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(ABSTRACT)

Vacation systems represent an important class of queueing models having application in
both computer communication systems and integrated manufacturing systems. By
specifying an appropriate server scheduling discipline, vacation systems are easily
particularized to model many practical situations where the server's effort is divided

between primary and secondary customers.

A general stochastic framework that subsumes a wide variety of server scheduling
disciplines for the M/GI/1/L vacation system is developed. Here, a class of server
scheduling disciplines, called Markov schedules, is introduced. It is shown that the
queueing behavior M/GI/1/L vacation systems having Markov schedules is characterized by
a queue length / server activity marked point process that is Markov renewal and a joint
queue length / server activity process that is semi-regenerative. These processes allow
characterization of both the transient and ergodic queueing behavior of vacation systems as
seen immediately following customer service completions, immediately following server

vacation completions, and at arbitrary times.

The state space of the joint queue length / server activity process can be systematically

particularized so as to model most server scheduling disciplines appearing in the literature



and a number of disciplines that do not appear in the literature. The Markov renewal nature
of the queue length / server activity marked point process yields important results that offer
convenient computational formulae. These computational formulae are employed to
investigate the ergodic queue length of several important vacation systems; a number of
new results are introduced. In particular, the M/GI/1 vacation with limited batch service is
investigated for the first time, and the probability generating functions for queue length as
seen immediately following service completions, immediately following vacation

completions, and at arbitrary times are developed.
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1. Introduction

Queues attended by a single vacationing server have, in recent years, received much
attention in the queueing literature. Such queueing systems are most often referred to as
"vacation systems” (or "vacation models”). A vacation system, by its most general
description, consists of a single-server queue where customers arrive to the queue
according to a stochastic process; customer service times are drawn from general
distributions. Under specified conditions the server, upon completion of a customer's
service, will abandon further customer services to begin a vacation period of random
length. When a vacation period is over, the server, again under specified conditions, either

begins a customer service or begins another vacation period.

Vacation systems arise naturally as models for many computer communication systems
and production systems. In such systems, it often happens that a server's work is divided
between two classes of customers: primary and secondary. From the perspective of
primary customers, work performed on secondary customers is equivalent to a vacation by
the server. While no attempt is made here to justify the validity or accuracy of vacation
models in particular applications, it is helpful to consider a pair of simple examples that

illustrate vacation models.

Example 1.1 Routine maintenance in computer communications systems: In addition
to transmitting and receiving data, processors in computer communication systems perform
a variety of testing and maintenance tasks designed to enhance system reliability. Here,
managing and processing data is considered the processor's primary activity, while
maintenance is considered a secondary activity. The way in which maintenance is

scheduled relative to data management and processing is dependent upon system



requirements. Two typical processor scheduling disciplines are illustrated by the

following:

i) Since maintenance activity is most often divided into small tasks, whenever the
processor finds that there are no primary jobs in the system to service, it begins work on a
maintenance task. Upon completing work on this maintenance task, if primary jobs have
entered the system, then the processor resumes working on primary jobs. However, if
upon completing a maintenance task the processor finds no primary jobs in the system, the
processor immediately begins another maintenance task. Here, data management and
processing have priority over maintenance activity; however, maintenance tasks are never
preempted. Clearly, when primary jobs are being served, the system behaves as a typical
single-queue, single-server system. When primary jobs are absent from the system, the
server (processor) takes a vacation (to perform maintenance) and continues to take

vacations until upon return from a vacation it finds at least one primary job in the system.

ii) An obvious drawback to the processor scheduling discipline of i) is that heavy traffic in
the primary jobs can defer maintenance activity for prolonged periods. A processor
scheduling discipline that insures maintenance is performed regularly is given by "limiting
to m" the number of primary jobs that may be served before a maintenance task is
performed. The resulting queueing model indicates that the server takes a vacation upon
becoming idle (with respect to primary jobs) or after serving m consecutive primary jobs,

whichever comes first.

Example 1.2 Preventive maintenance in production systems: Consider a machine
used to assemble items from regular parts batches that arrive at random times to the

machine. When the machine becomes idle, preventive maintenance is performed on the



machine. Parts batches arriving to the machine during preventive maintenance must wait
for service. Clearly, the machine can be idle following preventive maintenance, and parts
arriving to an idle machine where preventive maintenance is completed are unaffected by
the maintenance. As in Example 1.1, maintenance is considered a vacation by the assembly

items. Note that there is exactly one vacation following each busy period.

Examples 1.1 and 1.2 serve to illustrate that vacation system operation is largely
governed by the server scheduling discipline. Typical analyses of such vacation systems
focus upon queue length and waiting time distributions. Note that these two examples
provide no information regarding: 1) the nature of the stochastic process that governs
arrivals to the system, 2) the order in which arrivals are served, 3) queue capacity, 4) the
distribution of customer service times, or 5) the distribution of vacation times. Typically,
these five fundamental items of information are required in addition to the the server

scheduling discipline for any analysis of system performance.

In the developments that follow, a general class of server scheduling disciplines
(Markov schedules) is identified. As will be shown, M/GI/1/L vacation systems operating
with Markov schedules have a common, well defined stochastic structure. A formal
exposition of this common stochastic structure is the focus of the research presented here.
To the author's knowledge, identification of the class of Markov schedules, and
development of the common stochastic structure for M/GI/1/L vacation systems having

Markov schedules is new.

Loosely described, M/GI/1/L vacation systems with Markov schedules refer to vacation
systems having the following operational characteristics: 1) Poisson arrival streams, 2)
customer service periods drawn from a general distribution that generally depend upon

queue length, 3) server vacation periods, drawn from a general distribution that generally



depend upon queue length, and 4) queue capacities that may be either finite or infinite.

The importance of the M/GI/1/L vacation system with Markov schedules is found in the
generality of the model. It is easily shown that most (if not all) of the server scheduling
disciplines for M/GI/1/L vacation systems considered in the literature are special cases of
Markov schedules. Thus, the stochastic processes and their probability structures that
underlie these systems provide a general framework for analyzing a wide variety of

vacation systems.

While development of a formal theory for the operation of the M/GI/1/L vacation
system with Markov schedules is deferred to Chapter 2, it is appropriate to here review
some of the important such systems reported in the literature that are subsumed by our
system. Doshi (1986) and Takagi (1987) offer excellent review papers discussing vacation
models. Details regarding the analysis of specific systems reviewed here are given in these

papers.

The M/GI/1 vacation system with exhaustive service is a variation of the classical
M/GV/1 queue. Here, the server begins a vacation of random length each time the system
becomes empty. If upon returning from vacation the server finds the system empty, it
immediately begins another vacation. The server continues to operate in this manner until
upon return from vacation it finds at least one customer waiting in the queue. This model is

often referred to as an M/GI/1 system with exhaustive service and multiple vacations.

It is assumed for the M/GI/1 vacation system with exhaustive service that customer
service periods are independent and identically distributed, and that vacation period are

independent and identically distributed. Further, service period lengths and vacation period



lengths are assumed mutually independent and independent of the arrival process.
Analogous to the results available for the classical M/GI/1 queue (with no vacations), the
current literature Takagi (1987) provides only the probability generating function (pgf) of
the ergodic queue length distribution and the Laplace-Stieltjes transform (LST) of the

ergodic waiting time distribution for customers when they exist.

Little information regarding the stochastic processes (e.g., server's activity over time,
customer departures from the system) that govern the behavior of the M/GI/1 vacation
system with exhaustive service is available. However, Fuhrmann (1985) reveals an
important decomposition property which shows that the ergodic customer waiting time is
given as the sum of two independent random variables. This decomposition consists of the
waiting time for the classical M/GI/1 queue (with no vacations) and the forward recurrence
time of the vacation period. Doshi (1986) extends the waiting time decomposition of
Furhmann to GI/GI/1 vacation systems by using sample path arguments. Kielson and
Servi (1986) further generalize the waiting time decomposition to GI/G/1 systems by

formalizing arguments presented by Gelenbe and Iasnogorodski (1980).

In the M/GI/1 vacation system with gated service, the server upon returning from
vacation, services all customers queued at the time of return and then begins another
vacation. All customers arriving subsequent to the server's return are held in the queue for
service in the period following the end of the next vacation. If the server returns from
vacation to find the system empty, another vacation begins immediately, and continues in
this manner until upon return from vacation at least one customer is in the queue.
Customer service times are independent and identically distributed and are drawn from a
general distribution. Similarly, vacation periods are independent and identically distributed
and are drawn from a general distribution. Further, customer service times and server

vacation times ase mutually independent and independent of the arrival process.



Leibowitz (1961) and Takagi (1987) treat the M/GI/1 vacation system with gated
service and offer the pgf of the ergodic queue length and the LST of the ergodic customer
waiting time distribution when they exist. The waiting time distribution does not appear to

have the decomposition property found in exhaustive service systems.

In M/GI/1 vacation systems with E-limited service, the server begins a vacation when
either a prespecified number m of customers are served, or the system is emptied which
ever occurs first. If the server returns from vacation to find the queue empty, another
vacation begins immediately; the server continues in this manner until upon return from
vacation, at least one customer is queued. As in previous models, customer service times
are independent, identically distributed, and drawn from a general distribution; vacation
periods are independent, identically distributed, and drawn from a general distribution.
Customer service times and server vacation times are mutually independent and are

independent of the arrival process.

It is clear that for the M/GI/1 vacation system with E-limited service, m = oo
corresponds to exhaustive service; m = 1 is designated as simply limited service. Lee
(1983) provides an analysis of E-limited service systems that leads to the ergodic queue
length pgf at customer service or vacation period completion times. Lee's analysis leads to
somewhat complicated expressions for the pgf; no corresponding LST of the ergodic

customer waiting time is presented.

The M/GI/1 vacation system with Bernoulli schedules consists of a server that will,
upon completion of a customer service that leaves the queue not empty, begin another

customer service with fixed probability p, or begin a vacation with probability 1-p. If a



service completion leaves the queue empty, a vacation begins immediately. Similar to the
server scheduling disciplines above, if the server finds the queue empty upon returning
from vacation, then another vacation begins. This operation continues, as before, until the
server returns from vacation to find the queue not empty. Customer service times are
independent, identically distributed, and drawn from a general distribution; vacation
periods are independent, identically distributed, and drawn from a general distribution.
Again, customer service times and server vacation times are mutually independent, and are
independent of the arrival process. It is clear that for the M/GI/1 vacation system with
Bemnoulli schedules, the exhaustive and limited service disciplines are obtained by setting

p equal to 1 and O respectively.

The Bernoulli schedule service discipline, introduced by Kielson and Servi (1986), was
first examined in vacation systems having non-renewal type arrival streams. Their analysis
addresses the waiting time decomposition (discussed for exhaustive service above) and
investigates stochastic bounds on the ergodic waiting time distribution. Takagi (1987)
provides a formula (without development) for the LST of the ergodic waiting time
distribution. Takagi's result is obtained by extending arguments used in analyzing other
M/GI/1 vacation systems. The pgf for the ergodic queue length ( as seen at arbitrary
times), to the author's knowledge does not appear in the literature. Ramaswamy and Servi
(1986) develop simple expressions for the joint conditional distribution of the busy period
and system occupancy at the beginning of a busy period. They also provide expressions

for the ergodic occupancy distribution at busy period initiation epochs.

The M/GI/1 vacation system with G-limited service is defined as follows: Let m be a
prespecified number, and let L°, denote the number of messages queued when the server
returns form the nth vacation. Upon returning from the nth vacation,the server will serve

min( L, ,m) customers, and then begin the next vacation. Customer service times and



vacation periods are independent, identically distributed, and drawn from general
distributions. It is clear that with m = 1, G-limited service reduces to simple limited

service, while m = oo corresponds to gated service.

Hashida (1981) analyzes the G-limited service system ergodic queue length at the
epochs of the server's return from vacation. Takagi (1987) provides extensions to
Hashida's work that yields the ergodic queue length pgf at customer departure epochs.

Takagi also provides the ergodic customer waiting time LST.

M/GlI1 vacation systems with decrementing service operate in the following manner.
When the server returns from vacation to find at least one queued customer, the server will
serve customers until the queue occupancy is one less than the number of customers
queued at the last vacation completion. As in previous models, if the server returns from
vacation to find the queue empty, then another vacation begins immediately. Customer
service times as well as server vacation periods are independent, identically distributed,
and drawn from general distributions. Service times and vacation times are mutually

independent and are independent of the arrival process.

A generalization of the decrementing service discipline is found in the M/Gl/1 vacation
system with G-decrementing service. In this model, the server continues serving until : 1)
the number of customers in the system is reduced to (a prespecified) number m less than
the number queued at the end of the most recent vacation, or 2) the system becomes empty,
whichever occurs first. For m = 1 the system reduces to decrementing service, while m =

oo indicates gated service.

Takagi (1987), by extending analyses of other vacation systems, develops both the



ergodic queue length pgf and the ergodic waiting time distribution LST for the G-
decrementing service model. As is true with most Takagi results, his analysis here is
developed from classical queueing and transform arguments, and provides only limited

insight as to the stochastic behavior of the system.

The M/GI/1 vacation systems discussed above (beginning with exhaustive service
systems and ending with G-decrementing service systems) represent the most thoroughly
investigated M/GI/1/L vacation systems appearing in the literature. These systems together

form a small subset in the class of all M/GI/1/L vacation systems with Markov schedules.

The vacation systems discussed above share a set of special characteristics that allow
these systems to be analyzed using relatively simple probability arguments. In particular,
each of the above systems: 1) serves customers one at a time, 2) has independent,
identically distributed customer service times, 3) has independent, identically distributed
vacation periods, 4) has service times and vacation times that are mutually independent, and
5) has infinite queue capacity (i.c., K =o0). When any of the five special characteristics is

not present, the analysis of M/GI/1/L vacation systems becomes more difficult.

The analyses of the systems discussed above are remarkably similar to analyses of the
different variations of the classical M/GI/1 queue (without vacations) where certain "special
tricks" are exploited to yield desired results. As is the case with variations of the M/GI/1
queue, the analysis of each vacation system discussed above is largely unique, and is not

investigated as a special case of some common model.

For M/GI/1 vacation systems that service customers in a one-at-a-time fashion, it is
well known Kleinrock (1976) that the ergodic queue length as seen by departing customers

is the same as the ergodic queue length as seen by an outside observer (that is, ergodic



system occupancy at arbitrary times). This fortunate circumstance is exploited throughout
the literature, and hence, only for systems that serve customers one at a time have ergodic

queue length pgf's been reported in the literature.

There are many simple M/GI/1 vacation systems (e.g., batch service systems) for
which the ergodic queue length distribution as seen by departing customers and the ergodic
queue length distribution seen at arbitrary times are not the same. As we will show, such
systems can often be analyzed within the more powerful framework associated with

Markov schedules in the same level of detail as the simpler one at a time service systems.

In the study of M/GI/1/L vacation systems with Markov schedules that follows, the
system performance measures that are consider to be of principal importance are: 1) ergodic
queue length at arbitrary times, 2) ergodic queue length as seen by customers departing the
system, 3) ergodic queue length as seen by the server upon returns from vacation, and 4)
ergodic customer waiting times. Developing the probability distributions of these four
performance measures for all possible Markov schedule disciplines is formidable (likely
impossible). Thus, the focus here is on investigating the underlying probability structure
of M/GI/1/L vacation systems with Markov schedules. An understanding of this structure
offers a mechanism for investigating ergodic queue lengths and ergodic waiting times

within a common framework.

In Chapter 2., a formal development of the probability structure underlying M/GI/1/L
vacation systems with Markov schedules is offered. This development is exposed in a
"bottom-up” fashion. That is, a stochastic process that governs the behavior of such
vacation systems is constructed from more fundamental stochastic processes that govern

server activity , queue length, and customer arrivals. The probability structure on the
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stochastic process that governs system behavior is shown to be semi-regenerative, with an

underlying Markov renewal process whose probability structure is easily characterized.

The model presented in Chapter 2. is shown to be general enough to accommodate
systems with finite or infinite queue capacities, state dependent customer service times and
vacation periods, and irregular (state dependent) service disciplines. The models allow for
the formal characterization of queue length distributions (both transient and ergodic) as seen

by departing customers, the server returning from vacation, and at arbitrary times.

While this model and its probability structure accommodate a wide variety of M/GI/1/L
vacation systems, obtaining specific formulae useful for engineering calculations from the
model is another matter. However, all results appearing in the literature previously
discussed may be obtained in a systematic fashion by particularizing the model of Chapter
2. In addition a number of results, not previously reported, are revealed through this

systematic particularization.

Chapter 3. addresses application of the M/GI/1/L vacation model with Markov
schedules to three different server scheduling disciplines: 1) Bernoulli schedules, 2) E-
limited service, and 3) limited batch service. In Sections 3.1 and 3.2, the ergodic behavior
of the M/GI/1 vacation systems with Bernoulli schedules and E-limited service are
respectively investigated . Here, it is shown the general model of Chapter 2., when
particularized to model two well studied systems, gives formulae that agree with those
reported in the literature. In addition to developing the ergodic queue length pgf's and
ergodic waiting time LST's for Bernoulli schedule and E-limited systems, some new

ergodic occupancy results are revealed from the probability structure of the general model.

Section 3.3 considers the M/GI/1 vacation system with single batch service. To the

11



author's knowledge, this system is not investigated in the available literature. This system
is a departure from those systems commonly investigated in that it does not operate with a
one at a time service discipline. Consequently, the analysis here appeals to the general
semi-regenerative structure of the system in order to develop formulae for ergodic system
queue length pgf's. All results presented in this section are, to the author's knowledge,

new.

It is not possible in a reasonable space to present all useful formulae that are easily
obtained by particularizing the general model of Chapter 2. Thus, Chapter 3. seeks only to
demonstrate some of the power and flexibility of the general model and its underlying

probability structure.

Chapter 4. offers conclusions drawn from the current research effort, and areas of
future research. Particular emphasis is given to possible extensions of the general model of
Chapter 2. that address multiple queue, single server systems (polling systems) with
Markov switching. Also discussed are qualitative results that may be obtainable from

general probability structures, and the value of such qualitative results.

Before closing this introductory chapter, it is appropriate to briefly consider some of the
important results reported in the queueing literature that address vacation systems other than
M/GV/1/L systems. While the focus of the work offered here is given to studying systems
having sophisticated server scheduling disciplines and simple (Poissonian) arrival
processes, other investigators emphasize the converse. For example Lucantoni, Meier-
Hellstern, and Neuts (1988) consider a vacation system having exhaustive service and a
class of non-renewal arrival processes. In this system, the server scheduling discipline is

simple while the customer arrival process is a rather sophisticated Markov Arrival Process

12



(MAP).

Kielson and Servi (1986) examine oscillating random walk models for GI/G/1 vacation
systems with Bernoulli schedules; Servi (1986) examines D/GI/1 vacation systems. In
these two works the authors investigate vacation systems with simple server scheduling
disciplines, and more complicated (renewal-type) arrival processes. Additional works of a
similar nature are reviewed by Doshi (1986) and Takagi (1987); readers seeking further

review of non-M/GI/1 vacation systems should consult these surveys.
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2. The M/GI/1/L. Vacation System with Markov Schedules

This chapter provides a formal characterization of the stochastic behavior of the
M/GI/1/L vacation system with Markov schedules. To the author's knowledge, the
concepts associated with Markov schedules do not appear in the available literature and are
identified here for the first time. Markov schedules define a class of server scheduling
disciplines that include the scheduling disciplines reviewed in Chapter 1 as a subset. The
focus of this chapter is directed towards revealing the generality of Markov schedules, and
exploiting this generality to develop a common stochastic framework in which the queueing

behavior of most M/GI/1/L vacation systems can be investigated.

In the sections to follow, a "bottom-up” approach is taken in developing the stochastic
process that describes the queueing characteristics of M/GI/1/L vacation systems with
Markov schedules. This stochastic process is constructed as the joint of more fundamental
stochastic processes on which probability structures of practical significance are easily

defined.

In Section 2.1, the server switching marked point process is introduced. This
stochastic process governs the server's activity over time. In Section 2.2, the server
activity marked point process is first introduced and is then used in constructing the joint
queue length / server activity process. The joint queue length / server activity is a
continuous-time stochastic process that marginally characterizes the system occupancy as

seen by an observer outside the system.

In Section 2.3, the probability structure on the queue length / server activity marked

point process under Markov schedules is developed. As will be shown, the queue length

14



/server activity marked point process is embedded within the joint queue length / server
activity at convenient stopping times. This embedded marked point process is shown to be

Markov renewal.

Section 2.4 presents results that characterize the joint queue length /server activity
process for M/GI/1/L vacation systems with Markov schedules as semi-regenerative. The
well known theory of semi-regenerative processes is used to characterize system queueing
behavior, both transient and stationary. Particular emphasis is given to developing ergodic

queue length distributions at stopping times and at arbitrary times.

2.1 The server switching marked point process.

Consider an M/GI/1/L vacation system having a Poisson arrival stream of rate 4. In
vacation systems, the server's activity is divided exclusively between customer service
periods and vacation periods. The server switching marked point process characterizes the
server's activity over time by:

1) identifying the times (epochs) at which the server either completes a service period or
completes a vacation period.
2) marking each epoch with a two-tuple indicating:

(i) epoch type ("'s-type" for service completion, and "v-type" for vacation completion),

and

(ii) number of epochs occurring since the last epoch that was marked by a different type

(i.e., a count of the number of consecutive s-type or consecutive v-type epochs).

A realization, denoted by 9 , of the server switching marked point process is shown in

Figure 2.1. Note that associated with each epoch shown in Figure 2.1 is a two-tuple

15
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(s,0) (s,1) (s,2) (v,0) (v,1) (s,0)

Figure 2.1 A realization of the server switching marked point process.
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"mark" indicating epoch type (s or v) and a count of consecutive epochs of the same type.

Now, consider a more formal description of the server switching marked point process.
Let p be a realization of the server switching marked point process given by

o= {hm, ¢,:m € Z*}
with

¢.eR'andh_e FxZ'.
Here

R" is the set of nonnegative reals,

Z" is the set of nonnegative integers, and

F = {s,v}.

¢.. € R" denotes the time of the mth server switching epoch in the realization $ , while
h ., marks the mth epoch by type and count on the "mark space"” Fx Z" of the server

A
switching marked point process. For convenience, let E = Fx Z*.

Denote by d)ﬁ the set of all such realization ¢ . The probability space
(‘Dg G(¢ﬁ)’P ) , with G(dbﬁ) a O - algebra on (Dg and P a probability measure on

c (d)g), defines the server switching marked point process. For each m € Z", define the

mapping T,: @, —R" as

T.(¢)= ¢a,

and for each m € Z" define the mapping H,.: dbg - ’ﬁ as

17



H,(¢) =h,,

The random variable T, represents the time of the mth server switching event. The
random process T = {Tm: meZ'}isa (random) point process and is referred to as the
server switching point process. The random process H = {Hm:m € Z+} is referred to
as the server switching marked process. Henceforth, the server switching marked point

process will be designated by (H,T ) .

At this juncture, a specific probability structure on the (H,T ) process is not
identified. Rather, the focus is here shifted to the construction of the joint queue length /
server activity process in which is embedded the (H,T ) process. As will be shown, the

probability structure on this joint process is more easily characterized than that on the

(H,T ) process.

2.2 The queue length / server activity marked point process.

Intuition suggests that for any non-trivial vacation system, system occupancy (queue
length) and server activity are interdependent. For M/GI/1/L vacation systems, queue
length over time is governed by the Poissonian character of customer arrivals and the nature
of the server scheduling discipline (as reflected by the server switching marked point
process). In this subsection, a continuous time random process is introduced that,
together with an embedded marked point process, allows characterization of the system

queue length.

Define the random variable n (¢) e Ic Z" as the queue length at time te€ R". Let

18



the vector valued random variable h (¢) e E be defined as

h(9)=H,(#) VieR’
where @ ,m € Z* and, @ = sup(m < t). Here, the random variable h (¢) indicates the
server’s activity at an arbitrary time t. It is now feasible to define a joint queue length

server activity random variable X (¢). For convenience, let E = E x I, and define

X (¢)eEas

X(#)=(n(#)h(¢)) VieR"

When the context is clear, the  argument will be omitted in expressions for random

variables dependent upon the server's switching activity.

Consider now the stochastic process XR. given by

XR,= {X:teR"}

which defines the joint queuelength / server activity process. It is assumed that XR. is a
right continuous process. This process, together with its underlying probability structure
are the focus of the developments to follow. For general M/GI/1/L vacation systems, the
probability structure on XR* is formidable. However, when the server scheduling
discipline belongs to the (yet to be defined) class of Markov schedules, the probability

structure on XR. is manageable.

Characterization of the probability structure on the XR . process for M/GI/1/L vacation
systems with Markov schedules is carried out by first characterizing the probability

structure of a particular marked point process embedded within XR+. The probability

19



structure on this embedded process will serve in part to formalize the definition of the class

of server scheduling disciplines called Markov schedules.

Consider the server switching point process T = {Tm ‘m € Z"} introduced in Sec.
2.1. Recall that T, represents the time of the mth server switching epoch (either a service
period completion or a vacation completion). Let X be the stochastic process embedded
within XR. at the instants immediately following the epochs of the server switching point

process T . It follows that X is the process given by

X={X_meZz'}

where,

mn=X; —(nT hoy )

Here, it is convenient to identify the embedded queue length process N given by

N={N_:meZ}

where,
N, =n

T

Thus, it follows that the embedded process X is given by
X =(N, H)

the joint of the embedded queue length process and the marked process of the server

switching marked point process. Thus, it follows that X is the two-tuple given by
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Xuw=(NgH,)

At this juncture it can be observed that under the server scheduling disciplines of

Chapter 1, the epochs of the server switching point process T are stopping times for the

XR. process which implies that X forms a Markov chain on E. As will be shown in the
following subsection, the X process forms a Markov chain for the entire class of Markov

schedules.

Next, consider the stochastic process (X,T) formed as the joint of the embedded queue
length / server activity process X and the server switching point process T. It follows
that (X,T) forms a marked point process. This marked point process is readily recognized

as an extension of the server switching point process (H,T) where,

(X, T)=(N,H, T)

Here, a particular realization of the p of the (X,T) process is given by

o= {(xm, ¢,)me Z+} € (DE

where,
Xm€ E

¢ = R* (defined as before)

D, is the set of all realizations.

The (X, T) process, designated as the queue length | server activity marked point

process plays an essential role in developing a general stochastic structure for M/GI/1/L
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vacation systems with Markov schedules. Exposition of a probability structure on an

(X, T) process corresponding to Markov schedules is accomplished by examining certain
probability structures on the constituent components of (X, T). As will be shown in the

following subsection, the probability structure on (X, T') directly implies the probability

structure on XR..

2.3 Probability structure of the queue length / server activity marked point

process (X,T).

Having in the preceding section defined for a set of stochastic processes that
conveniently characterize the queueing behavior of vacation systems, it is possible to now
offer a formal definition for Markov schedules vacation systems in terms the probability

structure on these stochastic processes.

As a matter of notational convenience, define i,j € E in terms of their respective queue

length and server activity components where,

i=(ipiy and j=(jyip

with

A
i€l and ipiy€E.

Here, a set of conditions that are used to formally define the class of Markov schedules is

introduced.
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Condition 1.

The server scheduling discipline is such that forall i,je E,and me Z",

P{H_, =i, Xy aXmTp-nTa} =P{H_, =j IX,}

For convenience, define g(i,j) as

g(ij)=P{H_, =j,/Xn=1} VijeE (2.1)

Condition 2

Customer service periods and server vacation periods are such that for all i,j € E,

meZ+,and te R"

P{T, ., -~ Ta<t!H, Xg s Xm T Ta} =P{T_,, ~Ta <tIH_, =j Xn=i}

m+l +1

whenever one-step transitions from state i to state j exist. For convenience, define F(i,j,t)

as

. P{T _,, - TastlH_,  =j,X.=1} forg(i,j) #0
PRI =10, for g(ij)=0

Vi,je E;me Z,te R",
(2.2)

Condition 3,
The system occupancy (queue length) is such that forall i,j e E, me Z*, and te R,
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P{N_, =jXp-oXmH_ Ty, T T

m+? L0 m+l
=P{Nm+l=jN|Xm,H Tmﬂ—Tm=t}

Tn =t}

m+1’

Define G(i,j,t) as

G(i.jt) =P{N_, =iy Xn=iH_, =j, T, ~Tn=t}
VijeEmeZ' teR’

(2.3)
Consider now the following definition for Markov schedules.

Definition 2.1
An M/GI/1/L vacation system having a queue length / server activity marked point
process (X, T) satisfying Conditions 1, 2, and 3 above is said to have a server
scheduling discipline belonging to the class of Markov schedules.
(]

The Markovian nature of the queueing behavior for vacation systems satisfying
Conditions 1, 2, and 3. arises since these conditions are sufficient to assure that all service
period completions and all vacation period completions are stopping times for the joint
queue length / server activity process XRH The importance of the distributions g(i,j),
F(i,j,1), and (Gi,j,t) is that they are fundamental information that is usually taken as given
for the study of particular M/GI/1/L vacation systems. It is easily reasoned that the

vacation systems review in Chapter 1 each satisfy Conditions 1, 2, and 3.

Given the definition for the class of Markov schedules, it is now possible to
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characterize the probability structure on the queue length / server activity marked point
process (X, T) for M/GI/1/L vacation systems having Markov schedules. Consider the
following definition Cinlar (1975).

Definition 2.2

Foreach me Z*,let Y = be a random variable taking values in the countable set D,
and let U,, be a random variable taking valuesin R" such that 0 = U,<U <U,... The
stochastic process (Y, U) = { Y, U, me Z'} is said to be Markov renewal with state

space D provided that

P{Y_,=iU_,~UnStlY,...Yo Uy ., Un} =P{Y_, =jU_ -U,.<tlY,}

m+1

VmeZ', jeD,teR" (2.4)
(Y,U) is said to be homogeneous when

P{Ym+l=j’Um+l—UmStlxm}zQ(i’j’t) Vi,jED,t€R+

independent of m. 1

The probability structure on M/GI/1/L vacation systems having Markov schedules is
formalized with the following proposition.

Proposition 2.3

An M/GI/1/L vacation system with Markov schedules has a queue length / server activity

marked point process (X,T) that is Markov renewal on the state space E.
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Proof:

Note that the law of total probability together with Bayes rule imply that
VmeZ",jeE,teR*

P{X_ =T .~ TaStIXy . XuTy... Ta}

—IP{H w=iglXp s XmTpes Tl

P{Nm"’] _JNIHm+l =jH’x0""’xm’T0!--9T m)T -T = u}
. dP{TmH —Tm < lllI'{m"b1 =jH’X0""’Xm’T0’--9Tm}

(2.5)

Since the system under consideration is M/GI/1/L with Markov schedules, Conditions 1, 2

and 3 hold. Thus, substituting eqns. (2.1), (2.2), and (2.3) into eq. (2.5) shows that
VmeZ,jeE,teR"

P{X_,=iT,_,~TasStIX, . XnTpoonTa}

0"
= [ P{H_, =juIXa} - P[N_, =i H,,.XaT,, - Tn=u}
0
. dP{Tm+l _Tm Sule+1,Xm} (2 6)
The right side of eq. (2.6) can be rewritten as
I P{Hmﬂ =jHIXm} ) P{Nm+1 =jNIHm+l’X Tm+l _Tm =u}
0
AT~ TasulH, pXa} =P{X , =iT, ~TastiXa} (o7
Thus (X,T), by Definition 2.2, forms a Markov renewal process on E.
(1
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When (X,T) is a Markov renewal process, the family of probabilities
Q)= {Q(i,jt):i,je E,t e R}
is called the semi-Markov kernel over E. Note that for all i,jeE, the mapping

t — Q(i,j,t) has all properties of a probability distribution function except that

Q(ij) = lim Qij 1)

in general is not necessarily one. However, it follows directly from Definition 2.2 that

YQ.j)=1 VieE
jek (2.8)

which leads to the following proposition.

Proposition 2.4
For an M/GI/1/L vacation system with Markov schedules, the marked process X
associated with the queue length / server activity marked point process (X,T) forms a

Markov chain on the state space E.

Proof:

Since the vacation system under consideration is M/GI/1/L. with Markov schedules, it
follows from Proposition 2.3 that the queue length / server activity marked point process
(X,T) is Markov renewal. That X forms a Markov chain on E follows directly from

(2.8) and the definition of a Markov chain.
(1

In the developments that follow, only M/GI/1/L vacation systems having Markov
schedules are considered; thus, the queue length / server activity process (X,T) is always

taken as a Markov renewal process. Given that (X,T) is Markov renewal, it is important
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for results to be developed later that state classifications of the queue length / server activity

process (X,T) be identified.

In X,T) let W’;, sz, ... be the times between successive visits to state je E. If Si

represents the time of the first visit to state j, then

s =S, +W . VmeZ

define the times of the visits to state j. It follows from Definition 2.2 that the sequence

s'={s! -s':mez}

forms a renewal process.

Definition 2.5
State j e E is said to be recurrent if, in the renewal process Sj » W_ < e foreachm
a.s.; otherwise, state j is called transient. State je E is said to be periodic with period
if, in the renewal process S’, the random variables le, sz, ... take values in the set
{0,6, 26, ...} and§ is the largest such number. If no such § exists, then j is said to be
aperiodic.
(]

Astate je E inthe (X, T) process is recurrent if and only if j is a recurrent state in
the underlying Markov chain X. Thus, in order to address the question of recurrence in

the states of (X, T), only the Markov chain X need be investigated. A state je E in the

(X, T) process is periodic if and only if the distribution of the time between two

consecutive visits to state j is arithmetic with span § .
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Note that there exist Markov schedules such that it is possible for j to be periodic for

(X, T) without being periodic for the embedded Markov chain X. Conversely, j can for
some Markov schedules be periodic for the embedded chain X and aperiodic for the

(X, T) process. Cinlar (1975) offers a number of criteria suitable for testing the
periodicity and/or recurrence of the states of a Markov renewal processes. Those criteria,
while not presented here, are suitable to classify the states of the queue length / server

activity marked point process (X,T).

In most practical situations, the Markov schedules of interest are limited to those
schedules leading to an embedded queue length / server activity process X that is
irreducible (i.e., any state in E can be reached from any other state in E); this will become
more clear in Chapter 3. When the corresponding vacation system is stable,
P{nl <oo't € R“} =1, and X is irreducible, then (X, T) is characterized as being
aperiodic and recurrent (see Cinlar 75). It is, however, emphasized that less practical
Markov schedules leading to reducible X processes are easily accommodated within the

probability structure on (X, T') considered thus far.

Having, for M/GI/1/L vacation systems with Markov schedules, characterized the
(X, T) process as Markov renewal with semi-Markov kernel Q(t), it is possible to
characterize the probability structure of a projection of the queue length / server activity
marked point process onto a subspace of the state space E. The importance of
characterizing such a projection arises when studying queue length as seen at particular

epoch types.

Consider the realization ¢ ={(x,, ¢,):me Z'} e P, (defined previously).

Following the reasoning of Disney and Kiessler (1987), for A c E let the sequence
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¢" = {(Xf‘.,, ,:) ‘me Z*} be a subsequence of ¢ consisting of all pairs (X, ¢,) for
which x, € A. Should it happen that the number of m such that x, € A is finite, let m*

be the largest of these m, and for all m > m*, let xA = A and p_f =+ o0, Hence, the

sequence »"is defined forall me Z". Now, for k € Z", define Lj::clb13 —Z" U {+ o}

as

inf{meZ":x_ e A} {meZ":x_e A}»Q
+ oo otherwise

Lo(9) ={

and fork =1, 2, ...,

inf{m >L%_(¢):x, € A} {m >L:_11Xm €A} 20
+ oo otherwise

L3(9) ={

For k e Z+, define

Xy (9)=x2=X, (9)
L. (¢)

and

SO =9¢'=T, (¢
Ly(s)

The stochastic process (XA, SA) = {( X:,S':) ke Z+} is the delayed Markov renewal
process formed by embedding the (X, T) process at visits to the set A — E. (Note that
when the set A consists of a single state (i.e., A={i},i € E), then (XA, SA) forms an
delayed ordinary renewal process. Takagi (1987) recognized a special case of this fact and

employed this special case in a number of his arguments.)
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It is a simple matter to construct an ordinary Markov renewal process from the delayed

Markov renewal process (XA, SA). The following proposition is offered without proof.

Proposition 2.6

For ke Z", let T: = S:-— 7. The (x*, 1) = {(X:,T':) ke Z'} process is

Markov renewal on the state space A. (]

If given the semi-Markov kernel Q(t) for (X, T) , it is possible to construct the semi-
Markov kemel for (XA, T‘).

Theorem 2.7
Let Q,(t) be the semi-Markov kernel for the (X*, T*) process. Q A(D) is given in

terms of Q(t) by
- t t—nl—...-uk_l
Qi) =Qi+ X% X.. X - [ . ] Q(i.i,,du )
k=2ieB i  eB Y o
QU pit—u - u, )
(2.9)
where i,je A, teR", and B=AC.
Proof:
See Disney and Kiessler (1987). §]

The usefulness of Theorem 2.7 is demonstrated when considering the joint queue

length / server activity process embedded only at service period completion epochs or only
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at vacation period completion epochs. Let

S={ieE:iy=(s-)},and

V={ieE:i =(v,)}.
Thatis, S < E denotes the set of all states corresponding to s-type epochs while Vc E
denotes the set of all states corresponding to v-type epochs. Note that E = S U V and
SNV =0, thus, S and V together partition the state space E. Since E is at most
countable, it is possible to express the semi-Markov kernel Q(t) as a matrix partitioned in

blocks according to the S,V partition of E. That is

Qs Qg (V) ]

Q(1) =[ Qu(t) Qu(® 2.10)

Note that at this juncture, no particular ordering of states is specified, and when K=co the

submatrix blocks of (2.9) are each necessarily infinite dimensional.

Corollary 2.8
a) The joint queue length / server activity process embedded at service period
completion epochs (x s, T*) is Markov renewal and has a semi-Markov kernel Q ((t)

given by

Q) =Qg(+ 2 Qg * Q% *Q v
k=0 2.11)

b) The joint queue length / server activity process embedded at vacation period

completion epochs (x Y, T') is Markov renewal and has a semi-Markov kernel Qv(!)

given by
Q (1) =Q (1) + E[st + Qg * Qq J) (2.12)

Here, * is the convolution operator, and Q?:),)(t) is the k-fold convolution of Q,,,(t)
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with itself.

Proof:

The fact that in part a) (Xs , Ts) and in part b) ( XV, T") are Markov renewal follows
directly from Proposition 2.6. Since S and V partition E, eq. (2.11) in part a) and eq.
(2.12) in part b) are both matrix representations of eq. (2.9) of Thm. 2.7 with S and V

serving for A and B.

Corollary 2.8 assures that the queueing behavior of M/GI/1/L vacation systems with
Markov schedules retain a Markov renewal structure when the system is examined at
service completion epochs, vacation completion epochs, or both service completion and
vacation completion epochs. While the semi-Markov kemel Q(t) is often easily formulated,
the semi-Markov kernels Q (t) and Q. (1) are usually formidable (as indicated by the
complexity of eqns. (2.11) and (2.12)) and are difficult to formulate . The relationship
between Q(t), Q (t), and Q,(t) will be examined for some specific vacation systems in

Chapter 3.

The characterization of (Xs , f) and (Xv, T") as Markov-renewal offers additional
insight into the behavior of vacation systems. That is, (Xs , Ts) characterizes both the
queue length embedded at departures from the system and the point process governing the
customer departure stream. The (Xs , T") process marginally characterizes in part the
backlog of customers awaiting service when the server returns from vacation. Ergodic
results, when they exist , are obtained by examining the stationary distributions on the

Markov chains X" and X" in the usual way.
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2.4 Probability structure for the joint queue length / server activity

process XR, .

Having identified the queue length / server activity marked point process (X, T) as
Markov renewal under Markov schedules, characterization of the probability structure on
the joint queue length / server activity XR . requires introduction of the so called Markov

renewal equations.

As defined in the previous subsection, Q(t) is the semi-Markov kernel for (X, T) on
the state space E. Let f(t) and b(t) be vectors whose elements f(i,t) and b(i,t) are
nonnegative functions that are bounded on finite intervals of t and are bounded in i.
Suppose that b(t) is a known function and that f(t) is an unknown function. Then, the

equation

f(i,t) = Bi,t) + Y, jb(i,;du)f(j,t ~u) (2.13)

jeE 0

is called a Markov renewal equation. The set of Markov renewal equations on the state

space E is given conveniently in matrix form as

f(t) =b(t) + (Q * H(t) (2.14)

The solution to eq. (2.14) requires introduction of the Markov renewal kernel R(t) of

(X, T) € E. Here, elements of the Markov renewal kernel are referred to as Markov

renewal functions and are given by

RG5O =0 DKl op(T)%,=i] i ey’
m=0
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(2.15)

where, 1., denotes an indicator function. Each Markov renewal function R(i,j,t) can be

written in terms of elements of Q(t), the semi-Markov kernel of (X, T), by

R(Ljt) = XL P[X, =; T, < tIX,=i}
m=0

= Q™ (i)
m=0 (2.16)

where,
Qi .t)_{l, i=j
)= 0, otherwise

and

Q@)= 2 tQ(i,k,du)Q(m'l)(i,j,t - u)

keE ©

From a computational perspective, the Markov renewal kernel is formulated using

Laplace-Stieltjes transforms. Let Re 0 20, and forall i,j € E

Q, (i) = Joe-“o(i,j,dt),

and

R, (i) = Ioc‘“‘R(i,j dt)

It follows easily by taking the Laplace-Stieltjes transform of (2.16) that R, is given as the

minimal solution to
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Ra (U - Qa) =U
where U is an identity matrix. In practice, it is most difficult to formulate the Markov
renewal kernel R(t). This difficulty is especially evident when the state space E is not

finite.

It is well known Cinlar (1975) that the solution to the Markov renewal equation of
(2.14) is given by

f(t) = (R *b)(t) +c(t) (2.17)

where c(t) is a vector whose elements are functions of the same class the elements of f(t)

and
c(t)= (Q=*c)(t) (2.18)

Generally, (2.17) is not unique. However, when the server switching point process T has

infinite lifetime (i.e., sup (T ,) = eea.s.), then c(i,t) =0 V i € E and
f(t) = (R * b)(1) 2.19)
solves (2.14) uniquely.

Before identifying the probability structure on the joint queue length / server activity
process XR, = {X,:t € R"}, a definition is needed.

Definition 2.9
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Let Z = {Z,:t 20} be a stochastic process with topological space D. Suppose that
the function t - Z (@) is right continuous and left hand limits exist for almost all o .
The process Z is said to be semi-regenerative if there exists a Markov renewal process
(¥,U) = {Y_,U_:m e Z"} having infinite lifetime satisfying the following:

a)foreach m e Z*, U, is a stopping time for Z,

b)foreach me Z*, Y, isdetermined by {Z,:u<U_},

c) foreach me Z*, n210<t,<t, <...<t,, and function f defined on D* and
positive,

E[f(Z1 wpZr0) | ZoiuSUL]=E[](Z, ... 2, )] on {Y, =i}
where,

E , E; refer to expectations given the initial state for the Markov chain Y.

[l

It is now a simple matter to identify the probability structure on the joint queue length /

server activity process XR. .

Proposition 2.10
Consider an M/GI/1/L vacation system having Markov schedules such that the server
switching point process T = {Tm:m € Z'} has an infinite lifetime. Then, the joint

queue length / server activity process XR. = {X, :t € R} is semi-regenerative.

Proof:
Note that the server switching point process T = {Tm:m € Z"} has infinite lifetime if
and only if the queue length /server activity marked point process

(X, T)={X_. T, meZ}

has infinite lifetime. Since the arrival stream to the system is Poisson, it follows that
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P{X,=jIT, =u,X, =i} =P{X,_, = jlX, =i}

forall i,j e E and ut e R where u<t (ie.,, (X, T) is an embedded Markov renewal
process). Thus, T = {T_:m e Z'}is a set of stopping times for X . and condition a)
is satisfied. Further, since X = X, we have that X, is determined by {X,:u < T_}
satisfying condition b). That condition c) is satisfied follows from the Markov renewal
property of (X, T).

(1

The importance of identifying the semi-regenerative structure on XR . 1s that the well
known theory of semi-regenerative processes can be used to examine the system occupancy
distribution as seen by an "outside observer". To this end, the two theorems to follow
provide distributional results that are powerful tools for examining the queueing behavior

of M/GI/1/L vacation systems having Markov schedules.

Theorem 2.11
Consider an M/GI/1/L vacation system having Markov schedules such that the server

switching point process T = {T_:m € Z"} has infinite lifetime. For any AcE, all

ieE,andall te R”,

t
P{X, € AlX, =i} = [ R(ik.du) P{X,_, € A,T,> t— ulX, =k}

keE 0

(2.20)
Proof:

It follows from Proposition 2.10 that the vacation system under consideration is such
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that the joint queue length / server activity process XR. is semi-regenerative on the state

space E. Following the logic of Kohlas (1982), note that

{X. e AlIX;=i}={X, e AT >tIX =i}
v {kté{xl € AT >t,X =klIX = i}}

Using the regeneration property,it now follows that
P{XleAIT1=s,Xl=k}=P{Xt_ eAIX°=k}.

T

Thus,

P{X, e AlIX =i} =P{X, € A,T,>tI1X =i}
+ 3 Qik,du)P{X ., € AIX, = K}
keE 0 (2.21)
which is a Markov renewal equation . It follows from eq. (2.19) that the solution to (2.21)
is given by (2.20)
{

While the result given by eq. (2.10) of Thm. 2.11 is rather general, (2.20) offers little
promise as a computational tool. This is true since computing the Markov renewal kernel
R(1) is, in practice, a formidable if not impossible task. If, however, attention is restricted
to ergodic queueing behavior (when it exists) a more computationally attractive result is

available.

Theorem 2.12
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Consider an M/GI/1/L vacation system having Markov schedules such that the queue
length / server activity marked point process (X,T) is irreducible, aperiodic, and recurrent

on the state space E. Let A C E, v be an invariant measure for the Markov chain X, and

m(k) = E[T,1X,=k]. Suppose that v = Y ¥ (k)m(k) < co.

keE

Then,
lim P{X, € AIX,=i} = 53w ( [ P[X € A,T,>t1X, =k} dt
Lo keE 0

(2.22)
provided that t 5 P{X, € A,T > tIX =k} is Riemann integrable V k € E.

Proof:
Since it follows from Proposition 2.10 that the vacation system under consideration is
such that the joint queue length / server activity process XR . 1s semi-regenerative on the

state space E, proof here is the same as Cinlar's (1975) proof of Theorem 10.6.12 .

(]

Note that (2.22), unlike (2.21) does not require the computation of the Markov renewal
kernel R(t). However, (2.22) requires computation of v a stationary measure on X;
computation of such a measure is in principle simple so long as K is finite. When K is
infinite, computation of v is more difficult. This situation is considered for specific

vacation systems in Chapter 3.

Theorem 2.12 leads directly to a characterization of the ergodic queue length

distribution (when it exist) for the class of Markov schedules identified in the hypothesis of

the theorem.
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Corollary 2.13
Consider an M/GI/1/L vacation system having Markov schedules such that the queue
length / server activity marked point process (X,T) is irreducible, aperiodic, and recurrent

on the state space E. Let A c E, v be an invariant measure for the Markov chain X, and

m(k) = E[T,IX,=k]. Suppose that vm=zv(k)m(k)<oo. Then for each

keE

iveZ",

lm P{n, =j.} =y 2, [Ev(k)jo;’{x‘ =JIT, >, X, =k}P{T, >tIX, =k}dt]

3 e R LkeE
H

(2.23)

Proof:
Recall that X = (n,, h,) € E. It follows directly that for all in€ Z" and te R”,

P{n =jy}= X P{n, =juh,=jg
jneﬁ

and since z P{n =j h =j4}is aconvergent series of all positive terms, we have that
i ef
J H

lim P{n, =j,} = lim 2 P{n =j,h =j}= Z}i_innP{nlsz,h‘=jH}’

t—oe ﬁ
)HE jHE

(2.24)
Thus, substituting (2.22) into (2.24) gives the desired result.

(1l

A convenient probability structure that underlies M/GI/1/L vacation systems with
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Markov schedules has now been identified. This structure, as revealed by Proposition 2.3
and Proposition 2.10, offers a common framework in which all M/GI/1/L vacation systems
having Markov schedules may be examined. Some observations regarding the Markov

renewal / semi-regenerative nature of such systems are in order.

The three conditions that identify those sever scheduling disciplines belonging to the
class of Markov schedules are relatively general. Note that these conditions do not specify
the order in which queued customers are serviced (e.g., first come first served, etc.); in

fact, customers may be served in batches.

The three conditions defining Markov schedules admit a variety of server scheduling
disciplines where customer service period distributions and/or server vacation period
distributions are dependent upon the arrival process; the ordinary M/GI/1 queue is an
example of such a vacation system. Here, the server vacations while the queue is idle and

terminates its vacation immediately upon arrival of a customer to the empty queue.

Theorems 2.11 and 2.12 together with Corollary 2.13 offer powerful tools for
analyzing characteristics of the queue length distribution for M/GI/1/L vacation systems
having Markov schedules. This set of results is valid for systems having either finite or
infinite queue capacities. For systems having finite queue capacities, numerical results are,
in principle, readily calculated. Systems having infinite queue capacities are usually more

difficult to analyze.
In the Chapter 3, the common framework developed in Chapter 2. is employed examine

the queue length distributions for systems having finite and systems having infinite queue

capacities. The difficulties that arise in obtaining specific numerical results will be made
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clear in the developments of Chapter 3.
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3. Example M/GI/I/L Vacation Systems with Markov Schedules

In this chapter, the general probability structure underlying M/GI/1/L vacation systems
with Markov schedules is particularized to examine the queueing behavior of example

vacation systems. The purpose of examining these example systems is threefold.

First, we seek to validate the general probability structure of Chapter 2 by examining
the queueing behavior of a pair of previously studied vacation systems and comparing the
results of this examination to known results. Second, we seek to demonstrate the
usefulness of the general probability structure by providing previously unreported results
associated with well studied systems. Finally, we seek to demonstrate the usefulness of
the general probability structure by examining the queueing behavior of previously

unstudied vacation systems.

In meeting this threefold purpose, the full generality of the probability structure of
Chapter 2 is not exploited; rather, only ergodic results will be examined. Unless otherwise
indicated, the the queue length / server activity process (X,T) is assumed to be irreducible

and to possess a stationary distribution.

Chapter 3 is divided into three sections. Section 3.1 investigates the queueing behavior
of the M/GV/1 vacation system with Bernoulli schedules, Sec. 3.2 investigates the behavior
of the M/GI/1 vacation system with E-limited service, while Sec 3.3 investigates the
M/GV/1 vacation system with batch service. The systems considered here appear in order

of increasing complexity.



Note that the three systems considered each have infinite queue capacity (i.e., L = o).
Such systems are, in principle, more difficult to analyze; note that Theorem 2.12 requires a
stationary measure for a Markov chain having a countably infinite state space.
Particularization of the general model of Chapter 2 to vacation systems having infinite
queue capacities, in most instances, yields only probability generating functions (pgf's) for
queue length. The nature of computational difficulties associated with infinite queue
capacity systems will be made clear as the example systems are analyzed in their respective

sections.

3.1 M/GI/1 vacation systems with Bernoulli schedules.

Consider again the M/GI/1 vacation system with Bernoulli schedules, first introduced
in Chapter 1. Recall that the "Bernoulli schedule” server scheduling discipline requires that
upon completion of a customer’s service that leaves the queue not empty, the server will
either begin serving the next customer in line with fixed probability p, or will begin a
vacation with fixed probability 1-p. Upon a service period completion that leaves the

system empty, the server begins a vacation period begins immediately.

At the end of a vacation period , the server arrives to find the queue either empty or not.
Recall that if the server returns to find the queue not empty, a service period begins
immediately; if the server returns to find the queue empty, another vacation period begins
immediately. Customers are served in order of arrival. Exhaustive service and limited
service server scheduling disciplines are obtained as special cases of the Bernoulli schedule

by setting p to 1 and O respectively.
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For M/GI/1 vacation systems with Bernoulli schedules, it is assumed that the lengths of
customer service periods are independent, identically distributed with distribution S(t), and
the lengths of server vacation periods are independent, identically distributed with
distribution V(t). It is further assumed that the lengths of customer service periods and the
lengths of server vacation periods are mutually independent. The Poisson stream of

customers arriving to the system is assumed to have rate A .

Since the queueing behavior of M/GI/1 vacation systems with Bernoulli schedules is to
be examined within the general framework established in the previous chapter, it is
necessary to show that Bernoulli schedules belong to the class of Markov schedules. That
is, Bernoulli schedules must satisfy Conditions 1, 2, and 3. However, before verifying
that Conditions 1, 2, and 3 hold, it is helpful to reexamine the mark space of the server

switching marked point process (H,T).

When examining M/GI/1 vacation systems with Bernoulli schedules, the full generality
of the model introduced in Chapter 2 is not required. In particular, let the mark space II;’. of

the server switching marked point process (H,T) be restricted to ﬁ = F. Under Bernoulli
schedules, this simplification of the mark space is appropriate since for any given epoch of
(H,T), the type (s-type or v-type) of this epoch depends only upon the most recent

previous epoch.

Let the joint queue length / server activity process XR. and the queue length / server
activity marked point process (X,T) be defined as in Chapter 2. Since the queue capacity
is infinite (i.e., L = o), it follows that the state space E for the system under consideration
is given by

E=ExZ =FxZ"
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Recall that i,j € E are expressible in terms of queue length and server activity components
where,

i=(ipi,) andj =j(ini o
with

iwiyeZ and ipj, €F.

Under Bernoulli schedules, the type of the next epoch of (X,T) depends only upon the
present epoch of (X,T). Thus, it follows simply that forall i,j € E and me Z*,

P{H_  =ju! X Xm Tt T} = P{H_, =i, Xna},

which implies that Bernoulli schedules satisfy Condition 1. As in (2.2), let
g(ij)=P{H_, =j4Xa} VijeE.

It follows that for systems operating with Bernoulli schedules,

( 1, juy=v,iy=0,i €F

1-p, ju=v,iy#0,i,=s

g(i,j)={ 1, jH=s,iN¢O,iH=v

R ju=s iy #0,i,=s
L 0, otherwise

.1

It is true that for all vacation systems that the server is either serving customers or on
vacation . For Bernoulli schedules, the time between any two contiguous epochs of (X,T)

must be either a customer service period with distribution S(t) or as a server vacation period
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with distribution V(t). Given two contiguous epochs, the server's activity between them is
recognized as either a vacation period or a services period, conditional upon the type of the
most recent of the two epoch and the number of customers queued at the older of the two

epochs. That is, customer service periods and server vacation periods are such that for all
meZ,
P{T_,,-T.<tiH

XppoorXars Toporw T} =P{T_, ~Tu<tIH_, X, =i}

m+1? m+l1?

whenever j is "reachable in one step” from i. Hence, Bernoulli schedules satisfy Condition

2. Using the notation of (2.2), we have forall i,j € E, m € Z+, t e R that

. . P{Tm+x—TmStleﬂ:jH’Xm:i}' g(1.))#0
FID =10, (i) =0

Since inter-epoch times represent either vacation periods or service periods, it follows that

S(t), jy=sie€E,jone —step reachable from i
F(i,j,t)=4V(t), jy=vV,i€E,jone —step reachable from i
0, otherwise

3.2)

Since the customer arrival stream is Poisson, it is clear that the interarrival times are

exponentially distributed and thus, have the memoryless property. Hence, forall i,j € E,

meZ",and te R',
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P{N_, =i H_ . Xp Xe T, T T_, = Tu=1t}
= P{Nm-ﬂ =jN'Hm+x=jH’Xm = i’Tm - Tm = t}-

+1

which satisfies Condition 3. Following the notation of (2.3), we have for all

i,jeE,me Z',teR"

G(I’J’t) =P{Nm+l =jN|Hm+1 =jH’Xm = er

and it follows that

( jN—iN+l
e (A1) . .o .
(Gu-ix+ DI in2Liy2iy-Liy=s

G(i,jt) = iytiy

(39 e (A0 S oS i =
Gu- it 20 I E e du =
L0, otherwise . (3.3)

Since Conditions 1, 2, and 3 are satisfied for this example system, Bernoulli schedules

belong to the class of Markov schedules. Thus, by Proposition 2.3 M/GI/1 vacation

systems with Bernoulli schedules have a Markov renewal queue length / server activity

marked point process (X,T), and have a semi-regenerative joint queue length / server

activity process XR,. Given (3.1), (3.2), and (3.3), it is a simple matter to calculate the

semi-Markov kernel Q(t) for the (X,T) process where,

Qirjt) = Jog(i,j)G(i,j,u)F(i,j,du) VijeE, teR" (3.4)
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Substituting (3.1), (3.2), and (3.3) into (3.4) it follows that

Q(ij.t) = 1

fo()'“) N)' CV@n),  jy=vig=0,i, e F

J‘ (lU) — )' V(du), ju=v,ig#0,i =s
i gmi g4

J‘ (él;) +1)' S(du) jg=sig#0,i,=v
J =it

j((lju) 1 +1)' " S(du), ig=siy#0,i,=s

0, ) otherwise

3.5

Having particularized the semi-Markov kernel Q(t) to reflect M/GI/1 vacation systems

with Bernoulli schedules, it is feasible to investigate the ergodic queueing behavior of this

system. (Recall that ergodic results exist here since it is assumed that (X,T) is irreducible

and all states of E are recurrent.) In particular, the ergodic distribution of queue length as

seen immediately following customer service completions, the ergodic distribution of queue

length as seen immediately following the server's return from vacation, and the ergodic

distribution of queue length as seen at an arbitrary time are investigated. Nonergodic

queueing behavior is not examined here.

From Proposition 2.4 we have that the marked process X associated with the queue

length / server activity marked point process (X,T) forms a Markov chain. Since X is

embedded at all customer service completions and all server vacation completions, the
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ergodic distribution of queue length as seen by either customers upon departure or the
server upon return from vacation is simply the stationary distribution for the chain X.
Note that by Corollary 2.13, the ergodic distribution of queue length as seen at an arbitrary
time requires the stationary distribution for X. The three distributions of interest above are

each determined, in part, by a stationary measure on the chain X.

Because the state space E is countably infinite, solving for a stationary measure on X
is formidable. (This situation is analogous to studying the ergodic queue length
distribution of the M/GI/1 queue without vacations where generating functions are used to
study queue length distributions.) Thus, in what follows, pgf's of queue length are

developed.

Let Q be the collection of one-step transition probabilities associated with the Markov
chain X. Here, Q= P_rg Q(t). Let the state space E be partitioned, as in Corollary 2.8,
suchthat E=SU V and S NV =@ where,

S={ieE:i =s},and

V=JlieE:iig=v}.

The equations yielding the stationary distribution on X, when partitioned according to the

state space partition described above, are written in matrix form as

Qs Qw
[7s 70y] = [7s 7"\/][ Qw Qu 3.6)

where,
o= o Qw]

and [%s 7y] is the stationary distribution on X. Here, for & € F,
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7, =[x, (0) =, (1) m(2) ..]

where,

n“(j)= lim P{Nm =j’Hm= a}’ j=0, 1, 2;

From (3.5) and (3.6) it follows that

0 0 O 0 0 ..7
pPs, PS, PS, PS, PS, ...
_ 0 ps, PS, Ps, Ps,
Qs=|o 0 ps, pPs, Pps, ...
0 0 O ps, ps,

_5 : : : : J, (37)
i VO vl v2 v3 v4 ]
0 qv, qv, qv, qv,
Q. = 0 O Qv, qQv, qv, ...
710 0 0 gqv, qv,
0 0 0 0 qv,
| ¢ : : : : ~ (3.8)
0 0 0 0 O ]
Sy S, S, S, 8,
o 0 s, s, s, s,
Wl 0 0 s, s, s,
0 0 0 s, s
I N (3.9)

and



QW=

TOO OO «
O O OO «
O O OO <
O OO O <

| ¢ H : : : "o | (3.10)
where,q=1-pandforj=0,1,2, ..,

A' -At
f ! t)e ——S(dt), (3.11)

and

~At
._I (}“)e Rl ANV (3.12)

Substituting (3.7) through (3.10) into (3.6), it follows that forj=0, 1, 2, ...,

j+ j+l
r(j) = pZﬂ's( k)sj—k+l + znv(k)sj—k-bl , (3.13)
k=i k=1
and
j
ﬂv(j) = ES(O)VJ. + quS( k)vj-k + ”V(O)vj . (314)
k=1

Now, define the following geometric transforms:

I{2) = 2m ()2’ (3.15)
i=0
and
I(z) = Yx,(j)z’ (3.16)
j=0
Equation (3.15) together with (3.13) gives
j+ j+l
Iz = Zz (pzﬂk)s et zﬂv(k)s,--m) (3.17)
j=0 k=l k=l



while, (3.16) together with (3.14) gives

oo j+t
(z) = Zz{nsm) v, + a2 kv, + 7,0) V,-), (3.18)
j=0

k=1

Distributing the outer sum on the right side of (3.17) and interchanging the order of

summations allows (3.17) to be rewritten as

I (z) = P’E(l)zsjzj + zpr ( 2)2sjzj + z’pfrs(3)z‘,s,.zj +...
j=0 j=0 j=0

+ ﬂ:v(l)Zszj + 271",(2)251.2j + z’ﬂ:v(3)2sjzj +...
i=0 i=0 i=0 (3.19)

Similarly, distributing the outer sum on the right side of (3.18) and interchanging the order

of summation allows (3.18) to be rewritten as

I,(z)= irv(O)}.:vjzj + 7ts(0)2vjzj + qzns(l)Zijj + qz 2 2)§:vjzj + ...
i=0 j=0 j=0

j=0
(3.20)
Now, define $(z) and V(z) such that
$2)= s 2, (3.21)
j=0
and
V@)=2v 2 (3.22)
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Expressions for S(z) and V(z) are found by substituting (3.11) and (3.12) into (3.21)
and (3.22) respectively. Thus,

At

and

-4t

V@)= 2 j (/'Lt)e —=——V(dt) (3.24)

Passing the summation within the integral in both (3.23) and (3.24), it follows directly that

S@)= j;“-‘l"s(dt) (3.25)

and

V@)= J';-“-* 2v(dt) (3.26)

0

where, (3.25) and (3.26) are recognized as Laplace-Stieltjes transforms, of S(t) and V(t)

respectively, evaluated with the transform operators equal to (A — Az).

Now, (3.21) and (3.22) respectively allow (3.19) and (3.20) to be written as

(pm(0) + m,(0))) (3.27)

and

1,(z) = V(z)(a[I(z) + (p(0) + 7,(0))) (3.28)
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Equations (3.27) and (3.28) can be solved simultaneously for both IT {2) and IL(z). As
will be shown, for appropriate boundary conditions II(z) and II(z) are pgf's where,

II(z) is the pgf for the queue length distribution seen by customers departing the system
and I1(z) is the pgf for the queue length distribution as seen by the server upon return

from vacation.

As a matter of convenience, rearrange (3.27) and (3.28) such that

?H(z) - (prl0) + m(0)) +pII(z) + I1(2) (3.29)

and

W 1(z) = (pr(0) + 7,(0)) + q/1(2) (3.30)

It follows by adding (3.29) to (3.30) that

yz) + IT (z)—mns(z) () I,z (3.31)

and solving (3.31) for I (z) yields

V(2)(3(z) - z)

II(z)= (z)
V5 a(1- V@) T (3.32)

Substituting (3.32) into (3.29) and solving for Il (z) gives
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(r(0) + 7 (0)(V(2) - 1)3(2)

II(2) = 3.33
{2 z-(p+qV(2)3» (9:33)
Substituting (3.33) into (3.32) and simplifying gives
(p70) + z(0))(z-82)V(2)
IT.(z) =
@ z- (p +q¥(2)3(2) -39

Note that while (3.33) and (3.34) are geometric transforms, neither is necessarily a pgf.
The value of the constant (P7{0) + m(0)) determines whether or not either (3.33) or
(3.34) is a pgf; the value of (p7(0) + x,(0)) required to make (3.33) a pgf is generally
different than the value of (p7{0) + 7,(0)) required to make (3.34) a pgf. In the
developments to follow, we shall show how the values of the constant (p7r(0) + m(0))
is determined so that (3.33) and (3.34) become pgf's.

Next, consider IT (z) the pgf for the distribution of the queue length as seen
immediately following either customer service completions or server vacation completions.

Itis clear that [T (z) = Il(z)+ II(z); thus, it follows from (3.31) that

__Z_ _1
@)= g/ K@ + 5 I (3.35)

Substituting (3.33) and (3.34) into (3.35) and simplifying yields

_ (pnd0 + =(0)(z¥(2) -5(2))

(3.36)
z- (p+qV@)32)

I1(2)
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Note that any pgf taken in the limit as z approaches 1 from inside the unit circle is itself 1;

thatis, lim IT(z) = 1. Therefore, it follows that
zN

N (pr0) + x,(0)(zV(2) - 3(2))
T z2-(p+ V@)@ (3.37)

Note that (3.37) is of an indeterminant. Here, let the "prime"” diacritical mark indicate

differentiation with respect to z, and by L'Hopital's rule we have that

o (r(0) + 7, (0)(zV(2) - 3(2)) _ . (p=(0) + 7,(0)(2Y(2) + V(2) - 5(2)
2N z - (p+qV(2)32 M 1= ((p+qV(2)3(@) + 3(2q¥V ()

(3.38)
It follows from (3.37) and (3.38) that

_ (@ + 2 (0) (V@ +1-5)
B 1- (5 + qV(D)

(3.39)

Let S denote the expected length of a customer service period and V denote the expected
length of a server vacation period. Note that §(1) = AS and V(1) = AV. Rearranging
(3.39) gives

1-p-qAV

(pm(0) + 7 () = 1-p + AV

(3.40)

where, p = AS , as usual, defines the traffic intensity. Equation (3.40) gives the

58



appropriate value of (p7(0) + 7,(0)) so that [T (z) is a pgf. We now have that

1-p-qAV  (V(» -3@2)
1-p+AV  z-(p +qV(z))§(z)

I(z)= (3.41)

The case of exhaustive service is now examined; setting p to 1in (3.41) gives

1-p (V@ -%2)
1-p+ AV z - 3(2)

@)= , (3.42)

which agrees with the results of Fujiki and Gambe (1980).

The usefulness of (3.41) is limited since it addresses none of the system performance
measures discussed earlier. However (3.42), by agreeing with the results of Fujiki and
Gambe, (3.41) offers a partial validation of this particularization of the general model of

Chapter 2.

At this juncture, it is possible to examine the pgf of the queue length as seen by
customers immediately following departure from the system, and the pgf of the queue
length as seen by the server immediately following returns from vacation. Here, it is
convenient to employ Corollary 2.8 which characterizes the probability structure of the joint
queue length / server activity process embedded at either service period completion epochs

or at vacation period completion epoch.

First, we will examine the pgf of the distribution for the queue length as seen

immediately following customer departures from the system. Let (x*, T*) be defined as
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in Corollary 2.8. It is clear that the queue length distribution, as seen by customers
departing the system, is given by £ the stationary distribution on the Markov chain X".

Here, £ satisfies

A= £,Q; (3.43)

where,
Q= lim Q (1),

It follows from (2.11) that the transition matrix Qg for the chain X * is given by

QS=Q$+2(QkaVVQVS) (3.44)

However, from (3.6) we have that

”S = ”SQS + ”VQVS
Ty= Qs + TQw (3.45)

Solving (3.45) simultaneously yields

m = n{ Qg + Z(QWQ’i,VQVS)); (3.46)
k=0

hence, from (3.44) it is clear that7 is a stationary measure on the chain X°. It now

follows that 7 and 1 are equivalent up to a multiplicative constant; hence, the pgf for T

differs from the pgf for rf‘s by a multiplicative constant. This reasoning reveals that if the
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constant ( P(0) + m(0)) is chosen such that hrTn IT(z) = 1, then IT(z) is the pgf for
zll

the queue length as seen by customers departing the system. Further, by interchanging the
roles of S and V in the above argument, I (2) is recognized as the pgf for the queue length

as seen by the server immediately following returns from vacation when the constant

(p7L0) + m,(0)) is chosen such that lim M(2)=1.
z N

It is possible now to determine the value of (P7{0)+ m(0)) such
that I1(z) becomes the pgf for the queue length as seen by customers departing the system.
Since hrTn II(z) = 1, we have from (3.33) that

z {1

o (PO + 2(0)(V@) - V8(2)
n 2= (p+a¥(2)3@ (3.47)

Since (3.47) is of an indeterminant form, L'Hopital's rule is required to evaluate the limit;

hence,

(70 + 7 (0)(V(2) - )S(2)
hm
=N z-(p+qV(2)32

~ (px0) + ) ((V(2) - DT@) + X2V (2))
= lim
) 1-((p+9V@)5@ + ¥ (2)3()) (3.48)

From, (3.47) and (3.48), it follows that

_ (px(0) + 7 (0) V(D)
T 1-(BFw + qV D)

(3.49)

and with p, S, and Vdefined as before, (3.49) can be rearranged to show that

61



Lo —aab
(pm(0) + 7 (0)) = _pﬂl_q_}i (3.50)

Substituting (3.50) into (3.33) gives

=122 -qAV (V@) -1)3@)
AV z-(p+qV(@)3(2 °

(3.51)

which is the desired pgf. To the author's knowledge, the pgf of (3.51) is a new result for
M/GV/1 vacation systems with Bernoulli schedules. Note that with p = 1, (3.51) becomes

1-p (V@ -1)3z)
AV z-3(2) (3.52)

I1(z) =

which is the well known pgf for the queue length as seen by departing customers of

M/GV/1 vacation systems with exhaustive service Takagi (1987).

It is a simple matter to determine the value of the constant ( P7{0) + m,(0)) such that

II (z) becomes the pgf of the queue length as seen by the server immediately following

returns from vacation. Since hrTn I1(z) = 1, we have from (3.34) that,
zT1

. (prl0) + 7rv(0))(z -%(2) V()
= lim
1 z-(p+qV(@)3@) . 3.53)

Following an application of L'Hopitals rule, (3.53) reduces to
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| n+ z,0)(z - (1)

z -qV(1) -5 ’ (334
and from (3.54) it follows that
pr0) + m(0) = #- - (3.55)
Substituting (3.55) into (3.34) yields
1-p—-qAV -
2= =P 4 (z-3@)V(z) (.56

1-p Cz- (p + qV(z))g(z)

which completes the characterization of the pgf for the queue length as seen by the server
immediately following returns from vacation. The pgf of (3.56) does not appear in the

available literature, and thus, is new.

We now consider the pgf for the queue length as seen at arbitrary times. Development
of this pgf appeals to Theorem 2.12 and Corollary 2.13 which address the stationary
distribution of the joint queue length / server activity process Xm.. Since (X,T) is here
assumed to be irreducible and to have a stationary distribution, it follows from (2.22) that

foralljin E

: | T : -
lim P{X, = j} = HZn(k)joP{Xt =jIT,> t,X,=k}P{T,>tIX,=k}dt

keE
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(3.57)

where, 7 is the stationary distribution on the Markov chain X.

Here, some notation is introduced so as to simplify the development that follows. For

all je E let

n(j) = lim P{X, = j}
and for i,j € E let

B(i,j) = IOP{X‘ =jIT,>1,X,=k}P{T,>t1X, =k} dt

When the state space E is partitioned by S and V as in Corollary 2.8, it follows from (3.57)
that the stationary distribution of the joint queue length / server activity process X’. is

given by

o1 Bs Bw]
(Ms™] = 7 ml™ "'v][Bvs By | (3.58)

Here, for ¢ € F,

N, =[n,(0) n,(1) n,(2) ..]
with

T’a(j)= lim P{nt=j,ht= a}, j:()' 1,2, ..



forallz, B € F,andi,j=0,1,2, ...

B, (i) =I°P{nt =jh = BIT,>,N,=i,H,= a}

-P{T,>tIN;=iH = ald (3.59)

It is clear that whenever T, > t, it must be that h = H,. Thus, for i,j =0, 1, 2, ...,

B (1,J) =B (i,j) =0. It now follows from (3.59) that
B, =B, =1[0], (3.60)

Further, (3.59) implies that

a, a, a, a, a,
0 d, d, d, d,
0 0 4, d, d,
Bs=lo 0 0 4, q
0 0 0 0 4, ..
R T A R (3.61)
and
[a, a, a, a, a, i
0 ¢, ¢, ¢, c,
0 0 ¢, ¢ ¢,
Bw=lo 0 0o ¢, c,
0 6 0 0 ¢, ..
B : : : " (3.62)
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where forj=0, 1, 2, ...

< At
= [ M) (1~ V() (3.63)
0
- At
j ()'t) e — (1 - (pS(1) + qV (1)))dt , (3.64)
and
: J -At
DL YR (3.65)
0

Given the notation above, it is a straight forward matter to examine the pgf of the queue
length distribution as seen at arbitrary times. Let x be the row vector of queue length

probabilities when the queue is observed at arbitrary times where

Kk =[x(0) x(1) x(2) ..] (3.66)
with
k(j) =lm P{n,=j}  j=0,12.. (3.67)

It follows directly from Corollary 2.13 that x (j) is given by

k() =ns(3) +n,(3), i=012,... (3.68)
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Here, (3.68) taken together with (3.58), (3.61), and (3.62) shows that K (j) can be

rewritten as

i i
k(j) = an[ns(O)aj + Ezrs(k)dj_k + m,(0a, + kz;yrv(k)cj_k), i=0,1,2,..

(3.69)

Defining K (z) as the pgf of the queue length as seen at arbitrary times we have that
K (2) = Xx(j)z'; (3.70)
i=0
hence, it follows from (3.69) and (3.70) that

K(z) = ﬁZz{néO)aj + 27%(1‘)‘1,-* + m(0)a; + Zﬂv(k)c,--x) G.71)
j=0

k=1 k=1

Let [T (2) and IT(2) be defined by (3.15) and (3.16) respectively. Distributing the outer
summation on the right side of (3.71) and then interchanging the order of summation in

each term in the usual manner, (3.71) can be rewritten as

K (2) = 7=(7(0)(A(2) - D(2)) + % (0)(A(2) - C(2)) + D2)II(z) + C(2) IL,(2))
(3.72)

where ,
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A(z)= iajzj = j;“-* (1 - V(t)dt

=0 0

D() = Ydz'= [ e“4-42(1 - (pS() + qV ()t

j=0 0

and

CD) = Y2 = [ e (1~ s(t)at

j=0

Noting that hrTn K (z) =1, and following much routine algebra (not shown here),
zll

(3.72) reduces to

1-18-9AV  (V(»-1D3@

K(2) = .
(2) AV z-(p+qV(2)3@)

(3.73)

Equation (3.73) and (3.51) show that K (z) = IT(z). That the pgf of the queue length as
seen immediately following customer departures is the same as the pgf of the queue length
as seen at arbitrary times is to be expected for this system. Klienrock (1975) shows that
for queues with renewal type arrivals where customers are served one at a time, the queue
length as seen immediately before arrivals and the queue length as seen immediately
following departures are distributed the same. Wolff (1982) shows that the queue length
as seen immediately before arrivals belonging to a Poisson stream is distributed the same as
the queue length seen at an arbitrary time (sometimes referred to as the PASTA result). The
Wolff result together with the Klienrock result imply that for queueing systems having
Poisson arrivals and one at a time customer service, the queue length seen immediately

following customer departures and the queue length as seen at an arbitrary time are
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distributed the same; the M/GI/1 vacation system with Bernoulli schedules is such a

system. (Takagi (1987) states this result as a theorem and provides a simple proof.)

Given the pgf of the queue length as seen at an arbitrary timeK (z), itis a simple matter
to formulate the Laplace-Stieltjes transform of the ergodic customer waiting time for the
M/GV/1 vacation system with Bernoulli schedules. Here, we appeal to the distributional
form of Little's law as presented by Keilson and Servi (1988). The distributional form of
Little's law is an ergodic result; thus, it is assumed that (X,T) is irreducible and possesses

a stationary distribution.

Let K (z) be the pgf of the queue length as seen at an arbitrary time, and let W(g) be

the Laplace -Stieltjes transform of the waiting time T of an arbitrary customer. Here,

W(o) =E[e™"] | The following Proposition, proven by Keilson and Servi (1988), is a

statement of the distributional form of Little's law.

Proposition 3.1
Let an ergodic queueing system be such that
a) arrivals are Poisson of rate 4,
b) all arriving customers enter the system and remain in the system until served,
c) customers are served one at a time in order of arrival
d) newly arriving customers do not affect the waiting time of customers already in the
system

Then, the distributional form of Little's law holds; that is,

K(z)=W(Q - 12) (3.74)
(]
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Clearly, M/GI/1 vacation systems with Bernoulli schedules satisfy the conditions of
Proposition 3.1. Recall that (3.25) and (3.26) show that

S@)=8(1- 1z) (3.75)
and

V@)= Vv(1- 12) (3.76)

where S°(0) and V*(o) are Laplace-Stieltjes transforms of S(t) and V(t) respectively.
Substituting (3.75) and (3.76) into (3.74) and making a change of variable indicated by

(3.73) where z=1- % , we obtain the Laplace-Stieltjes transform of the waiting time T

for an arbitrary customer. That is,

1- 2(S+qV) _ (1-V*(0))S*(o)

W(o) = Y o - i+ A(p+qV(0))S(0) (3.77)

The waiting time Laplace-Stieltjes transform of (3.77) concludes the analysis of M/GI/1
vacation systems with Bernoulli vacations as presented here. While queue length and
waiting time distributions are not easily obtained, the general structure for M/GI/1/L
vacation systems with Markov schedules allows, as is shown, development of queue
length pgf at arbitrary times, embedded at departures and, embedded at vacation
completions. Further, the waiting time Laplace-Stieltjes transform is easily obtained since
the pgf of queue length as seen at arbitrary times is known.. Each of these transform
results is important to performance analysis of M/GI/1 vacation systems with Bernoulli
schedules since moments of the respective distributions can be calculated in the usual

manner. However, no distribution moments are presented here.
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3.2 M/GI/1 vacation systems with E-limited service.

Consider now the M/GI/1 vacation system with E-limited service introduced in Chapter
1. Recall that the "E-limited" server scheduling discipline requires that the server begins a
vacation when either a prespecified number m* of customers are served or the system is
emptied, whichever occurs first. If the server returns from vacation to find the to find the
queue empty, then another vacation begins immediately; the server continues in this manner

until upon return from vacation, at least one customer is queued.

In this vacation system, it is assumed that the lengths of customer service periods are
independent, identically distributed random variables having distribution S(t), and the
lengths of server vacation periods are independent , identically distributed random variables
having distribution V(t). Further, the lengths of service periods and vacation periods are
assumes mutually independent. The Poisson stream of customers arriving to the system is

assumed to haverate A.

The queueing behavior of the M/GI/1 vacation system with E-limited service is to be
examined within the general framework of vacation systems having Markov schedules.
Thus, it is necessary to show that E-limited service is a server scheduling discipline
belonging to the class of Markov schedules. That is, E-limited service must satisfy
Conditions 1, 2, and 3 in order to be examined as a particularization the general model
developed in Chapter 2. However before verifying that Conditions 1, 2, and 3 hold, it is

helpful to re-examine the mark space of the server switching marked point process (H,T).
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When examining M/GI/1 vacation systems with E-limited service, the full generality of

the model introduced in Chapter 2 is not required. In particular, let the mark space ’}:Z of the
server switching marked point process (H,T) be restricted to the set

£ = {s}x{1,2...m*'}) U {v},
This simplification of the mark space is convenient since the number of consecutive v-type

epochs of (H,T) does not influence the server scheduling activity under E-limited service.

Let the joint queue length / server activity process XR, and the queue length / server
activity marked point process (X,T) be defined as in Chapter 2. Since, in the system
under consideration, the queue capacity is infinite (i.e., L = e), we have that the state space
E is given by

A +

E=ExZ".

Recall that i,j € E are vector quantities that consist of queue length and server activity

components where,
i=(ipiy) and j=(jpiy

with,
. - + . . A
LWy€Z and i,j € E.
. . . .. A
E-limited service requires that 1,,] ; € E be two-tuples whenever i,j e E correspond to

service completion epochs. That is, whenever i,j € E correspond to service completion

epochs,

ig= (inin)
H(HT’HC

and
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i = (Fngin)
where

ig,jy =s and iy .j u, € {1,2,....,m*} count the number of consecutive epochs of that
T T c

are of s-type.

It is clear from the description of M/GI/1 vacation systems with E-limited service that
the server's activity at the next epoch of (X,T) depends only on the queue length at the
present epoch, the type of the present epoch, and the number of consecutive epochs of the
same type up to and including the present epoch. Thus, forall i,j € E

P{H, ., =iy XosXmToonTa} =P{H,, =i, X.}

m

which satisfies Condition 1. Now, for all i,j € E, let g(i,j) be defined as in (2.2). It

follows that forall me Z”,

(L by =Sdy =iy +Liy2i, =si, sm-1

or
ju, =SJu_=Liy2lig=v

.. or
g(ij) =4 Cevii=0.=
ig=Vv,iy=0,iy=v
or
JH=v,1N20,1HT=s,1Hc=m‘
|10, otherwise

(3.78)

It is known that for all vacation systems, the server is either on vacation or is serving

73



customers. From the description of E-limited service, it follows that the time between any
two contiguous epochs of of the queue length / server activity marked point process must
be either a customer service period distributed S(t) or a server vacation period distributed
V(1), both conditional upon the server's activity at the more recent of the two epochs, the
number of customers queued at the older of the two epochs, and the server's activity at the
older of the two epochs. That is , customer service periods and server vacation periods are

such that forall me Z7,

P{T - Tm<tlH_, .X;....X;, Tppeoos T} =P{T _ - TastiH_,_,X.}

whenever, in the Markov chain X, state j is "one-step reachable” from state i where

i,j € E. Hence, E-limited service satisfies Condition 2. Following the notation of (2.2),
we have forall i,j e Eand te R” that

S(t), ju=sg(i.j) =1
F(i,j,t)=qV(), jy=sg(i.j) =1
0, otherwise . (3.79)

Recognizing that the customer arrival stream is Poisson, it is clear that the customer
interarrival times are exponentially distributed and thus have the memoryless property. It

follows that forall i,je E, me Z',and te RY,

P{N_., =iy H_ . XX Tgpee0s T, T, = T =t}
=P{Nm+1=leHm+l=jH,Xm=i,T —-Tmzt}

m+l

which indicates that E-limited service satisfies Condition 3. Following the notation of (2.3)

we have that
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( j =i 4

—at N N

e *(At) .. ) )
Gu-igt O InZiw~hig =siy21
G(l,_],t) = e‘h(lt)j"-i"

(jN-in)! ’ jNZiN’j**:V'iNzO

0, otherwise . (3.80)

It is clear that since Conditions 1, 2, and 3 are satisfied for this example system that E-
limited service belongs to the class of Markov schedules. Thus, by Proposition 2.3 the
M/GI/1 vacation system with E-limited service has a queue length / server activity process
(X,T) that is Markov renewal and has a joint queue length server activity process XR. that
is semi-regenerative. It is now a simple matter to calculate the semi-Markov kernel Q)

associated with (X,T). Substituting (3.78), (3.79), and (3.80) into (3.4) it follows that
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(AU)
f = ), V(du),
JNZIN’jH=v’iN=O)iH =s’iH <m.
or
in2ipig=v,iy>0,i, =s iy =m*
_ or
JN=O’jH=V’iN=09iH=V
SIS B
(lu) e-tu
S(du),
Io (Jn—ix+ 1! (du)

inZig=Liy =sj, =iy +1iy>0,i, =si, <m*
T c [ T [
or

JnZiy=Liy =sjy =0iy>0ig=v

0, otherwise

(3.81)

Having particularized the semi-Markov kernel Q(t) to reflect M/GI/1 vacation systems
with E-limited service, it is feasible to investigate the ergodic queueing behavior of this
system. (Recall that the queue length / server activity marked point process (X,T) is
assumed irreducible and that all states are recurrent.) In particular, the ergodic queue length
distribution as seen immediately following customer service completions and the ergodic
queue length distribution as seen by the server immediately following returns from vacation

are investigated. Nonergodic results are not considered.

From Proposition 2.4 we have that the marked process X associated with the queue

length / server activity marked point process (X,T) forms a Markov chain. Let Q be the
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collection of one-step transition probabilities for the Markov chain X. Here,

Q= lim Xt). Now, for @ e {12,...,m*}, let

t—ee

S = {i € E:iHT=s,iHc= a}

and let
V={ieE:ig=v}.

Clearly, Vand S, , & = 1,2,...,m*, partition the state space E. The equations yielding
the stationary distribution on X, when partitioned as the state space E, are written in matrix

form as

L]
e &)
(%]
w
o p ©
<3
w
"o o ©
ol el
v @»n
< < <
'

0 o0 o .00 Q.
Qe 0 0 .00 Quy
(3.82)

where,
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[ QS S2 0 ‘ 0 QS|V ]
0 Qg .0 Q.
0 .00 Q,,
Q= : P :
0 0 0 L0Q . Q ,
o 0 0 .00 Q, .
Qg 0 0 00 Q..

L 1 J

and["'sl s, s, oo s | s ”i/] is the stationary distribution on X. Here, for

a e {12,...,m*}>

5. =[7:s.(0) ﬂ,'s.(l) 7!'5.(2) ]

where,
ﬂs.(j) = nlnix_x'l.P{N,,, =jH,=(s,a)}, j=0,12...

Also,
n, = [%0) m (D 7 (2)..]

where,
7() = lim P{N, =jH,=v}, j=0,12...

From (3.81) and (3.82) it follows that for k = 1,2,...,m* - 1
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(3.83)

O v v wuv

-

©
w ..

(3.84)

and

(3.85)

b4

where, as in (3.11) and (3.12), forj=0, 1, 2, ...

i

(3.86)

-At
©—S(dt)

“(At)
7

s,= |
J
]
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and
o ¥ (3.87)

Substituting (3.83), (3.84), and (3.85) into (3.82) it follows that for j=0,1,2,..

jH

”sl(j) = Z”V(k)sj—kﬂ , (3.88)
k=1
j+l
s () = Zﬂsl(k)s e i=12..m -1, (3.89)
k=1
and

.
m -

()= 2m (v, +v ,{%‘0) + ”sk(O)] (3.90)

k=

At this juncture it is convenient to introduce the ergodic probability 7 ((j) that the queue

length is j and the epoch is s-type at the epochs of the (X,T). Here,
n(j) = EIB_P{Nm =jH,=s}.
Clearly, T (j) is the marginal probability given by
n(j) = 2o Gy i=0.1L2... (3.91)
i=l
Now, define the following geometric transforms:
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() = Xx, (2 i=12..,m, (3.92)

j=0

O(z) = X x,(j)z"

(3.93)
and
Mz) = Xr i)z’ (3.94)
j=0
Substituting (3.94) into (3.91), it follows that
(2 = 211, 2) (3.95)

i=1

Substituting (3.88), (3.89) into (3.92), and substituting (3.90) into (3.93) respectively give

w Jt

Hsl(z) = szzzv(k)sj—kﬂ . (3.96)

j=0 k=1

o j+l

I, ()= EszES‘(k)sj_k+l i=12..,m -1 (3.97)

j=0 k=t
and
i

o0 m -1
M,(z)= 22{27‘3 .(k)vj_k + Vj(ﬂv(()) + Zn.'s (O)D (3.98)
j=0 k=1 x

k=0 =m

Interchanging the order of summation in the usual manner, (3.96), (3.97), and (3.98) can

be rewritten respectively as
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S(@2)

I (9) = = ~(I1(2) - =,(0)), (3.99)
I, ( g(z)(n @ - 7(0),  i=12..m~1 (3.100)
and
I (z)= V() (@+ V(z)(frv(o) + 275 (O)) (3.101)
- i=t !

where, S(z) and V(z) are giveh by (3.25) and (3.26) respectively.

Substituting (3.99) and (3.100) into (3.95), it follows that

1
yz) = 5(22—)(Hs(z) - I1; (2)) + %Hv(z) - m,(0) (3.102)
Rearranging (3.96) and substituting into (3.102)yields
3( )

I
(2= % )UV( z) (3.103)

Solving (3.99), (3.100), and (3.101) simultaneously for IT,(z) gives the transform

relationship

I1,(z) = — V(@) ( (0)(3 (z) - z™ ) 2275(0)(3 (z)—z “))
S V() -z i=1

(3.104)
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Now, substituting (3.104) into (3.103) it follows that

V(2)3(2)
(z- S(z))(sm (2V(z) - ")

' (’“‘0)(3"'.@) ~2=) + nfzifrs.(o)(sm"i(z) ~ z“‘"i)J

i=l

fz) =

(3.105)

Note that while (3.104) and and (3.105) are geometric transforms, neither is

necessarily a pgf. The respective values taken by the constants

7rv(0),7rsl(0), ﬂsz(O),-.., 7 (0) determine whether or not X,(z) or X,(z) is a pgf.

The value of the constants 7,(0),7 (0), 7, (0),..., % (0) required for X(z) to

become a pgf are generally different than the values required for X (z) to become a pgf.
Thus, interpretation of these constants must necessarily be considered within the context of

the pgf in which they appear.

It is now a routine matter to examine both the pgf of the queue length as seen by
customers immediately following departure from the system and the pgf of the queue length
as seen by the server immediately following returns from vacation. Here, we have that

when the constants 7,(0),7 (0), 7, (0),..., 7,  (0) are chosen such that

m -l

lim [I(z) =1, then the geometric transform [T (z) becomes the pgf for queue length as
zT

seen by customers immediately following departure from the system. Similarly, we have

that when the constants 7.(0),w (0), 7, (0),..., 7, (0) are chosen such that
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lixTn I1(z) = 1, then the geometric transform [1,(z) becomes the pgf for the queue length
zll

as seen by the server immediately following returns from vacation. The fact that [T {2
and I1,(z) are pgf's under the above specified boundary conditions follows from the same
reasoning as was presented for the M/GI/1 vacation system with Bernoulli schedules;

hence, a formal development of this results is not presented here.

~

The task of determining values for the constants 7,(0),7 (0), 7 (0),..., 7, (0)

m -1

such that [T (z) and I1,(z) become pgf's is lengthy; application of Rouche's theorem and
Lagrange's theorem lead to a set of m"* simultaneous equations that can be solved for the

appropriate values of 7,(0),7 ¢ (0), #; (0),..., %, (0) . The application of Rouche's

m -1

theorem in order to determine unknown constants for pgf's, similar in form to IT(z) and

I1 (z) is common within the queueing literature Takagi (1987); as a matter of

convenience, a development of formulae suitable for determining the desired values of

7,(0),7 ¢ (0), 7 €0),..., @ (0) is not presented here. Rather, we are satisfied that

(3.104) is the pgf of the queue length as seen by the server immediately following returns
from vacation, and that (3.105) is the pgf of the queue length as seen immediately
following customer departures. We have here that (3.105) agrees with Takagi (1987). To
the author's knowledge, (3.104) does not appear in the published literature and thus is

new.

Appealing to the discussion offered in the previous section, we may easily examine the
pef of queue length as seen at arbitrary times. Note that since the M/GI/1 vacation system
with E-limited service has a Poisson arrival stream and customers served one at a time, the

queue length as seen by customers immediately following departure from the system and
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the queue length as seen at arbitrary times are distributed the same. Since geometric
transform pairs are unique, it follows that the pgf of the queue length as seen at arbitrary

times is given by (3.105).

Let T be the ergodic waiting time in the system for an arbitrary customer, and let

W(o) =E[e™"] be the Laplace-Stieltjes transform of the waiting time T. Clearly, the
M/GV/1 vacation system with E-limited service satisfies the conditions of Proposition 3.1;
thus, the distribution form of Little's law can be employed to provide an expression for

W(o). Following the same reasoning as was considered for M/GI/1 vacation systems

with Bernoulli schedules we have that

W(o) = Hs(l - %) (3.106)

The waiting time Laplace-Stieltjes transform of (3.106) concludes the analysis of the
M/GI/1 vacation system with E-limited service as considered here. While the queue length
and waiting time distributions are not easily obtained, the general structure of the M/GI/1/L
vacation system with Markov schedules, as is shown, allows development of pgf's for the
queue length as seen at arbitrary times, as seen at customer departures, and as seen at
vacation completions. Further, the distributional form of Little's law holds for this system
allowing the Laplace-Stieltjes transform of customer waiting time in the system to be
formulated from the pgf of queue length as seen at arbitrary times. Each of these transform
results is important to the performance analysis of the M/GI/1 vacation system with E-
limited service since moments of their respective distributions can be calculated in the usual

manner.

The M/GI/1 vacation system with E-limited service considered above serves to
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demonstrate that the general model of Chapter 2 can be particularized to reflect systems

having server scheduling disciplines more sophisticated than Bernoulli schedules. The
complexity of E-limited service is reflected by the mark space ﬁ of the server switching

marked point process. It is worth noting that while ﬁ is more complicated under E-limited
service than it is under Bernoulli schedules, the procedures for developing queue length
pgf’s for these two server scheduling disciplines are remarkably similar. This similarity is
a happy benefit of our analyses originating from the common stochastic framework

developed in Chapter 2.

It would seem natural to, at this juncture, investigate special cases of M/GI/1 vacation
systems with E-limited service. Clearly, setting m* = oo indicates exhaustive service while
setting m* = 1 indicates simple limited service. Recall that exhaustive service was
investigated in a straight forward manner as a special case of Bernoulli schedules.
Investigating exhaustive service as a special case of E-limited service requires development
of limiting arguments relative to m*. Such limiting arguments are obviously unnecessary

to investigate exhaustive service and are considered beyond the scope of this work.

Investigating limited service as a special case of E-limited service is a relatively simple
matter Takagi (1987). However, limited service also appears as a special case of limited
batch service and thus, is developed in the section to follow.

3.3 The M/GI/1 vacation system with limited batch service.

We now introduce the M/GI/1 vacation system with limited batch service. To the

author's knowledge, the limited batch service is not investigated in the available literature;
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thus, the analysis here is thought to be new. This system is a modification of the M/GI/1
vacation system with limited service where customers are served in "batches" of a fixed
size k*. The server scheduling discipline for a system with limited batch service requires
that the server begin a vacation period following the completion of service for each batch of
customers. If upon return from vacation the server finds fewer than k* customers queued
(i.e., an incomplete batch), another vacation begins immediately. The server continues to
operate in this manner until upon return from vacation there are at least k* customers (i.e.,

at least one batch) queued.

When the server returns from vacation to find at least k* customers queued, he begins
service on the batch of customers formed by the first k* customers in line. That is, batches
are served in order of arrival. Clearly, limited batch service reduces to the simple limited

service server scheduling discipline introduced in Chapter 1 when k*=1.

For the M/GI/1 vacation system with limited batch service, it is assumed that the
lengths of batch service periods are independent, identically distributed with distribution
B(t) and the lengths of the server vacation periods are independent, identically distributed
with distribution V(t). It is further assumed that the lengths of batch service periods and
the lengths of server vacation periods are mutually independent and are independent of the
arrival process. The Poisson stream of customers arriving to the system is assumed to

have rate A.

Since the queueing behavior is the M/GI/1 vacation system with limited batch service is
to be examined within the framework of the previous chapter, it is necessary to show that
the limited batch service server scheduling discipline belongs to the class of Markov
schedules. That is, limited batch service must satisfy Conditions 1, 2, and 3. However,
before verifying that Conditions 1, 2, and 3 hold, it is helpful to reexamine the mark space

of the server switching marked point process (H,T).
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When examining the M/GI/1 vacation system with limited batch service, the full

generality of the model developed in Chapter 2 is not required. In particular, let the mark

space E be be restricted such that E = F. Under limited batch service this simplification of
the mark space is convenient since for any given epoch of (H,T), the type (s-type or v-

type) of this epoch depends only upon the most recent previous epoch.

Let the joint queue length / server activity process XR. and the queue length / server
activity marked point process be defined as in Chapter 2. Since the queue capacity here is
infinite (i.e., L = o), it follows that the state space E for the M/GI/1 vacation syste.m with
limited batch service is given by

E=ExZ =FxZ'

Recall that i,j € E are expressible in terms of queue length and server activity components
where,

i=(ipiy and j=(jip
with

iyiy€Z and igjy€ F.

Under limited batch service,the type of the next epoch of (X,T) depends only upon the
present epoch of (X,T). Thus, it follows that forall i,j e E and me Z”,

P{H . =jXepoXmTgpeaTal=P{H_ =j X}

which implies that limited batch service satisfies Condition 1. Let g(i,j) be defined is in

(2.1). It follows that
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H
or
Jg=v,ig<kl, iy =v
g(i,j) =1 or

. . + .
Iy=v,igye Z,i =s

L0, otherwise

(3.107)

Here, we have that the server is either serving a batch of customers or is on vacation.
For limited batch service, the time between any two contiguous epochs of (X,T) must
correspond to either a batch service period with distribution B(t) or a server vacation period
with distribution V(t). Given two contiguous, the server's activity in the period between
them is recognized as either a vacation period or a service period conditioned upon the type
of the more recent of the two epochs and the number of customers queued at the older of
the two epochs. That is, both batch service periods and server vacation periods are such

that forall m e Z+,

XgreeerXms Topers Tm} =P{T_

+1

P{T_, -T,<tlH ~T.StIH_ X}

m+1’

Thus, limited batch service satisfies Condition 2. Following the notation of (2.2) we have

thatforall i,je E,me Z',andt e R’

B(1), ixy=s1€E, g(i,j) =1
F(i,j,t) =3 V(1), jy=v.,i€E, g(ij) =1
0, otherwise ) (3.108)

Since the customer arrival stream is Poisson, it is clear that the interarrival times are
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exponentially distributed and, thus, have the memoryless property. Hence, it follows that
forall ije E,me Z',andt € R,

P{N_

H X X Ty Ty T T =

m+1? -
—P{le—_]NIH X Ty =To=t}

which implies that limited batch service satisfies Condition 3. Following the notation of

(2.3), G(i,j,t) is given by

G(i,jt) =

'—1 +k

(lt) et .. .. ..
P K ms 2K =y
N N *
iytiy
(A) et . ) .
\0’ otherwise . (3.109)

Since Conditions 1, 2, and 3 are satisfied for this example, limited batch service

belongs to the class of Markov schedules. Thus, by Proposition 2.3, any M/GI/1 vacation

system with limited batch service, has a Markov renewal queue length / server activity

marked point process (X,T) and has a semi-regenerative joint queue length / server activity

process XR. .

Substituting (3.107), (3.108), and (3.109) into (3.4) it follows that the

semi-Markov kernel Q(t) corresponding to (X,7) is given by

90



[ jymigte
l(A«U) e-“ +
. >- - L » = . - -
G e ) B ik = iy e Zh iy =
Q(i,j,t) = 4 ‘(a )ju'iu e
u e . .. . .
jo Gy-iy)! V(du), inZigpiy=v,iyeZ',iy=€F
L0, otherwise
(3.110)
forall i,j € E.

Having particularized the semi-Markov kemel Q(t) to model M/GI/1 vacation systems
with limited batch service, it is now feasible to investigate ergodic queueing behavior of
such systems. (Recall that ergodic results exist here since it is assumed that (X,T) is
irreducible and that all states of E are recurrent.) In particular, the ergodic distribution of
queue length as seen immediately following batch service completions, the ergodic queue
length distribution as seen immediately following the server's returns from vacation, and
the ergodic queue length distribution as seen at arbitrary times are investigated.

Nonergodic results are not considered in what follows.

From Proposition 2.4, we have that the marked process X associated the queue length /
server activity marked point process (X,T) forms a Markov chain. Since X is embedded
at all batch service completions and all server vacation completions, the ergodic distribution
of queue length as seen at these epochs is simply the stationary distribution for the Markov
chain X. Note that by Corollary 2.13, the ergodic distribution of queue length as seen at
arbitrary times requires the stationary distribution for X. Hence, the three queue length

distribution of interest for system performance analysis each require that a stationary
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measure on X be calculated.

Since here the state space E is countably infinite, solving for a stationary measure on X
is formidable. Thus, in the development to follow pgf's corresponding to the three queue

length distributions of interest are examined.

Let Q be the collection of one-step transition probabilities associated with the Markov

chain X. Here, Q = lim Q(t). Let the state space E be partitioned as is Corollary 2.8,

tooe

suchthat E=S U Vand S nV =& where,

S={ieE:i =5}
and

V={ie E:i,=v}.

The equations yielding the stationary distribution on X, when partitioned according to the

state space partition described above, are written in matrix form as

_ QS st
[7s 7o) = [%s 7&][ Qe Qu ] 3111

where,

ma(3) = ‘li_r’r‘l.P{nl=j, h=a}

It follows from (3.110) that
[ Qs Qv ]
Q‘[Qw Qu
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and [7s 7] is the stationary distribution on X. Here, for o € F,

r, = [n,(0) = (1) m(2) ..]

where,
Q= 1[0], (3.112)
i 0 vl v2 Vk -1 Vk Vk +1 ]
o Vi vk. vk°+l vk +2
v, v, Vv, \'
k + k +2 k +3
Qy = *
Y10 0 o v v, Vv,
0 0 O 0 v, .
0o o0 0 .. 0 0 v,
¢ : : : : : R (3.113)
( 0 0 0 0 0 0 ]
0 0 O 0 0 0
0 0 O 0 0 0
0 0 0 0
Q =
vs Sy S, S, sk y sk. s, u
0 s, s S., S, S,
0 0 s, s s . s
k -3 k -2 k -1
N d, (3.119)
and
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0 1 2 K -1 k k4
o Vi vk. vx 4 vk +2
A v A\ v,
K+ kK42 k8
Qw= :
0 0 0 ..v, v, v,
o 0 0 .. 0 0 0
0O 0 0 ..O0 0 0
| ¢ : : : : : R (3.115)

where, forj=0, 1, 2, ..,

-] ety

(3.116)

and

(A e
Vj-jo 3 V), (3.117)

Substituting (3.112) through (3.115) into (3.111), we find that for j =0, 1, 2, ...

k.+j
()= Laos
k=k (3.118)

and

()= 7() + LAV,
k=0 (3.119)

where,
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j
(Elrv(k)vj_k, j<k’
N k=0
r(d) =1,
2rv. , j2k".
{ k=0 k -k+j

Now, define the following geometric transforms:

11(2) = Yr ()2’

i=0

and

I(z) = Xry(i)z’ .
j=0

Substituting (3.118) into (3.120) gives

I(z) = iz{ z r(k)s __kﬂ.)

=0 ek’

while substituting (3.119) into (3.121) gives

I1.(z) = 22{70) + 27[5( k)vj—kJ
j=0 k=0 :

(3.120)

(3.121)

(3.122)

(3.123)

Interchanging the order of summations respectively in (3.122) and (3.123) in the usual way

allows the geometric transforms [1 (z) and II(z) to be written as
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I(z) = E(sz)nv(z) - Ef‘z—.)va( i)’
Z ¥4 =0
and

k -1
1,2) = V@I (2) + V(2 L7
j=0

where, §(z) and V(z) are given by

E(z)=22’] (lt)j!c_“B(dI) _ J'e‘“'“)'B(dt)
j0 © 0

and

v( )= 2 j (A«t) e_ztv(dt) Ie—(l-lz)tv(dt)

Solving (3.124) and (3.125) simultaneously yields

r;(z)(v(z) 2 ()2

II(2) =
{2 = z —ﬁ(z V(2 j=

and

V(z)(z". - E(z)) o “ i
(z) = —= 2,7
V) 2t -B@2)V(2) j=o”V(J)z )

(3.129)

(3.125)

(3.126)

(3.127)
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Note that while (3.126) and (3.127) are geometric transforms, neither is necessarily a pgf.
The values taken by the constants 7 (0),7 (1),..., 7,(k — 1) determine whether or not
either (3.126) or (3.127) defines a pgf. The values of 7(0),x(1),..., 7 (k" — 1)
required to make (3.126) a pgf are generally different than those values required to make

(3.127) a pgf.

Applying the same reasoning as was presented for the M/GI/1 vacation with Bernoulli

schedules, we have that when 7, (0),7 (1),..., 7rv( k’ — 1) are chosen such that

V(z) — K -1 .
_ i BO(V@ - 1) 3 x (e’

1 .
M 22 —B(2)V(2) i

then [1(z) is the pgf for the queue length as seen immediately following batch service

completions. Similarly, when 7, (0),7 (1),..., ﬂ.’v( k" — 1) are chosen such that

© ¥ -1 .
= lim v(z.)(z ’2) 2 x )z
M 22 —B(2)V(2) jo

1
then II(z)is the pgf of the queue length as seen immediately following the server's
returns from vacation. For the M/GI/1 vacation with limited batch service, determining
values for the constants 7,(0),7 (1),..., 7, (k" — 1) such that [T (z) and IT(z) are pgf's
is analogous to the task of determining constants for the pgf's developed for M/GI/1

vacation systems with E-limited service.

A routine application of Rouche's theorem to I1(z) and II(z) yields a set of K*

simultaneous equations for each of the two pgf's. These two sets of k* simultaneous
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equations may be solved independently of one another for the respective values of

70,z (D,..., 7 (k" ~ 1) that are required for IT(z) and I1(2) to be pgf's.
However, the focus of this section is directed towards showing that the M/GI/1/L vacation
system with Markov schedules can be particularized so as to capture the queueing behavior
of M/GI/1 vacation systems with limited batch service. As a matter of convenience we omit
the extensive algebra required to obtain the sets of simultaneous equations described above,
and let the pgf for the queue length as seen immediately following batch service
completions and the pgf for the queue length as seen immediately following the server's

return form vacations be written as in (3.126) and (3.127) respectively.

At this juncture, we are positioned to develop the pgf for queue length as seen at
arbitrary times. Before developing this pgf , it is convenient to examine a special case of the
M/GI/1 vacation system with limited batch service. While this special case is somewhat of
an aside, the brief development to follow affords us the opportunity to, in part, verify

(3.126) by particularizing to a simple system that appears in the literature.

Note that when k™* = 1 (i.e., batches consist of a single customer) we obtain the M/GI/1
vacation system with simple limited service, introduced in Chapter 1. It follows directly
from (3.126) and (3.127) that, for limited service, the pgf for the queue length as seen
immediately following customer service completions and the pgf as seen immediately

following the server's return from vacation are given respectively by

_ 3@)(V@)-1)

I1{z) ==~ SoVe ™ 0 (3.128)
and
_ Y@)(z-5@)
,(z) = 2 - 3@V 7,(0) (3.129)
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where, B(z) is replaced by §(z).

(Since we have defined both I1(z) and IT(z) to be pgf's, it follows from our previous
reasoning that (0) takes different values in (3.128) and (3.129)

First, consider [1(z) the pgf for the queue length as seen immediately following
customer service completions . It is a simple matter to to evaluate the constant r.(0).

Since we have that

lim [I(z) =1,

zh

an application of L'Hopital's rule shows that

- 7,0 (8(2)V(2) + 5(2)(V(2) - 1))
" 1-(3@V(2 +32V(©2)

(3.130)

where the prime diacritical mark indicates differentiation with respect to z. Let S denote
the expected length of a customer service period and V denote the expected length of a
server vacation period. Recall that §(1) = A8 and V(1) = AV. Rearranging (3.130)
gives

_1-p-AV

(0 = — (3.131)

where, p = AS defines the traffic intensity. Now substituting (3.131) into (3.130) gives
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1-p -2V 3@)(V(z)-1)
AV z-3@) V() -

II(z) = (3.132)

Now, consider {I,(z) the pgf of the queue length as seen immediately following the

server's returns from vacation. With I7,(z) given as a generating function, it follows that

lim IT(z)=1,

T

Thus, applying L'Hopital's rule we have that

- w5 0(V@(1-3@) + V(2(z- 5(2))
1=Iim

T 1- 83@)V(2) +S@2)V(2)) (3.133)

It now follows from (3.133) that the value of m,(0) required for lim IT(z) = 1is given
zh

by
1-p—-AV
m(0) = 57 (3.134)
Substituting (3.134) into (3.129) we have that
1-p-AV -
M= =2 - Y2z - %(2) (3.135)

1-p z-32)V(2)

Since the M/GI/1 vacation system with limited service requires that customers are
served one at a time, we have the the queue length as seen immediately following customer
service completions is distributed the same as the queue length as seen at arbitrary times.

Thus, it follows that the pgf of the queue length as seen at arbitrary times is given by
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(3.132). Further, under limited service, this system satisfies the conditions of Proposition
3.1 and the distributional form of Little's law holds. With W(c') defined as the Laplace-

Stieltjes transform of the customer waiting time distribution, we have that
nz) =W(A - 12)_ (3.136)

Thus, (3.136) together with (3.132) gives

_1-p -4V §'(o)(1 - V(o))
W) =< 35wV -D (3.137)

where, as in (3.75) and (3.76), S'(o) and V°(o) are the Laplace-Stieltjes transforms of

S(t) and V(t) respectively.

In the analysis of the M/GI/1 vacation system with limited service, (3.132) and (3.137)
agree with results reported by Takagi (1987). The pgf for the queue length as seen
immediately following the server's returns from vacation given by (3.135) appears to be
new. At this juncture, discussion of the M/GI/1 vacation system with limited service is
concluded and we return to the more general M/GI/1 vacation system with limited batch

service.

The example vacation systems considered thus far serve customers in a one at at time
fashion. For such systems, the pgf for the queue length as seen at arbitrary times is known
to equal the pgf for the queue length as seen immediately following customer service
completions. Thus, developing queue length pgf's for these vacation systems has required
examining only the Markov chain X associated with the queue length / server activity

marked point process (X,T). It is clear that when k™ is greater that 1 in limited batch
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service systems, customers are not served in a one at a time fashion. Hence, for this
system, we must appeal to Corollary 2.13 and the joint queue length / server activity

process XR, in order to investigate the pgf for the queue length as seen at arbitrary times.

Let XR . and (X,T) be defined as in Theorem 2.12. Since (X,T) is here assumed to
be irreducible and to have a stationary distribution, it follows from (2.22) that for all je E

: : 1 T ,
lim P{X = j}= Hzn(k)jop{x, =jI T,> t,X, =k}P{T, >t IX, =k}dt

toe keE

(3.138)
where © is the stationary distribution on the Markov chain X. Here, some notation is

introduced so as to simplify the development to follow. For all je E, let

n(j) = lim P{X, =]}
and forall i,j € E, let
B(i.j) = | P{X, =jI T, >t,X, = k}P{T,> t 1X, =k}t
0
When the state space E is partitioned by the sets S and V as in Corollary 2.8, it follows

from (3.138) that the stationary distribution of the joint queue length / server activity

process XR . is given by

_ 1 [Bs BW]
[nsnv]—n’m[”sﬂgf] BVs BW (3.139)

Here, for x € F,
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Ma = [M,(0) (D) n,(2) ..]
with

Ma(j) = lim P{n,=jh = a}, j=012,..
andforall¢, B € F, i,j =0,L2,...

B, (i) =IOP{nl =jh,= BIT,>tN,=i,H,= a}
- P{T,>tIN,=iH, = a}dt (3.140)

Itis clear that whenever T, > t,itmust be that h, =H,. Thus, for i,j =0,12,...,

B (i) = Bos(ij) = 0.

It now follows from (3.140) that

B, =B, =[0]. (3.141)

Further, (3.140) implies that
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’ao a, a, ak._l
0 a, a a..
0 0 a, ak,_3
Bs=10 0 0 .. a,
0 0 O . 0
0 0 O . 0
0 0 O . 0
and
i 0o 2, 3, ak.~l a
0 ak._2 a
0 0 a a., a.,
k -3
Bw=[0 0 0 .. a, a
0O 0 O . 0 c
0 0 O . 0 0
0 0 O . 0 0
where forj =0, 1, 2, ..,
-t
,f (M)e S (- V()de
and
-At
._J (’h)c e OL

(3.142)

(3.143)

(3.149)

(3.145)
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Given the notation above, it is straight a forward matter to examine the queue length
distribution as seen at arbitrary times. Let k¥ be the vector of queue length probabilities

when the system is observed at arbitrary times. Here,

x =[x(0) x(1 x(2) ..] (3.146)
with
k(j) = bm P{n, =j} j=0,12... (3.147)

It follows directly from Corollary 2.13 that Kk (j) is given by

x() = n) + 7G)» i=0.12... (3.148)

Here, (3.148) taken together with (3.139), (3.142), and (3.143) shows that k (j) can be

written as
i
. 1 .
x(j) = ﬂ;(5 (4) + 2 ml k)a,--xJ, forj=0,1,2,.. (3.149)
k=0
where,
(]
2r(Ka,,, j<k'
) k=0
5(1) =<{ .

k -1 j
Yra, + 2 r ke, ,, jk°
k=0 .

k=k

Defining K(z) as the pgf of the queue length as seen at arbitrary times, we have that
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K(2) =2 x(j)z’, (3.150)
j=0

hence, it follows from (3.149) and (3.150) that

1 N i 5 ;
K(2)= —,r—mjzoz (5(1) + E"s( k)a,-—xJ (3.151)

Let [T (z) and I1(z) be given by (3.120) and (3.121) respectively. Distributing the outer
summation on the right hand side of (3.151) and the interchanging the order of summations

in the usual manner, (3.151) can be rewritten as

K-
K(2) = ﬂLm{K(z)ns(z) + (D (2) + (A(z) - C(2) Zﬂv(j)zj) (3.152)
j=0
where,

A =- 2 = --(1-).1)1_\/ d
® ?‘:;a’z joe (1=Viod (3.153)

and

C@) = Xe,2 = [e 21— B)dr | (3.154)
0

=0

Substituting (3.126) and (3.127) into (3.152) and rearranging, it follows that
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15 2 (@ + @)V - 1) - K2A®)
K(z)=[ﬁ§ﬂv(1)2)- > B2V =3 (3.155)

With (3.155) we have the pgf for the queue length as seen at arbitrary times and for the
M/GI/1 vacation system with limited batch service, it remains only to evaluate the constants
appearing in (3.155). A straight forward approach to evaluating these constants is to first

examine 7 m. It follows from Theorem 2.12 that for the (X,T) process,

xm=V2r(j)+ VZMJ’) + Ez_"v(j) (3.156)

=0 j=k

where B is the expected length of the service time for a batch of customers and V is the

expected length of the server's vacations. Observe that

2nyj) = lim P{H, =5}
=0 (3.157)

and

27,(j) = lim P{H, = v}
=0 (3.158)

where, (3.157) gives the stationary probability that the queue length is observed
immediately following a batch service completion and (3.158) gives the stationary
probability that the queue length is observed immediately following the server's return form
vacation. The probabilities of (3.157) and (3.15) will be treated by examining the pgf for

the queue length as seen immediately following either batch service completions or the
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server's returns from vacation.
Let 7 (j) be the stationary probability that the queue length is j when observed

immediately following either batch service completions or the server's returns from

vacation. It follows that
z(j) = () + m(j) (3.159)

Define I1(z) as the pgf of the queue length embedded at both batch service completions

and vacation completions where

M(z) =2 x()z (3.160)

j=0

Substituting (3.159) into (3.160) yields

@)= Y2 n) + n,0) .
j=0 (3.161)

and it is easily recognized that
II(z) = [IS(Z) + IZ,(Z) (3.162)

Here, IL(z) and I1,(z) are the geometric transforms given by (3.126) and (3.127)
respectively. Since IT(z) is a pgf, it follows from (3.162) that

1= hrTx} (I1(2) + I1(2)) (3.163)
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For convenience, we adopt the notation that

I1(1) = lim I1(2)
zT1

and

) = lim M,@).
2Tt

It now follows that (3.156) can be rewritten as

7 m=VILW + B0 +(V -B) Lr(j)

(3.164)
whenever the constants ,(0),x (1), ..., (k" — 1) are chosen such that
lim IT(z)=1.
zT
Here, substituting (3.126) and (3.127) into (3.162) we have that
H(Z) _ k.z_l” (j)Zj . Zk'V(z) - E(Z)
2 v (3.165)

By applying Rouche's theorem to (3.165) in the usual manner, it is a routine, but
lengthy, matter to evaluate the the constants 7.(0),7 (D),..., (k" — 1) such that

lim IT(z) = 1. Asa matter of convenience, evaluation of these constants is omitted.
T
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In order to rewrite K(z), the pgf of the queue length as seen at arbitrary times, in a

convenient form, we introduce the following Laplace-Stieltjes transforms.

B'(0) = Jo;“‘B(dt), (3.166)

V(o) = jo;""V(dt), (3.167)

C'o) = fo;*"(l - B(y)dt (3.168)
and

Ao) = [0;*“(1 - V()dt (3.169)

From elementary properties of Laplace-Stieltjes transforms, it is can be shown that

. 1 B'(o)
C(o) = o o (3.170)
and
Aty =L - YO (3.171)
Recalling that

B(z)=B(A- 12)
Vz)= V(2 - 12),
Ca=C(A-1z),

and
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A@)=A(A- 12),
it follows that substituting (3.164) and (3.168) through (3.171) into (3.155) gives

K(2) = — - Z_frvo‘)z"
(- Az)[(V - §)(ns(1) + Z:g,(j)) + §J =

i

_ (Vi(A-212)- DB(1L - 22)(z*° + 1)

z* = B(1 - Az2) V(A - 1z)

(3.172)

where, the constants 7,(0),7 (1),..., m,(k" — 1) are chosen such that lim IT(z) = 1.
zTi

Since M/GI/1 vacation systems with limited batch service fail to satisfy the conditions
of Proposition 3.1, the distributional form of Little's law does not hold here and no
Laplace-Stieltjes transform for the customer waiting time distribution is available.
However, given the queue length pgf of (3.172), it is a simple matter to calculate the
expected customer waiting time by applying the customary form of Little's law. Let T be

the waiting time for an arbitrary customer. Little's law requires that

. dK
E[T]:%hg} dz(z). (3.173)

The calculation indicated by (3.173) is tedious; since K (z) is of indeterminate form,
finding E[T] requires multiple application of L'Hopital's rule. The application of Little's
law in queueing systems is well studied and is presented in most elementary queueing

theory texts. Refinements of (3.173) are considered outside the scope of this work.
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Excepting our examination of simple limited service systems, the results presented in
this section are new. It is here worth restating that the ergodic queueing behavior of
systems operating with limited batch service is not completely characterized by the Markov
chain X. Investigation of the queue length distribution as seen at arbitrary times requires
that the semi-regenerative nature of the joint queue length / server activity process XR. be
exploited. For this reason, limited batch service represents the most sophisticated server
scheduling discipline considered in this chapter. This completes our investigation of

M/GJ/1 vacation systems with limited batch service.
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4. Conclusions and Recommendations for Future Research

Vacation systems represent an important class of queueing models having application in
both computer communication systems and integrated manufacturing systems. By
specifying an appropriate server scheduling discipline, vacation systems are easily
particularized to model many practical situations where a server's effort is divided between

primary and secondary customers.

The queueing literature reviewed in Chapter 1 offers performance analyses for M/GI/1
vacation systems operating under a variety of server scheduling disciplines. These analyses
are not derived as particularizations of some general model for the M/GI/1/L vacation
system. Rather, each author exploits certain "special tricks” that are uniquely applicable to
the particular server scheduling discipline under investigation to yield desired results. The
absence of a general model suggests that performance analysis of vacation systems must be

considered on a case by case basis.

The development of a general stochastic framework that subsumes a wide variety of
server scheduling disciplines (including those introduced in Chapter 1) for M/GI/1/L
vacation systems is the focus of this research. In Chapter 2 we have identified a class of
server scheduling disciplines that we denote as Markov schedules. Characterization of the
class of Markov schedules is new. Chapter 2 provides a formal characterization of the

stochastic behavior of M/GI/1/L vacation systems having Markov schedules.
A "bottom-up" approach has been taken in developing a stochastic process that

describes the queueing characteristics of M/GI/1/L vacation systems with Markov

schedules. This process, called the joint queue length | server activity process, is shown
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to have embedded within it the queue length / server activity marked point process. The
queue length / server activity marked point process is constructed from more fundamental
stochastic processes on which probability structures of practical significance are easily

defined.

Beginning with formal definitions for the server switching point process and the
queue length process, Section 2.2 offers a detailed development of the queue length /
server activity marked point process and identifies it as a stochastic process embedded
within the joint queue length / server activity process at all service period completions and

vacation period completions.

Section 2.3 presents the development of the probability structure on the queue length /
server activity marked point process. Here, three conditions that define Markov schedules
are presented. It is then shown that when the server scheduling discipline for an M/GI/1/L
vacation system satisfies these conditions, the queue length / server activity marked point
process is Markov renewal. Further, it is shown that the queue length /server activity
marked point process also forms a Markov renewal process when embedded only at service
period completion epochs or embedded only at vacation period completion epochs. This

fact is exploited often when analyzing the example vacation systems of Chapter 3.

The probability structure on the joint queue length / server activity process is developed
in Section 2.4. It is shown that when the server scheduling discipline for an M/GI/1/L
vacation system belongs to the class of Markov schedules, service period completion times
and vacation period completion times are stopping times for the joint queue length / server
activity process, and consequently the process is semi-regenerative. Theorem 2.11 is the

principal result of Chapter 2, offering a characterization of the queueing behavior for
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M/GI/1/L vacation systems over all time. Theorem 2.12 and Corollary 2.13 provide

formulae that are convenient computational tools for examining ergodic queueing behavior.

The probability structure associated with M/GI/1/L vacation systems having Markov
schedules presented in Chapter 2 is new. Investigation of the joint queue length / server
activity process forms the cornerstone of this research. The semi-regenerative nature of this
process allows characterization of the ergodic queue length as seen at arbitrary times with
computational formulae that are relatively simple. The joint queue length / server activity
process can be particularized to capture most server scheduling disciplines investigated by
other authors, and is sufficiently general to characterize more sophisticated server

scheduling (e.g., batch service systems) that do not appear in the literature.

It is worth noting that Theorem 2.12 and Corollary 2.13 provide useful computational
formulae that accommodate systems having either finite or infinite queue capacities. In the
case of finite queue capacities, these results are easily applied. There is little literature
available regarding vacation systems with finite queue capacities, and the results of Chapter

2 offer a powerful theory for analyzing such systems.

The general probability structure underlying M/GI/1/L vacation systems with Markov
schedules is particularized, in Chapter 3, to examine the queueing behavior of three
example vacation system. These example systems are presented so as to demonstrate both
the validity and usefulness of the general probability structure developed in Chapter 2. The
ergodic queueing behavior of these systems is examined by developing certain queue length

probability generating functions (pgf's) that are of practical importance.

In Section 3.1, the ergodic queueing behavior of the M/GI/1 vacation system having

Bernoulli schedules is examined. Expressions for the queue length pgf's as seen
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immediately following service completions, immediately following vacation completions,
and at arbitrary times are developed. The expressions for these three pgf's do not appear in
the literature and are presumed new. However, exhaustive service is a special case of
Bernoulli schedules; it is shown that when particularized to reflect exhaustive service, the
expression for the pgf of queue length as seen at arbitrary times agrees with results found

in the literature.

In Section 3.2, the ergodic queueing behavior of the M/GI/1 vacation system with E-
limited service is examined. Expressions for the queue length pgf's as seen immediately
following service completions, immediately following vacation completions, and at
arbitrary times are developed. E-limited service is such that the pgf for queue length as
seen immediately following service completions is the same as the pgf for queue length as
seen at arbitrary times. Expressions for these pgf's agree with results presented by Takagi
(1987). The expression for the pgf of queue length as seen immediately following the

server's returns from vacation is new.

Bernoulli schedules and E-limited service belong to the class of server scheduling
disciplines in which customers are served in a one at a time fashion. For queueing systems
having such server scheduling disciplines, it is well known that the ergodic queue length as
seen at arbitrary times can be studied by examining the Markov chain embedded within the
joint queue length / server activity process immediately following service completions.
Thus, the example systems considered of Sections 3.1 and 3.2 are analyzed via the Markov
chain X embedded within the queue length / server activity marked point process (X,T).
It is unnecessary to analyze systems having limited to one type service via the semi-

regenerative joint queue length / server activity process XR. .
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Unlike vacation systems having limited to one type service, the ergodic queue length as
seen at arbitrary times is not the same as the ergodic queue length as seen immediately
following service completions for batch service systems. The ergodic queue length as seen
at arbitrary times for batch service systems, having server scheduling disciplines belonging
to the class of Markov schedules, must be examined via the stationary distribution of the
joint queue length / server activity process XR¢ . To the author's knowledge, vacation
systems having server scheduling disciplines other than the limited to one type do not

appear in the literature.

In Section 3.3, we examine the ergodic queueing behavior of the M/GI/1 vacation
system with limited batch service. Expressions for the queue length pgf's as seen
immediately following service completions, immediately following vacation completions,
and at arbitrary times are developed. The limited batch service server scheduling discipline
does not appear in the literature, and to the author's knowledge its introduction here
represents the first analysis of a vacation system having a server scheduling that is not of
the limited to one type. Thus, the expressions for the three above mentioned pgf's are

presumed new.

The M/GI/1 vacation system with limited batch service subsumes, as a special case, the
simple limited service server scheduling discipline when batches are of size one. In this
special case, the pgf of ergodic queue length as seen at arbitrary times agrees with results

appearing in the literature Takagi (1987).

For each of the example vacation systems considered in Chapter 3, the procedure for
developing the ergodic queue length pgf's is the same. Unlike the analyses appearing in
the literature, no "special tricks" particular to any of the systems is required for these

developments. The procedure for developing the queue length pgf's for these vacation
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system begins with identification of the appropriate dimensions for the state space E of the
joint queue length / server activity process XR.. It is then straight forward to form a pair
of simultaneous equations that when solved yield geometric transforms that, under the
appropriate boundary conditions, are the queue length pgf's as seen immediately following

service completions and immediately following vacation completions.

In the case of batch service we have that the queue length pgf as seen at arbitrary times
is not the same as the queue length pgf as seen immediately following service completions,
and the former pgf is obtained following a simple linear transformation on the stationary

distribution of (X,T) the queue length / server activity marked point process.

It is important to note that the queue length pgf's developed in Chapter 3 are attainable
since the vacation systems under consideration are such that: 1) the queue capacity is
infinite, 2) customer service times are independent and identically distributed, 3) server
vacation times are independent and identically distributed, and 4) the length of service
periods and the length of vacation periods are mutually independent. When any of these
four characteristics is relaxed for M/GI/1 vacation systems with Markov schedules, pgf's
are difficult, if not impossible, to obtain. However, Theorem 2.12 and Corollary 2.13 still
apply and offer a somewhat less convenient characterization of the ergodic queueing

behavior.

The probability structure underlying M/GI/1/L vacation systems with Markov
schedules, developed in Chapter 2, suggests a number of possibly interesting extensions to
the present research. In the discussion to follow, no formal exposition of such extensions
is presented; rather, possible future research topics, presented in no particular order of

importance, are informally discussed.
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Given the generality exhibited by the class of Markov schedules, it is a simple matter to
identify for M/GI/1/L vacation systems many practical server scheduling disciplines
belonging to the class of Markov schedules that do not, as yet, appear in the literature. In
particular, batch service vacation systems, examined in this work only under the limited
batch service server scheduling, are of significant practical importance. However, batch-
type server scheduling disciplines require much further investigation. While such
investigations are simply applications of the theory of M/GI/1/L with Markov schedules, it
seems reasonable that there exist many important results to be discovered for particular

vacation systems.

For our work thus far, the focus has been limited to simple vacation systems; that is,
vacation systems where customers, upon completing service, depart the system never to
return. There exist situations, however, where customers, upon completing service, may
rejoin the queue and await further service. Such systems are here referred to as vacation
systems with instantaneous feedback. In situations where the feedback mechanism is a
Bernoulli switch, Disney and Keissler (1987), the probability structure of Chapter 2

appears to directly apply.

In situations where the feedback mechanism is more sophisticated than a Bernoulli
switch, it may be possible to classify certain server scheduling disciplines as belonging to
the class of Markov schedules; however, this may require extending E the state space of the
queue length / server activity marked point process (X,T) beyond the present definition.
In particular, more sophisticated feedback mechanisms may require extending the
dimension of the random vector h to include additional random variables in order to satisfy
Conditions 1, 2, and 3 and thus belong to the class of Markov schedules. The study of

feedback vacation systems having Markov schedules is an open issue.
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The notion of extending the definition of the queue length / server activity marked point
process (X,T) and its state space E so that Markov schedules are defined for server
scheduling disciplines of systems other than the simple vacation systems examined in this
work suggests an approach to investigating single server, multiple queue systems.
Examples of single server, multiple queue systems of practical importance are found in

vacation systems having priority services and polling systems.

Single server, multiple queue systems, under their most general description, operate as
follows. A fixed number of queues are attended by a single server. Customers arrive to
each queue according to a stochastic process (that can be different for each queue).
Customer service times are drawn from general distributions. Under specified conditions
the server, upon completion of a customer service, will abandon further customer service to
begin a walk of random length leading to some queue in the system. Upon completing a
walk, the server will, under specified conditions, either begin a customer service or begin

another walk.

For convenience, we here restrict our attention to single server, multiple queue system
(consisting of M queues) having mutually independent arrival streams, and having server

activity such that the lengths of all walk times and service times are mutually independent.

It is clear that the server's activity is divided exclusively between walking between
queues and serving customers. Given this observation, it is a simple matter to extend our
present definition of the mark space for the server switching marked point process to reflect
the server's behavior in multiple queue systems. That is, server switching epochs are

marked by either sj or vi ,i =1, 2, ..., M. Here, s; indicates a service completion at queue
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i while vj indicates a walk completion ending at queue i.

It is also a simple matter to extend our present definition of the queue length process ng
to account for multiple queues. Here, let n; be the M-vector of queue lengths at time t. This
extension of the queue length process together with the extension to the server switching
marked point process infer extensions to both the joint queue length / server activity

process XR, and the queue length / server activity marked point process (X,T).

With the above described extensions, Conditions 1, 2, and 3 define a class of Markov
schedules for multiple queue systems. It appears (though it has not been shown) that the
results presented Chapter 2 are unaltered under the extension to single sever, multiple
queue systems. That is, vacation systems having Markov schedules appear to be a special

case of single server, multiple queue systems having Markov schedules.

Accepting that all results of Chapter 2 extend to single server, multiple queue systems,
much research remains in order to quantify the queueing behavior of such systems. In the
multiple queue environment, probability generating functions are necessarily
multidimensional. Intuition suggests that construction of multidimensional transforms will
be unfeasible for all but the most simple server scheduling disciplines. Hence, the value of
transform results in the multiple queue environment may be limited. For this reason it
would seem that future research efforts for single server, multiple queue systems should be
directed towards exploiting the theory of Chapter 2 in developing qualitative system
performance measures. The underlying probability structure associated with systems
having Markov schedules appears promising for answering such qualitative questions as
ordering server scheduling disciplines according to increasing system throughput, or

comparing priority schedules to determine minimum server idle time.
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Given the complexity of the state space E for the joint queue length / server activity
process XR. for single server, multiple queue systems, it is perhaps unreasonable to seek
performance measures that generate numbers. Characterization of the probability structure
of stochastic processes associated with queueing systems having Markov schedules offers
the promise of studying the performance of a wide variety of practical, non-elementary
single server, multiple queue systems via qualitative measures. Much research remains in
identifying how such qualitative measures can be developed from the underlying stochastic

processes that govern the queueing behavior of these systems.

Finally, it should be noted that the characterization of customer waiting times is an open
research issue. Sections 3.1 and 3.2 offer example systems where customers are served in
a one at a time fashion. For such systems, it was shown that the distributional form of
Little's law holds, and customer waiting times can be investigated via the pgf of queue
length as seen at arbitrary times. Many systems of practical interest fail to satisfy the
conditions of Proposition 3.1, and for these systems the distributional form of Little's law

is of little value.

Much research is needed to characterize the customer waiting time distributions of
systems for which the distributional form of Little's law does not apply. When the queue
length / server activity process is Markov renewal, customer waiting times appear to be
readily formulated as first passage times of the Markov renewal process. Thus, the
underlying Markov renewal structure of vacation systems having Markov schedules may
provide the framework necessary to study ergodic customer waiting times. Such analyses
may extend to single server, multiple queue systems having Markov schedules, owing that

these systems are characterized by an underlying Markov renewal process.
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