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Vacancy‑engineered nodal‑line 
semimetals
Fujun Liu1,2, Fanyao Qu2, Igor Žutić3 & Mariana Malard4*

Symmetry‑enforced nodal‑line semimetals are immune to perturbations that preserve the underlying 
symmetries. This intrinsic robustness enables investigations of fundamental phenomena and 
applications utilizing diverse materials design techniques. The drawback of symmetry‑enforced nodal‑
line semimetals is that the crossings of energy bands are constrained to symmetry‑invariant momenta 
in the Brillouin zone. On the other end are accidental nodal‑line semimetals whose band crossings, 
not being enforced by symmetry, are easily destroyed by perturbations. Some accidental nodal‑line 
semimetals have, however, the advantage that their band crossings can occur in generic locations in 
the Brillouin zone, and thus can be repositioned to tailor material properties. We show that lattice 
engineering with periodic distributions of vacancies yields a hybrid type of nodal‑line semimetals 
which possess symmetry‑enforced nodal lines and accidental nodal lines, with the latter endowed 
with an enhanced robustness to perturbations. Both types of nodal lines are explained by a symmetry 
analysis of an effective model which captures the relevant characteristics of the proposed materials, 
and are verified by first‑principles calculations of vacancy‑engineered borophene polymorphs. Our 
findings offer an alternative path to relying on complicated compounds to design robust nodal‑line 
semimetals; one can instead remove atoms from a common monoatomic material.

The study of degeneracies between energy bands in the spectrum of a system dates back to the early days of 
quantum  mechanics1. Since then, band degeneracies are featured in various physical phenomena, from signal-
ing quantum phase  transitions2 to being the spectral signature of a  semimetal3,4. According to the non-crossing 
rule by von Neumann and  Wigner1, energy bands generally avoid each other, but symmetries entail the pos-
sibility of band crossings. A band crossing is symmetry-enforced if its existence is guaranteed by the underlying 
symmetry(ies) alone, and accidental if the band crossing requires also tuning parameters of the material (e.g. the 
hopping energy, or any other microscopic parameter of the material). A special case occurs in three dimensions 
where the availability of sufficiently many tunable parameters (three momentum coordinates and one material 
parameter) leads to accidental band crossings even in the absence of  symmetries3. Symmetry-enforced band 
crossings arise from nonsymmorphic symmetries (point group transformations followed by a non-primitive 
translation), as first realized by Michel and Zak in  19995, and later applied to the research on topological semi-
metals (TSMs)6–8.

The nontrivial topology of band crossings in TSMs underpins a variety of phenomena, e.g. Fermi  arcs9 and 
chiral  anomaly10, and promise diverse technological applications, notably in topological quantum  computing4 and 
in quantum-device designs based on proximity  effects11. TSMs with accidental band crossings are topologically 
protected only locally, being eventually destroyed by perturbations. In contrast, TSMs with symmetry-enforced 
band crossings are endowed with global topological protection, i.e. they are immune to symmetry-preserving 
 perturbations6,7.

Here we focus our attention on nodal-line semimetals (NLSMs), the TSMs with band crossings occurring 
along lines in the Brillouin zone (BZ). Two-dimensional (2D) structures, e.g. hexagonal  lattices12 and honeycomb-
Kagome  lattices13, and PbFCl-type  structures14, have been predicted to realize NLSMs. However, the frailty to 
perturbations, particularly to spin-orbit coupling (SOC), of the resulting accidental nodal lines (NLs) hinders 
possible applications and use of proximity  effects11. Symmetry-enforced NLSMs are the natural candidates to 
overcome this challenge. Predicted realizations comprise 3D materials from hexagonal groups P6̄2c , P6122 , 
and P63/m15, and group P4/nmm16. A recent review gathers the most recent developments in the quest for 3D 
 NLSMs17.
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As an alternative to naturally nonsymmorphic 3D crystals, we propose to engineer 2D symmetry-enforced 
NLSMs by turning symmorphic monoatomic sheets into nonsymmorphic ones through removing atoms. Quite 
surprisingly, besides symmetry-enforced NLs, vacancy-engineered materials exhibit also accidental NLs which 
survive under very strong SOC, with strength even exceeding the experimentally attainable values. These addi-
tional NLs were first noted in our previous  report18 where their robustness was conjectured to be symmetry 
enforced since accidental NLs had so far been known to be easily destroyed by perturbations. However, these NLs 
can be moved inside the Brillouin zone (BZ) by varying the parameters of the material, contradicting a known 
feature of symmetry-enforced NLs, namely, that they are pinned at high-symmetry momenta in the BZ. Our 
movable, and yet unusually robust, NLs do not fit in either. one of the two known categories of NLs: robust and 
fixed symmetry-enforced NLs and fragile and movable accidental NLs. We thus uncover that the usual approach 
to distinguish NLs by their response to perturbations is inadequate when such band crossings appear simultane-
ously in the spectrum and have a common origin.

In this work, we develop a complete theoretical description of a 2D vacancy-engineered nonsymmorphic 
lattice which resolves the puzzle by demonstrating that, despite their unusual robustness, the NLs which are 
movable in the interior of the BZ are accidental, and that symmetry-enforced NLs also exist, but are pinned at an 
edge of the BZ. While the accidental NLs are not directly wielded by the nonsymmorphic symmetry per se, they 
are a direct consequence of the proposed mechanism of attaining nonsymmorphicity out of vacancies. The fact 
that these accidental NLs can move and change shape inside the BZ might enable manipulation of momentum-
dependent scattering processes and, hence, of various responses of the material.

Our analysis based on a 2D four-band effective model adds to the known proofs of band-degeneracy enforce-
ment for a 1D two-band  model6,7 and for a 2D two-band  model8. It is well-known that a glide-plane symmetry 
enforces band degeneracies at the glide-invariant boundary of the BZ. But whether this band degeneracy is a 
nodal point or a NL is not guaranteed by the glide-plane symmetry. In Refs.6–8 the nonsymmorphic symmetry 
yields nodal points located at BZ corners. In contrast, our formalism is specifically focused on symmetry-enforced 
NLs along an edge of a 2D BZ. This fundamental difference is connected to the roles played by inversion and time-
reversal symmetries in the effective models, which depend on dimensionality and number of bands. The NLs 
uncovered here are to be contrasted also with those predicted for 3D nonsymmorphic  materials15,16. Symmetry-
enforced NLs in 2D thus constitute a new case of band-degeneracy enforcement. The proposed mechanism of 
engineering nonsymmorphic 2D lattices from periodic configurations of vacancies offers an alternative path to 
fundamental investigations and materials design of NLSMs.

Results
Material realizations. As a concrete example, we illustrate our idea in borophene, a 2D lattice of boron 
atoms. The character of boron bonding—with short covalent radius and possibility of sp2 hybridization—favors 
the formation of a plethora of low-dimensional allotropes, including sheets with different crystalline  motifs19–33. 
In the first reported realizations, different borophene sheets were grown on a Ag (111) substrate through electron 
beam  evaporation23 and molecular beam  epitaxy24. Subsequent developments in the growth and stabilization of 
borophenes were compiled in a recent review 32. It reports a wealth of experimentally realized boron 2D lattices 
with periodic distributions of vacancies, and the agreement between first-principles predictions and experimen-
tal realizations for various vacancy concentrations. We can thus expect different robust NLSM-designs using 
borophene as a base material. Here we propose and investigate the two stable borophenes shown on Figure 1a,b, 
denoted as B 10 and B 16 , where the subscripts refer to the number of atoms in the unit cell. B 10 and B 16 , which 
belong to the pmg nonsymmorphic wallpaper  group34, feature periodic patterns of vacancies which are similar 
to the ones experimentally obtained in Ref.24.

Pristine borophene without any vacancies is a symmorphic material; it possess two perpendicular reflection 
planes which entail the appearance of accidental Dirac cones in the spectrum, akin to those in graphene, silicene 
and germanene. Introducing vacancies at proper concentrations and configurations in pristine borophene yields 
that one of the reflection planes is replaced by a nonsymmorphic glide plane (c.f. Fig. 1a,b), and the Dirac cones 
give place to symmetry-enforced NLs. On top of that, the spectrum acquires also accidental NLs which are 
robust to strong Rashba SOC.

Symmetry‑enforced band degeneracies of a nonsymmorphic two‑dimensional lattice. In this 
section we carry out a symmetry analysis of a minimal lattice which captures the symmetries of B 10 and B 16 
shown in Fig. 1a,b. Figure 2a depicts a 2D lattice whose unit cell has four internal degrees of freedom, repre-
sented by the magenta and blue disks which are shifted along the my-direction. This shift mimics the profile of 
the filled and hollowed stripes in B 10 and B 16 . The minimal lattice is invariant under a nonsymmorphic glide 
plane G, a symmorphic reflection plane R, and a symmorphic inversion point I. We now analyze how these sym-
metries constrain the band structure of the 4× 4 Bloch Hamiltonian, H(kx , ky) , of the lattice depicted in Fig. 2a. 
This analysis is sample-independent; it relies only on the symmetries of the minimal lattice shown in Fig. 2a.

The invariance of the lattice with respect to the glide-plane transformation G is manifest in the relation

where G (kx , ky) is the 4× 4 matrix representation of G in the basis constructed by the eigenstates of H(kx , ky) . 
The kx-dependance of G stems from the fractional translation along the mx-direction, while the ky-dependance 
originates from the shift of the glide plane from the center of the unit cell along the my-direction (c.f. Fig. 2a). 
So G is an unusual symmetry which is both nonsymmorphic (along mx ) and off-centered35,36 (along my ). Such a 

(1)G (kx , ky)H(kx ,−ky)G
−1(kx , ky) = H(kx , ky),
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Figure 1.  Lattice structure of borophene B 10 (a) and B 16 (b) with 10 and 16 atoms, respectively, in the unit cell 
defined by primitive vectors �a and �b . B 10 [B16 ] is obtained from pristine borophene by removing boron atoms 
from the center of hexagons which share one corner [side] along the x-direction. In both (a,b), the hollow 
hexagons form a string along the x-direction, with a zigzag profile in the y-direction. This basic feature yields 
a nonsymmorphic glide-plane symmetry G (composed of a reflection plane running along the x-direction and 
a non-primitive translation by �a/2 ), a symmorphic reflection-plane symmetry R perpendicular to G, and a 
symmorphic inversion-point symmetry I.

Figure 2.  (a) A minimal nonsymmorphic two-dimensional lattice, with the unit cell delineated by the yellow 
lines. The location of the unit cell is defined by (mx ,my) . The disks numbered from 1 to 4 represent two types of 
structures within the unit cell. In real borophenes B 10 and B 16 shown in Fig. 1a,b, these structures are the hollow 
and filled pieces that make up the unit cell of those materials. The minimal lattice has the following spatial 
symmetries: a nonsymmorphic glide plane, G, composed of a reflection about the mx-direction, followed by a 
nonprimitive translation by half of the length of the unit cell along the mx-direction, a symmorphic reflection 
plane, R, about the my-direction, and a symmorphic inversion point, I, which takes a point �r on the lattice to −�r . 
(b) The glide-plane symmetry G (kx , ky) transforms the |kx , ky�α eigenstate of the Bloch Hamiltonian H(kx , ky) 
into the |kx ,−ky�α′ eigenstate of H(kx ,−ky) , and vice-versa. N is the number of bands ( N = 4 for the lattice 
depicted in (a)).
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glide plane differs from the one used to prove band-degeneracy enforcement in a 1D two-band model, the latter 
being a 2× 2 matrix which depends on only one momentum  coordinate6,7.

We show (c.f. Sect. 1 of the Supporting Information) that G (kx , ky)|kx ,−ky�α′ → |kx , ky�α , where |kx , ky�α 
( α = 1, 2, 3, 4 ) is a Bloch eigenstate of H(kx , ky) . This transformation between the negative-ky and positive-ky 
Bloch eigenspaces is illustrated in Fig. 2b. On the lines ky = k̄y = 0,±π , H(kx ,−k̄y) = H(kx , k̄y) . Equation (1) 
thus yields [G (kx , k̄y),H(kx , k̄y)] = 0 and, hence, |kx , k̄y�α are also eigenstates of G (kx , k̄y) . By constructing the 
matrix G (kx , ky) (c.f. Sect. 1 of the Supporting Information), we obtain the twofold degenerate eigenvalues of 
G (kx , k̄y) : ξ1,3 = exp(ikx/2) , and ξ2,4 = − exp(ikx/2) . As kx swipes the BZ from −π to π , the (+)-eigenvalues 
wind around the half-unit circle on the complex plane from −i to i through 1, while the (−)-eigenvalues wind 
from i to −i through − 1, as illustrated on Fig. 3a. As a result, the eigenstates | − π , k̄y�1,3 and |π , k̄y�2,4 have the 
same G-eigenvalue, −i , and the eigenstates |π , k̄y�1,3 and | − π , k̄y�2,4 have the same G-eigenvalue, i. It follows 
that the associated pairs of H-eigenvalues must cross at least once along the kx-axis6 (when ky = k̄y ), as shown 
in Fig. 3b. From this analysis we conclude that the glide-plane symmetry enforces the appearance of two nodal 
points at ky = 0 and two nodal points at ky = ±π . These nodal points, which were not unveiled in Ref.18, are the 
precursors of symmetry-enforced NLs.

To further clarify the origin of the nodal points depicted in Fig. 3b, we analyze the simplest tight-binding 
model for the lattice shown in Fig. 2a in which only hopping between nearest-neighbor sites and on-site energies 
are considered. The entries of the corresponding Bloch Hamiltonian H(kx , ky) read

where n,m = 1, ..., 4 , and tn,m , un,m , vn,m , and wn,m denote the hopping energy from site m to n within the same 
unit cell, between neighboring unit cells along the x-direction, y-direction, and diagonal direction, respec-
tively, and with tn,n = µn the on-site energy. In Eq. (2), only u2,1 = t2,1 , u4,1 = t4,1 , u4,3 = t4,3 along x, v1,3 = t1,3 , 
v2,3 = t2,3 , v2,4 = t2,4 along y, and w2,3 = t2,3 along the diagonal are non-vanishing neighboring hopping (c.f. 
Fig. 2a).

Imposing Eq. (1), with G (kx , ky) given by Eq. (S5), leads to Eqs. (S8)–(S11) (c.f. Sect. 1 of the Supporting 
Information) constraining the entries εn,m(kx , ky) of H(kx , ky) . A similar argument to the one used for the off-
diagonal entry of a 1D two-band  model6 can be applied here to show that Eq. (S9) implies that εn,n+1(kx , k̄y) , 
n = 1, 3 , must vanish at some value of kx . In a 1D two-band model with only one off-diagonal entry, its vanishing 
is sufficient to guarantee a band crossing. In a four-band model, on the other hand, the vanishing of only two of 
its off-diagonal entries is not a sufficient condition. For a 1D multi-band model, band crossings occur provided 
that the model has, on top of the nonsymmorphic symmetry, also chiral  symmetry6. Chiral symmetry means 
that the Bloch Hamiltonian admits an off-diagonal block form which, in turn, means that half of its entries are 
identical to zero. This is clearly not the case of our 2D four-band H(kx , ky) with entries given by Eq. (2), which 
allows for hopping between any two intracell sites and on-site energies. This is particularly relevant for making 
a connection with a real 2D material in which hopping occurs in all directions. Therefore, the (nonsymmorphic 
+ chiral)-symmetries argument designed for the 1D multi-band case is not applicable here.

Instead, we must impose all Eqs. (S8)–(S11) on the entries given by Eq. (2). This yields the entries con-
strained by the glide-plane symmetry given by Eqs. (S12)–(S17) (c.f. Sect. 1 of the Supporting Informa-
tion). The upper panel of Fig. 4a shows two views of the band structure of the glide-plane invariant effec-
tive model given by Eqs. (S12)–(S17) on the positive quadrant of the kx − ky plane, for µ1 = µ3 = 0 and 

(2)
εn,m(kx , ky) =tn,m + t∗m,n + un,me

ikx + u∗m,ne
−ikx + vn,me

iky

+ v∗m,ne
−iky + wn,me

i(kx+ky) + w∗
m,ne

−i(kx+ky),

Figure 3.  (a) Doubly-degenerate eigenvalues ±ei
kx
2  of the glide-plane matrix winding around the half-unit 

circles on the complex plane, one pair of eigenvalues from −i to i through 1, and the other pair from i to −i 
through − 1. The eigenstates | ± π , k̄y�1,3 and | ± π , k̄y�2,4 associated to the extreme points of the eigenvalue-
trajectories are indicated. (b) The behavior of the eigenvalues of the glide-plane matrix implies that the 
eigenvalues of the Bloch Hamiltonian must cross pairwise at some value of kx.
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t2,1 = t4,3 = t1,3 = t3,1 = t1,4 = t4,1 = exp(i0.3π) (with µ ’s and t’s given in arbitrary units). The bands touch 
pairwise at some value of kx , provided ky = k̄y = 0,π . The lower panels of Fig. 4a depicts the projection of the 
nodal points on the kx − ky plane, with the 1D two-band model  result6 shown on the left for comparison. Includ-
ing higher-order hopping in Eq. (2) will move the glide-plane enforced nodal points along kx , but will not gap 
them out since higher-order hopping preserve the glide-plane symmetry. We thus see that exact diagonalization 
of the effective model confirms the previous prediction derived from the general relations obeyed by the eigen-
values of H(kx , ky) and G (kx , ky) , namely, that the glide-plane symmetry enforces two pairs of nodal points, 
one pair at ky = 0 and another at ky = ±π . Having the energy spectrum and the corresponding single-particle 
states wielded by exact diagonalization, one can form the density matrix and compute thermodynamic averages 
or, using linear response theory, extract transport properties. For the present purpose of demonstrating the 
existence of NLs, next we show how the remaining symmetries turn G-enforced two pairs of nodal points into 
two NLs pinned at the kx = π edge of the BZ.

Effect of inversion and time‑reversal symmetries. The invariance relation representing the symme-
try of the lattice with respect to the inversion-point transformation I is

Figure 4.  (a–d) Upper panels: Energy bands of the effective model with glide-plane (G) symmetry, with 
glide-plane (G) + inversion-point (I) symmetries, with glide-plane (G) + inversion-point (I) + time-reversal 
(T) symmetries, and with glide-plane (G) + inversion-point (I) + time-reversal (T) symmetries + anisotropy, 
respectively. (a–d) Lower panels: Projection on the kx − ky plane of the nodal points or nodal lines shown on 
the corresponding upper panels. The lower panels of (a,b) contain also the 1D two-band result for comparison. 
The lower panel of (d) illustrates two accidental nodal lines inside the Brillouin zone, corresponding to different 
anisotropic cases.
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where I (ky) is the 4× 4 matrix representation of I in the basis constructed by the eigenstates of H(kx , ky) . 
Similar to what happens with G , the ky-dependance of I is a consequence of the shift of I from the center of the 
unit cell along the my-direction (c.f. Fig. 2a).

Combining the constraints imposed by Eq. (3) with those from Eq. (1), we obtain Eqs. (S27)–(S31) (c.f. 
Sect. 2 of the Supporting Information) which give the off-diagonal entries of the glide-plane and inversion-point 
invariant effective model. The resulting band structure and projection of nodal points on the kx − ky plane are 
shown on the upper and lower panels of Fig. 4b for µ1 = µ3 = 0 , t2,1 = t4,3 = 1 (I-symmetry implies that these 
hopping parameters must be real; c.f. Sect. 2 of the Supporting Information), and t1,3 = t3,1 = t1,4 = exp(i0.3π) . 
Figure 4b conveys that the effect of the inversion-point symmetry is to pin at kx = π the four nodal points of 
the glide-plane invariant effective model. This behavior should be distinguished from that in Ref.18, where the 
inversion-point combines with a last local constraint on the Hamiltonian to generate NLs at kx = π . Within the 
present framework, the influence of the inversion-point symmetry alone, i.e. with no additional constraints, is 
simply to push the nodal points enforced by the glide-plane symmetry to kx = π . The NLs emerge only when 
invoking time-reversal symmetry, as we shall see next. For completeness, the known result from the 1D two-
band model is shown on the left side of the lower panel of Fig. 4b. It can be shown that G and I imply R (c.f. 
Sect. 3 of the Supporting Information). Therefore, it is sufficient to analyze the constraints imposed by G and I 
on the band structure.

Turning to the time-reversal transformation T, not considered in Ref.18 (where the focus was on breaking 
time-reversal symmetry by magnetic proximity effect), the invariance relation is given by

where T = 114×4 since H(kx , ky) is spinless.
Imposing Eq. (4) implies that the entries of H(kx , ky) satisfy ε∗n,m(-kx , - ky)= εn,m(kx , ky) which, given Eq. (2), 

yields real hopping parameters. As can be seen in the upper and lower panels of Fig. 4c, in which µ1 = µ3 = 0 , 
t2,1 = t4,3 = t1,3 = t3,1 = t1,4 = 1 , the effect of time-reversal symmetry on the band structure of the glide-plane 
and inversion-point invariant effective model is twofold: it connects the symmetry-enforced nodal points of the 
same pair of bands, thus forming two NLs at kx = π , and it also induces an additional NL at ky = 0 . While the 
former NLs are symmetry-enforced, the later is accidental, being gapped, for instance, by an anisotropy of the 
hopping parameters, as we shall see next.

Effect of anisotropy. Here we discuss another feature of the band structure which is special to our scheme 
of engineering a nonsymmorphic symmetry out of vacancies: The appearance of unusually robust accidental 
NLs in the interior of the BZ. Accidental band crossings are usually very fragile to perturbations or change in 
material parameters. The appearance of NLs inside the BZ which survived extremely strong SOC and magnetic 
exchange field (of strengths nearing or exceeding current experimental bounds) was initially conjectured, in 
Ref.18, to come from symmetry enforcement. The framework developed here conclusively resolves this puzzle 
and identifies the origin of such unusually robust, yet accidental, NLs.

In a pristine monoatomic lattice in which the distance between neighboring atoms is the same in all directions 
(such as borophene), the hopping amplitudes are direction-independent. In such an isotropic environment (and 
disregarding non-structural degrees of freedom such as orbitals and spin), the crossings between energy bands are 
the ones associated only to the symmetries, as we have seen in the previous sections. Defects (including vacancies) 
break the isotropy of the hopping amplitudes, with the result that now bands can cross also in generic places of 
the BZ. For the particular band structure shown in Fig. 4c, the anisotropy gaps out the accidental NL at ky = 0 , 
but creates another accidental NL between the middle bands in the interior of the BZ, as shown on the upper 
panel of Fig. 4d where µ1 = µ3 = 0 , t2 1 = t4 3 = 1 , and t1 3 = t3 1 = t1 4 = 100 . Smoothly changing the anisot-
ropy between the hopping amplitudes makes the NL move and change shape through the BZ, as illustrated on 
the lower panel of Fig. 4d. Eventually, the NL starts to fade and finally disappears when the parameters are taken 
out of a certain anisotropic regime. Unlike accidental NLs of nonstructural origin, which are easily gapped by 
perturbations, anisotropy-induced accidental NLs should have an enhanced robustness owing to their structural 
origin. This feature can be traced to the fact that perturbations do not restore isotropy (sometimes they might 
actually enhance the anisotropy). Finally, while anisotropy in the Hamiltonian parameters induces accidental 
NLs inside the BZ, this is not a sufficient condition. The appearance of such NLs is preconditioned by the pres-
ence of time reversal symmetry. We will further elaborate on this point in the next section where the shapes 
of the accidental NLs of vacancy-engineered borophenes signal their connection to time-reversal symmetry.

We conclude that a nonsymmorphic 2D material created by vacancy-engineering possesses symmetry-
enforced NLs at one edge of the BZ originated from a glide-plane symmetry (combined with inversion-point 
and time-reversal symmetries), and also accidental NLs with enhanced robustness in the interior of the BZ from 
the vacancy-induced anisotropy and time-reversal symmetry.

Density functional theory calculation. Figure 5a,b show the band structure of B 10 and B 16 , respectively, 
both without Rashba SOC ( � = 0 ). The bands are given along the Ŵ-X-V-Ŵ-Y-V path in the BZ (points Ŵ , X, V, 
and Y are shown on the left panel of Fig. 5e). Figure 5a,b indicate that bands stick together pairwise, forming 
NLs, along the X-V direction (corresponding to kx = π/a ). Figure 5c,d show the amplified image of the bands 
inside the red rectangles in Fig. 5a,b, respectively, but in the presence of Rashba SOC ( � = 0.05 eV). Figure 5e,f, 
left panels, are the contour plots in the kx − ky plane of the NLs shown in Fig. 5a,b, respectively. In these contour 

(3)I (ky)H(−kx ,−ky)I
−1(ky) = H(kx , ky),

(4)TH
∗(−kx ,−ky)T

−1 = H(kx , ky),
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Figure 5.  (a,b) Band structure of B 10 [B16 ] without Rashba spin-orbit coupling (SOC) ( � = 0 eV) along the Ŵ
-X-V-Ŵ-Y-V path in the Brillouin zone, with the position of points Ŵ , X, V, and Y given in the left panel of (e). 
The symmetry-enforced nodal lines along the X-V direction are highlighted in black. (c,d) Amplified image of 
the bands inside the red rectangles in (a,b), but in the presence of Rashba SOC ( � = 0.05 eV). Each fourfold 
degenerate symmetry-enforced nodal line splits into a pair of spin-split twofold degenerate nodal lines. (e,f) 
Contour plot of the symmetry-enforced nodal lines shown in (a,b) without Rashba SOC in the left panel ( � = 0 
eV) and in the presence of Rashba SOC in the right panel ( � = 0.05 eV). The nodal lines, which are pinned at 
the edge kx = π/a of the Brillouin zone, are indicated by arrows. (g,h) Contour plot of all accidental nodal lines 
which exist within an energy window of 2.0 eV about the Fermi energy in the band structure shown in (a,b), 
without Rashba SOC in the left panel ( � = 0 eV) and in the presence of Rashba SOC in the right panel ( � = 0.1 
eV).
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plots, the orange line running along X-V represents the vanishing of the energy difference between the sticking 
bands. Figure 5g,h, left panels, are the contour plots of the NLs which exist in the interior of the BZ of the band 
structures shown in Fig. 5a,b, respectively, within an energy window of 2.0 eV about the Fermi energy. Fig-
ure 5e–h, right panels, show the contour plots of the NLs in the corresponding left panes but with Rashba SOC 
of strength � = 0.05 eV in Fig. 5e–f and � = 0.1 eV in Fig. 5g,h.

Rashba SOC preserves the crystalline symmetries, as well as time-reversal symmetry. The NLs featured in 
the dispersions, shown in Fig. 5a–d, which are projected on the kx − ky plane in Fig. 5e,f, correspond to those 
of the effective model featured on Fig. 4c,d at kx = π ; they are symmetry-enforced, hence their robustness to 
Rashba SOC. The two bands enclosed in the red rectangle, shown to the right of the V-point in Fig. 5a and to 
the left of the X-point in Fig. 5b, are twofold spin-degenerate. Therefore, when these two spin-degenerate bands 
stick together along the X-V edge of the BZ, they form a fourfold degenerate symmetry-enforced NL. The 
spin degeneracy is overall lifted in the presence of Rashba SOC, so each spin-degenerate band splits into two 
spin-split bands, as shown in Fig. 5c,d. In this case, the four non-degenerate bands to the right of the V-point 
in Fig. 5c and to the left of the X-point in Fig. 5d stick together pairwise to form two spin-polarized twofold 
degenerate symmetry-enforced NLs along the X-V edge. The NLs of Fig. 5g,h are our borophenes’ analogues 
of the NLs shown in Fig. 4d inside the BZ; despite being accidental, they survive in the regime of very strong 
Rashba SOC, so they must originate from the vacancy-induced anisotropy. Indeed, as shown in Fig. 5g,h, the 
effect of Rashba SOC of strength as large as � = 0.1 eV (way beyond the experimental bound) on the accidental 
NLs is just to lift their spin-degeneracy by shifting the spin-polarized bands in opposite directions in the kx − ky 
plane. The accidental NLs inside the BZ are protected (i.e., enabled, but not enforced) by time-reversal symmetry, 
as manifest in their symmetric shape with respect to a momentum flip k → −k for the spin-degenerate bands 
in the absence of Rashba SOC, and with respect to a momentum-spin flip (k,↑) → (−k,↓) for the spin-split 
bands in the presence of Rashba SOC. DFT calculations employing intrisic SOC (c.f. Sect. 4 of the Supporting 
Information) yield the same conclusion obtained for Rashba SOC, namely, robusteness of the edge and internal 
NLs to SOC. Our DFT results for vacancy-engineered borophenes thus confirm the existence of the two types 
of NLs predicted analytically by a minimal effective model containing only nearest-neighbor hopping. We note 
that the effective model entails a proof of principle, i.e., it demonstrates the existence of NLs based solely on the 
constraints that symmetries impose on a generic Hamiltonian. Complementarily, the first-principles calculations 
show that symmetry-preserving interactions, which are present in a real material, and material-specific details, 
such as the particular crystalline structure and chemical composition, do not hinder the NLs..

We note that the phenomena uncovered here are not exclusive to B 10 and B 16 . We have found other boro-
phenes with the same symmetries as B 10 and B 1618. These materials thus possess symmetry-enforced NLs and 
unusually robust accidental NLs in the spectrum. It is worth mentioning that the proposed structures fall within 
the stability range reported in Ref.22, x ∈ [0.10, 0.15] , where x is a measure of concentration of vacancies.

Discussion
We have shown how vacancy-engineering turns a monoatomic symmorphic 2D material into a nonsymmorphic 
one with a glide-plane symmetry. By carrying out a symmetry analysis and applying it to an effective model, 
we have demonstrated that the synthesized glide plane enforces two pairs of nodal points in the spectrum of 
the material. When the glide-plane symmetry is combined with inversion-point and time-reversal symmetries, 
the nodal points of each pair are connected through enforced NLs pinned at one edge of the BZ. We have also 
uncovered anisotropy-induced accidental NLs which can be moved around in the interior of the BZ by vary-
ing the anisotropic parameters, an interesting and potentially very useful byproduct of introducing vacancies.

DFT results for vacancy-engineered borophenes confirm the analytical predictions for the enforced NLs, and 
also convey that these materials have accidental NLs inside the BZ which survive under very strong Rashba SOC 
and intrinsic SOC. This enhanced robustness is consistent with an anisotropy-origin, and should be contrasted 
to the usual frailty of common accidental NLs. Besides the availability of various already realized borophenes 
with periodic distributions of  vacancies19–32, another reason for choosing borophene as our test-material is the 
possible implications for topological superconductivity. Indeed, for an efficient braiding or fusion of Majorana 
states, necessary to utilize their non-Abelian statistics in topological quantum  computing37,38, it is important 
to have a 2D topological superconductor. Such a 2D realization overcomes the need for fine-tuned material 
parameters to realize topological superconductivity in commonly studied 1D  systems39–41, besides removing 
the 1D geometrical constraint, by that enabling braiding and  fusion42,43. Since boron becomes superconducting 
when squeezed, fascinating prospects are thus opened starting from a borophene-made NLSM and enhancing 
its superconductivity by proximity effects and/or pressure. Finally, borophene is flexible and transparent, which 
might also encourage technological applications of our proposal.

For possible applications, enhanced robustness of the accidental NLs is particularly desirable. An accidental 
NL which is robust across the experimentally available ranges of perturbations’ strengths is at least as good as a 
symmetry-enforced one, with the advantage that the former can be moved around in the BZ. In fact, the enhanced 
robustness would allow the resulting NLSM to survive strong perturbations while being modified by various 
proximity  effects11, at the same time that the ability to move the NLs might, conceivably, affect momentum-
dependent scattering processes, or even suppresses them, which can be used to manipulate various susceptibilities 
of the material. Some guidance in such a design of nodal regions can be inferred from the example of unconven-
tional superconductors: The change in the BZ location of the gap closing modifies the electric, magnetic, thermal, 
and optical responses of the  material44–48. For example, in addition to the common Meissner effect, which is 
linear in the applied magnetic field, the presence of NLs is responsible for the nonlinear Meissner effect, whose 
angular dependence can then be modified by changing the position of the NLs. The presence of NLs and their 
location can be probed through the higher-harmonic generation for an applied harmonic magnetic  field49,50. 



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14981  | https://doi.org/10.1038/s41598-022-18519-8

www.nature.com/scientificreports/

Finally, our proposal relies only on crystal symmetries, being applicable to general 2D materials, and possibly 
also to 3D  materials51. The basic principle of creating a nonsymmorphic symmetry by introducing vacancies in 
a symmorphic crystal offers fresh opportunities for fundamental and applied research on NLSMs.

Methods
The band structures of B 10 and B 16 are obtained by first-principles calculations using the QUANTUM ESPRESSO 
 package52. The kinetic energies cutoff for wave function (ecutwfc) and for charge density (ecutrho) are set to 600 
and 60 Ry, respectively. Perdew, Burke and Ernzerhof (PBE) form of the generalized gradient approximation 
(GGA) is adopted for the exchange-correlation  energy53. Numerical integrations in the Brillouin zone are evalu-
ated with the Monkhorst-Pack mesh of 10× 10× 1 . All structures are relaxed until the total energy converges 
to within 10−4 eV during the self-consistent loop, employing the Methfessele-Paxton method with a smearing 
of 0.2 eV width.

To incorporate Rashba SOC, we develop a tight-binding (TB) model using the package  Wannier9054. This 
maps the ground-state wave functions from the density functional theory output file onto a maximally localized 
Wannier function basis {|Wi�R�} , where i = (I ,α) is the composite index accounting for the atom site �rI and the 
atomic orbital α . �R = Ra�a+ Rb�b is the Bravais lattice vector with Ra/b being the Bravais lattice vector component 
on the direction of the unit cell lattice vector �a/�b . The wave function is thus given by

We employ an adaptive k-mesh strategy to build the TB Hamiltonian, HTB , of borophene B n without Rashba 
SOC. The entries of HTB are given by

where tij(�R) = �Wi0|HKS|Wj�R� is the matrix element extracted from the Wannier90 output file, with HKS being 
the Hamiltonian of Kohn–Sham equation.

Borophene B n subject to Rashba SOC is described by the Hamiltonian H = HTB +HR , where the Rashba 
SOC Hamiltonian:

with p the momentum, c†is ( cis ) the creation (annihilation) operator of an electron of spin s at site i, di,j = ri − rj 
the vector connecting the pair of neighbor sites i and j in the lattice, σ the vector of the Pauli matrices, and � the 
strength of the Rashba SOC, ẑ the unit vector along z axis 55.

Data availability
The data generated and analysed during the current study is available from the corresponding author on reason-
able request.
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