← G and r1, r2 ← Zp, the challenger

simulates the SCKA game as follows.

Setup: The challenger sets ga = h and gc = f where a and

c are unknown, selects d← Zp and computes gb = fd = gcd

by implicitly defining b = cd. Let H2 be an one-way hash

function and pm = (e, g, p, h, fd, f) and mk = (d).
A selects an attribute set Atts∗ and gives it to the challenger.

The random oracle OH1(atj) is defined as follows:



• If atj has not been queried before,

– if atj ∈ Atts∗, select βj ← Zp, add (atj , αj = 0, βj)
to OH1 , and return gβj ;

– otherwise, select αj , βj ← Zp, add (atj , αj , βj) to

OH1 , and return fαjgβj .

• If atj has been queried before, retrieve (αj , βj) fromOH1

and return fαjgβj .

Phase 1: A can adaptively query the following oracles for

polynomially-many times and the challenger keeps a keyword

list Lkw, which is empty initially.

OKeyGen(T): A gives an access tree T to the challenger. If

F (Atts∗,T) = 1, then the challenger aborts; otherwise, the

challenger generates attributes as follows.

Define the following two procedures to determine the poly-

nomial for each node of T:

• PolySat(Tv,Atts
∗, λv): Given secret λv , this procedure

determines the polynomial for each node of Tv rooted at

v when F (Atts∗,Tv) = 1. It works as follows: Suppose

the threshold value of node v is kv , it sets qv(0) = λv
and picks kv − 1 coefficients randomly to fix the poly-

nomial qv . For each child node v′ of v, recursively call

PolySat(Tv′,Atts∗, λv′ ) where λv′ = qv(Index(v
′)).

• PolyUnsat(Tv,Atts
∗, gλv ): Given element gλv ∈ G

where the secret λv is unknown, this procedure deter-

mines the polynomial for each node of Tv rooted at v
when F (Atts∗,Tv) = 0 as follows. Suppose the threshold

value of the node v is kv . Let V be the empty set.

For each child node v′ of v, if F (Atts,Tv′) = 1, then

set V = V
⋃
{v′}. Because F (Atts,Tv) = 0, then

|V | < kv. For each node v′ ∈ V , it selects λv′ ← Zp, and

sets qv(Index(v
′)) = λv′ . Finally it fixes the remaining

kv − |V | points of qv randomly to define qv and makes

gqv(0) = gλv . For each child node v′ of v,

– if F (Atts∗,Tv′) = 1, then run

PolySat(Tv′ ,Atts∗, qv(Index(v
′)), where

qv(Index(v
′)) is known to the challenger;

– otherwise, call PolyUnsat(Tv′,Atts∗, gλv′ ), where

gλv′ = gqv(Index(v
′) is known to the challenger.

With the above two procedures, the challenger runs

PolyUnsat(T,Atts∗, ga), by implicitly defining qroot(0) = a.

Then for each v ∈ lvs(T), the challenger gets qv(0) if

att(v) ∈ Atts∗, and gets gqv(0) otherwise. Because cqv(0) is

the secret share of ac, due to the linear property, the challenger

generates credentials for each v ∈ lvs(T) as follows:

• If att(v) = atj for some atj ∈ Atts∗: Select t← Zp, set

Av = f qv(0)gβjt = gcqv(0)H1(att(v))
t and Bv = gt;

• If att(v) /∈ Atts∗ (assuming att(v) = atj): Select

t′ ← Zp, set Av = (gqv(0))
−βj
αj (fαjgβj )t

′

and Bv =

g
qv(0)

−1
αj gt

′

. Note that (Av, Bv) is a valid credential

because

Bv = g
qv(0)

−1
αj gt

′

= g
t′−

qv(0)
αj

Av = g
qv(0)

−βj
αj (fαjgβj)t

′

= f qv(0)(fαjgβj)
−qv (0)

αj (fαjgβj )t
′

= f qv(0)(fαjgβj)
t′− qv(0)

αj

= gcqv(0)H1(att(v))
t′− qv(0)

αj

by implicitly letting t = t′ − qv(0)
αj

. Note also that A
cannot construct Av and Bv without knowing αj , βj .

Eventually, the challenger returns sk = {(Av, Bv)|v ∈ lvs(T)}
to A.

OTokenGen(T, w): The challenger runs OKeyGen(T) to get sk =
(T, {Av, Bv|v ∈ lvs(T)}), computes tk ← TokenGen(sk, w),
and returns tk to A. If F (Atts,T) = 1, the challenger adds w
to the keyword List Lkw.

Challenge phase: A chooses two keywords w0 and w1 of

equal length, such that w0, w1 /∈ Lkw. The challenger outputs

cph∗ as:

• Select λ← {0, 1}.
• For each atj ∈ Atts∗, set Wj = (gr2)βj .

• Set W ′ = f r1 , W = Q(f r1)dH2(wλ), and W0 = gr2 .

• Set cph∗ = (Atts∗,W ′,W,W0, {Wj|atj ∈ Atts∗}) and

return cph∗ to A.

We note that if Q = hr1+r2 , then cph∗ is indeed a

legitimate ciphertext for keyword wλ. The reason is that

W ′ = f r1 = gcr1 , W = Qf r1dH2(wλ) = Qgr1cdH2(wλ) =
ga(r1+r2)gbr1H2(wλ), W0 = gr2 , and for atj ∈ Atts∗, Wj =
(gr2)βj = H1(atj)

r2 .

Phase 2: A continues to query the oracles as in Phase 1. The

only restriction is that (T, w0) and (T, w1) cannot be the input

to OTokenGen if F (Atts∗,T) = 1.

Guess: Finally, A outputs a bit λ′ and gives it to the chal-

lenger. If λ′ = λ, then the challenger outputs Q = hr1+r2 ;

otherwise, it outputs Q 6= hr1+r2 .

This completes the simulation. In the challenge phase, if

Q = hr1+r2 , then cph∗ is a valid ciphertext of wλ, so the

probability of A outputting λ = λ′ is 1
2+µ. If Q is an element

randomly selected from G, then cph∗ is not a valid ciphertext

of wλ. The probability of A outputting λ = λ′ is 1
2 since

W is an random element in G. Therefore, the probability of

the challenger correctly guessing Q
?
= hr1+r2 with the DL

instance (g, h, f, f r1, gr2 , Q) is 1
2 (

1
2 + µ+ 1

2 ) =
1
2 + µ

2 . That

is, the challenger solves the DL problem with advantage µ/2
if A wins the SCKA game with an advantage µ.

APPENDIX B

PROOF OF THEOREM 2

Proof 2: We construct a challenger that exploits the keyword

secrecy game as follows:

Setup: The challenger selects a, b, c← Zp, f ← G. Let H2 be

an one-way hash function and pm = (e, g, ga, gb, gc, f) and

mk = (a, b, c).



The random oracle OH1(atj) is simulated as follows: If

atj has not been queried before, the challenger selects αj ←
Zp, adds (atj , αj) to OH1 , and returns gαj ; otherwise, the

challenger retrieves αj from OH1 and returns gαj .

Phase 1: A can adaptively query the following oracles for

polynomially-many times.

OKeyGen(T): The challenger generates sk ← KeyGen(T,mk)
and returns sk to A. It adds T to the list LKeyGen, which is

initially empty.

OTokenGen(T, w): The challenger runs OKeyGen(T) to ob-

tain sk = (T, {Av, Bv|v ∈ lvs(T)}), computes tk ←
TokenGen(sk, w), and returns tk to A.

Challenge Phase: A selects an attribute set Atts∗. The

challenger chooses an access control policy that is repre-

sented as T∗ such that F (Atts∗,T∗) = 1, computes sk∗ ←
KeyGen(mk,T∗). By taking as input Atts∗ and sk∗, it selects

w∗ from keyword space uniformly at random, and computes

cph∗ and tk∗ with Enc and TokenGen. Atts∗ should satisfy

the requirement defined in the keyword secrecy game.

Guess: Finally, A outputs a keyword w′ and gives it to the

challenger. The challenger computes cph′ ← Enc(Atts, w′)
and if Search(tk∗, cph′) = 1, then A wins the game.

This finishes the simulation. Suppose A has already at-

tempted q distinct keywords before outputting w′, we can see

that the probability of A winning the keyword secrecy game

is at most 1
|M|−q +ǫ. This is because the size of the remaining

keyword space is |M|−q, and as the H2 is an one way secure

hash function, meaning deriving w∗ from H2(w
∗) is at most a

negligible probability ǫ. Therefore, given q distinct keywords

A has attempted, the probability of A winning the keyword

secrecy game is at most 1
|M|−q+ǫ. Thus, our scheme achieves

keyword secrecy as in Definition 3.

APPENDIX C

PROOF OF THEOREM 3 ON CP-ABKS

Proof 3: We show that the CP-ABE scheme is selectively

secure against chosen-keyword attack in the generic bilinear

group model, where H1 is modeled as a random oracle and

H2 is a one-way hash function.

In the SCKA game, A attempts to distinguish

ga(r1+r2)g
br1H2(w0)

from ga(r1+r2)g
br1H2(w1)

. Given θ ← Zp,

the probability of distinguishing ga(r1+r2)gbr1H2(w0) from gθ

is equal to that of distinguishing gθ from ga(r1+r2)gbr1H2(w1).

Therefore, if A has advantage ǫ in breaking the SCKA game,

then it has advantage ǫ/2 in distinguishing ga(r1+r2)gbr1H2(w0)

from gθ . Thus, let us consider a modified game where A can

distinguish ga(r1+r2) from gθ. The modified SCKA game is

described as follows:

Setup: The challenger chooses a, b, c← Zp and sends public

parameters (e, g, p, ga, gb, gc) to A. A chooses an access tree

T∗, which is sent to the challenger.

H1(atj) is simulated as follows: If atj has not been queried

before, the challenger chooses αj ← Zp, adds (atj , αj) to

OH1 and returns gαj ; otherwise the challenger returns gαj by

retrieving αj from OH1 .

Phase 1: A can query OKeyGen and OTokenGen as follows:

a r
(t)
j s(ac+ r(t))/b cr1

b r(t) + αjr
(t)
j s(r

(t)
j ) qv(0)

c (ac+ r(t))/b s(r(t) + αjr
(t)
j ) αjqv(0)

αj cs s(a+ bH2(w)) br2
TABLE III

POSSIBLE TERMS FOR QUERYING GROUP ORACLE GT

OKeyGen(Atts): The challenger selects r(t) ← Zp and com-

putes A = g(ac+r(t))/b. For each attribute atj ∈ Atts, the

challenger chooses r
(t)
j ← Zp, computes Aj = gr

(t)

gαjr
(t)
j

and Bj = gr
(t)
j , and returns (Atts, A, {(Aj , Bj)|atj ∈ Atts}).

OTokenGen(Atts, w): The challenger queries OKeyGen(Atts) to

get sk = (Atts, A, {(Aj , Bj)|atj ∈ Atts}) and returns tk =
(Atts, tok1, tok2, tok3, {(A

′
j , B

′
j)|atj ∈ Atts}) where tok1 =

(gagbH2(w))s, tok2 = gcs, tok3 = As, A′
j = As

j and B′
j = Bs

j

by selecting s← Zp. If F (Atts,T∗) = 1, the challenger adds

w to the keyword List Lkw.

Challenge phase: Given two keywords w0, w1 of equal length

where w0, w1 /∈ Lkw, the challenger chooses r1, r2 ← Zp,

and computes secret shares of r2 for each leaves in T∗. The

challenger selects λ← {0, 1}. If λ = 0, it outputs

W = gcr1,W0 = gθ,W ′ = gbr2 ,

{(Wv = gqv(0), Dv = gαjqv(0))|v ∈ lvs(T∗), att(v) = atj}

by selecting θ ∈ Zp; otherwise it outputs

W = gcr1,W0 = ga(r1+r2),W ′ = gbr2 ,

{(Wv = gqv(0), Dv = gαjqv(0))|v ∈ lvs(T∗), att(v) = atj}.

Phase 2: This is the same as in the SCKA game.

We can see that if A can construct e(g, g)δa(r1+r2) for

some gδ that can be composed from the oracle outputs he

has already queried, then A can use it to distinguish gθ from

ga(r1+r2). Therefore, we need to show that A can construct

e(g, g)δa(r1+r2) for some gδ with a negligible probability. That

is, A cannot gain non-negligible advantage in the SCKA game.

In the generic group model, ψ0 and ψ1 are random injective

maps from Zp into a set of p3 elements. Then the probability of

A guessing an element in the image of ψ0 and ψ1 is negligible.

Recall that G = {ψ0(x)|x ∈ Zp} and GT = {ψ1(x)|x ∈
Zp}. Hence, let us consider the probability of A constructing

e(g, g)δa(r1+r2) for some δ ∈ Zp from the oracle outputs he

has queried.

We list all terms that can be queried to the group oracle GT

in Table III. Let us consider how to construct e(g, g)δa(r1+r2)

for some δ. Because r1 only appears in the term cr1, δ
should contain c in order to construct e(g, g)δa(r1+r2). That

is, let δ = δ′c for some δ′ and A wishes to construct

e(g, g)δ
′ac(r1+r2). Therefore, A needs to construct δ′acr2,

which will use terms br2 and (ac+r(t))/b . Because (br2)(ac+
r(t))/b = acr2+r

(t)r2, A needs to cancel r(t)r2, which needs

to use the terms αj , r
(t) + αjr

(t)
j , qv(0) and αjqv(0) because

qv(0) is the secret share of r2 according to T∗. However, it is

impossible to construct r(t)r2 with these terms because r(t)r2



only can be reconstructed if the attributes corresponding to

r
(t)
j of r(t) + αjr

(t)
j satisfies the access tree T∗.

Therefore, we can conclude that A gains a negligible

advantage in the modified game, which means that A gains a

negligible advantage in the SCKA game. This completes the

proof.

APPENDIX D

PROOFS OF THEOREM 5, THEOREM 6, THEOREM 7 AND

THEOREM 8 ON VABKS

A. Proof of Theorem 5 on VABKS

Proof 4: We show that if there exists a polynomial-time

algorithm A breaks VABKS’s data secrecy with the advantage

ρ, then we can break either CPA security for ABE or CPA

security for SE with the advantage ρ
n2 where n is the number

of data files to be encrypted.

The challenger proceeds the conventional CPA security

game with A. In the challenge phase, suppose A presents

two data collections D0 = (KG,MP,FS0 = {F01, . . . ,F0n}),
D1 = (KG,MP,FS1 = {F11, . . . ,F1n}), {IEnc}l and {I ′Enc}n.

The challenge selects λ ← {0, 1} and encrypts FSλ with the

ABE and {I ′Enc}n.

Now let us consider the advantage of A correctly guess-

ing λ. As we know, given two messages, the advantage of

distinguishing which message was encrypted by the hybrid

encryption of ABE and SE is equal. Therefore, given two sets

of data files FS0 and FS1, if the advantage of distinguishing

which data set was encrypted is ρ, then the advantage of

distinguishing which data file was encrypted is ρ
n2 by selecting

one data file from FS0 and one from FS1.

Therefore, we can see that if A breaks VABKS’s data se-

crecy of with a non-negligible advantage ρ, then the advantage

of breaking CPA security for ABE or CPA security for SE is ρ
n2

–a non-negligible probability, which contracts the assumption

that ABE is CPA-secure and SE is CPA-secure.

B. Proof of Theorem 6 on VABKS

Proof 5: We show that if there exists a polynomial-time

algorithm A breaks the selective security against chosen-

keyword attack of ABKS with the advantage ρ, then we can

break the selective security against chosen-keyword attack

game of ABKS with the advantage of ρ
l2 , given that ABE is

CPA-secure and H is a secure pseudorandom generator.

The challenger proceeds selective security against chosen-

keyword attack game with A. In the challenge phase, sup-

pose A presents two data collections D0 = (KG0 =
{KG01, . . . ,KG0l},MP,FS), and {I ′Enc}n. The challenge se-

lects λ← {0, 1} and encrypts KG with ABKS, and generates

BF′
i, cphBFi

and σi for each keyword group.

Since ABE is CPA-secure and H is a secure pseudorandom

generator, the probability of A inferring λ via BF′
i, cphBFi

is

negligible. Then let us consider the advantage of A correctly

guessing λ from keyword ciphertexts. As we know, given two

keywords, the advantage of distinguishing which keyword was

encrypted by ABKS is equal. Therefore, given two keyword

sets KG0 and KG1, if the advantage of distinguishing which

keyword set was encrypted is ρ, then the advantage of distin-

guishing which keyword was encrypted is ρ
l2 by selecting one

keyword from KG0 and one from KG1.

Therefore, we can see that if A breaks VABKS’s selective

security against chosen-keyword attack with a non-negligible

advantage ρ, then the advantage of breaking ABKS’s selective

security against chosen-keyword attack is ρ
l2 –a non-negligible

probability, which contracts the assumption that ABKS achieve

selective security against chosen-keyword attack, given that

ABE is CPA-secure and H is a secure pseudorandom genera-

tor.

C. Proof of Theorem 7 on VABKS

Proof 6: We show that if there exists polynomial time

algorithmA breaking VABKS’skeyword secrecy, then it breaks

the assumption that ABKS achieves keyword secrecy.

Suppose A presents a data collection D = (KG =
{KG1, . . . ,KGl},MP,FS), {IEnc}l and {I ′Enc}n. The chal-

lenger simulates the keyword secrecy game as in B, where

the keyword space consists of keywords specified by FS.

We can see that the probability of A inferring the keyword

from a search token and corresponding keyword ciphertext is

equal to that of ABKS. Therefore, if in VABKSA guesses the

keyword from the search token and corresponding keyword

ciphertext with the probability more than 1
|M|−q + ǫ after

guessing q distinct keywords, then the probability of guessing

the keyword from the search token and keyword ciphertext

in ABKS is more than 1
|M|−q + ǫ after guessing q distinct

keywords, which contracts the assumption that ABKS achieves

keyword secrecy.

D. Proof of Theorem 8 on VABKS

Proof 7: We show that under the assumptions that Sig is

unforgeable, any polynomial-time adversary A presents an

incorrect search result and succeeds in the verification with

negligible probability.

The challenger proceeds the verifiability game, where

A provides the keyword-based data D = (KG =
{KG1, . . . ,KGl},MP = {MP(w)|w ∈ ∪li=1KGi},FS =
{F1, . . . ,Fn}), {IEnc}l and {I ′Enc}n. The challenger runs

(Au, Index,Dcph) ← BuildIndex({IEnc}l, {I
′
Enc}n,D), and

gives (Au, Index,Dcph) to A.

In the challenge phase, with w∗ and I∗Enc from A, the

challenger selects I∗KeyGen such that F (I∗KeyGen, I
∗
Enc) = 1

where I∗Enc is selected by A, generates credential sk∗ with

I∗KeyGen and returns to A a search token tk∗ by running

tk∗ ← TokenGen(sk, w∗). A returns (rslt∗, proof∗) to the

challenger.

Suppose that (rslt∗, proof∗) succeeds in the verification.

That is, 1← Verify(sk∗, w∗, tk∗, rslt∗, proof∗). Let us consider

the probability of A cheating with incorrect search result.

First, we claim that the global signature σ and random

keyword ciphertexts cphBF1
, . . . , cphBFl

are included in proof∗

without being manipulated; otherwise we can break the un-

forgeability of Sig.



Second, let us consider the search result within each group

with respect to access control policies, i.e. i = 1, . . . , l:

• If there exists no keyword ciphertext matched the search

token tk∗, then we claim that A cannot cheat the chal-

lenger with some keyword ciphertext and data ciphertexts

in order to make VABKS.Verify output 1. The reason

is that A cannot forge a keyword signature σw for the

keyword ciphertext and data ciphertexts; otherwise, we

can break the unforgeability of Sig.

• If there exists a keyword ciphertext matched the search to-

ken tk∗, then we claim that A cannot cheat the challenger

with a null search result in order to make VABKS.Verify
output 1. Suppose A returns a null result and the proof

(BF′
i, cphBFi

, σBFi
). Since BF′

i cannot be manipulated due

to σBFi
, the unmasked bloom filter indicates that w∗ is

a member within the group. The challenger downloads

cphw1
, . . . , cphw|KGi| and σi without being manipulated;

otherwise we break the Sig’s unforgeability. Then the

challenger can conduct the search operation with each

keyword ciphertext, and VABKS.Verify will output 0.

That is, if there exists keyword ciphertext matched the

search token, A returns a null result, then it cannot make

VABKS.Verify output 1.

To sum up, in order to make VABKS.Verify output 1, A has

to faithfully execute search operations and return the search

result honestly; otherwise, we will break Sig’s unforgeability.


