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F!
J Vacation systems represent an important class ofqueueing models having application in

both computer communication systems and integrated manufacturing systems. By

specifying an appropriate server scheduling discipline, vacation systems are easily

particularized to model many practical situations where the server's effort is divided

between primary and secondary customers.

A general stochastic framework that subsumes a wide variety of server scheduling

disciplines for the M/GI/1/L vacation system is developed. Here, a class of server

scheduling disciplines, called Markov schedules, is introduced. It is shown that the

queueing behavior M/GI/l/L vacation systems having Markov schedules is characterized by

a queue length / server activity marked point process that is Markov renewal and a joint

queue length / server activity process that is semi—regenerative. These processes allow

characterization of both the transient and ergodic queueing behavior of vacation systems as

seen immediately following customer service completions, immediately following server

vacation completions, and at arbitrary times.

The state space of the joint queue length / server activity process can be systematically

particularized so as to model most server scheduling disciplines appearing in the literature



and a number of disciplines that do not appear in the literature. The Markov renewal nature

of the queue length / server activity marked point process yields important results that offer

convenient computational formulae. These computational formulae are employed to

investigate the ergodic queue length of several important vacation systems; a number of

new results are introduced. In particular, the M/GI/1 vacation with limited batch service is

investigated for the first time, and the probability generating functions for queue length as

seen immediately following service completions, immediately following vacation

completions, and at arbitrary times are developed.
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1. Introduction

Queues attended by a single vacationing server have, in recent years, received much

attention in the queueing literature. Such queueing systems are most often referred to as

"vacation systems" (or "vacation models"). A vacation system, by its most general

description, consists of a single-server queue where customers arrive to the queue

according to a stochastic process; customer service times are drawn from general

distributions. Under specified conditions the server, upon completion of a customer's

service, will abandon further customer services to begin a vacation period of random

length. When a vacation period is over, the server, again under specified conditions, either

begins a customer service or begins another vacation period

Vacation systems arise naturally as models for many computer cornrnunication systems

and production systems. In such systems, it often happens that a server's work is divided

between two classes of customers: primary and secondary. From the perspective of

primary customers, work performed on secondary customers is equivalent to a vacation by

the server. While no attempt is made here to justify the validity or accuracy of vacation

models in particular applications, it is helpful to consider a pair of simple examples that

illustrate vacation models.

Example 1.1 Routine maintenance in computer communications systems: In addition

to transmitting and receiving data, processors in computer cornrnunication systems perform

a variety of testing and maintenance tasks designed to enhance system reliability. Here,

managing and processing data is considered the processor's primary activity, while

maintenance is considered a secondary activity. The way in which maintenance is

scheduled relative to data management and processing is dependent upon system
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requirements. Two typical processor scheduling disciplines are illustrated by the

following:

i) Since maintenance activity is most often divided into small tasks, whenever the

processor finds that there are no primary jobs in the system to service, it begins work on a

maintenance task. Upon completing work on this maintenance task, if primary jobs have

entered the system, then the processor resumes working on primary jobs. However, if

upon completing a maintenance task the processor finds no primary jobs in the system, the

processor immediately begins another maintenance task. Here, data management and

processing have priority over maintenance activity; however, maintenance tasks are never

preempted. Clearly, when primary jobs are being served, the system behaves as a typical

single-queue, single·server system. When primary jobs are absent from the system, the

server (processor) takes a vacation (to perform maintenance) and continues to take

vacations until upon return from a vacation it finds at least one primary job in the system.

ii) An obvious drawback to the processor scheduling discipline of i) is that heavy traffic in

the primary jobs can defer maintenance activity for prolonged periods. A processor

scheduling discipline that insures maintenance is performed regularly is given by "limiting

to m" the number of primary jobs that may be served before a maintenance task is

performed. The resulting queueing model indicates that the server takes a vacation upon

becoming idle (with respect to primary jobs) or after serving m consecutive primary jobs,

whichever comes first.

Example 1.2 Preventive maintenance in production systems: Consider a machine

used to assemble items from regular parts batches that arrive at random times to the

machine. When the machine becomes idle, preventive maintenance is performed on the
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machine. Parts batches arriving to the machine during preventive maintenance must wait

for service. Clearly, the machine can be idle following preventive maintenance, and parts

arriving to an idle machine where preventive maintenance is completed are unaffected by

the maintenance. As in Example 1.1, maintenance is considered a vacation by the assembly

items. Note that there is exactly one vacation following each busy period.

Examples 1.1 and 1.2 serve to illustrate that vacation system operation is largely

govemed by the server scheduling discipline. Typical analyses of such vacation systems

focus upon queue length and waiting time distributions. Note that these two examples

provide no information regarding: 1) the nature of the stochastic process that govems

arrivals to the system, 2) the order in which arrivals are served, 3) queue capacity, 4) the

distribution of customer service times, or 5) the distribution of vacation times. Typically,

these five fundamental items of information are required in addition to the the server

scheduling discipline for any analysis of system performance.

In the developments that follow, a general class of server scheduling disciplines

(Markov schedules) is identified. As will be shown, M/GI/1/L vacation systems operating

with Markov schedules have a common, well defined stochastic structure. A formal

exposition of this common stochastic structure is the focus of the research presented here.

To the author's knowledge, identification of the class of Markov schedules, and

development of the common stochastic structure for M/GI/1/L vacation systems having

Markov schedules is new.

Loosely described, M/GI/l/L vacation systems with Markov schedules refer to vacation

systems having the following operational characteristics: 1) Poisson arrival streams, 2)

customer service periods drawn from a general distribution that generally depend upon

queue length, 3) server vacation periods, drawn from a general distribution that generally
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depend upon queue length, and 4) queue capacities that may be either finite or infmite.

The importance of the M/GI/1/L vacation system with Markov schedules is found in the

generality of the model. It is easily shown that most (if not all) of the server schedulirrg

disciplines for M/GI/l/L vacation systems considered in the literature are special cases of

Markov schedules. Thus, the stochastic processes and their probability structures that

underlie these systems provide a general framework for analyzing a wide variety of

vacation systems.

While development of a formal theory for the operation of the M/GI/l/L vacation

system with Markov schedules is deferred to Chapter 2, it is appropriate to here review

some of the important such systems reported in the literature that are subsumed by our

system. Doshi (1986) and Takagi (1987) offer excellent review papers discussing vacation

models. Details regarding the analysis of specific systems reviewed here are given in these

papers.

The M/GI/1 vacation system with exhaustive service is a variation of the classical

M/GI/1 queue. Here, the server begins a vacation of random length each time the system

becomes empty. If upon returning from vacation the server finds the system empty, it

immediately begins another vacation. The server continues to operate in this manner until

upon retum from vacation it finds at least one customer waiting in the queue. This model is

often referred to as an M/GI/1 system with exhaustive service and multiple vacations.

It is assumed for the M/GI/1 vacation system with exhaustive service that customer

service periods are independent and identically distributed, and that vacation period are

independent and identically distributed. Further, service period lengths and vacation period
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lengths are assumed mutually independent and independent of the arrival process.

Analogous to the results available for the classical M/GI/1 queue (with no vacations), the

current literature Takagi (1987) provides only the probability generating function (pgf) of

the ergodic queue length distribution and the Laplace-Stieltjes transform (LST) of the

ergodic waiting time distribution for customers when they exist.

Little information regarding the stochastic processes (e.g., server's activity over time,

customer departures from the system) that govem the behavior of the M/GI/1 vacation

system with exhaustive service is available. However, Fuhrmann (1985) reveals an

important decomposition property which shows that the ergodic customer waiting time is

given as the sum of two independent random variables. This decomposition consists of the

waiting time for the classical M/GI/1 queue (with no vacations) and the forward recurrence

time of the vacation period. Doshi (1986) extends the waiting time decomposition of

Furhmann to GI/GI/1 vacation systems by using sample path arguments. Kielson and

Servi (1986) further generalize the waiting time decomposition to GI/G/1 systems by

formalizing arguments presented by Gelenbe and Iasnogorodski (1980).

In the M/GI/1 vacation system with gated service, the server upon returning from

vacation, services all customers queued at the time of retum and then begins another

vacation. All customers arriving subsequent to the server's Ietum are held in the queue for

service in the period following the end of the next vacation. If the server returns from

vacation to find the system empty, another vacation begins immediately, and continues in

this manner until upon return from vacation at least one customer is in the queue.

Customer service times are independent and identically distributed and are drawn from a

general distribution. Similarly, vacation periods are independent and identically distributed

and are drawn from a general distribution. Further, customer service times and server

vacation times ase mutually independent and independent of the arrival process.
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Leibowitz (1961) and Takagi (1987) treat the M/GI/1 vacation system with gated

service and offer the pgf of the ergodic queue length and the LST of the ergodic customer

waiting time distribution when they exist. The waiting time distribution does not appear to

have the decomposition property found in exhaustive service systems.

In M/Gl/1 vacation systems with E-limited service, the server begins a vacation when

either a prespecified number m of customers are served, or the system is emptied which

ever occurs first. If the server returns from vacation to find the queue empty, another

vacation begins immediately; the server continues in this manner until upon retum from

vacation, at least one customer is queued. As in previous models, customer service times

are independent, identically distributed, and drawn from a general distribution; vacation

periods are independent, identically distributed, and drawn from a general distribution.

Customer service times and server vacation times are mutually independent and are

independent of the arrival process.

It is clear that for the M/GI/1 vacation system with E-limited service, m = ¤¤

corresponds to exhaustive service; m = 1 is designated as simply limited service. Lee

(1983) provides an analysis of E-limited service systems that leads to the ergodic queue

length pgf at customer service or vacation period completion times. Lee's analysis leads to

somewhat complicated expressions for the pgf; no corresponding LST of the ergodic

customer waiting time is presented.

The M/GI/1 vacation system with Bernoulli schedules consists of a server that will,

upon completion of a customer service that leaves the queue not empty, begin another

customer service with fixed probability p, or begin a vacation with probability 1-p. If a
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service completion leaves the queue empty, a vacation begins immediately. Similar to the

server scheduling disciplines above, if the server finds the queue empty upon retuming

from vacation, then another vacation begins. This operation continues, as before, until the

server returns from vacation to find the queue not empty. Customer service times are

independent, identically distributed, and drawn from a general distribution; vacation

periods are independent, identically distributed, and drawn from a general distribution.

Again, customer service times and server vacation times are mutually independent, and are

independent of the arrival process. It is clear that for the M/GI/1 vacation system with

Bemoulli schedules, the exhaustive and limited service disciplines are obtained by setting

p equal to 1 and 0 respectively.

The Bemoulli schedule service discipline, introduced by Kielson and Servi (1986), was

first examined in vacation systems having non-renewal type arrival streams. Their analysis

addresses the waiting time decomposition (discussed for exhaustive service above) and

investigates stochastic bounds on the ergodic waiting time distribution. Takagi (1987)

provides a formula (without development) for the LST of the ergodic waiting time

distribution. Takagi's result is obtained by extending arguments used in analyzing other

M/GI/1 vacation systems. The pgf for the ergodic queue length ( as seen at arbitrary

times), to the author's knowledge does not appear in the literature. Ramaswamy and Servi

(1986) develop simple expressions for the joint conditional distribution of the busy period

and system occupancy at the beginning of a busy period. They also provide expressions

for the ergodic occupancy distribution at busy period initiation epochs.

The M/GI/1 vacation system with G-limited service is defined as followsz Let m be a

prespecified number, and let L; denote the number of messages queued when the server

returns form the nä vacation. Upon retuming from the nä vacation,the server will serve

min( L; ,m) customers, and then begin the next vacation. Customer service times and
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vacation periods are independent, identically distributed, and drawn from general

distributions. It is clear that with m = 1, G-limited service reduces to simple limited

service, while m = ¤¤ corresponds to gated service.

Hashida (1981) analyzes the G~limited service system ergodic queue length at the

epochs of the servcr's retum from vacation. Takagi (1987) provides extensions to

Hashida's work that yields the ergodic queue length pgf at customer departure epochs.

Takagi also provides the ergodic customer waiting time LST.

M/GI/1 vacation systems with decrementing service operate in the following manner.

When the server returns from vacation to find at least one queued customer, the server will

serve customers until the queue occupancy is one less than the number of customers

queued at the last vacation completion. As in previous models, if the server retums from

vacation to tind the queue empty, then another vacation begins immediately. Customer

service times as well as server vacation periods are independent, identically distributed,

and drawn from general distributions. Service times and vacation times are mutually

independent and are independent of the arrival process.

A generalization of the decrementing service discipline is found in the M/GI/1 vacation

system with G-decrementing service. In this model, the server continues serving until : 1)

the number of customers in the system is reduced to (a prespecitied) number m less than

the number queued at the end of the most recent vacation, or 2) the system becomes empty,

whichever occurs first. For m = 1 the system reduces to decrementing service, while m =

¤¤ indicates gated service.

Takagi (1987), by extending analyses of other vacation systems, develops both the
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ergodic queue length pgf and the ergodic waiting time distribution LST for the G-

decrementing service model. As is true with most Takagi results, his analysis here is

developed from classical queueing and transform arguments, and provides only limited

insight as to the stochastic behavior of the system.

The M/GI/1 vacation systems discussed above (beginning with exhaustive service

systems and ending with G-decrementing service systems) represent the most thoroughly

investigated M/GI/1/L vacation systems appearing in the literature. These systems together

form a small subset in the class of all M/GI/l/L vacation systems with Markov schedules.

The vacation systems discussed above share a set of special characteristics that allow

these systems to be analyzed using relatively simple probability arguments. In particular,

each of the above systems: 1) serves customers one at a time, 2) has independent,

identically distributed customer service times, 3) has independent, identically distributed

vacation periods, 4) has service times and vacation times that are mutually independent, and

5) has infinite queue capacity (i.e., K = ¤<>). When any of the five special characteristics is

not present, the analysis ofM/GI/l/L vacation systems becomes more difficult.

The analyses of the systems discussed above are remarkably similar to analyses of the

different variations of the classical M/GI/l queue (without vacations) where certain "special

tricks" are exploited to yield desired results. As is the case with variations of the M/GI/1

queue, the analysis of each vacation system discussed above is largely unique, and is not

investigated as a special case of some common model.

For M/GI/1 vacation systems that service customers in a one—at-a-time fashion, it is

well known Kleinrock (1976) that the ergodic queue length as seen by departing customers

is the same as the ergodic queue length as seen by an outside observer (that is, ergodic

9



system occupancy at arbitrary times). This fortunate circumstance is exploited throughout

the literature, and hence, only for systems that serve customers one at a time have ergodic

queue length pgfs been reported in the literature.

There are many simple M/GI/1 vacation systems (e.g., batch service systems) for

which the ergodic queue length distribution as seen by departing customers and the ergodic

queue length distribution seen at arbitrary times are not the same. As we will show, such

systems can often be analyzed within the more powerful framework associated with

Markov schedules in the same level of detail as the simpler one at a time service systems.

In the study of M/GI/1/L vacation systems with Markov schedules that follows, the

system performance measures that are consider to be of principal importance are: 1) ergodic

queue length at arbitrary times, 2) ergodic queue length as seen by customers departing the

system, 3) ergodic queue length as seen by the server upon retums from vacation, and 4)

ergodic customer waiting times. Developing the probability distributions of these four

performance measures for all possible Markov schedule disciplines is formidable (likely

impossible). Thus, the focus here is on investigating the underlying probability structure

ofM/GI/1/L vacation systems with Markov schedules. An understanding of this structure

offers a mechanism for investigating ergodic queue lengths and ergodic waiting times

within a common framework.

In Chapter 2., a formal development of the probability structure underlying M/GI/1/L

vacation systems with Markov schedules is offered. This development is exposed in a

"bottom-up" fashion. That is, a stochastic process that govems the behavior of such

vacation systems is constructed from more fundamental stochastic processes that govem

server activity , queue length, and customer arrivals. The probability structure on the
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stochastic process that govems system behavior is shown to be semi·regenerative, with an

underlying Markov renewal process whose probability structure is easily characterized.

The model presented in Chapter 2. is shown to be general enough to accommodate

systems with finite or intinite queue capacities, state dependent customer service times and

vacation periods, and irregular (state dependent) service disciplines. The models allow for

the formal characterization of queue length distributions (both transient and ergodic) as seen

by departing customers, the server returning from vacation, and at arbitrary times.

While this model and its probability structure accommodate a wide variety ofM/GI/1/L

vacation systems, obtaining specific formulae useful for engineering calculations from the

model is another matter. However, all results appearing in the literature previously

discussed may be obtained in a systematic fashion by particularizing the model of Chapter

2. In addition a number of results, not previously reported, are revealed through this

systematic particularization.

Chapter 3. addresses application of the M/GI/1/L vacation model with Markov

schedules to three different server scheduling disciplines: l) Bemoulli schedules, 2) E-

limited service, and 3) limited batch service. In Sections 3.1 and 3.2, the ergodic behavior

of the M/GI/1 vacation systems with Bemoulli schedules and E-limited service are

respectively investigated . Here, it is shown the general model of Chapter 2., when

particularized to model two well studied systems, gives formulae that agree with those

reported in the literature. In addition to developing the ergodic queue length pgf's and

ergodic waiting time LST's for Bemoulli schedule and E-limited systems, some new

ergodic occupancy results are revealed from the probability structure of the general model.

Section 3.3 considers the M/GI/1 vacation system with single batch service. To the

11



author's knowledge, this system is not investigated in the available literature. This system

is a departure from those systems commonly investigated in that it does not operate with a

one at a time service discipline. Consequently, the analysis here appeals to the general

semi-regenerative structure of the system in order to develop formulae for ergodic system

queue length pgfs. All results presented in this section are, to the author's knowledge,

new.

It is not possible in a reasonable space to present all useful formulae that are easily

obtained by particularizing the general model of Chapter 2. Thus, Chapter 3. seeks only to

demonstrate some of the power and flexibility of the general model and its underlying

probability structure.

Chapter 4. offers conclusions drawn from the current research effort, and areas of

future research. Particular emphasis is given to possible extensions of the general model of

Chapter 2. that address multiple queue, single server systems (polling systems) with

Markov switching. Also discussed are qualitative results that may be obtainable from

general probability structures, and the value of such qualitative results.

Before closing this introductory chapter, it is appropriate to briefly consider some of the

important results reported in the queueing literature that address vacation systems other than

M/GI/1/L systems. While the focus of the work offered here is given to studying systems

having sophisticated server scheduling disciplines and simple (Poissonian) arrival

processes, other investigators emphasize the converse. For example Lucantoni, Meier-

Hellstem, and Neuts (1988) consider a vacation system having exhaustive service and a

class of non—renewal arrival processes. In this system, the server scheduling discipline is

simple while the customer arrival process is a rather sophisticated Markov Arrival Process

12



(MAP).

Kielson and Servi (1986) examine oscillating random walk models for GI/G/1 vacation

systems with Bemoulli schedules; Servi (1986) examines D/GI/1 vacation systems. In

these two works the authors investigate vacation systems with simple server scheduling

disciplines, and more complicated (renewal-type) arrival processes. Additional works of a

similar nature are reviewed by Doshi (1986) and Takagi (1987); readers seeking further

review of non-M/GI/1 vacation systems should consult these surveys.
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2. The M/GI/1/L Vacation System with Markov Schedules

This chapter provides a formal characterization of the stochastic behavior of the

M/GI/1/L vacation system with Markov schedules. To the author's knowledge, the

concepts associated with Markov schedules do not appear in the available literature and are

identified here for the first time. Markov schedules define a class of server scheduling

disciplines that include the scheduling disciplines reviewed in Chapter l as a subset. The

focus of this chapter is directed towards revealing the generality of Markov schedules, and

exploiting this generality to develop a common stochastic framework in which the queueing

behavior ofmost M/GI/1/L vacation systems can be investigated.

In the sections to follow, a "bottom—up" approach is taken in developing the stochastic

process that describes the queueing characteristics of M/GI/1/L vacation systems with

Markov schedules. This stochastic process is constructed as the joint of more fundamental

stochastic processes on which probability structures of practical significance are easily

defined.

In Section 2.1, the server switching marked point process is introduced. This

stochastic process governs the server's activity over time. In Section 2.2, the server

activity marked point process is first introduced and is then used in constructing the joint

queue length / server activity process. The joint queue length / server activity is a

continuous-tirne stochastic process that marginally characterizes the system occupancy as

seen by an observer outside the system.

In Section 2.3, the probability structure on the queue length / server activity marked

point process under Markov schedules is developed. As will be shown, the queue length

14



/server activity marked point process is embedded within the joint queue length / server

activity at convenient stopping times. This embedded marked point process is shown to be

Markov renewal.

Section 2.4 presents results that characterize the joint queue length /server activity

process for M/GI/1/L vacation systems with Markov schedules as semi-regenerative. The

well known theory of semi—regenerative processes is used to characterize system queueing

behavior, both transient and stationary. Particular emphasis is given to developing ergodic

queue length distributions at stopping times and at arbitrary times.

2.1 The server switching marked point process.

Consider an M/Gl/1/L vacation system having a Poisson arrival stream of rate Z,. In

vacation systems, the server's activity is divided exclusively between customer service

periods and vacation periods. The server switching marked point process characterizes the

server's activity over titne by:

1) identifying the times (epochs) at which the server either completes a service period or

completes a vacation period.

2) marking each epoch with a two-tuple indicating:

(i) epoch type ("s-type" for service completion, and "v-type" for vacation completion),

and

(ii) number of epochs occutring since the last epoch that was marked by a different type

(i.e., a count of the number of consecutive s-type or consecutive v-type epochs).

A realization, denoted by 19 , of the server switching marked point process is shown in

Figure 2.1. Note that associated with each epoch shown in Figure 2.1 is a two-tuple

15
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($,0) ($,1) ($,2) (v,0) (v,1) ($,0)

Figure 2.1 A realization of the server switching marked point process.
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"mark" indicating epoch type (s or v) and a count ofconsecutive epochs of the same type.

Now, consider a more formal description of the server switching marked point process.

Let 1> be a realization of the server switching marked point process given by

{hm* ¢m:Hl E 2+}

with

rpm E Rhrrdhm E Fx z*.

Here

R+
is the set of nonnegative reals,

2+
is the set of nonnegative integers, and

F = {S,v}.

¢,„ E
R+
denotes the time of the mül server switching epoch in the realization ¢> , while

hm marks the mlh epoch by type and count on the "mark space" F x
2+
of the server

switching marked point process. For convenience, let fa = F x
2+

.

Denote by <DE the set of all such realization ¢> . The probability space

(qjg U with a G - algebra on CDE and P a probability measure on

o' (CDE), deiines the server switching marked point process. For each m E
2+

, define the

mapping Tm: (bg —>R+
as

T„„(¢) = ¢„„,

and for each m 6
2+

define the mapping Hm: dbs —+ fa as

17



H .„(¢) = h „. _

The random variable Tm represents the time of the mh server switching event. The

random process T = {Tm:m E 2+} is a (random) point process and is referred to as the

server switching point process. The random process H = {Hmtm E 2+} is referred to

as the server switching marked process. Henceforth, the server switching marked point

process will be designated by (H ,T ) .

At this juncture, a specific probability structure on the (H , T ) process is not

identified. Rather, the focus is here shifted to the construction of the joint queue length!

server activity process in which is embedded the (H„ T ) process. As will be shown, the

probability structure on this joint process is more easily characterized than that on the

(H, T ) process.

2.2 The queue length / server activity marked point process.

Intuition suggests that for any non—trivial vacation system, system occupancy (queue

length) and server activity are interdependent. For M!GI/1!L vacation systems, queue

length over time is govemed by the Poissonian character ofcustomer arrivals and the nature

of the server scheduling discipline (as refiected by the server switching marked point

process). In this subsection, a continuous time random process is introduced that,

together with an embedded marked point process, allows characterization of the system

queue length.

Defme the random variable nl(¢) 6 I c
Z+ as the queue length at time t 6

R+.
Let

18



the vector valued random variable h ,(¢) 6 [li be defined as

h.(¢) = H„(¢) vz 6 RQ

where ot ,m 6
Z+

and, IZ = S¤p(m S I). Here, the random variable h,(¢) indicates the

server's activity at an arbitrary time t. It is now feasible to define a joint queue length

server activity random variable X,(¢). For convenience, let E = [Ii >< I, and define

X‘(¢) 6 E as

X.(¢>)=(¤.(¢)·h.(¢)) Vt6R+�

When the context is clear, the ¢ argument will be omitted in expressions for random

variables dependent upon the server's switching activity.

Consider now the stochastic process XR. given by

XR,= {Xtzt 6 R+}

which defines the joint queuelength / server activity process. It is assumed that XR. is a

right continuous process. This process, together with its underlying probability structure

are the focus of the developments to follow. For general M/GI/1/L vacation systems, the

probability structure on XR. is formidable. However, when the server scheduling

discipline belongs to the (yet to be defined) class of Markov schedules, the probability

structure on XR. is manageable.

Characterization of the probability structure on the X;. process for M/GI/1/L vacation

systems with Markov schedules is carried out by first characterizing the probability

structure of a particular marked point process embedded within XR.. The probability

19



structure on this embedded process will serve in part to formalize the definition of the class

of server scheduling disciplines called Markov schedules.

Consider the server switching point process T = {Tm Im E 2+} introduced in Sec.

2.1. Recall that T„, represents the time of the mlh server switching epoch (either a service

period completion or a vacation completion). Let X be the stochastic process embedded

within XR. at the instants immediately following the epochs of the server switching point

process T . It follows that X is the process given by

X = {Xm: m 6 2+}

where,

X··= = XT. = (“T.*hT.)_
Here, it is convenient to identify the embedded queue lengthprocessNgiven by

N = {Nm zm 6 2+}

where,

Nm = nT

Thus, it follows that the embedded processX is given by

X = (N, H)

the joint of the embedded queue length process and the marked process of the server

switching marked point process. Thus, it follows that X ,,, is the two—tuple given by
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X I'!} = Ih!HHl) �

At this juncture it can be observed that under the server scheduling disciplines of

Chapter 1, the epochs of the 561*/Cr switching p0i¤t pr0C¢SS T are stopping times for the

XR. process which implies that X forms a Markov chain on E. As will be shown in the

following subsection, the X process forms a Markov chain for the entire class ofMarkov

schedules.

Next, consider the stochastic process (X,T) formed as the joint of the embedded queue

length / server activity process X and the server switching point process T. It follows

that (X,T) forms a marked point process. This marked point process is readily recognized

as an extension of the server switching point process (H,T) where,

(X, T)=(N, H, T)

Here, a particular realization of the 19 of the (X,T) process is given by

gp = {(xm, ¢m):m 6
2+}

6 (DE

where,

x„, 6 E

rpm 6
R+

(defined as before)

<DE is the set of all realizations.

The (X, T) process, designated as the queue length / server activity marked point

process plays an essential role in developing a general stochastic structure for M/GI/1/L
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vacation systems with Markov schedules. Exposition of a probability structure on an

(X, T) process corresponding to Markov schedules is accomplished by examining certain

probability structures on the constituent components of (X, T). As will be shown in the

following subsection, the probability structure on (X, T) directly implies the probability

structure on XR,.

2.3 Probability structure of the queue length / server activity marked point

process (X,T).

Having in the preceding section defined for a set of stochastic processes that

conveniently characterize the queueing behavior of vacation systems, it is possible to now

offer a formal definition for Markov schedules vacation systems in terms the probability

structure on these stochastic processes.

As a matter of notational convenience, define i,j 6 E in terms of their respective queue

length and server activity components where,

i = (iwi;) md i= (iwi,.)

with

. . . . ^IN,] N 61 and 1H,]H 6 E.

Here, a set of conditions that are used to formally define the class ofMarkov schedules is

introduced.
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Condition l.

The server scheduling discipline is such that for all i,j 6 E , and m 6
Z+

,

P{Hm+1=jH|X0,..,X,,,,To,..,T,,,}= P{Hm+1=jH|X,,,}

For convenience, define g(i,j) as

SU-J) =P{H„.„ =J„'X-1 = i} V hi E E (24)

Condition 2,

Customer service periods and server vacation periods are such that for all i,j 6 E ,

m6Z+,and t6
R+

S tIHm+, =jH,X,,, = i}

whenever OnC—StCp transitions from state i to state j exist. For convenience, detine F(i,j,t)

as

__ P{Tm+l-T,,,St|Hm+,=jH,X,,,=i}, forg(i,j)¢0
F(1,j,t)=

f
. . _

00, or g(i,j) -

Vi,j 6 E,m 6
Z+,t

6 R+_

(2.2)

Condition 3,

The system occupancy (queue length) is such that for all i,j 6 E , m 6 Z", and t 6
RJ',
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P{Nm+l =j NIX0,..,X,,,,Hm+,,T0,..,T „,,Tm+, — T,,, = t}

= P{N„...1 =J 11* X„·H„„·T.„„ · Tm = *}

Detine G(i,j,t) as

G(i,j,t) = P{Nm+, =jNlX,,, = i,Hm+, =jH,Tm+l -T,,, = t}

v1,j E E,m6 z*,1 E 11*

(2.3)

Consider now the following definition for Markov schedules.

Definition 2.1

An M/GI/1/L vacation system having a queue length / server activity marked point

process (X, T) satisfying Conditions l, 2, and 3 above is said to have a server

scheduling discipline belonging to the class ofMarkov schedules.

[]

The Markovian nature of the queueing behavior for vacation systems satisfying

Conditions 1, 2, and 3. arises since these conditions are sufticient to assure that all service

period completions and all vacation period completions are stopping times for the joint

queue length / server activity process XR�. The importance of the distributions g(i,j),

F(i,j,t), and (Gi,j,t) is that they are fundamental information that is usually taken as given

for the study of particular M/GI/1/L vacation systems. It is easily reasoned that the

vacation systems review in Chapter l each satisfy Conditions 1, 2, and 3.

Given the definition for the class of Markov schedules, it is now possible to
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characterize the probability structure on the queue length / server activity marked point

process (X, T) for M/GI/1/L vacation systems having Markov schedules. Consider the

following definition Cinlar (1975).

Definition 22

For each m 6
2+

, let Y m be a random variable taking values in the countable set D,

and let Um be a random variable taking values in R+
such that O = UO < U, < The

stochastic process (Y, U) = {Y,„,U,,,:m 6
2+}

is said to be Markov renewal with state

space D provided that

Um S t Um S tl Ym}

Vm6Z+,j6D,t6R+ (2_4)
(Y,U) is said to be homogeneous when

Vi,j€D,tER*

independent ofm. []

The probability structure on M/Gl/1/L vacation systems having Markov schedules is

formalized with the following proposition.

Proposition 2.3

An M/GI/1/L vacation system with Markov schedules has a queue length / server activity

marked point process (X,T) that is Markov renewal on the state space E.
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Proof:

Note that the law of total probability together with Bayes rule imply that

P{Xm+l =j,Tm+, - T„, StIX0,...,X„,T0,..,T,„}

=_[0P{Hm+,

Tm = u}
·dP{Tm+l —T„, S =jH,X0,...,X„,,T0,..,T,„}

(2.5)

Since the system under consideration is M/GI/1/L with Markov schedules, Conditions 1, 2,

and 3 hold. Thus, substituting eqns. (2.1), (2.2), and (2.3) into eq. (2.5) shows that

Vm6Z+,j6E,t6R+

P{Xm+1 =j,Tm+I
— T„,

‘ P{N...„=5~'H„.1·X¤»T„.1— Tm = ¤}

-
dP{Tm+1— Tm

STheright side of eq. (2.6) can be rewxitten as

=jHIXm} u}

· dP{Tm+1— Tm S S tIX„,} (27)

Thus (X,T), by Definition 2.2, forms a Markov renewal process on E.

[l
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When (X,T) is a Markov renewal process, the family of probabilities

Qu): {Q(i,j,t):i,j E 12,1 6 11*}

is called the semi-Markov kernel over E. Note that for all i,j EE, the mapping

t —> Q( i,j,t) has all properties of a probability distribution function except that

Q(i»J) = {ig; Q(i»i¤)

in general is not necessarily one. However, it follows directly from Definition 2.2 that

2Q(i,j) :1, ViE E
FE (2.8)

which leads to the following proposition.

Proposition 2.4

For an M/GI/l/L vacation system with Markov schedules, the marked process X

associated with the queue length / server activity marked point process (X,T) forms a

Markov chain on the state space E.

Proof:

Since the vacation system under consideration is M/GI/1/L with Markov schedules, it

follows from Proposition 2.3 that the queue length / server activity marked point process

(X,T) is Markov renewal. That X forms a Markov chain on E follows directly from

(2.8) and the definition of a Markov chain.

I]

In the developments that follow, only M/GI/1/L vacation systems having Markov

schedules are considered; thus, the queue length / server activity process (X,T) is always

taken as a Markov renewal process. Given that (X,T) is Markov renewal, it is important
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for results to be developed later that state classifications of the queue length / server activity

process (X,T) be identitied.

In (X,T) let wi,wi2, be the times between successive visits to state j 6 E. If Si

represents the time of the first visit to state j, then

sim : s{„ +wim„, v in E 2*

defme the times of the visits to state j. It follows from Definition 2.2 that the sequence

si: {si, — sionn E 2*}

forms a renewal process.

Definition 25

State j 6 E is said to be recurrent if, in the renewal process si, w m <
„ for each m

a.s.; otherwise, state j is called transient. State j 6 E is said to be periodic with period Ö

if, in the renewal process si, the random variables Wi,Wi2, take values in the set

{O, 5 , 25, and5 is the largest such number. If no such 5 exists, then j is said to be

aperiodic.

[]

A state j 6 E in the (X, T) process is recurrent if and only if j is a recurrent state in

the underlying Markov chain X. Thus, in order to address the question of recurrence in

the states of (X, T), only the Markov chain X need be investigated. A state j 6 E in the

(X, T) process is periodic if and only if the distribution of the time between two

consecutive visits to state j is arithmetic with span 5 .
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Note that there exist Markov schedules such that it is possible for j to be periodic for

(X, T) without being periodic for the embedded Markov chain X. Conversely, j can for
some Markov schedules be periodic for the embedded chain X and aperiodic for the

(X, T) process. Cinlar (1975) offers a number of critexia suitable for testing the

periodicity and/or recurrence of the states of a Markov renewal processes. Those criteria,

while not presented here, are suitable to classify the states of the queue length / server

activity marked point process (X,T).

In most practical situations, the Markov schedules of interest are limited to those

schedules leading to an embedded queue length / server activity process X that is

ixreducible (i.e., any state in E can be reached from any other state in E); this will become

more clear in Chapter 3. When the corresponding vacation system is stable,

P{¤t < ¤¤;t E
R+}

= 1, and X is irreducible, then (X, T) is characterized as being

aperiodic and recurrent (see Cinlar 75). It is, however, emphasized that less practical

Markov schedules leading to reducible X processes are easily accommodated within the

probability structure on (X, T) considered thus far.

Having, for M/GI/1/L vacation systems with Markov schedules, characterized the

(X, T) process as Markov renewal with semi—Markov kemel Q(t), it is possible to

characterize the probability structure of a projection of the queue length / server activity

marked point process onto a subspace of the state space E. The importance of

characterizing such a projection arises when studying queue length as seen at particular

epoch types.

Consider the realization ¢ = {(X„,, ¢„,)1m E
Z+}

E CDE (defined previously).

Following the reasoning of Disney and Kiessler (1987), for A c E let the sequence
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$^ = {(X¢,„ $,2) 1 m E 2+} be a subsequence of $ consisting of all pairs (x„,, ¢>„,) for
which xm 6 A. Should it happen that the number ofm such that x,„ 6 A is finite, let m*

be the largest of these m, and for all m > m*, let x; = A and 1:; = + <><·. Hence, the

sequence $^is defined for all m 6
2+.

Now, for k 6
2+,

define Ltzdbß LJ {+ oa}

as

A inf 6A 6A ¢@L (¢) =
°’ “‘

° + <>¤ otherwise

and for k = 1, 2,...,

LAW) ={inf{m >L:_l(¢) :x,„ 6 A} {m >L:_1:x„, 6 A} ¢®

" + ¤¤ otherwise

For k 6
2+,

define

XA
: A : X A

and

SA
=

A
= T,(¢) ¢,, L:m(¢)

The stochastic process (X^, S^) = X:,S:) : k 6
2+}

is the delayed Markov renewal

process foxmed by embedding the (X, T) process at visits to the set A c E, (Note that

when the set A consists of a single state (i.e., A={i},i 6 E), then (X^, S^) forms an

delayed ordinaxy renewal process. Takagi (1987) recognized a special case of this fact and

employed this special case in a numberof his arguments.)
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It is a simple matter to construct an ordinary Markov renewal process from the delayed

Markov renewal process (X^, S^). The following proposition is offered without proof.

Proposition 2.6

For k E
Z+, let T: = St-

SA;.
The 2 k 6 2+} process is

Markov renewal on the state space A. []

If given the semi—Markov kernel Q(t) for (X, T) , it is possible to construct the semi-

Markov kemel for
(XA, TA).

Theorem 2.7

Let Q ^(t) be the semi—Markov kemel for the
(XA, Ti)

process. Q^(t) is given in

terms of Q(t) by

_
t—ul-...-uk-!

QA(a,j,a)=Q(a,j,a)+2 2... 2 - f Q(i,i1,dul)
k=2 alen ahlen

° °
...Q(ik_,,j,t—u1—...— llk_1)

(2.9)

where i,j 6 A, t 6 R+, and B=Ac.

Proof:

See Disney and Kiessler (1987). []

The usefulness of Theorem 2.7 is demonstrated when considering the joint queue

length / server activity process embedded only at service period completion epochs or only
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at vacation period completion epochs. Let

S = {i E E:iH= (s,· )}„ and

V= {i E E:iH= (v,· )}_

That is, S c E denotes the set of all states corresponding to s-type epochs while V c E

denotes the set of all states corresponding to v-type epochs. Note that E = S LJ Vand

S m V = Q; thus, S and V together partition the state space E. Since E is at most

countable, it is possible to express the semi-Markov kernel Q(t) as a matrix partitioned in

blocks according to the S,V partition of E. That is

Q (t) Q (t)
QM Q$(t)

ow
mjVS W

(2.10)

Note that at this juncture, no particular ordering of states is specified, and when K=¤¤ the

submatrix blocks of (2.9) are each necessarily infinite dimensional.

Corollary 2.8

a) The joint queue length / server activity process embedded at service period

completion epochs
(XS, Ts)

is Markov renewal and has a semi-Markov kemel Qs(t)

given by

Q,(t> = QS(t> + HQS, * QT}, ··= Q,,]<t>
ho (2.1 1)

b) The joint queue length / server activity process embedded at vacation period

completion epochs
(XV, TV)

is Markov renewal and has a semi-Markov kemel Q vw

given by

_
_

(noQ„,(t) — Q„,„,(¤) +
EOIIQS *

QSHere,=�=
is the convolution operator, and Q?:)_,(t) is the k-fold convolution of

Q,__,(t)
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with itself.

Proof:

The fact that in part a) and in part b) (XV, Tv) are Markov renewal follows

directly from Proposition 2.6. Since S and V partition E, eq. (2.11) in part a) and eq.

(2.12) in part b) are both matrix representations of eq. (2.9) of Thm. 2.7 with S and V

serving for A and B.

Corollary 2.8 assures that the queueing behavior of M/GI/1/L vacation systems with

Markov schedules retain a Markov renewal structure when the system is examined at

service completion epochs, vacation completion epochs, or both service completion and

vacation completion epochs, While the semi-Markov kemel Q(t) is often easily formulated,

the semi-Markov kemels Qs(t) and Qv(t) are usually formidable (as indicated by the

complexity of eqns. (2.11) and (2.12)) and are difficult to formulate . The relationship

between Q(t), Q s(t) , and Qv(t) will be examined for some specific vacation systems in

Chapter 3.

The characterization of , and
(XV, Tv)

as Markov-renewal offers additional

insight into the behavior of vacation systems. That is, ,
Ts)

characterizes both the

queue length embedded at departures from the system and the point process goveming the

customer departure stream. The , process marginally characterizes in part the

backlog of customers awaiting service when the server retums from vacation. Ergodic

results, when they exist , are obtained by examining the stationary distributions on the

Markov chains
XS

and
XV

in the usual way.
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2.4 Probability structure for the joint queue length / server activity

process X1. .

Having identified the queue length / server activity marked point process (X, T) as

Markov renewal under Markov schedules, characterization of the probability structure on

the joint queue length / server activity {1. requires introduction of the so called Markov

renewal equations.

As defined in the previous subsection, Q(t) is the semi·Markov kemel for (X, T) on

the state space E. Let f(t) and b(t) be vectors whose elements f(i,t) and b(i,t) are

nonnegative functions that are bounded on finite intervals of t and are bounded in i.

Suppose that b(t) is a known function and that f(t) is an unknown function. Then, the

equation

f(i,t) =b(i,t) +2 IQ(i,j,du)f(j,t—— U) (2-13)
j6E 0

is called a Markov renewal equation. The set of Markov renewal equations on the state

space E is given conveniently in matrix form as

im = bw + (Q =�· f)(t) (2-14)

The solution to eq. (2.14) requires introduction of the Markov renewal kemel R(t) of

(X, T) 6 E . Here, elements of the Markov renewal kemel are refexred to as Markov

renewalfwzcrions and are given by

12(1-J·*)= =1] 1J E E~ 1 E 1*+
m=0
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(2.15)

where, 1,,) dcnotes an indicator function. Each Markov renewal function R(i,j,t) can be

written in terms ofelements ofQ(t), the semi-Markov kemel of (X, T), by

R(i,j,t) = E P{Xm =j, Tm s t|X0 = i}
m=0

= XQ‘""<i,1¤>
·¤=° (2.16)

where,

<o> . . _ L i =]
Q (1’J’ t) —

{0, otherwise

and

Q""’(i,j„¤) = EloQt i,k,du)Q(°°”°(i,j,t — u)
ks}!

From a computational perspective, the Markov renewal kemel is formulated using

Laplace-Stieltjes transforms. Let Re o' 2 0, and for all i,j E E

Q„(iJ) = l <=""Q(iJ»dt),
0

and

R„(i,j) = I e‘°‘R(i,j, dt)
_

0

It follows easily by taking the Laplace-Stieltjes transform of (2.16) that R, is given as the

minimal solution to
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RAU—QJ=U

where U is an identity matrix. In practice, it is most difficult to formulate the Markov

renewal kemel R(t). This difficulty is especially evident when the state space E is not

tinite.

It is well known Cinlar (1975) that the solution to the Markov renewal equation of

(2.14) is given by

f(t) = (R * b>(t> + c(t) (2.17)

where c(t) is a vector whose elements are functions of the same class the elements of f(t)

and

c(t) = (Q * c)(t> (2.18)

Generally, (2.17) is not unique. However, when the server switching point process T has

intinite lifetime (ic., sup ,„(T „,) = ¤<>a.s.), then c(i,t) = 0 V i 6 E and

f(t) = (R =�· b)(t) (2.19)

solves (2.14) uniquely.

Before identifying the probability structure on the joint queue length / server activity

· process Pi. = {Xttt E
RJ'}

, adefmition is needed

Definition 2.9
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Let Z = {2, zt 2 0} be a stochastic process with topological space D, Suppose that

the function t —>2,(w) is right continuous and left hand limits exist for almost all co .

The process Z is said to be semi·regenerative if there exists a Markov renewal process

(Y,U) = {Ym,U mz m 6 2+} having infinite lifetime satisfying the following:

a) for each m 6
2+

, Um is a stopping time for Z,

b) foreach m 6 2+, Ym is detemiined by {2,, zu S Um},

c) for each m 6
2+,

n 2 l, 0 S t, St, S St,,, and function fdetined on D° and

positive,

I 2,, zu S Um] on {Ym =j}
where,

E P E, refer to expectations given the initial state for the Markov chain Y.

[l

It is now a simple matter to identify the probability structure on the joint queue length /

server activity process XR,.

Proposition 2.10

Consider an M/GI/l/L vacation system having Markov schedules such that the server

switching point process T = {Tmzm 6 2+} has an infinite lifetime. Then, the joint

queue length / server activity process XR, = {X, zt 6 R} is semi-regenerative.

Proof:

Note that the server switching point process T = {Tmzm 6
2+}

has infinite lifetime if

and only if the queue length /server activity marked point process

(X, T) = {Xm,Tm zm 6 2+}

has infinite lifetime. Since the arrival stream to the system is Poisson, it follows that
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P{XT =j|TT = u,XT = i} =P{XT_¤= jlX0 = i}

forall i,j 6 E and u,t 6
R+

where u< t (i.e., (X, T) is anembedded Markov renewal

process). Thus, T = {Tm :m 6 2+} is a set of stopping times for and condition a)

is satisüed. Further, since XT = X„, , we have that X„, is determined by {X „ zu S T„,}

satisfying condition b). That condition c) is satisfied follows from the Markov renewal

property of (X, T).

[l

The importance of identifying the semi-regenerative structure on {U is that the well

known theory of semi-regenerative processes can be used to examine the system occupancy

distribution as seen by an "outside observer". To this end, the two theorems to follow

provide distributional results that are powerful tools for examining the queueing behavior

ofM/GI/1/L vacation systems having Markov schedules.

Theorem 2.11

Consider an M/GI/1/L vacation system having Markov schedules such that the server

switching point process T = {Tmlm E 2+} has intinite lifetime. For any A c E, all

iE E,andall IE
R+,

I

P{XT 6 AIXO = i} = R(i,k,du) P{XT_u 6 A,TT> t- u|Xo =k}
kas 0

(2.20)

Proof:

It follows from Proposition 2.10 that the vacation system under consideration is such
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that the joint queue length / server activity process XR. is semi-regenerative on the state

space E. Following the logic of Kohlas (1982), note that

{X, 6 AIXo=i}= {X, 6 A,Tl> tIXo=i}

U 6

kIX0Usingthe regeneration property,it now follows that

P{X, 6 A|T1=s,Xl=k}=P{X!_T 6 A|X0= k}_

Thus,

P{X, 6 AIXO =i} =P{X, 6 A,Tl> t|Xo=i}
I

+ 2,}-Q(i,k,du)P{X,_„ 6 A IXO = k}
kd

° (2.21)

which is a Markov renewal equation . It follows from eq. (2.19) that the solution to (2.21)

is given by (2.20)

[1

While the result given by eq. (2.10) of Thm. 2.11 is rather general, (2.20) offers little

promise as a computational tool. This is true since computing the Markov renewal kemel

R(t) is, in practice, a formidable if not impossible task. If, however, attention is restricted

to ergodic queueing behavior (when it exists) a more computationally attractive result is

available.

Theorem 2.12
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Consider an M/GI/1/L vacation system having Markov schedules such that the queue

length / server activity marked point process (X,T) is irreducible, aperiodic, and recurrent

on the state space E. Let A c E , v be an invariant measure for the Markov chain X, and

m(k) = E[TlIXo = k]. Suppose that v m = 2v(k) m(k) < «>.
k6E

Then,

lim P{X 6 AIX =i}= L2„v(k)_I·P{X 6 A T >tIX =k dtt_*__ 1 o V mk
E 0

1
·

1 o }

(2.22)

provided that t —>P{X‘ 6 A,Tl > tIXo = k} is Riemami integrable V k 6 E.

Proof:

Since it follows from Proposition 2.10 that the vacation system under consideration is

such that the joint queue length / server activity process
xl.

is semi-regenerative on the

state space E, proof here is the same as Cinlar's (1975) proof of Theorem 10.6.12 .

I]

Note that (2.22), unlike (2.21) does not require the computation of the Markov renewal

kemel R(t). However, (2.22) requires computation of v a stationary measure on X;

computation of such a measure is in principle simple so long as K is finite. When K is

infinite, computation of v is more difficult. This situation is considered for specific

vacation systems in Chapter 3.

Theorem 2.12 leads directly to a characterization of the ergodic queue length

distribution (when it exist) for the class ofMarkov schedules identified in the hypothesis of

the theorem.
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Corollary 2.13

Consider an M/GI/1/L vacation system having Markov schedules such that the queue

length / server activity marked point process (X,T) is irreducible, aperiodic, and recurrent

on the state space E. Let A c E, v be an invariant measure for the Markov chain X, and

m(k) = E[T1IX0 = k]. Suppose that vm = 2v(k) m(k) < ¤<·. Then for each
k6E

jN 6 2+,

. . 1 - .
JN} k} dt]

1; E

(2.23)

Proof:

Recall that X, = (n,, h,) 6 E. Itfollows directly that for all jN 6
Z”'

and IE R+,

and since E P{n , = j N, h , =j H} is a convergent series of all positive terms, we have that

(2.24)

Thus, substituting (2.22) into (2.24) gives the desired result.

[]

A convenient probability stmcture that underlies M/GI/1/L vacation systems with
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Markov schedules has now been identified. This structure, as revealed by Proposition 2.3

and Proposition 2.10, offers a common framework in which all M/GI/1/L vacation systems

having Markov schedules may be examined. Some observations regarding the Markov

renewal/ semi-regenerative nature of such systems are in order.

The three conditions that identify those sever scheduling disciplines belonging to the

class of Markov schedules are relativcly general. Note that these conditions do not specify

the order in which queued customers are serviced (e.g., first come first served, etc.); in

fact, customers may be served in batches.

The three conditions defining Markov schedules admit a variety of server scheduling

disciplines where customer service period distributions and/or server vacation period

distributions are dependent upon the arrival process; the ordinary M/GI/1 queue is an

example of such a vacation system. Here, the server vacations while the queue is idle and

terminates its vacation immediately upon arrival of a customer to the empty queue.

Theorems 2.11 and 2.12 together with Corollary 2.13 offer powerful tools for

analyzing characteristics of the queue length distribution for M/GI/1/L vacation systems

having Markov schedules. This set of results is valid for systems having either finite or

infinite queue capacities. For systems having finite queue capacities, numerical results are,

in principle, readily calculated. Systems having infinite queue capacities are usually more

difficult to analyze.

In the Chapter 3, the common framework developed in Chapter 2. is employed examine

the queue length distributions for systems having finite and systems having infinite queue

capacities. The difficulties that arise in obtaining specific numerical results will be made
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clear in the developments of Chapter 3.
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3. Example M/GI/1/L Vacation Systems with Markov Schedules

In this chapter, the general probability structure underlying M/GI/1/L vacation systems

with Markov schedules is particularized to examine the queueing behavior of example

vacation systems. The purpose ofexamining these example systems is threefold.

First, we seek to validate the general probability structure of Chapter 2 by examining

the queueing behavior of a pair of previously studied vacation systems and comparing the

results of this examination to known results. Second, we seek to demonstrate the

usefulness of the general probability structure by providing previously unreported results

associated with well studied systems. Finally, we seek to demonstrate the usefulness of

the general probability structure by examining the queueing behavior of previously

unstudied vacation systems.

In meeting this threefold purpose, the full generality of the probability structure of

Chapter 2 is not exploited; rather, only ergodic results will be examined. Unless otherwise

indicated, the the queue length / server activity process (X,T) is assumed to be irreducible

and to possess a stationary distribution.

Chapter 3 is divided into three sections. Section 3.1 investigates the queueing behavior

of the M/GI/1 vacation system with Bemoulli schedules, Sec. 3.2 investigates the behavior

of the M/GI/1 vacation system with E-limited service, while Sec 3.3 investigates the

M/GI/1 vacation system with batch service. The systems considered here appear in order

of increasing complexity.

44



Note that the three systems considered each have infinite queue capacity (i.e., L = <>¤).

Such systems are, in principle, more difficult to analyze; note that Theorem 2.12 requires a

stationary measure for a Markov chain having a countably infinite state space.

Particularization of the general model of Chapter 2 to vacation systems having infinite

queue capacities, in most instances, yields only probability generating functions (pgf's) for

queue length. The nature of computational difficulties associated with infinite queue

capacity systems will be made clear as the example systems are analyzed in their respective

sections.

3.1 M/GI/1 vacation systems with Bemoulli schedules.

Consider again the M/GI/1 vacation system with Bemoulli schedules, first introduced

in Chapter 1. Recall that the "Bemoulli schedule°' server scheduling discipline requires that

upon completion of a customer's service that leaves the queue not empty, the server will

either begin serving the next customer in line with fixed probability p, or will begin a

vacation with fixed probability 1-p. Upon a service period completion that leaves the

system empty, the server begins a vacation period begins immediately.

At the end of a vacation period , the server arrives to find the queue either empty or not.

Recall that if the server returns to find the queue not empty, a service period begins

immediately; if the server retums to find the queue empty, another vacation period begins

immediately. Customers are served in order of arrival. Exhaustive service and limited

service server scheduling disciplines are obtained as special cases of the Bemoulli schedule

by setting p to l and 0 respectively.
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For M/GI/1 vacation systems with Bemoulli schedules, it is assumed that the lengths of

customer service periods are independent, identically distributed with distribution S(t), and

the lengths of server vacation periods are independent, identically distributed with

distribution V(t). It is further assumed that the lengths of customer service periods and the

lengths of server vacation periods are mutually independent. The Poisson stream of

customers arriving to the system is assumed to have rate 1.

Since the queueing behavior of M/GI/1 vacation systems with Bemoulli schedules is to

be examined within the general framework established in the previous chapter, it is

necessary to show that Bemoulli schedules belong to the class ofMarkov schedules. That

is, Bemoulli schedules must satisfy Conditions 1, 2, and 3. However, before verifying

that Conditions 1, 2, and 3 hold, it is helpful to reexamine the mark space of the server

switching marked point process (H,T).

When examining M/GI/1 vacation systems with Bemoulli schedules, the full generality

of the model introduced in Chapter 2 is not required. In particular, let the mark space IF. of

the server switching marked point process (H,T) be restricted to
IF
= F. Under Bemoulli

schedules, this simplitication of the mark space is appropriate since for any given epoch of

(H,T), the type (s-type or v-type) of this epoch depends only upon the most recent

previous epoch.

Let the joint queue length / server activity process XR. and the queue length / server

activity marked point process (X,T) be defined as in Chapter 2. Since the queue capacity

is infinite (i.e., L = ¤¤), it follows that the state space E for the system under consideration

is given by

E=’1ä>«z*=1=xz*_
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Recall that i,j 6 E are expressible in terms of queue length and server activity components

where,

i= (iwi;) ¤¤di =i(iHJ H)
with

1„,j„ E z* a;1diH,jH 6 F,

Under Bemoulli schedules, the type of the next epoch of (X,T) depends only upon the

present epoch of (X,T). Thus, it follows simply that for all i,j 6 E and m 6

T0,...,T„,} = P{Hm+l =j HI Xm},

which implies that Bemoulli schedules satisfy Condition 1. As in (2.2), let

g(i,j) = P{Hm+1=jH| Xm} V i,j 6 E.

It follows that for systems operating with Bemoulli schedules,

1, jH=v,iN=O,iH6F

1-p, jH =v,iN ¢O,iH= S

g(i,j)= 1, jH=s,iN¢0,iH=v

p, jH=s,iN¢0,iH=s

0, otherwise

(3-1)

It is true that for all vacation systems that the server is either serving customers or on

vacation . For Bemoulli schedules, the time between any two contiguous epochs of (X,T)

must be either a customer service period with distribution S(t) or as a server vacation period
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with distribution V(t). Given two contiguous epochs, the server's activity between them is

recognized as either a vacation period or a services period, conditional upon the type of the

most recent of the two epoch and the number of customers queued at the older of the two

epochs. That is, customer service periods and server vacation periods are such that for all

m 6

T„, S t |H,,,,,,Xo,...,X,„,, To,...,T,,,} = P{T,,,,, — T„, S tl i}

whenever j is "reachable in one step" from i. Hence, Bemoulli schedules satisfy Condition

2. Using the notation of (2.2), we have for all i,j 6 E, m 6
2+,

t 6
R+

that

__ P{T,,,,,—T„,StIH,,,,l=jH,X,,,=i}, g(i,j)¢0
F(1,j,t)=

O,
. . _0gtw) -

Since inter-epoch times represent either vacation periods or service periods, it follows that

S(t), jH= s,i 6 E,j one — step reachable from i

F(i,j,t) = V(t), jH= v,i 6 E,j one — step reachable from i

O, otherwise

(3.2)

Since the customer arrival stream is Poisson, it is clear that the interarrival times are

exponentially distributed and thus, have the memoryless property. Hence, for all i,j 6 E ,

m6 2+, and te R+,
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P{Nm, =j t}

= P{N„.„ =J„'H....„=J„·X„„ = l·T„.„ — Tm = t}-

which satisties Condition 3. Following the notation of (2.3), we have for all

1,jEE,II1€ 2*,:6 11*

G(i,j,t) =P{Nm+1=jN|Hm+,=jH,X„, = i,Tml —T,,, = t}

and it follows that

)jN-iN+1
-11(11 . . . .1N21,_]N21N—1,_]H=$

G(i,j,t =
ju—iu

> Q >i = V(i„·i„)!
’ ”“ "" "’“

0, otherwise _ (3.3)

Since Conditions 1, 2, and 3 are satistied for this example system, Bemoulli schedules

belong to the class of Markov schedules. Thus, by Proposition 2.3 M/GI/1 vacation

systems with Bemoulli schedules have a Markov renewal queue length / server activity

marked point process (X,T), and have a semi-regenerative joint queue length / server

activity process XR+. Given (3.1), (3.2), and (3.3), it is a simple matter to calculate the

semi-Markov kernel Q(t) for the (X,T) process where,

Q(i„j,t) = I g(i„j)G(i„i„ ¤)F(i„id¤) V i,j 6 E, 1 6 R" (3-4)
o
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Substituting (3.1), (3.2), and (3.3) into (3.4) it follows that

xi F
'1

N_i

N1
- lu

(1—p)_|. @<irV(du), jH=v,iN¢0,iH=s
0 (J N
’ 1 N)·

Q i,',t =
J„·*„*‘

(J)

jH=s,i $0,1 =V„ <1„—¤„+1>— N N
j N—iN+1‘

( 1 u) e' "“ . . ."J.E;@N<d“>» J·«=S·*~==°·‘¤=S
O, otherwise _

(3.5)

Having particularized the semi-Markov kemel Q(t) to reflect M/GI/1 vacation systems

with Bemoulli schedules, it is feasible to investigate the ergodic queueing behavior of this

system. (Recall that ergodic results exist here since it is assumed that (X,T) is irreducible

and all states of E are recurrent.) In particular, the ergodic distribution of queue length as

seen immediately following customer service completions, the ergodic distribution of queue

length as seen immediately following the server's retum from vacation, and the ergodic

distribution of queue length as seen at an arbitrary time are investigated. Nonergodic

queueing behavior is not examined here.

From Proposition 2.4 we have that the marked process X associated with the queue

length / server activity marked point process (X,T) forms a Markov chain. Since X is

embedded at all customer service completions and all server vacation completions, the
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ergodic distribution of qucue length as seen by either customers upon departure or the

server upon return from vacation is simply the stationary distribution for the chain X.

Note that by Corollary 2.13, the ergodic distribution of qucue length as seen at an arbitrary

time requires the stationary distribution forX. The three distributions of interest above are

each determined, in part, by a stationary measure on the chain X.

Because the state space E is countably intinite, solving for a stationary measure on X

is formidable. (This situation is analogous to studying the ergodic qucue length

distribution of the M/GI/1 queue without vacations where generating functions are used to

study qucue length distributions.) Thus, in what follows, pgf's of queue length are

developed.

Let Q be the collection of one-step transition probabilities associated with the Markov

chain X. Here, Q = Q(t). Let the state space E be partitioned, as in Corollary 2.8,

suchthat E= SUV and S¤V=@ where,

S= {i 6 E:iH=s}, and

V= {i 6 E:iH=v}_

The equations yielding the stationary distribution on X, when partitioned according to the

state space partition described above, are written in matrix form as

QW QW[xs EV] - [as 7R’][ Qw Qw i (3.6)
where,

Q = [ 3* 3* 1VS VV

and [7% 7%] is the stationary distribution on X. Here, for oz 6 F,
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na = [1ra(O) rr„(1) 1ra( 2) ...]

whcrc,

a}, j=0,

1,2,From(3.5) and (3.6) it follows that

0 O O 00pso
psz psz pszpszQ

_ 0 pso psz pszpszS

0 0 pso pszpsz0

0 0pszE

E E EEvo

vz vz vzvz0
qvz qvz qvzqvzQ

=
O 0 qvz qvzqvzSV
O 0 0qvo0

0 0 OqvzE
E E EE0

0 0 O0so
sz sz szszQ

_ 0 so sz sz
szVS-0 0 so szsz0

0 0soE

E E E

Eand
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vo vlv20
0 0 00Q

_ 0 0 0 00W
- 0 0 0 000

0 0 00E
E E E E (3.10)

where, q = 1-p and forj = 0, 1, 2, ...,

‘(202-1-
si: fo jl

S(dt) , (3_11)

and

—Äl

vi:] ——?‘¥v<dt>_ (3.12)
o

Substituting (3.7) through (3.10) into (3.6), it follows that for j = 0, 1, 2, ...,

j+1 j+l

(3.13)
k=l k=l

and

1
71:V(j) = 7:s(0)vj +

q27ts(k=1
Now, dcfmc the following geometric transforms:

(3 16)1=v
’ °

and

(3.16)
;=o

Equation (3.15) together with (3.13) gives

,, j+l j+l

j=0 k=l k=1
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while, (3.16) together with (3.14) gives

.. l 1+1

1‘[v(Z) = vj + q21rS(k)vj_k + 1rv(0) vi)
(3.18)

j=0 k=l

Distributing the outer sum on the right side of (3.17) and interchanging the order of

summations allows (3.17) to be rewritten as

zp1zs(j=0
j=0 j=0

1=° 1=° 5=° (3.19)

Similarly, distributing the outer sum on the right side of (3.18) and interchanging the order

of summation allows (3.18) to be rewritten as

qzj=0j=0 j=0 j=0

(3.20)

Now, define s(Z) and WZ) such that

$(2) =
Zsjzj,

(3.21)
j=0

and

WZ) =
2)/jlj

(3.22)
j=0
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Expressions for $(2) and Y/(2) are found by substituting (3.11) and (3.12) into (3.21)

and (3.22) respectively. Thus,

1
" _ '° Ä

-1 1

$(2) (3 23)1=<> 0 J' ‘

and

· . ·<11>’ ·~·
1=<> 0

Passing the summation within the integral in both (3.23) and (3.24), it follows directly that

sm = fe*^-^·J·s(«11> (3.25)
0

and

(3 26)
·

where, (3.25) and (3.26) are recognized as Laplace-Stieltjes transforms, of S(t) and V(t)

respectively, evaluated with the transform operators equal to (/1 - 12) .

Now, (3.21) and (3.22) respectively allow (3.19) and (3.20) to be written as

S(z)
Hs(2) = ——2—(pI7s(2) + I7v(z)

— (pzcs(0) + rzv(0))) (3.27)

and

17„<Z)= V<z)(<1!A<Z) + (mw) + @(0))) (328)
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Equations (3.27) and (3.28) can be solved simultaneously for both US(z) and Il/(z) . As

will be shown, for appropriate boundary conditions I7S(z) and I'lv(z) are pgfs where,

I7s(z) is the pgf for the queue length distribution seen by customers departing the system

and I'l„( z) is the pgf for the queue length distribution as seen by the server upon retum

from vacation.

As a matter ofconvenience, rearrange (3.27) and (3.28) such that

Zäqtz) =— (p1r,(0) + @(0))+ 1>1E(Z)+ nV(Z) (3.29)
and

1
(p 1rs(0) + 1r„(0)) + qI7s(z) (3-30)

It follows by adding (3.29) to (3.30) that

17 + 17 = L ) + L17 ( ),(z> „(z) gw I7s(Z WZ) V Z , (3.31)

and solving (3.31) for Uv(z) yields

V S —
= (Z)( (Z) Z) HAZ)
$(Z)(1- Vw) (6.32)

Substituting (3.32) into (3.29) and solving for I7s(z) gives
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p (0) + 1: (0)
= (3.33)

Z — (P + qV(Z))$(Z)

Substituting (3.33) into (3.32) and simplifying gives

H ( )
(p2rS(0) + 1:„(0))(z — S(z))V(z)

Z 3.34V Z — (P + qV<z))$<z) ( )

Note that while (3.33) and (3.34) are geometric transforms, neither is necessarily a pgf.

The value of the constant (P7¢'s(0) + @(0)) determines whether or not either (3.33) or

(3.34) is a pgf; the value of (p@(0) + @(0)) required to make (3.33) a pgf is generally

different than the value of (p@(0) + @(0)) required to make (3.34) a pgf. In the

developments to follow, we shall show how the values of the constant ( p7rS(0) + @(0))

is determined so that (3.33) and (3.34) become pgfs.

Next, consider FI (2) the pgf for the distribution of the queue length as seen

immediately following either customer service completions or server vacation completions.

It is clear that U (2) = @(2)+ @(2); thus, it follows from (3.31) that

_ .L ;H (Z) ‘ gw (UZ) + g,w"v(Z) (3.36)

Substituting (3.33) and (3.34) into (3.35) and simplifying yields

to) + <0>( W >-S< >)
Z · (P + qV(Z))$(Z)
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Note that any pgf taken in the limit as z approaches 1 from inside the unit circle is itself 1;

that is, lim H(z) = 1. Therefore, it follows that
zT1

1 um
(p7Us(0) + 7rv(0))(zV(z) —8(z))_

zT¤ z — (p + qV(z))8(z) (3-37)

Note that (3.37) is of an indeterminant. Here, let the "prime" diacritical mark indicate

differentiation with respect to z, and by L'Hopita1's rule we have that

hm =limzT1
z —· (p + qV(z))8(z) zT¤ 1- ((p + qV(z))8J(z) + 8(z)qV(z))

(3.38)

It follows from (3.37) and (3.38) that

(paste) + «t,<o>)(v<1>+ 1- s’<1>)
I = . (3.39)

1- (s’<1> + qv<1>)

Let 8 denote the expected length of a customer service period and V denote the expected

length of a server vacation period. Note that
SJ(

1) = AS and V'( 1) = AV . Rearranging

(3.39) gives

1 - p - QÄV(prts(0) + 1r„(0)) —
1- p + lv

(3_4())

where, p = AS , as usual, defines the traffic intensity. Equation (3.40) gives the
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appropriate value of (p 71-’s(O) + 7fV(Ü)) so that U (z) is a pgf. We now have that

1 - — AV V - sHm: P Q _ _ (2 (2) (2)) (3.41)
1- p + AV Z - (p +q'V(z))$(z)

The case ofexhaustive service is now examined; setting p to 1 in (3.41) gives

1 - -H (Z) = P$(2))1
— p + Ä.V 2 —- $(2)

which agrees with the results of Fujiki and Gambe (1980).

The usefulness of (3.41) is limited since it addresses none of the system performance

measures discussed earlier. However (3.42), by agreeing with the results of Fujiki and

Gambe, (3.41) offers a partial validation of this particularization of the general model of

Chapter 2.

At this juncture, it is possible to examine the pgf of the queue length as seen by

customers immediately following departure from the system, and the pgf of the queue

length as seen by the server immediately following retums from vacation. Here, it is

convenient to employ Corollary 2.8 which characterizes the probability structure of the joint

queue length / server activity process embedded at either service period completion epochs

or at vacation period completion epoch.

First, we will examine the pgf of the distribution for the queue length as seen

immediately following customer departures from the system. Let
(XS, TS)

be defined as
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in Corollary 2.8. It is clear that the queue length distribution, as seen by customers

departing the system, is given by fs the stationary distribution on the Markov chain
X5

.

Here,rFS satisfies

ks = ßsQs
(3.43)

where,

Q S = lij_¤_ QS0).

It follows from (2.11) that the transition matrix QS for the chain X
S
is given by

Qs=Q¤+2(QwQ:~Qvs) (g_44)
k=0

However, from (3.6) wc have that

ws = „sQs + ”vQvs
Ev = 7zsQ w + EVQW (3.45)

Solving (3.45) simultaneously yields

~ kES = {Os + 2«(QwQwQvs )); (3.46)
k=0

hence, from (3.44) it is clear thatrrs is a stationary measure on the chain
XS

. It now

follows that rrs and rfS are equivalent up to a multiplicative constant; hence, the pgf for rrs

differs from the pgf for fs by a multiplicative constant. This reasoning reveals that if the
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constant (p¢r,(0) + @(0)) is chosen such that @(2) = 1, then @(2) is the pgf for
1 l

the queue length as seen by customers departing the system. Further, by interchanging the

roles of S and V in the above argument, @,(2) is recognized as the pgf for the queue length

as seen by the server immediately following retums from vacation when the constant

(p¢r,(0) + @(0)) is chosen such that @(2) = 1.
2 l

It is possible now to determine the value of (P7¥s(0) + @(0)) such

that @(2) becomes the pgf for the queue length as seen by customers departing the system.

Since @(2) = 1, we have from (3.33) that
1 l

1 um
(p11S(0) + 11„(0))(V(1) - 1)s(1)—

111 z — (p + qV(2))S(2) (3*47)

Since (3.47) is of an indeterminant form, L'Hopital's rule is required to evaluate the limit;

hence,

(P@(0) + @(0))(V(2)
— l)$(Z)

lim111
2 — (p + qV(2))S(2)

_ (p1rS(O)+ 11„(0>)((‘v(1)—1)S’(1)+ s(1)v’(1))
= hm111

1 - ((p + qv(1))s’(1)

+From,(3.47) and (3.48), it follows that

p (0) + rr (O) Y/(1)
1 (6.49)

1- (s’<1> + qvm)

and with p , S, and Y/defined as before, (3.49) can be rearranged to show that
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1 — — AV
(3-50)

Substituting (3.50) into (3.33) gives

1 — p — qÄ.—V (Y/(z) — l)S(z)1741) =——T·—· ——l—— . (3.51)Av Z - (p + qV(z))S(z)

which is the desired pgf. To the author's knowledge, the pgf of (3.51) is a new result for

M/GI/l vacation systems with Bemoulli schedules. Note that with p = 1, (3.51) becomes

1- p (Y/(1) - 1)S(z)
AV Z - §(Z) (352)

which is the well known pgf for the queue length as seen by departing customers of

M/GI/1 vacation systems with exhaustive service Takagi (1987).

It is a simple matter to determine the value of the constant (P7FS(O) + 7R,(O) ) such that

I7v(z) becomes the pgf of the queue length as seen by the server immediately following

returns from vacation. Since I7v(z) = 1, we have from (3.34) that,
z 1

1 Hm
(p7Fs(0) + rrv(0))(z — S(z)) Y/(z)

'
In z — (P + qv(Z))g(Z) _

(3_53)

Following an application of L'Hopitals rule, (3.53) reduces to
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1 3=—*l* , .54
z — qV/(1)- s’(1)

( )

and from (3.54) it follows that

1 — — AV
prrs(0) + 7!'v(Ü) =

‘ (3-55)

Substituting (3.55) into (3.34) yields

1- p -1111/ (-S( )V(
17v(z> = i—· (3.56)

P z — (p + qV(z))S(z)

which completes the characterization of the pgf for the queue length as seen by the server

immediately following retums from vacation. The pgf of (3.56) does not appear in the

available literature, and thus, is new.

We now consider the pgf for the queue length as seen at arbitrary times. Development

of this pgf appeals to Theorem 2.12 and Corollary 2.13 which address the stationary

distribution of the joint queue length / server activity process X’.. Since (X,T) is here

assumed to be irreducible and to have a stationary distribution, it follows from (2.22) that

for all j in E

lim P{X‘ = = ä2E(k)I P{Xt = j|Tl > t,Xo= k}P{Tl > t lX0= k}dt
ksE 0
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(3.57)

where, rr is the stationary distribution on the Markov chain X.

Here, some notation is introduced so as to simplify the development that follows. For

all j 6 E let

HU) = {ig¤__P{X„ =J}

and for i,j 6 E let

B(i,j) = I P{XS =j ITS > t,X0= k}P{TS > t IX0= k} dt
0

When the state space E is partitioned by S and V as in Corollary 2.8, it follows from (3.57)

that the stationary distribution of the joint queue length / server activity process XS. is

given by

l B s B sv””=rr@al ]ls v] xml ] BVS BVV S (358)

Here, for rx 6 F,

na = [n„(0) 17„(1) na(2) ...]

with

T]„(j)= liin·P{n, =j,h, = oz}, j =O, 1, 2,...;
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for a11:z,ß6F,andi,j=0, 1,2,...

B„„(i-Ä) :.[
P{“« :j·h.: ß'T1> ‘·No:i·Ho: a}

0

a}dt (3.59)

It is clear that whenever T1> t,it mustbe that Thus, for i,j = 0, 1, 2, ...,

B w(i,j) = BVs(i,j) = 0. It now follows from (3.59) that

Bw =B„ = [01. (3.60)

Further, (3.59) implies that

ao al azaz0
do dl dzdz0

0 do dl dz

0 000
0 0 0 do

E E E E (3-61)

and

ao al azaz0
co cz czcz0

0 co clczBw:

0 0 0 cocl0
0 0 0coE

E E E
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where forj = 0, 1,2,-

1
-1:

aj: Ii/k%i—(l — V(t))dt , (3.63)
0

— 1
Ä - 1:dj =1 L%*(1—(P$(() + <1V(()))d( „ (3.64)

0

and

- 1
Ä -1 :

ci: _,LE%(l — S(t))dt . (3.65)
0

Given the notation above, it is a straight forward matter to examine the pgfof the queue

length distribution as seen at arbitrary times. Let K be the row vector of queue length

probabilities when the queue is observed at arbitmry times where

K = [K(0) K(l) K(2) ..1 (3.66)

with

¤<(1)=}i;¤_P{¤.=1}- 1=(112~-·· (3-67)

It follows directly from Corollary 2.13 that K (j) is given by

¤<(1) = ns (1) + M1), 1 = (112--·- (3.68)
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Here, (3.68) taken together with (3.58), (3.61), and (3.62) shows that rc (j) can be

rewritten as

1 1 1
x‘(j) = $[1rs(0)aj + §1rs(k)dj_k + 1r„,(O)aj + E2rv(k)cj_k), j = 0, 1,

2,(3.69)

Deiining K (z) as the pgfof the queue length as seen at arbitrary times we have that

K (Z) = X»<(j)Zj; (3.70)
j=0

hence, it follows from (3.69) and (3.70) that

.. 1 1
K (Z) (3,71)

j=0 k=l k=1

Let Us(Z) and Uv(Z) be defined by (3.15) and (3.16) respectively. Distxibuting the outer

summation on the right side of (3.71) and then interchanging the order of summation in

each term in the usual manner, (3.71) can be rewritten as

K(Z)(3.72)

where ,
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A(Z) =
Xajzj

= [6*-* ·>¤(1 - vmmt,
1=o

°

D(z) =
Xdjzj

= [6*-*·>·(1-(ps(t>+ qV (t)))dt
1=¤ °

°
and

C(z) = Zcjzj = [e‘(^‘^"‘(1 — S(t))dt_
1=o

°

Noting that K (z) = 1, and following much routine algebra (not shown here),
z 1

(3.72) reduces to

1-As-qav T/()-l)S()K (2) (6.76)AV Z- (p +qV(z))$(z)

Equation (3.73) and (3.51) show that K (Z) = U (Z) . That the pgf of the queue length as

seen immediately following customer departures is the same as the pgfof the queue length

as seen at arbitrary times is to be expected for this system. Klienrock (1975) shows that

for queues with renewal type arrivals where customers are served one at a time, the queue

length as seen immediately before arrivals and the queue length as seen immediately

following departures are distributed the same. Wolff (1982) shows that the queue length

as seen immediately before arrivals belonging to a Poisson stream is distributed the same as

the queue length seen at an arbitrary time (sometimes referred to as the PASTA result). The

Wolff result together with the Klienrock result imply that for queueing systems having

Poisson arrivals and one at a time customer service, the queue length seen immediately

following customer departures and the queue length as seen at an arbitrary time are
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distributed the same; the M/GI/l vacation system with Bemoulli schedules is such a

system. (Takagi (1987) states this result as a theorem and provides a simple proof.)

Given the pgf of the queue length as seen at an arbitrary timeK (z) , it is a simple matter

to formulate the Laplace—Stieltjes transform of the ergodic customer waiting time for the

M/GI/1 vacation system with Bemoulli schedules. Here, we appeal to the distributional

form of Little's law as presented by Keilson and Servi (1988). The distributional form of

Little's law is an ergodic result; thus, it is assumed that (X,T) is ixreducible and possesses

a stationary distribution.

Let K (z) be the pgf of the queue length as seen at an arbitraiy time, and let W(d) be

the Laplace —Stieltjes transform of the waiting time T of an arbitrary customer. Here,

W(0') =
E[¢—°T]

. The following Proposition, proven by Keilson and Servi (1988), is a

statement of the distributional form of Little's law.

Proposition 3.1

Let an ergodic queueing system be such that

a) arrivals are Poisson of rate Ä ,

b) aH arriving customers enter the system and remain in the system until served,

c) customers are served one at a time in order of axrival

d) newly arriving customers do not affect the waiting time of customers already in the

system

Then, the distributional form ofLittle's law holds; that is,

K (z) = WU — Az) (3.74)

[l
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Clearly, M/GI/1 vacation systems with Bemoulli schedules satisfy the conditions of

Proposition 3.1. Recall that (3.25) and (3.26) show that

$(2) = S°(Ä
— ll) (3.75)

and

’v(z) = v*(2. - Az) (3.76)

where S°(o‘) and V'(o') are Laplace-Stieltjes transforms of S(t) and V(t) respectively.

Substituting (3.75) and (3.76) into (3.74) and making a change of variable indicated by

(3.73) where z = 1- , we obtain the Laplace-Stieltjes transform of the waiting time T

for an arbitrary customer. That is,

1-
(3.77)p q <¤))S (cr)

The waiting time Laplace-Stieltjes transform of (3.77) concludes the analysis ofM/GI/1

vacation systems with Bemoulli vacations as presented here. While queue length and

waiting time distributions are not easily obtained, the general structure for M/GI/1/L

vacation systems with Markov schedules allows, as is shown, development of queue

length pgf at arbitrary times, embedded at departures and, embedded at vacation

completions. Further, the waiting time Laplace-Stieltjes transform is easily obtained since

the pgf of queue length as seen at arbitrary times is known., Each of these transform

results is important to performance analysis of M/GI/1 vacation systems with Bemoulli

schedules since moments of the respective distributions can be calculated in the usual

manner. However, no distribution moments are presented here.
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3.2 M/GI/1 vacation systems with E-limited service.

Consider now the M/GI/1 vacation system with E-limited service introduced in Chapter

1. RecaH that the "E-limited" server scheduling discipline requires that the server begins a

vacation when either a prespecified number m* of customers are served or the system is

emptied, whichever occurs first. If the server retums from vacation to find the to find the

queue empty, then another vacation begins immediately; the server continues in this manner

until upon return from vacation, at least one customer is queued.

In this vacation system, it is assumed that the lengths of customer service periods are

independent, identically distributed random variables having distribution S(t), and the

lengths of server vacation periods are independent , identically distributed random variables

having distribution V(t). Further, the lengths of service periods and vacation periods are

assumes mutually independent. The Poisson stream of customers arriving to the system is

assumed to have rate 1.

The queueing behavior of the M/GI/1 vacation system with E-limited service is to be

examined within the general framework of vacation systems having Markov schedules.

Thus, it is necessary to show that E-limited service is a server scheduling discipline

belonging to the class of Markov schedules. That is, E-limited service must satisfy

Conditions 1, 2, and 3 in order to be examined as a particularization the general model

developed in Chapter 2. However before verifying that Conditions 1, 2, and 3 hold, it is

helpful to reexamine the mark space of the server switching marked point process (H,T).
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When examining M/GI/1 vacation systems with E-limited service, the full generality of

the model introduced in Chapter 2 is not required. In particular, let the mark space ll;. of the

server switching marked point process (H,T) be restricted to the set

is = ({S} >< {1, 2,-,,,m'}) U {v}_

This simplification of themark space is convenient since the number of consecutive v-type

epochs of (H,T) does not influence the server scheduling activity under E-limited service.

Let the joint queue length / server activity process XR. and the queue length / server

activity marked point process (X,T) be defined as in Chapter 2. Since, in the system

under consideration, the queue capacity is infinite (i.e., L = ·>¤), we have that the state space

E is given by

^ +
E = E >< Z .

Recall that i,j E E are vector quantities that consist of queue length and server activity

components where,

i=(i1~2ir-1) and

j:with,

. + „ �
^iN,j N 6 Z and lH,_]HE E.

E-limited service requires that i„,j H E ia be two-tuples whenever i,j 6 E correspond to

service completion epochs. That is, whenever i,j 6 E correspond to service completion

epochs,

in = (i r~rT=inc)

and

72



j¤ = (j¤„'j¤„)

where

iH ,jH = s and iHc,j HC 6 {1,2,.-..m'} count the number of consecutive epochs of that

are of s-type.

It is clear from the description ofM/GI/1 vacation systems with E·limited service that

the server's activity at the next epoch of (X,T) depends only on the queue length at the

present epoch, the type of the present epoch, and the number of consecutive epochs of the

same type up to and including the present epoch. Thus, for all i,j 6 E

P{Hm+l =jHIX0,...,X„,,To,...,T,„} = P{HmH = jH| Xm} ’

which satisfies Condition 1. Now, for all i,j 6 E , let g(i,j) be defined as in (2.2). It

follows that for aH m 6
2+ ,

1, =s,jH =iH+1,iN2l,iH =s,iHSm°—l

or
jHT = s,jHc=1,iN 2l,iH=v

. . org("J)’ j„=v,1„=0,1„=v
or

jH =v,iN2O,iHT=s,iHc=m°

0, otherwise

(3.78)

It is known that for all vacation systems, the server is either on vacation or is serving
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customers. From the description of E-limited service, it follows that the time between any

two contiguous epochs of of the queue length / server activity marked point process must

be either a customer service period distributed S(t) or a server vacation period distributed

V(t), both conditional upon the server's activity at the more recent of the two epochs, the

number of customers queued at the older of the two epochs, and the server's activity at the

older of the two epochs. That is , customer service periods and server vacation periods are

such that for all m 6
2+

,

T„, S t To T„, S

twhenever,in the Markov chain X, state j is "one-step reachable" from state i where

i,j 6 E . Hence, E-limited service satisties Condition 2. Following the notation of (2.2),

we have forall i,j 6 Eand x6 R+ that

S(t), j„= s,g(i„j) =1
F(i,j,t) = V(t), jH= s,g(i,j) =1

O, otherwise _
(3_79)

Recognizing that the customer arrival stream is Poisson, it is clear that the customer

interarrival times are exponentially distributed and thus have the memoryless property. It

followsthatforal1i,j6 E, m 6
2+,

and t6
RJ',

P{Nm+1 =jNIHm+1,X0, ...,X„,,T0,...,T „,,Tm+l — T,,, = t}

= P{N„..1 =1N'H.„„=J„·X„ = i·T„.„ · Ta = t}

which indicates that E-limited service satisties Condition 3. Following the notation of (2.3)

we have that
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ju-in-rl“ ^‘(
lt) . . . .

’~2‘~"*’*·T="*‘~2‘
G

j =v,i 20(JN · 1N)! N ‘ N N
O, otherwise _

(3.80)

It is clear that since Conditions 1, 2, and 3 are satistied for this example system that E-

limited service belongs to the class of Markov schedules. Thus, by Proposition 2.3 the

M/GI/1 vacation system with E-limited service has a queue length / server activity process

(X,7') that is Markov renewal and has a joint queue length server activity process XR. that

is semi—regenerative. It is now a simple matter to calculate the semi-Markov kemel Q(t)

associated with (X,T). Substituting (3.78), (3.79), and (3.80) into (3.4) it follows that
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j -i
I N N

-1ujl0

N
—
IN)

°

lN2i¤~j¤=V·i~=0*iH,:S’iH„<m�

or
jN2iN,jH=v,iN>O,iH =s,iH =m'

I or
jN=0_jHQ(i„jJ)

= J_-t_+i

mu) c-= ·-Io (JN -1N +1)2
“

m�

or
0, iN= v

0, otherwise

(3.81)

Having particularized the semi—Markov kemel Q(t) to reflect M/GI/1 vacation systems

with E—limited service, it is feasible to investigate the ergodic queueing behavior of this

system. (Recall that the queue length / server activity marked point process (X,T) is

assumed irreducible and that all states are recurrent.) In particular, the ergodic queue length

distribution as seen immediately following customer service completions and the ergodic

queue length distribution as seen by the server immediately following retums from vacation

are investigated. Nonergodic results are not considered.

From Proposition 2.4 we have that the marked process X associated with the queue

length / server activity marked point process (X,T) forms a Markov chain. Let Q be the
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collection of one-step transition probabilities for the Markov chain X. Here,

Q= lim Q(t). Now, for cx 6 {1,2,...,m'},let

S, = {iEE:iH =s,iH = G}

andlet

V= {i 6 E:iH=v},

Clearly, V and Sa , og = 1,2, ,,,,m·, partition the state space E. The equations yielding

the stationary distribution on X, when partitioned as the state space E, are written in matrix

form as

IIS � ES0

QSISI 0 0 O QSIV
0 0 QSISS 0 0 QSIV

0 0 0 0 O QSV

zxnsnmx ESG/_§
E E E[S, , S,

0 0 O 0 QS S S S QS V

O 0 0 0 O QS V

QVSI 0 0 0 O QVV

(3.82)

where,
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O 0 0 0 QSIV
0 O QSISS O 0 QSIV
O O 0 0 0 QSV

Q: E E E E E E
0 000

O 0 0 0 QS V

QVSI 0 O 0 O QVV

7's _ 7'Vs _ 7%] is thc stationary distribution on X. Hcrc, for

whcrc,

j :0,1,2,...

Also,

whcrc,

V},From(3.81) and (3.82) it follows that for k = 1,2,...,m*
— 1
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0 0 0 00so
sl sl slsl0
so sl sl

slQvsx_Qsusxa_0 0 So Sl Sl ...

0 0 O soslE

E E EEvl

vl vl vlvl0
0 0 000
0 0 0 O

0 0 0 000
0 O 0 0
E

Eand

vo vl vl vlvl0

vll vl vlvlO

0 vo vl vl

0 0 0 vovl0

0 0 0vllE
E E E

Ewhcrc,as in (3.11) and (3.12), forj = 0, 1,2,0

J· (3.86)
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and

1
°° Ä -1 t

1 @$-1111.)¤ * (3.87)

Substituting (3.83), (3.84), and (3.85) into (3.82) it follows that for j = 0, 1,

2,j+1

MJ) = X”v(k)S,-„.1. (3.88)
k=I

j+1

ns (1) 1: 1,2,...,m·— 1. (3.89)
I+l

k=l
I

and

I
m.-I

(6.99)11:0 „' 11:1 "

At this juncture it is convenient to introduce the ergodic probability rrs(j) that the queue

length is j and the epoch is S-typc at the epochs of the (X,T). Here,

S}.

Clearly, V!s(j) is the marginal probability given by

WSU) = 2'=.‘(J)· J= 9—1»2» (3.91)
i=l

Now, define the following geometric transforms:
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i= LZ,
---„¤1'„ (3.92)

1:o

U (Z) = 27** (j)Zj-V jd, V (3.93)

and

(3.94)
1:0

Substituting (3.94) into (3.91), it follows that

I7s(z) = (z) (3.95)
1:1

‘

Substituting (3.88), (3.89) into (3.92), and substituting (3.90) into (3.93) rcspectively give

.. -j+1
Hs (Z)

(3.96)‘
1:0 11:1

’

.. _1+*
ns (Z) : XZQZS 1: 1, 2, ...,m· — 1 (3.97)lvl

j=o k=i
l

and

��
~
j m·—l

21% (0)] (3.98)
1:0 11:0

„‘
11:1

‘

lnterchanging the order of summation in the usual manner, (3.96), (3.97), and (3.98) can

be rewritten respectively as
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S(MZ) = l¥(üv(Z) · @(0)), (3.99)

17, (z) = %Q(ns(Z) - @(0)), 1: 1,2,..„m·—1 (3.100)s

and

(3.101)
�

i=l

where, S(z) and Y/(z) are given by (3.25) and (3.26) respectively.

Substituting (3.99) and (3.100) into (3.95), it follows that

-
_L _ ;

(3-102)

Rearranging (3.96) and substituting into (3.l02)yields

$(Z)
l7( )= ——— ( )s Z Z — 3(Z)

nv Z
(3.103)

Solving (3.99), (3.100), and (3.101) simultaneously for ÜV(Z) gives the transform

relationship

� ms-1 �_i

·n„(Z) : ¥——:(1rv(0)(Sm (Z) — Z·=·') + E
Z*@‘(0)(S”

(Z) —Z=·=S
(z)V(z) —Z··*

*=‘

(3.104)
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Now, substituting (3.104) into (3.103) it follows that

V Sgsm =(Z
2***)
� m.-1 � _

· (7rv(0) (S (z) — 2***.) + E 2*7rS (0) (S l(z) —
z“‘°‘*))

a=r
‘

(3.105)

Note that while (3.104) and and (3.105) are geometric transforms, neither is

necessarily a pgf. The respective values taken by the constants

TIv(0),TIS (0), TIS (0),---, TIS s
(0) determine whether or not XS(z) or Xv(z) is a pgf.

The value of the constants TIv(0),TI S (0), TIS (0),---, TIS (0) required for XS(2) to

become a pgf are generally different than the values required for Xv(2) to become a pgf.

Thus, interpretation of these constants must necessarily be considered within the context of

the pgf in which they appear.

It is now a routine matter to examine both the pgf of the queue length as seen by

customers immediately following departure from the system and the pgf of the queue length

as seen by the server immediately following returns from vacation. Here, we have that

when the constants TIv(0),TIS (0), TIS (0),---, TIS
(0) are chosen such that

lim @(2) = 1, then the geometric transform US(z) becomes the pgf for queue length as
zTl

seen by customers immediately following departure from the system. Similarly, we have

that when the constants TI„,(0),TIS (0), TIS (0),---, TIS (0) are chosen such that
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lim I'lv( z) = 1, then the geometric transform I”Iv(z) becomes the pgf for the queue length
1 1

as seen by the server immediately following retums from vacation. The fact that Us(z)

and l7v(z) are pgf's under the above specified boundary conditions follows from the same

reasoning as was presented for the M/GI/1 vacation system with Bemoulli schedules;
I

hence, a formal development of this results is not presented here.

The task of detemrining values for the constants 7fv(0),7¤s (0), Hs (0),---, IFS (0)

such that I7s(z) and UV(z) become pgfs is lengthy; application of Rouche's theorem and

Lagrange's theorem lead to a set of m* simultaneous equations that can be solved for the

appropriate values of Ev(0),1rs (0), Es (0),---, TCS (0) . The application of Rouche's

theorem in order to determine unknown constants for pgf's, similar in form to IIs(z) and

I7v(z) is common within the queueing literature Takagi (1987); as a matter of

convenience, a development of formulae suitable for determining the desired values of

1l’V(0),1Is (0), NS (0),---, YES (0) is not presented here. Rather, we are satisfied that

(3.104) is the pgf of the queue length as seen by the server immediately following rettu·ns

from vacation, and that (3.105) is the pgf of the queue length as seen immediately

following customer departures. We have here that (3.105) agrees with Takagi (1987). To

the author's knowledge, (3.104) does not appear in the published literature and thus is

new.

Appealing to the discussion offered in the previous section, we may easily examine the

pgf of queue length as seen at arbitrary times. Note that since the M/GI/1 vacation system

with E-limited service has a Poisson arrival stream and customers served one at a time, the

queue length as seen by customers immediately following departure from the system and
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the queue length as seen at arbitrary times are distributed the same. Since geometric

transform pairs are unique, it follows that the pgf of the queue length as seen at arbitrary

times is given by (3.105).

Let T be the ergodic waiting time in the system for an arbitrary customer, and let

W(0) = E[e"’T] be the Laplace-Stieltjes transform of the waiting time T. Clearly, the

M/GI/1 vacation system with E-limited service satisfies the conditions of Proposition 3.1;

thus, the distribution form of Little's law can be employed to provide an expression for

w(g·). Following the same reasoning as was considered for M/GI/1 vacation systems

with Bemoulli schedules we have that

0ww) = 1741- T) (3.106)

The waiting time Laplace-Stieltjes transform of (3.106) concludes the analysis of the

M/GI/1 vacation system with E-limited service as considered here. While the queue length

and waiting time distributions are not easily obtained, the general structure of the M/GI/1/L

vacation system with Markov schedules, as is shown, allows development of pgf's for the

queue length as seen at arbitrary times, as seen at customer departures, and as seen at

vacation completions. Further, the distributional form of Little's law holds for this system

allowing the Laplace-Stieltjes transform of customer waiting time in the system to be

fomiulated from the pgf of queue length as seen at arbitrary times. Each of these transform

results is important to the performance analysis of the M/GI/1 vacation system with E-

limited service since moments of their respective distributions can be calculated in the usual

manner.

The M/GI/1 vacation system with E-limited service considered above serves to
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demonstrate that the general model of Chapter 2 can be particularized to retlect systems

having server scheduling disciplines more sophisticated than Bemoulli schedules. The

complexity of E-limited service is reflected by the mark space Ä of the server switching

marked point process. It is worth noting that while Ä is more complicated under E-limited

service than it is under Bemoulli schedules, the procedures for developing queue length

pgfs for these two server scheduling disciplines are remarkably similar. This similarity is

a happy benefit of our analyses originating from the common stochastic framework

developed in Chapter 2.

It would seem natural to, at this juncture, investigate special cases of M/GI/1 vacation

systems with E-limited service. Clearly, setting m* = ¤¤ indicates exhaustive service while

setting m* = 1 indicates simple limited service. Recall that exhaustive service was

investigated in a straight forward manner as a special case of Bemoulli schedules.

Investigating exhaustive service as a special case of E-limited service requires development

of limiting arguments relative to m*. Such limiting arguments are obviously unnecessary

to investigate exhaustive service and are considered beyond the scope of this work.

Investigating limited service as a special case of E-limited service is a relatively simple

matter Takagi (1987). However, limited service also appears as a special case of limited

batch service and thus, is developed in the section to follow.

3.3 The M/GI/1 vacation system with limited batch service.

We now introduce the M/GI/1 vacation system with limited batch service. To the

author's knowledge, the limited batch service is not investigated in the available literature;
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thus, the analysis here is thought to be new. This system is a modification of the M/GI/1

vacation system with limited service where customers are served in "batches" of a fixed

size k*. The server scheduling discipline for a system with limited batch service requires

that the server begin a vacation period following the completion of service for each batch of

customers. If upon retum from vacation the server finds fewer than k* customers queued

(i.e., an incomplete batch), another vacation begins immediately. The server continues to

operate in this manner until upon rettu·n from vacation there are at least k* customers (i.e.,

at least one batch) queued.

When the server retums from vacation to find at least k* customers queued, he begins

service on the batch of customers formed by the first k* customers in line. That is, batches

are served in order of arrival. Clearly, limited batch service reduces to the simple limized

service server scheduling discipline introduced in Chapter 1 when k*=1.

For the M/GI/1 vacation system with limited batch service, it is assumed that the

lengths of batch service periods are independent, identically distributed with distribution

B(t) and the lengths of the server vacation periods are independent, identically distributed

with distribution V(t). It is further assumed that the lengths of batch service periods and

the lengths of server vacation periods are mutually independent and are independent of the

arrival process. The Poisson stream of customers arriving to the system is assumed to

have rate Ä. .

Since the queueing behavior is the M/GI/1 vacation system with limited batch service is

to be examined within the framework of the previous chapter, it is necessary to show that

the limited batch service server scheduling discipline belongs to the class of Markov

schedules. That is, limited batch service must satisfy Conditions 1, 2, and 3. However,

before verifying that Conditions l, 2, and 3 hold, it is helpful to reexamine the mark space

of the server switching marked point process (H,T).
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When examining the M/GI/1 vacation system with limited batch service, the full

generality of the model developed in Chapter 2 is not required. In particular, let the mark

space F be be restricted such that ii = F. Under limited batch service this simplification of

the mark space is convenient since for any given epoch of (H,T), the type (s-type or v-

type) of this epoch depends only upon the most recent previous epoch.

Let the joint queue length / server activity process XR. and the queue length / server

activity marked point process be defined as in Chapter 2. Since the queue capacity here is

infinite (i.e., L = <><>), it follows that the state space E for the M/GI/1 vacation system with

limited batch service is givenby^

+ +
E = E >< Z = F >< Z

Recall that i,j 6 E are expressible in terms ofqueue length and server activity components

where,

with

1„,jN E z* and 1H,j„e 1=_

Under limited batch service,the type of the next epoch of (X,T) depends only upon the

present epoch of (X,T). Thus, it follows that for all i,j 6 E and m 6
Z+,

P{Hm+l =jHIXo,...,X„,,T0,...,T„,} = P{I—Im+1=jH|X„,}

which implies that limited batch service satisfies Condition 1. Let g(i,j) be defined is in

(2.1). It follows that
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l, jH=s,iN2k°,iH=v

or

jH=v, iN< k°, iH=v
g(i·j) = ¤r

O, otherwise

(3.107)

Here, we have that the server is either serving a batch of customers or is on vacation.

For limited batch service, the time between any two contiguous epochs of (X,T) must

correspond to either a batch service period with distribution B(t) or a server vacation period

with distribution V(t). Given two contiguous, the server's activity in the period between

them is recognized as either a vacation period or a service period conditioned upon the type

of the more recent of the two epochs and the number of customers queued at the older of

the two epochs. That is, both batch service periods and server vacation periods are such

thatforall m 6

T,„ s T„, s

tThus,limited batch service satisfies Condition 2. Following the notation of (2.2) we have

thatforal1i,j6 E, m 6
Z+,

andt 6
R+

B(t), jH=s, i6E,g(i,j) =1

F(i,j,t) = V(t)„ j„= V„i E Er g(i„j) =l

0, ¤¤h¤rwiS¤ . (3.108)

Since the customer arrival stream is Poisson, it is clear that the interarrival times are
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exponentially distributed and, thus, have the memoryless property. Hence, it follows that

forall i,j 6 E, m 6
Z+,

andt 6
RJ',

P{ Num =j TM, — Tm = t}

= P{Nm+l = JNIHm+l’X¤’Tm+l
_
T¤I

=whichimplies that limited batch service satisfies Condition 3. Following the notation of

(2.3), G(i,j,t) is given by

)j(lt e"" . . � . . . .

I)
JN21¤~°JH=V·‘¤€Z+»1„€F

O, otherwise _
(3.109)

Since Conditions 1, 2, and 3 are satistied for this example, limited batch service

belongs to the class of Markov schedules. Thus, by Proposition 2.3, any M/GI/1 vacation

system with limited batch service, has a Markov renewal queue length / server activity

marked point process (X,T) and has a semi-regenerative joint queue length / server activity

process XR,. Substituting (3.107), (3.108), and (3.109) into (3.4) it follows that the

semi-Markov kemel Q(t) corresponding to (X,T) is given by
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J„"„**‘
_ u

]·0B(du), jN2iN—k°,jH=s, iN6Z+, iH=v

jN 2 iN, ju = v, iN 6 z*,1„= 6 F

0, otherwise

(3.1 10)

forall i,j 6 E .

Having particularized the semi-Markov kemel Q(t) to model M/GI./1 vacation systems

with limited batch service, it is now feasible to investigate ergodic queueing behavior of

such systems. (Recall that ergodic results exist here since it is assumed that (X,T) is

irreducible and that all states of E are recurrent.) In particular, the ergodic distribution of

queue length as seen immediately following batch service completions, the ergodic queue

length distribution as seen immediately following the server's retums from vacation, and

the ergodic queue length distribution as seen at arbitrary times are investigated.

Nonergodic results are not considered in what follows.

From Proposition 2.4, we have that the marked process X associated the queue length /

server activity marked point process (X,T) forms a Markov chain. Since X is embedded

at all batch service completions and all server vacation completions, the ergodic distribution

of queue length as seen at these epochs is simply the stationary distribution for the Markov

chain X. Note that by Corollary 2.13, the ergodic distribution of queue length as seen at

arbitrary times requires the stationary distribution for X. Hence, the three queue length

distribution of interest for system performance analysis each require that a stationary
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measure onX be calculated.

Since here the state space E is countably infinite, solving for a stationary measure on X

is formidable. Thus, in the development to follow pgfs corresponding to the three queue

length distributions of interest are examined.

Let Q be the collection of one—step transition probabilities associated with the Markov

chain X. Here, Q = lim Q(t) . Let the state space E be partitioned as is Corollary 2.8,
t
-���

suchthat E= SLJVand Sm V =Q where,

S = {i E EZiH= S}

and

V= {i 6 E:iH=v}.

The equations yielding the stationary distribution on X, when partitioned according to the

state space partition described above, are written in matrix form as

Qs Q SV[”
" ]

=l"SV S Qw Qvv (3.111)
where,

MJ) = @P{¤.=i h.= ¤}_

It follows from (3.110) that

¤= 1 SQ SQ 1QW Qvv
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and [xs xv] is thc stationary distribution on X. Hcrc, for oz 6 F,

zu = [1t„(0) 1r„(1) 1ra(2) ..]

whcrc,

Qs = [O], (3.112)

vll vl vz vll._lvl.O

vll vlvll.0
0 vll v , v ,v_,1:+1

k+2 k+3

Q : E E E E E E
W

0 O O vll vlvzO

O O 0 vllvlO

0 O 0 0 vll

(3.113)

0 0 0 0 000
O O O 0OO
0 0 O 00Q

_ O O 0 0 0
0vsso slszO

so slsl.0
0 so s

_
s ,sk-3
k-2 k—l

Z Z Z Z Z

Zand
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V0 Vl VzVk.0

vovl0
O vo

2 2 2 2 2 2
0 0 0 vo vlvz0

0 0 0 000
0 0 0 0 0

Ewhcrc,forj = O, 1,

2,2.:]
0 J· (3.116)

and

"1= Io y Vw). (3.117)

Substituting (3.112) through (3.115) into (3.111), wc find that forj = 0, 1, 2,

(3.118)

and

1
M1) = YU) +2¤s(k>v,-,,

kw (3.119)

whcrc,
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1
j< 16

70)k
, ,

‘
- 16.1>

Now, defme the following geometric transforms:

-

_

· .iZZÄZ) ' (3.120)

and

HAZ) = ZZVAÜZZ. (3121)
jd)

Substituting (3.118) into (3.120) gives

... k°+j

U = Z k (3.122)

while substituting (3.119) into (3.121) gives

H()= ‘+ (k) ._)i
‘
iV Z MZ VU) MZS V1 1 . (3.123)

Interchanging the order of summations respectively in (3.122) and (3.123) in the usual way

allows the geometric transforms l'Is(z) and I'lv(z) to be written as
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- EQ _ · 11'Is(z)- ZI. I7v(z) ZI. §7tv())z (3124)
and

k.-1 I
17„(Z) = WZ)17s(Z) + WZ)

j)z’

3125J ( )

whcrc, S(z) and Y/(z) arc givcn by

Fw
0 0

and

.. -
J _ I -WZ)j=0

0 0
I

Solving (3.124) and (3.125) simultancously yiclds

_ ä<z>(Wz>-1)"°‘ . j
Hg(z) "

zk�and

Y/(z)(z"· — B(Z))
"·" _ .

Ü( )= 27Q(])Z"VZ
¤* —F<Z>V<Z> J=¤ . (3.127)
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Note that while (3.126) and (3.127) are geometric transforms, neither is necessarily a pgf.

The values taken by the constants rrv(0),7rv(l),..., 7rv( k° — 1) determine whether or not

either (3.126) or (3.127) defines a pgf. The values of rcv(0),1rv(l),..., 1tv(k° — 1)

required to make (3.126) a pgf are generally different than those values required to make

(3.127) a pgf.

Applying the same reasoning as was presented for the M/GI/1 vacation with Bemoulli

schedules, we have that when u'v(0),7rv(1), 7rv( k° — 1) are chosen such that

. W >(Wz> — 1) . ·1: hm ~—X„„(J)z·
‘T‘

Z — Ü(Z)V(Z) 1=<>

then Us(z) is the pgf for the queue length as seen immediately following batch service

completions. Similarly, when rrv(0),7:v(1),..., n:v( k° — 1) are chosen such that

. W >( *'—¤< >) . ·1: hm'"
Z — B(Z)V(Z) 1:1

then II,(z) is the pgf of the queue length as seen immediately following the server's

retums from vacation. For the M/GI/1 vacation with limited batch service, determining

values for the constants rzv(0),rL'v(l),..., 7tv( k° — 1) such that Us(z) and l'[v(z) are pgfs

is analogous to the task of determining constants for the pgfs developed for M/GI/1

vacation systems with E·limited service.

A routine application of Rouche‘s theorem to Us(z) and I7v(z) yields a set of k*

simultaneous equations for each of the two pgf's. These two sets of k* simultaneous
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equations may be solved independently of one another for the respective values of

1tV(0),rrv(l), ..., 1rv( k° — 1) that are required for I7s(z) and IL,(z) to be pgf‘ s.

However, the focus of this section is directed towards showing that the M/GI/1/L vacation

system with Markov schedules can be particularized so as to capture the queueing behavior

ofM/GI/1 vacation systems with limited batch service. As a matter of convenience we omit

the extensive algebra required to obtain the sets of simultaneous equations described above,

and let the pgf for the queue length as seen immediately following batch service

completions and the pgf for the queue length as seen immediately following the server's

retum fomx vacations be written as in (3.126) and (3.127) respectively.

At this juncture, we are positioned to develop the pgf for queue length as seen at

arbitrary times. Before developing this pgf , it is convenient to examine a special case of the

M/GI/1 vacation system with limited batch service. While this special case is somewhat of

an aside, the brief development to follow affords us the opportunity to, in part, verify

(3.126) by particularizing to a simple system that appears in the literature.

Note that when k* = 1 (i.e., batches consist of a single customer) we obtain the M/GI/1

vacation system with simple limited service, introduced in Chapter 1. It follows directly

from (3.126) and (3.127) that, for limited service, the pgf for the queue length as seen

immediately following customer service completions and the pgf as seen immediately

following the server's retum from vacation are given respectively by

$(Z)(WZ) — 1)
II = l————·— (O)Sm z — g(z)V(z)

EV (3-128)

and

V/(Z)( Z — $(Z))
U (0)JZ)

Z _ "v (3.129)
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where, B(z) is replaced by S(z).

(Since we have defined both Us(z) and I'[v(z) to be pgfs, it follows from our previous

reasoning that n:v(0) takes different values in (3.128) and (3.129)

First, consider US(z) the pgf for the queue length as seen immediately following

customer service completions . It is a simple matter to to evaluate the constant rrv(0).

Since we have that

lim I”Is(z) = 1,
zT1

an application of L'Hopital's rule shows that

1_
um

n,,<0)(S(z>Y/(Z) + S’(z>(\‘/(Z) - 1))
'
ai 1- (s(z)%‘/(Z) + s’(z)‘v(z))

(1130)

where the prime diacritical mark indicates differentiation with respect to z. Let S denote

the expected length of a customer service period and Vdenote the expected length of a

server vacation period. Recall that SJ(1) = ÄS and = AV. Rearranging (3.130)

gives

1- p — AV
1r„(0) - (3.131)

where, p = AS defmes the traffic intensity. Now substituting (3.131) into (3.130) gives
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1- p - AV S(z)(V(z) - 1)
H( =
ll

·
l_S Z) AV Z (3.132)

Now, consider Uv(Z) the pgf of the queue length as seen immediately following the

server's retums from vacation. With ÜV(Z) given as a generating function, it follows that

lim U,/(Z) = l_
zTl

Thus, applying L'Hopital's rule we have that

1 um rr,,(0)(V(z)(1— S”(z)) + Y/(z)(z - S(z)))
= . .1
m 1 — (S(z)V(z) + Sl(z)V(z))

(3 33)

It now follows from (3.133) that tl1e value of 7rv(O) required for lim Hv(z) = lis given
1Tl

by

1- p - AV
1:v(0)= 1_

P
. (3.134)

Substituting (3.134) into (3.129) we have that

1 - - AV V - S17„(z)= .%. _ (3.135)
P z - S(z)V(z)

Since the M/GI/1 vacation system with limited service requires that customers are

served one at a time, we have the the queue length as seen immediately following customer

service completions is distributed the same as the queue length as seen at arbitrary times.

Thus, it follows that the pgf of the queue length as seen at arbitrary times is given by
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(3.132). Further, under limited service, this system satisties the conditions of Proposition

3.1 and the distributional form of Little's law holds. With W(o‘) defmed as the Laplace-

Stieltjes transform of the customer waiting time distribution, we have that

I’Is(z) =W(2. — lz)_ (3.136)

Thus, (3.136) together with (3.132) gives

1 — — AV
s‘

1 - v'ww) =
_;„v

6 + (s (6)v (6) — 1) (3-137)

wi)66, as in (3.75) and (3.76), s‘(6) and v'(6) arc rhc Lap1a¤¤—Sr1<=11i<=S ¤==1¤sf¤¤¤S ¤f

S(t) and V(t) respectively.

In the analysis of the M/GI/1 vacation system with limited service, (3.132) and (3.137)

agree with results reported by Takagi (1987). The pgf for the queue length as seen

immediately following the server's returns from vacation given by (3.135) appears to be

new. At this juncture, discussion of the M/GI/1 vacation system with limited service is

concluded and we return to the more general M/GI/1 vacation system with limited batch

service.

The example vacation systems considered thus far serve customers in a one at at time

fashion. For such systems, the pgf for the queue length as seen at arbitrary times is known

to equal the pgf for the queue length as seen immediately following customer service

completions. Thus, developing queue length pgfs for these vacation systems has required

examining only the Markov chain X associated with the queue length / server activity

marked point process (X,T). It is clear that when k* is greater that 1 in limited batch
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service systems, customers are not served in a one at a time fashion. Hence, for this

system, we must appeal to Corollary 2.13 and the joint queue length / server activity

process XR. in order to investigate the pgf for the queue length as seen at arbitraxy times.

Let 2%. and (X,T) be deüned as in Theorem 2.12. Since (X,T) is here assumed to

be irreducible and to have a stationary distribution, it follows from (2.22) that for all j 6 E

E11 P{X‘ = j} jl Tx > t,Xo k}dt
k6E

(3.138)

where rr is the stationary distribution on the Markov chain X. Here, some notation is

introduced so as to simplify the development to follow. For aH j 6 E , let

WU) = {ij,¤__P{X„ =i}

and for all i,j 6 E , let

B(i,j) = I P{Xt =j|T1>t,X0= k}P{Tl> t IX0= k}dt_
0

When the state space E is partitioned by the sets S and V as in Corollary 2.8, it follows

from (3.138) that the stationary distribution of the joint queue length / server activity

process P2. is given by

1 B s B wTl H = —— 'R, j[ S vl ”‘“[xS S Bw Bw (3.139)

Here, for gz 6 F,
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#7.. = [MO) M1) M2) ...]

with

71¤(i)= }i_r}}_P{¤. =ih. = G}. j= 0.1.2.---

andforall tz, ß 6 F, i,j =0,1,Z...

oz}

—P{Tl> tIN0=i,Ho = a}dt _ (3.140)

Itisclearthat whenever Tl> t,itmustbethat h, =H„. Thus, for i,j =0,1,2,...,

B„(iJ) = B„(i-5) = 0—

It now follows from (3.140) that

Bw =B„ = [0]. (3.141)

Further, (3.140) implies that

103



ao0

3031...3.. a. a. a.
1:-2 k—1 k k+1

0 0 a0...a_ a, a,a,1-3
1-z 1-1 1

Bs: 0 0 0ao0

0 0 0aoO

O 0 0 0ao0

0 0 0 0 OaoE
E E E E E E (3.142)

and

ao0

a. a.a.k-2
k-1 k 1:+1

00ao...a, a, a,a,k-3
k-2 k—1 k

Bw= 0 000
0 0 0co0

0 0 0 0co0

0 0 0 0 0co2
2 2 2 2 2 2 (3.143)

whcrc forj = 0, 1, 2, ...,

°°(lt)jc‘*‘
aj-

foand
1

" Ä -1:
ci = jo @$0- B(t))dt (3,45)
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Given the notation above, it is straight a forward matter to examine the queue length

distribution as seen at arbitmry times. Let K be the vector of queue length probabilities

when the system is observed at arbitrary times. Here,

K = [K(0) K(1) K(2) ...l (1146)

with

K(1) =1i_r}¤_P{¤.=J}» 5=O·1~2~··- (3.147)

It follows directly from Corollary 2.13 that K (j) is given by

K(j) = 17s(j)+ nv(j), j=O,l,2,... (3.148)

Here, (3.148) taken together with (3.139), (3.142), and (3.143) shows that K (j) can be

written as

1
. 1 .

K(1) = —„m(ö (1) + X¢¤s(k)¤ 1-1), for j = 0, 1, 2, (3.149)
k=0

where,

1

[;„,(1.>1,_,. 1< 16
_ k=0

= k�-1 j

j 2k'
**1 x=x° _

Detining K(z) as the pgf of the queue length as seen at arbitrary times, we have that
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K (Z) = X'<(5)Zj; (3.150)
j=0

hcncc, it follows from (3.149) and (3.150) that

1 2 3 iK(Z) = —— z’(5(j) + 1:(k)a._
,,0 S "‘

(3.151)

Lct Us(z) and I'lv(z) bc givcn by (3.120) and (3.121) rcspcctivcly. Distributing thc outcr

summation on thc right hand sidc of (3.151) and thc intcrchanging thc ordcr of summations

in thc usual manncr, (3.151) can bc rcwrittcn as

1 k�—l
K (Z) (MZ)

52)

whcrc,

M >=
_

0 1= -1*-* *0 — V(t))dtZ Ea} joe
(3.153)

and

1=¤ °

Substituting (3.126) and (3.127) into (3.152) and rcarranging, it follows that
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k' -1 '1 . ~ z* (711:)+ c<z>(v<z> - 1)) -ä<z>Ä<z>K(Z) 3155am
5=o

V

zkWith(3.155) we have the pgf for the queue length as seen at arbitrary times and for the

M/GI/1 vacation system with limited batch service, it remains only to evaluate the constants

appearing in (3.155). A straight forward approach to evaluating these constants is to first

exarnine 7l? m. It follows from Theorem 2.12 that for the (X,T) process,

-

k.
-1 ��

«· m = vZm+ vim +BEm._ . . (3.156)J-0 ;=0
j=k

where 13 is the expected length of the service time for a batch of customers and V is the

expected length of the server's vacations. Observe that

XM1) = §g¤_P{H„ = S}
1=o (3.157)

and

XM1) = }jg1_P{H„. = v}
1=<> (3.158)

where, (3.157) gives the stationary probability that the queue length is observed

immediately following a batch service completion and (3.158) gives the stationary

probability that the queue length is observed immediately following the server's return form

vacation. The probabilities of (3.157) and (3.15) will be treated by examining the pgf for

the queue length as seen immediately following either batch service completions or the
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server's retums from vacation.

Let rr (j) be the stationary probability that the queue length is j when observed

immediately following either batch service completions or the server's returns from

vacation. It follows that

7V Ü) = KSÜ) + "QÜ) _
(3_159)

Defme H(z) as the pgf of the queue length embedded at both batch service completions

and vacation completions where

mz)
=X¢=(i)Z’.

(3.160)
j=0

Substituting (3.159) into (3.160) yields

17 (Z)J=°
(3.161)

and it is easily recognized that

n(Z)Here,@(2) and I7v(z) are the geometric transfomis given by (3.126) and (3.127)

respectively. Since II(z) is a pgf, it follows from (3.162) that

108



For convenience, we adopt the notation that

@(1) = @(2)
1 1

and

I7v(1) = lim I]v(z).
111

It now follows that (3.156) can be rewritten as

gl
JI m =VI"Is(l) +BI'I (1) + (V —Ya) «„(j)V

Fo (3.164)

whenever the constants rrv(0),1rv(1), ..., 7rv( k° — 1) are chosen such that

lim H(z) = l,
1Tl

Here, substituting (3.126) and (3.127) into (3.162) we have that

H
(DZ, mz)

= ' · . 3.165ao V z* — ä<z)V(z)
‘ ’

By applying Rouche's theorem to (3.165) in the usual manner, it is a routine, but

lengthy, matter to evaluate the the constants rrv(0),rrv(1),..., 1rv(k° — 1) such that

lim H(1) = 1. As a matter of conve11ience, evaluation of these constants is omitted.
zT1
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In ordcr to rcwritc K(z), thc pgf of thc qucuc lcngth as sccn at arbitrary timcs, in a

convcnicnt form, wc introducc thc following Laplacc~Sticltjes transforms.

B'(6) = Ic‘°‘B(dt), (3.166)
0

0

C‘(¤) =
[¤“"<1 — B(¤))d¤, (3.168)
0

and

—·0

From clcmcntaxy propcrtics of Laplacc-Sticltjcs transforms, it is can bc shown that

, _ L B°(6)cw)- 6 ‘ 6 (3.170)
and

O V·

(3.171)

Rccalling that

ä(z) = B*(2. — Az),

V(z) = v*(2. — Az),

Ö(z) = C°(Ä. — Äz)
_

and
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7-((1) = A*(2. —
2.z)_

it follows that substituting (3.164) and (3.168) through (3.171) into (3.155) gives

1
k.-l

K(Z) =·(2.-
Az) (V —§) I'Id(1)+ Xnvg) +§

’

j=0

_ (v'(2. — Az) — l)B°(Ä. — 2.z)(z*='+ 1)
z"° — B°(Ä. — Äz)V°(Ä. — Äz)

(3.172)

where, the constants rtv(O),7tv(l),..., rrv( k° — 1) are chosen such that um 1I(Z) = 1.
zT1

Since M/GI/1 vacation systems with limited batch service fail to satisfy the conditions

of Proposition 3.1, the distributional form of Little's law does not hold here and no

Laplace-Stieltjes transform for the customer waiting time distribution is available.

However, given the queue length pgf of (3.172), it is a simple matter to calculate the

expected customer waiting time by applying the customary form of Little's law. Let T be

the waiting time for an arbitrary customer. Little's law requires that

1 . dK (z)
E T =

— hm ——— ,
_[ 1 Ä zh dz (3173)

The calculation indicated by (3.173) is tedious; since K (z) is of indeterminate form,

tinding E[T] requires multiple application of L'Hopital's rule. The application of Little's

law in queueing systems is well studied and is presented in most elementary queueing

theory texts. Refmements of (3.173) are considered outside the scope of this work.
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Excepting our examination of simple limited service systems, the results presented in

this section are new. It is here worth restating that the ergodic queueing behavior of

systems operating with limited batch service is not completely characterized by the Markov

chain X. Investigation of the queue length distribution as seen at arbitrary times requires

that the semi-regenerative nature of the joint queue length / server activity process XR. be

exploited. For this reason, limited batch service represents the most sophisticated server

scheduling discipline considered in this chapter. This completes our investigation of

M/GI/1 vacation systems with limited batch service.
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4. Conclusions and Recommendations for Future Research

Vacation systems represent an important class ofqueueing models having application in

both computer communication systems and integrated manufacturing systems. By

specifying an appropriate server scheduling discipline, vacation systems are easily

particularized to model many practical situations where a server‘s effort is divided between

primary and secondary customers.

The queueing literature reviewed in Chapter 1 offers perfomrance analyses for M/GI/1

vacation systems operating under a variety of server scheduling disciplines. These analyses

are not derived as particularizations of some general model for the M/GI/1/L vacation

system. Ratlrer, each author exploits certain "special tricks" that are uniquely applicable to

the particular server scheduling discipline under investigation to yield desired results. The

absence of a general model suggests that performance analysis ofvacation systems must be

considered on a case by case basis.

The development of a general stochastic framework that subsumes a wide variety of

server scheduling disciplines (including those irrtroduced in Chapter 1) for M/GI/1/L

vacation systems is the focus of this research. In Chapter 2 we have identified a class of

server scheduling disciplines that we denote as Markov schedules. Characterization of the

class of Markov schedules is new. Chapter 2 provides a formal characterization of the

stochastic behavior of M/GI/1/L vacation systems having Markov schedules.

A "bottom-up" approach has been taken in developing a stochastic process that

describes the queueing characteristics of M/GI/1/L vacation systems with Markov

schedules. This process, called the joint queue length / server activity process, is shown

1 13



to have embedded within it the queue length / server activity markedpointprocess. The

queue length! server activity marked point process is constructed from more fundamental

stochastic processes on which probability structures of practical signiticance are easily

defined.

Begirming with formal detinitions for the server switching point process and the

queue length process, Section 2.2 offers a detailed development of the queue length !

server activity marked point process and identifies it as a stochastic process embedded

within the joint queue length! server activity process at all service period completions and

vacation period completions.

Section 2.3 presents the development of the probability structure on the queue length!

server activity marked point process. Here, three conditions that defrne Markov schedules

are presented. It is then shown that when the server scheduling discipline for an M/GI/1/L

vacation system satisties these conditions, the queue length! server activity marked point

process is Markov renewal. Further, it is shown that the queue length /server activity

marked point process also forms a Markov renewal process when embedded only at service

period completion epochs or embedded only at vacation period completion epochs. This

fact is exploited often when analyzing the example vacation systems of Chapter 3.

The probability structure on the joint queue length! server activity process is developed

in Section 2.4. It is shown that when the server scheduling discipline for an M/GI/1/L

vacation system belongs to the class ofMarkov schedules, service period completion times

and vacation period completion times are stopping times for the joint queue length! server

activity process, and consequently the process is semi-regenerative. Theorem 2.11 is the

principal result of Chapter 2, offering a characterization of the queueing behavior for
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M/GI/l/L vacation systems over all time. Theorem 2.12 and Corollary 2.13 provide

formulae that are convenient computational tools for examining ergodic queueing behavior.

The probability structure associated with M/GI/1/L vacation systems having Markov

schedules presented in Chapter 2 is new. Investigation of the joint queue length / server

activity process forms the comerstone of this research. The semi·regenerative nature of this

process allows characterization of the ergodic queue length as seen at arbitrary times with

computational formulae that are relatively simple. The joint queue length / server activity

process can be particularized to capture most server scheduling disciplines investigated by

other authors, and is sufficiently general to characterize more sophisticated server

scheduling (e.g., batch service systems) that do not appear in the literature.

It is worth noting that Theorem 2.12 and Corollary 2.13 provide useful computational

formulae that accommodate systems having either frnite or infinite queue capacities, In the

case of tinite queue capacities, these results are easily applied. There is little literature

available regarding vacation systems with fmite queue capacities, and the results of Chapter

2 offer a powerful theory for analyzing such systems.

The general probability structure underlying M/GI/1/L vacation systems with Markov

schedules is particularized, in Chapter 3, to examine the queueing behavior of three

example vacation system. These example systems are presented so as to demonstrate both

the validity and usefulness of the general probability structure developed in Chapter 2. The

ergodic queueing behavior of these systems is examined by developing certain queue length

probability generating functions (pgfs) that are ofpractical importance.

In Section 3.1, the ergodic queueing behavior of the M/GI/1 vacation system having

Bernoulli schedules is examined. Expressions for the queue length pgf's as seen
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immediately following service completions, immediately following vacation completions,

and at arbitrary times are developed. The expressions for these three pgfs do not appear in

the literature and are presumed new. However, exhaustive service is a special case of

Bemoulli schedules; it is shown that when particularized to reflect exhaustive service, the

expression for the pgf of queue length as seen at arbitrary times agrees with results found

in the literature.

In Section 3.2, the ergodic queueing behavior of the M/Gl/1 vacation system with E-

limited service is examined. Expressions for the queue length pgfs as seen immediately

following service completions, immediately following vacation completions, and at

arbitrary times are developed. E—limited service is such that the pgf for queue length as

seen immediately following service completions is the same as the pgf for queue length as

seen at arbitrary times. Expressions for these pgfs agree with results presented by Takagi

(1987). The expression for the pgf of queue length as seen immediately following the

server's retums from vacation is new.

Bemoulli schedules and E-lirnited service belong to the class of server scheduling

disciplines in which customers are served in a one at a time fashion. For queueing systems

having such server scheduling disciplines, it is well known that the ergodic queue length as

seen at arbitrary times can be studied by examining the Markov chain embedded within the

joint queue length / server activity process immediately following service completions.

Thus, the example systems considered ofSections 3.1 and 3.2 are analyzed via the Markov

chain X embedded within the queue length / server activity marked point process (X,T).

It is unnecessary to analyze systems having limited to one type service via the semi-

regenerative joint queue length / server activity process XR. .
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Unlike vacation systems having limited to one type service, the ergodic queue length as

seen at arbitrary times is not the same as the ergodic queue length as seen immediately

following service completions for batch service systems. The ergodic queue length as seen

at arbitrary times for batch service systems, having server scheduling disciplines belonging

to the class of Markov schedules, must be examined via tl1e stationary distribution of the

joint queue length / server activity process Xkt . To the author's knowledge, vacation

systems having server scheduling disciplines other than the limited to one type do not

appear in the literature.

In Section 3.3, we examine the ergodic queueing behavior of the M/GI/1 vacation

system with limited batch service. Expressions for the queue length pgf's as seen

immediately following service completions, immediately following vacation completions,

and at arbitrary times are developed. The limited batch service server scheduling discipline

does not appear in the literature, and to the author's knowledge its introduction here

represents the first analysis of a vacation system having a server scheduling that is not of

the limited to one type. Thus, the expressions for the three above mentioned pgfs are

presumed new.

The M/Gl/1 vacation system with limited batch service subsumes, as a special case, the

simple limited service server scheduling discipline when batches are of size one. In this

special case, the pgf of ergodic queue length as seen at arbitrary times agrees with results

appearing in the literature Takagi (1987).

For each of the example vacation systems considered in Chapter 3, the procedure for

developing the ergodic queue length pgfs is the same. Unlike the analyses appearing in

the literature, no "special tricks" particular to any of the systems is required for these

developments. The procedure for developing the queue length pgfs for these vacation
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system begins with identification of the appropriate dimensions for the state space E of the

joint queue length / server activity process XR,. It is then straight forward to form a pair

of simultaneous equations that when solved yield geometric transforms that, under the

appropriate boundary conditions, are the queue length pgf's as seen immediately following

service completions and immediately following vacation completions.

In the case of batch service we have that the queue length pgf as seen at arbitrary times

is not the same as the queue length pgf as seen immediately following service completions,

and the former pgf is obtained following a simple linear transformation on the stationary

distribution of (X,T) the queue length / server activity marked point process.

It is important to note that the queue length pgf's developed in Chapter 3 are attainable

since the vacation systems under consideration are such that: 1) the queue capacity is

infinite, 2) customer service times are independent and identically distributed, 3) server

vacation times are independent and identically distributed, and 4) the length of service

periods and the length of vacation periods are mutually independent. When any of these

four characteristics is relaxed for M/GI/1 vacation systems with Markov schedules, pgf's

are difficult, if not impossible, to obtain. However, Theorem 2.12 and Corollary 2.13 still

apply and offer a somewhat less convenient characterization of the ergodic queueing

behavior.

The probability structure underlying M/GI/l/L vacation systems with Markov

schedules, developed in Chapter 2, suggests a number of possibly interesting extensions to

the present research. In the discussion to follow, no formal exposition of such extensions

is presented; rather, possible future research topics, presented in no particular order of

importance, are informally discussed.
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Given the generality exhibited by the class ofMarkov schedules, it is a simple matter to

identify for M/GI/1/L vacation systems many practical server scheduling disciplines

belonging to the class of Markov schedules that do not, as yet, appear in the literature. In

particular, batch service vacation systems, examined in this work only under the limited

batch service server scheduling, are of significant practical importance. However, batch-

type server scheduling disciplines require much further investigation. While such

investigations are simply applications of the theory ofM/GI/l/L with Markov schedules, it

seems reasonable that there exist many important results to be discovered for particular

vacation systems.

For our work thus far, the focus has been limited to simple vacation systems; that is,

vacation systems where customers, upon completing service, depart the system never to

retum. There exist situations, however, where customers, upon completing service, may

rejoin the queue and await further service. Such systems are here referred to as vacation

systems with instantaneous feedback. In situations where the feedback mechanism is a

Bemoulli switch, Disney and Keissler (1987), the probability structure of Chapter 2

appears to directly apply.

In situations where the feedback mechanism is more sophisticated than a Bemoulli

switch, it may be possible to classify certain server scheduling disciplines as belonging to

the class ofMarkov schedules; however, this may require extending E the state space of the

queue length / server activity marked point process (X,T) beyond the present definition.

In particular, more sophisticated feedback mechanisms may require extending the

dimension of the random vector ht to include additional random variables in order to satisfy

Conditions 1, 2, and 3 and thus belong to the class of Markov schedules. The study of

feedback vacation systems having Markov schedules is an open issue.
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The notion of extending the definition of the queue length / server activity marked point

process (X,7') and its state space E so that Markov schedules are defined for server

scheduling disciplines of systems other than the simple vacation systems examined in this

work suggests an approach to investigating single server, multiple queue systems.

Examplcs of single server, multiple queue systems of practical importance are found in

vacation systems having priority services and polling systems.

Single server, multiple queue systems, under their most general description, operate as

follows. A fixed number of queues are attended by a single server. Customers arrive to

each queue according to a stochastic process (that can be different for each queue).

Customer service times are drawn from general distributions. Under specified conditions

the server, upon completion of a customer service, will abandon further customer service to

begin a walk of random length leading to some queue in the system. Upon completing a

walk, the server will, under specified conditions, either begin a customer service or begin

another walk.

For convenience, we here restrict our attention to single server, multiple queue system

(consisting ofM queues) having mutually independent arrival streams, and having server

activity such that the lengths of all walk times and service times are mutually independent.

It is clear that the server's activity is divided exclusively between walking between

queues and serving customers. Given this observation, it is a simple matter to extend our

present definition of the mark space for the server switching marked point process to reflect

the server's behavior in multiple queue systems. That is, server switching epochs are

marked by either si or vi , i = 1, 2, ..., M. Here, si indicates a service completion at queue
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i while vi indicates a walk compleüon ending at queue i.

It is also a simple matter to extend our present definition of the queue length process ni

to account for multiple queues. Here, let ni be the M-vector ofqueue lengths at time t. This

extension of the queue length process together with the extension to the server switching

marked point process infer extensions to both the joint queue length / server activity

process XR, and the queue length / server activity marked point process (X,T).

With the above described extensions, Conditions 1, 2, and 3 define a class of Markov

schedules for multiple queue systems. It appears (though it has not been shown) that the

results presented Chapter 2 are unaltered under the extension to single sever, multiple

queue systems. That is, vacation systems having Markov schedules appear to be a special

case of single server, multiple queue systems having Markov schedules.

Accepting that all results of Chapter 2 extend to single server, multiple queue systems,

much research remains in order to quantify the queueing behavior of such systems. In the

multiple queue environment, probability generating functions are necessarily

multidimensional. Intuition suggests that construction ofmultidimensional transforms will

be unfeasible for all but the most simple server scheduling disciplines. Hence, the value of

transform results in the multiple queue environment may be limited. For this reason it

would seem that future research efforts for single server, multiple queue systems should be

directed towards exploiting the theory of Chapter 2 in developing qualitative system

performance measures. The underlying probability structure associated with systems

having Markov schedules appears promising for answering such qualitative questions as

ordering server scheduling disciplines according to increasing system throughput, or

comparing priority schedules to determine minimum server idle time.
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Given the complexity of the state space E for the joint queue length / server activity

process XR. for single server, multiple queue systems, it is perhaps unreasonable to seek

performance measures that generate numbers. Characterization of the probability structure

of stochastic processes associated with queueing systems having Markov schedules offers

the promise of studying the performance of a wide variety of practical, non-elementary

single server, multiple queue systems via qualitative measures. Much research remains in

identifying how such qualitative measures can be developed from the underlying stochastic

processes that govem the queueing behavior of these systems.

Finally, it should be noted that the characterization of customer waiting times is an open

research issue. Sections 3.1 and 3.2 offer example systems where customers are served in

a one at a time fashion. For such systems, it was shown that the distributional form of

Little's law holds, and customer waiting times can be investigated via the pgf of queue

length as seen at arbitrary times. Many systems of practical interest fail to satisfy the

conditions of Proposition 3.1, and for these systems the distributional form of Little's law

is of little value.

Much research is needed to characterize the customer waiting time distributions of

systems for which the distributional form of Little's law does not apply. When the queue

length / server activity process is Markov renewal, customer waiting times appear to be

readily formulated as first passage times of the Markov renewal process. Thus, the

underlying Markov renewal structure of vacation systems having Markov schedules may

provide the framework necessary to study ergodic customer waiting times. Such analyses

may extend to single server, multiple queue systems having Markov schedules, owing that

these systems are characterized by an underlying Markov renewal process.
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