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Abstract—The performance of communication protocols in
vehicular networks highly depends of the mobility pattern, so
one of the most important issues when dealing with simulation
of this kind of protocols is how to properly model vehicles
mobility. In this paper we present VACaMobil, a VANET Car
Mobility Manager for the OMNeT++ simulator which allows
researchers to completely define vehicular mobility by setting
the desired average number of vehicles and its upper and lower
bounds. We compare VACaMobil against other common methods
employed to generate vehicular mobility. Results clearly show the
advantages of the VACaMobil tool when distributing vehicles in
a real scenario, becoming one of the best mobility generator to
evaluate the performance of different communication protocols
and algorithms in VANET environments.

Index Terms—Vehicular Networks, Mobility patterns, Simula-
tion Tool, SUMO, TraCI.

I. INTRODUCTION

The reproducibility of experiments is a major issue when
evaluating smart communication protocols and algorithms,
especially over Vehicular Ad-hoc NETworks (VANETs). In
[6] the authors provide a complete review of the minimum set
of parameters that should be identified in order to allow other
researchers to reproduce simulation experiments. They pointed
out several key parameters, such as the simulated hardware, the
network simulator, the scenario, and the road traffic simulator.
However, regarding node mobility, there is another parameter
that has been mostly ignored by the research community which
is of utmost studies: the density of traffic as well as its demand.

As other authors pointed out in previous studies, mobility
models [10] and the chosen scenario [4], as well as the
node density, heavily influence the final network performance.
However, since mobility generators and road traffic simulators
are often tough to configure, the simulated node density and
distribution may depend on complex data that is usually not in-
cluded in the published academic results, which compromises
its reproducibility.

In this paper we present VACaMobil (VANET Car Mobility
manager), a mobility manager module for the OMNeT++
simulator which is the first, to the best of our knowledge, able
to generate SUMO [1] driven nodes in a vehicular network
while ensuring certain user-defined parameters, such as the
average, maximum, and minimum number of vehicles. This
goal is useful for mid-length simulations, typically one hour,
where vehicle density can be assumed stable. At the same

time, since our solution is tightly coupled with SUMO through
the TraCI interface, it is able to mimic real vehicle behavior.
By running in parallel with SUMO, VACaMobil executes the
following tasks: (i) it manages when a new vehicle must be
introduced in the network, (ii) it assigns a random route from
a predefined set to each vehicle, and (iii) it determines which
type of vehicle should be added. Given a specific road map,
when using VACaMobil, researchers will be able to completely
define the network mobility merely by defining the desired
average number of vehicles and its standard deviation value
(upper and lower bounds).

Going a step further, our tool also aids researchers at
selecting among the different type of vehicles previously
defined in SUMO, such as “cars”, “buses”, or “trucks”. This
allows researchers to easily define road traffic simulations with
heterogeneous vehicles.

The rest of this paper is organized as follows: In section
II, we shortly introduce the different methods for generating
VANET mobility patterns that the research community com-
monly uses. In section III, VACaMobil is fully described. In
section IV, we compare our proposal with the tools duarouter
and duaIterate.py,all of them included in SUMO. Finally, in
section V, we expose our conclusions and some future plans
to improve VACaMobil.

II. A REVIEW OF EXISTING MOBILITY GENERATORS FOR

VANETS

Before presenting the details of our proposal, we analyze
some of the methods commonly used to obtain suitable mo-
bility patterns in urban vehicular scenarios. We have analyzed
several papers published during the last few years, most
of them published in conferences and journals related to
Intelligent Transport Systems. Early approaches relied on too
simple mobility models based merely on random mobility.
Since these simple models do not represent vehicle mobility
properly, other mobility models have been recently developed
based on real world traces and artificial mobility models from
the field of transportation and traffic science. In this section,
we briefly describe the most relevant works.

A. Random Vehicle Movement

At the beginning of the previous decade, the “Random Way-
Point" was extensively used in Mobility Ad-Hoc NETwork
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(MANET) research. However, in 2003, the authors in [15]
demonstrated how harmful the Random Way-Point mobility
model really is. Moreover, the effects described in this work
are even worse when simulating VANETs. Later on, some
other authors have extended the “Random Way-Point" mobility
model by restricting the mobility of nodes to a map layout, as
in [14]. However, this improvement does not solve the majority
of the “Random Way-Point” model problems stated previously.

In our research group we developed a tool called “City-
Mob" [9]. CityMob allows users to create random mobility
patters restricted to a grid. It also adds support for downtown

definition, where a downtown is a region inside the simu-
lated map which concentrates the majority of the selected
routes along the simulation. Although CityMob presents a
big improvement compared to non restricted mobility models,
as well as random mobility models, it also presents some
problems; the most important one is that vehicular mobility is
not influenced by other vehicles, i.e. two different vehicles can
occupy the same location and no minimal distance between
vehicles is required. Moreover, vehicles do not change their
speed during a trip. However, in the real world, vehicles
continuously change their speed according to traffic conditions
and road characteristics. Last but not least, vehicles keep
moving throughout the whole simulation, which especially
influences the performance of protocols which keep data
stored in buffers. The research community quickly realized
the problems derived from inaccurate simulation patterns and
started to work in other methods to obtain suitable mobility
traces.

B. Real Mobility Traces

Compared to the use of random mobility, real traces present
a clear improvement. Such traces are usually obtained from a
certain set of nodes, e.g. from taxis in the city of Shangai [7].
Mobility traces can be obtained by tracking the mobility of
nodes using On-Board units, as in [7], or by using road-side
equipment, as in [5]. Although real traces represent the most
realistic mobility patterns, we can not obviate the fact that
the mobility of the tracked nodes is highly influenced by the
movement of other non tracked vehicles, e.g. taxis’ mobility
is influenced by other users on the road whose movement is
not reflected in the collected traces. Moreover, real traces lack
the flexibility to allow for an exhaustive evaluation of VANET
protocols, e.g. changing the vehicle density without modifying
their speed is clearly unreal.

C. Assisted Traffic Simulation

The restrictions of real traces can be overcome, with almost
no loss of realism, by using mobility models taken from
the field of transportation and traffic science. Several road
traffic simulators are widely used among the VANET research
community. One of the most widely used mobility generators
is SUMO [1]. When simulating traffic mobility for VANETs
not only the vehicles’ behavior is important, but also the
traffic demand. SUMO allows defining traffic demand in two
different ways, trips and flows. The former defines only a
vehicle, its origin and its destination, while the latter defines a

set of vehicles which execute the same trip. SUMO currently
provides several tools to generate traffic demand:

• randomTrips.py: A random trip generator. This tool gen-
erates a trip every second having a random origin and
destination. It does not check if the origin and destination
are connected, or whether the trip is possible.

• duarouter: A Dijkstra router. Given a file with trips
and flows, this tool generates the actual traffic demand,
expressed in vehicles with an assigned route. Routes
are calculated using the Dijkstra algorithm, and every
unconnected trip is discarded.

• duaIterate.py: This python script will produce a set of
optimal routes from a trip file, i.e. all the nodes will
follow that route which minimizes the total trip-time for
all nodes. This tool repeats a routing-simulation loop until
optimal routes are found.

Authors have used these tools in order to generate traffic
demands for SUMO. The most simplistic one is to define
different flows inside the network. Although drivers usually
move from certain districts to others, following patterns as-
sociated with their working and living places, defining the
traffic only by creating fixed flows lacks of any realism, as
we can see in [2] where only a few flows are defined by
the user. Other common approach is to generate random trips
using randomTrips.py. This approach presents the problem
that only one vehicle is introduced every second, which leads
to long transitory periods until the network reaches a stable
state. A more sophisticated traffic demand generation strategy
is presented in [8], where a predefined number of vehicles
following random routes are randomly placed at the beginning
of the simulation. Following this trend, in previous works we
used C4R [3], which is a software developed by our group to
automate the task of generating random vehicles with random
routes at random places. The work presented in [13] is the
only one that we could find which uses the duaIterate.py script
to generate a “stable and optimal distribution of flows". This
type of traffic definition presents a problem: the trip duration
can not be predicted before running the simulations, and, as a
consequence, there is no way to ensure, or even determine, if
the road traffic simulation will last until the end of the network
simulation. As some works have stated before, this lack of
realism and generality in mobility patters can lead to biased
results [10].

D. Bidirectionally coupled network and traffic simulations

In [11] its authors go a step further and present a new
simulation framework called Veins which includes an interface
called TraCi that allows the network simulator to interact
with the traffic simulator which runs in parallel. Although,
it presents much novelty and opens a lot of possibilities for
VANET simulation, authors do not address the traffic demand
generation problem. This framework demonstrated its new
characteristics in [12], and is one of the main elements of our
VACaMobil module by allowing us to interact with SUMO
during the network simulation and create new vehicles.



3

Figure 1. Main loop of the VACaMobil tool.

III. VACAMOBIL MOBILITY MANAGER

In this section we present our VANET mobility generator
providing the main characteristics and its implementation
details.

A. Characteristics

The main characteristic of VACaMobil is to offer realistic
mobility scenarios, to that end it can guarantee an average
number of vehicles while the current number of vehicles is
kept between the given upper and lower bounds, implied in
the defined standard deviation. The direct consequence of this
characteristic is the creation of a tool that ensures repeatability
of network simulations under the same road traffic conditions
just by defining the average number of vehicles and the
standard deviation values.

Another characteristic it offers is the possibility of having
different type of vehicles, each with a predefined probability.
Therefore, we can introduce different type of vehicle in
simulations, such as “car”, “bus” and “truck”, each one with
its own characteristics. This is an important feature because
high level decisions may be based on the type of the vehicle .

VACaMobil also provides a realistic vehicle distribution
based on a list of different predefined routes.

Finally it works on-line with the SUMO traffic simulator,
obtaining all the needed information about routes and type
of vehicles through the TraCI communication interface which
avoids the duplicity of configuration files.

B. Implementation details

This tool extends the module collection available in the
Veins framework [11] with new capabilities. We explain,
for each of the characteristics described before, the different
implementation decisions taken.

1) Average number of vehicles: Figure 1 shows the VA-
CaMobil iterative control loop. At every step of the mobility
simulation, VACaMobil compares the current number of ve-
hicles in the simulation with the target number of vehicles.
Depending on whether it is greater or lower than the target,
VACaMobil waits until its current value decreases to the target
value, or, in the second case, starts inserting several new
vehicles in every step of the mobility simulation in order to
increase the current value to the desired value. To avoid having
an average number of vehicles higher than the one defined
by the user, the time during which new vehicles are inserted
is as long as the last period where the number of vehicles

has decreased. By following this approach we also avoid
high frequency fluctuations in the total number of vehicles
throughout the simulation time.

Every new target number of vehicle is obtained from a
normal distribution whose mean is the desired average number
of vehicles and whose standard deviation is defined by the user.
Its value is limited to the upper and lower bounds which are
defined as the mean ± 3 ∗ standard deviation , this value
avoids extremely high or low values of the current number of
vehicles.

2) Different type of vehicles: One of the parameters we can
obtain via TraCI is the type of the vehicles that the traffic
simulation allows. The user can set different probabilities
associated to each vehicle type. In this case, every time that
a new car is generated, we obtain a uniform random value
and select the correspondent vehicle type. If no probability is
defined for a certain type of vehicles, we assume it is equal to
0. However if no probability is defined for any of the defined
type of vehicle, only vehicles of the first defined type will be
generated.

3) Routing set and vehicle distribution: Since SUMO itself
loads all the different routes at startup, we can also retrieve
them through TraCI, and, as in the previous item, we select one
of them with an uniform probability every time we generate
a new vehicle.

VACaMobil does not compute the routes at simulation time,
instead it relies on the goodness of the different routes made
available by SUMO. To guarantee that vehicles are distributed
realistically, we also developed a tool based on duaIterate.py

and randomTrips.py which creates a SUMO route file with
several random routes.

Finally, to ensure that a new vehicle is correctly added, the
default behavior is to attempt to insert the vehicle at any of
the lanes available on the first edge of the route. If the edge
is full, the module selects a new route sequentially from a
list, repeating the operation until it finds a free place to insert
the vehicle, or until the first selected route is selected again,
which means that there is no room on the road map for the
new vehicle.

IV. EVALUATION

In this section we evaluate VACaMobil to verify whether the
objectives and characteristics described in section III-A have
been accomplished. In order to do that, we have compared
VACaMobil against the tools currently included in SUMO,
i.e. duarouter and duaIterate.py, that were described in section
II.We have selected the following scenarios:

• Synthetic Manhattan scenario: We created a road map
consisting of a 25 x 25 grid with segments of 200
meters(Figure 2).

• Urban real map scenario: We extracted an urban road
layout from the OpenStreetMap database. It is a scenario
of about 7 km2 from the city of Milano characterized by
short road segments and a high road density(Figure3).

In both scenarios, the VACaMobil random routes set is ex-
tracted from the traffic demand generated by duaIterate.py. In
the following subsection, we compare the vehicle density and
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Figure 2. Heat map for the Manhattan scenario when using duarouter, duaIterate.py, and VACaMobil (from left to right).

Figure 3. Heat map for the urban scenario when using duarouter, duaIterate.py, and VACaMobil (from left to right).

its evolution along the simulation time for the aforementioned
tools and scenarios.

A. Vehicle distribution study

We first evaluate one of the most important issues in vehic-
ular mobility: how vehicles are distributed on the simulated
road map.

Figure 2 shows how the compared methods perform in the
Manhattan scenario. Due to its lack of randomness, duarouter
is unable to select different routes for vehicles when there
are several streets with the same travel-time. This prevents
the simulator to properly distribute vehicles, and so all them
are routed through the same street (eleventh from the left).
When using the duaIterate.py script, a better distribution of
the vehicles is achieved due to the fact that many simulations
are sequentially executed to optimize vehicle routes. Since
VACaMobil’s random routes set is obtained from duaIterate.py,
it achieves a similar nodes distribution.

Figure 3 shows performance results for the urban scenario.
In this case, duarouter is also unable to spread the vehicles
properly. Since some roads are faster than others, all the
vehicles are routed through them, even when these streets are
congested. Therefore, an undesired traffic congestion is created
in the fastest inner roads. However, this is an unrealistic
scenario because drivers tend to avoid traffic jams whenever
possible. When either using duaIterate.py or VACaMobil,
vehicles are routed through alternative streets, avoiding traffic
jams. This strategy has a higher degree of similitude compared
to real road traffic, since drivers prefer faster roads but often
change their route to avoid traffic jams.

Table I
VACAMOBIL CONFIGURATION

Vehicle number Std. dev.
Manhattan 320 6

Urban scenario 370 8

Table II
VEHICLE STATISTICS SUMMARY

Manhattan Urban scenario
mean std. dev. mean std. dev.

duarouter 313.767 58.8271 880.546 465.716
duaIterate.py 304.487 55.5174 393.717 96.414
VACaMobil 319.349 6.14267 369.691 7.84640

B. Vehicle density study

To make simulations more easily comparable, a similar
traffic density is desirable in all simulated city layouts. Current
tools can not correctly handle this problem. In order to
compare the behavior of the three selected methods previously
presented, we have measured the average number of cars, its
standard deviation, and its evolution along simulation time.

Table II shows the differences in terms of number of
vehicles for the two target scenarios for each traffic generation
tool. In simplest scenarios (Manhattan), the three methods can
achieve a stable value for the mean vehicle density with a low
standard deviation. However, neither duarouter nor duaIterate
allow to a priori configure the value of this parameter. On the
contrary, VACaMobil not only is able to populate the network
with the desired number of vehicles, but also allows defining
a maximum and a minimum number of vehicles by using the
standard deviation feature, which will bound the number of
vehicles. In complex maps like the urban scenario, VACaMobil
is the only tool able to maintain the desired standard deviation
value.
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Figure 4. Vehicle number evolution for the Manhattan scenario.
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Figure 5. Vehicle number evolution for the urban scenario.

To better understand the aforementioned values, figures 4,
and 5 show the number of vehicles in the scenario along
time for each tool. Since duarouter and duaIterate.py are only
able to add one vehicle per second, the user cannot predict
when vehicles will arrive to their destination and disappear
from the network. Therefore, the number of vehicles when
the simulation reaches a steady-state in the Manhattan scenario
is not known a priori, that converts protocols analysis based
on number of vehicles in a mere act of faith. Moreover, in
urban maps where traffic jams are very common, as in the
urban scenario, it takes more time for vehicles to reach their
destination and leave the network, which leads to a constant
increasing number of vehicles in the network when not using
VACaMobil. Comparing the configuration in table I and the
results in table II, we can conclude that both the target number
of vehicles and the standard deviation goal are clearly achieved
with our VACaMobil approach.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented VACaMobil1, a new mobility
manager for the OMNeT++ simulator which promotes the full
repeatability of VANET simulations. By adding some new,
critical features to the previous existing tools, such as ensuring
a constant number of vehicles during the entire simulation
period, disseminating vehicles throughout the whole route-
map, and the possibility of defining different vehicle types
with different probabilities.

Contrarily to other existing tools, which are not able to
control the mean number of vehicles nor its standard deviation,
VACaMobil is able to maintain the mean number of vehicles

1VACaMobil is freely available at www.grc.upv.es/software.

and the standard deviation value within user-defined bounds.
To the best of our knowledge, this is currently the only
tool that allows studying a vehicular network in a steady
situation without losing the realistic vehicle behavior provided
by SUMO.

As future work we plan to improve VACaMobil offering
downtown definition and automatic placement of Road Side
Units (RSU).
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