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Voluntary vaccination policies for childhood diseases present par-
ents with a subtle challenge: if a sufficient proportion of the
population is already immune, either naturally or by vaccination,
then even the slightest risk associated with vaccination will out-
weigh the risk from infection. As a result, individual self-interest
might preclude complete eradication of a vaccine-preventable
disease. We show that a formal game theoretical analysis of this
problem leads to new insights that help to explain human decision-
making with respect to vaccination. Increases in perceived vaccine
risk will tend to induce larger declines in vaccine uptake for
pathogens that cause more secondary infections (such as measles
and pertussis). After a vaccine scare, even if perceived vaccine risk
is greatly reduced, it will be relatively difficult to restore prescare
vaccine coverage levels.

The history of vaccination policy includes numerous bouts of
public resistance, often in the form of vaccine scares (1–4).

In the United Kingdom, for example, a pertussis vaccine scare
in the 1970s caused a decline in the level of vaccine coverage,
resulting in substantial increases in morbidity and mortality from
whooping cough (4). Currently, measles–mumps–rubella vaccine
uptake is declining in the United Kingdom, with mounting
concern that widespread outbreaks of measles may recur (5).

In deciding whether to vaccinate their children, parents con-
sider the risk of morbidity from vaccination, the probability that
their child will become infected, and the risk of morbidity from
such an infection. The decisions of individual parents are
indirectly influenced by the decisions of all other parents,
because the sum of these decisions yields the vaccine coverage
levels in the population and hence the course of epidemics.

Game theory (6–9) attempts to predict individual behavior in
such a setting, where the payoff to strategies chosen by individ-
uals depends on the strategies adopted by others in the popu-
lation. Here, we integrate epidemic modeling (10) into a game
theoretical framework to analyze population behavior under
voluntary vaccination policies for childhood diseases. This ap-
proach allows us to quantify how risk perception influences
expected vaccine uptake and coverage levels and what role is
played by the epidemiological characteristics of the pathogens.

The Vaccination Game
Description of Game. For simplicity, we imagine that all individuals
are provided with the same information and use this information
in the same way to assess risks. An individual’s strategy is the
probability P that s�he will choose to vaccinate. The vaccine
uptake level in the population is the proportion of newborns who
will be vaccinated and hence is the mean of all strategies adopted
by individuals in the population. We ignore any delay between
changes in vaccine uptake and corresponding changes in overall
vaccine coverage in the population; consequently, if no disease-
related or vaccine-related mortality occurs, then the proportion
of the population vaccinated, p, will be equal to the vaccine
uptake level.

The payoff to an individual will be greater when morbidity risk
(probability of adverse consequences) is lower. We use rv and ri
to denote the morbidity risks from vaccination and infection,
respectively, and �p to denote the probability that an unvacci-
nated individual will eventually be infected if the vaccine cov-
erage level in the population is p. With this notation, the payoff

is �rv to a vaccinated individual and �ri�p to an unvaccinated
individual. Thus, the strategy of vaccinating with probability P
yields expected payoff

E�P, p� � P��rv� � �1 � P� ��r i�p� . [1]

In the context of vaccination, parents act according to perceived
morbidity risks, which may differ significantly from actual mor-
bidity risks (3, 11). Consequently, we interpret ri and rv as the
perceived morbidity risks from infection and vaccination and
E(P, p) as the perceived payoff. The game is unchanged if we
scale the payoff function by a constant. Therefore, we can
eliminate one of the parameters, leaving only the relative risk,
r � rv�ri. Thus, we can write

E�P, p� � �rP � �p�1 � P� . [2]

Characterization of Nash Equilibria. We now seek to identify which
strategies are likely to be adopted. If most of the population
adopts strategy P, and individuals that adopt any other strategy
Q always obtain a lower payoff than those adopting P, then P is
said to be a Nash equilibrium. In contrast, if most individuals
adopt strategy Q, but individuals adopting a strategy that is
closer than Q to P obtain a higher payoff than those adopting Q
(and those adopting a strategy further from P obtain a lower
payoff), and if this is true for any Q � P, then P is said to be
convergently stable. If P is a Nash equilibrium, and everyone is
currently playing P, then no one should change strategy. If P is
convergently stable, then regardless of what strategy is most
common in the population, individuals should start to play
strategies closer to P, and ultimately adopt P. It is generally
expected that a strategy observed in a real population (12) must
be a convergently stable Nash equilibrium (CSNE).

Suppose that a proportion � of the population vaccinates with
probability P and the remainder vaccinate with probability Q.
Because we ignore any difference between vaccine uptake, �P �
(1 � �)Q, and overall vaccine coverage in the population, p, we
can always write

p � �P � �1 � ��Q. [3]

The payoff to individuals playing P is, therefore,

EP�P, Q, �� � E�P, �P � �1 � ��Q�, [4]

whereas the payoff to individuals playing Q is

EQ�P, Q, �� � E�Q, �P � �1 � ��Q�. [5]

The payoff gain to an individual playing P in such a population
is

�E � EP � EQ � ���P��1���Q � r	�P � Q�. [6]
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The payoff gain �E is a measure of the incentive for an individual
to change strategies from Q to P. For any given relative risk, r,
there is a unique strategy P � P*, such that �E is strictly positive
for all strategies Q � P* and all proportions �, where 0 � � 

1 (see Appendix for a proof). The special case of this fact for small
proportions playing Q (� near 1) implies that P* is a Nash
equilibrium. We also show in Appendix that, if neither P nor Q
is equal to the Nash equilibrium P*, but P is closer than Q to P*,
then �E � 0, implying that P* is convergently stable and hence
a CSNE.

The unique CSNE in this vaccination game is easily found (see
Appendix). If the vaccine is perceived to be sufficiently risky (r �
�0) then the CSNE is ‘‘never vaccinate’’ (P* � 0). In contrast, if
r 
 �0, then the CSNE is ‘‘vaccinate with nonzero probability P*’’
(0 
 P* 
 1). In the latter case, the CSNE is said to be mixed
(as opposed to the pure strategies P � 0 and P � 1).

Incorporation of an Epidemic Model
To make more precise predictions, we must specify the infection
probability �p. For this, we need an epidemiological model. We
use a standard three-compartment model in which individuals
are either susceptible to the disease (S), infectious (I), or
recovered to a state of lifelong immunity (R). This SIR model,
and variants thereof, are widely used in modeling childhood
diseases (10, 13). The model is specified by the rates of change
of the proportions of the population in each compartment.

dS
dt

� ��1 � p� � 	SI � �S [7]

dI
dt

� 	SI � 
I � �I [8]

dR
dt

� �p � 
I � �R [9]

Here, � is the mean birth and death rate, 	 is the mean transmission
rate, 1�
 is the mean infectious period, and p is the vaccine uptake
level (assuming, for simplicity, that individuals are never infected
before being vaccinated). Once a dynamical steady state is reached,
the vaccine coverage level in the population will equal the uptake
level. Because we shall focus on the steady-state solution of the
model, our notation p for vaccine uptake is consistent with our
notation in the game theoretical analysis (compare Eq. 3).

The third equation in the SIR model above is superfluous
because S � I � R � 1. The remaining two equations can be
written in a convenient, dimensionless form,

dS
d�

� f�1 � p� � R0 �1 � f�SI � fS, [10]

dI
d�

� R0 �1 � f�SI � �1 � f�I, [11]

where � � t�
 is time measured in units of the mean infectious
period, f � ��
 is the infectious period as a fraction of mean
lifetime, and R0 � 	�(
 � �) is the basic reproductive ratio (the
average number of secondary cases produced by a typical
primary case in a fully susceptible population). For childhood
diseases, f 
 0.001 and R0 � 5–20 (e.g., ref. 10).

The predictions of the SIR model depend on the critical
coverage level that eliminates the disease from the population
(10), pcrit, which itself is a function of R0.

pcrit � � 0 if R0 � 1

1 �
1

R0
if R0 � 1 [12]

If p � pcrit, then the system converges to the disease-free state
(Ŝ, Î) � (1 � p, 0), whereas if p 
 pcrit, it converges to a stable
endemic state given by

Ŝ � 1 � pcrit [13]

and

Î �
f

1 � f
�pcrit � p� . [14]

Because S and I are constant in this situation, the probability that
an unvaccinated individual eventually becomes infected can be
expressed, using Eqs. 10–14, as the proportion of susceptible
individuals becoming infected versus dying in any unit time,

�p �
R0 �1 � f�ŜÎ

R0 �1 � f�ŜÎ � fŜ
� 1 �

1
R0 �1 � p�

. [15]

(Note that the parameter f does not appear in this expression for
�p, so the CSNE will not depend on the birth rate or the
infectious period of the disease.) The condition r 
 �0, which
yields a mixed CSNE, can therefore be written

R0 �1 � r� � 1. [16]

The value of the mixed CSNE P*, obtained by solving the
equation r � �P* for P*, is

P* � 1 �
1

R0 �1 � r�
. [17]

Results and Discussion
For any perceived relative risk r � 0, the expected vaccine uptake
is less than the eradication threshold, i.e., P* 
 pcrit (Fig. 1). This
finding formalizes an argument that has previously been made
qualitatively (8, 14); namely, it is impossible to eradicate a disease
through voluntary vaccination when individuals act according to
their own interests. In situations where vaccination is perceived to
be more risky than contracting the disease (r � 1), one would
expect, even without the aid of a model, that no parents would
vaccinate their children. Our game theoretical analysis shows that,
in fact, the threshold in perceived relative risk beyond which all
parents should cease vaccinating depends on R0. In particular,

Fig. 1. Vaccine coverage p* at the CSNE versus relative risk r, from Eq. 17, for
various values of R0. Dashed horizontal lines demarcate the critical coverage
level pcrit that eliminates the disease from the population (Eq. 12). In the limit
of very large R0, the plot of p* versus r approaches a step function with a step
at r � 1 (Eq. 17).
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parents can be expected to play a pure nonvaccinator strategy if r �
�0, i.e., if

r � 1 �
1

R0
. [18]

For childhood diseases, this relative-risk threshold is close to 1,
but for diseases with relatively small R0, the threshold could be
substantially smaller.

With knowledge of the perceived relative risk, r, we can thus
predict vaccine coverage levels under voluntary policies. However,
risk perception (and hence the value of r) can change over time in
response to a variety of factors, such as media coverage and the
activities of antivaccination groups (3, 11, 15, 16, ¶). Under normal
circumstances, the relative risk is perceived to be very low (typically
much lower than the relative-risk threshold, r 

 �0 
 1). During
a vaccine scare, the perceived risk of vaccination will rise (by
definition) and hence relative risk will increase to some new level
r � r. Note that a reduction in the perceived risk of morbidity from
natural infection has the same effect. In either case, the qualitative
nature of our predictions depends on whether the new risk ratio
exceeds the relative-risk threshold; if r 
 r 

 �0, then behavioral
changes will be relatively minor during a scare, whereas if r 

 �0

 r, then dramatic changes in vaccine uptake can occur (see Table
1 and Fig. 2).

Several lines of evidence suggest that it is likely that r � �0
during a vaccine scare. Many parents currently have concerns
about the safety of the measles–mumps–rubella vaccine (17, 18)
and other vaccines (19), and many parents (in developed coun-
tries) believe that diseases such as measles and whooping cough
are essentially harmless (20). (Together, these observations
indicate that r � 1 for measles, mumps, and rubella at present
in the United Kingdom.) Targeted surveys show that among
subscribers to a parenting magazine (21) and among inhabitants
of specific areas in the United Kingdom (22), a significant
proportion of parents believe vaccines entail more risk than the
diseases against which they protect (r � 1) and this perception
is correlated with not vaccinating (21).

When r 

 �0 
 r, the degree to which a vaccine scare is likely
to have an impact on vaccination behavior depends sensitively on
the value of R0. The payoff gain �E that measures the incentive
to switch from the previous CSNE P (associated with r 

 �0)
to the new CSNE P (associated with r � �0) is always larger for
diseases with larger R0. Consequently, we would expect individ-

uals to be convinced more rapidly to change their vaccination
behavior in the face of a vaccine scare for measles or whooping
cough (for which R0 � 10) than for less transmissible infections.
In general, for a given increase in risk perception, we expect
precipitous reductions in vaccine uptake to be more common for
diseases with higher R0.

If R0 is large, individuals are also likely to be more responsive
to any reductions in the perceived relative risk of vaccination that
occur after a vaccine scare (Fig. 3 and Table 1). Such reductions
in r might result from media coverage of a few severe cases of
disease (which are more likely as vaccine uptake drops and
disease incidence rises). More importantly, education programs
that aim to increase public confidence in vaccines after a scare
are likely to be most effective for precisely the vaccines for which
scares have the greatest impact.

Unfortunately, the effectiveness of education programs is con-
strained in a way that vaccine scares are not. During a vaccine scare,
the payoff gain �E is given by the expression in the second row of
Table 1; this expression is bounded below by a positive number for
all � (even for � � 1), so the incentive not to vaccinate remains
substantial even as the vaccine coverage approaches zero. In
contrast, during successful education programs to combat a vaccine

¶Fox, F., MMR Learning Lessons, Meeting hosted by the Science Media Centre at the Royal
Institution, London, U.K., May 2, 2002. Available at: www.sciencemediacentre.org�
mmr_report.htm.

Table 1. Payoff gain �E (Eq. 6) to an individual adopting the new CSNE P� (associated with perceived relative risk
r�) when a proportion � of the population does the same, and the remainder play the strategy P (which is the
CSNE associated with relative risk r)

Case Payoff gain, �E �P

r 
 �0, r 
 �0 �1 � ���r � r�2

R0�1 � r��1 � ��1 � ��r � �r	�
1

R0

r � r
�1 � r��1 � r�

r 
 �0, r � �0 �1 �
1

R0 �1 � r�� �r � �0 �
1 � �

R0
� R0 �1 � r� � 1

1 � ��R0 �1 � r� � 1	
�� � �1 �

1
R0 �1 � r��

r � �0, r 
 �0 1 � �

R0
� �R0 �1 � r� � 1	2

� � �1 � �� R0 �1 � r�� 1 �
1

R0�1 � r�

r � �0, r � �0 0 0

�0 is the probability that an individual will eventually become infected if nobody is vaccinated (compare Eq. 15). To see that �E is always
strictly positive if 0 � �  1, note that r  �0 if and only if R0 (1 � r) � 1 (compare Eq. 16). The third column of the table shows �P �

P � P, the change in the population’s vaccine uptake after the change in risk perception. When both r and r exceed �0, the CSNE is
the same before and after the change in risk perception (P � P � 0).

Fig. 2. Analysis of vaccine scares: payoff gain, �E, and change in vaccine
uptake, �P, after a shift in risk perception from r 
 �0 to r (see Table 1). For
this figure, r � 0.1 and the proportion of individuals currently adopting the
new CSNE is � � 0 (corresponding to the start of a vaccine scare); the shapes
of the curves are qualitatively similar for other values of r and �.
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scare, risk perception will shift from r � �0 to r 
 �0, and the
proportion of the population vaccinated will climb to the new
CSNE level as more and more individuals are vaccinated. In this
case, the payoff gain for adopting the new CSNE is given by the
third row of Table 1, which implies (regardless of R0) that �E3 0
as �3 1; this means that the incentive to vaccinate diminishes as
the vaccine coverage approaches the new CSNE level. We conclude
that, in general, it will be relatively easy to induce a drop in vaccine
uptake during a scare, but relatively difficult to restore uptake levels
afterward. This prediction is consistent with the history of the
pertussis vaccination scare during the 1970s in Britain (23), for
which vaccine uptake dropped much more quickly than it later
recovered after the scare. All else being equal, we anticipate that
when the current measles–mumps–rubella scare in Britain is over,
vaccine uptake will rise more slowly than it declined.

We have demonstrated previously that game theory can be a
useful tool for evaluating schemes to prepare for the potential
reintroduction of a pathogen that has been eradicated globally
through mass vaccination (9). Here, we have investigated the
feedback between individual vaccination decisions and population-

level processes that determine vaccine uptake and herd immunity
for an endemic disease, bearing in mind that vaccination decisions
are strongly influenced by incorrect risk perception (11, ¶). Because
our goal has been to elucidate the most fundamental issues, we have
focused on the simplest possible epidemiological model appropriate
for childhood diseases and have assumed implicitly that transient
dynamics (13), seasonal forcing (13, 24), and stochasticity (13, 25)
all have negligible effects. We have also ignored variance in risk
perception and any effects of risk perception spreading nonhomo-
geneously through social networks. All these features of real
systems merit further investigation.

Appendix
The probability �p that an individual eventually becomes in-
fected must decrease strictly with the proportion p of the
population that is vaccinated, until p reaches the eradication
threshold, pcrit � 1 � 1�R0. Thus, the maximum of �p occurs for
p � 0 and for p � pcrit, �p � 0.

Nash Equilibrium. If r � �0, then r � �p for all p � 0, so for any
� � [0,1) in Eq. 6, �E � 0 for all Q � P if and only if P � 0. Thus,
P* � 0 is the unique Nash equilibrium. If r 
 �0, then there exists
a unique p* � (0, pcrit), such that �p � r � 0 if p 
 p*, �p* � r
and �p � r 
 0 if p � p*. For any Q 
 P, we have p � �P � (1 �
�)Q 
 P for all � � [0,1) and, similarly, for any Q � P we have
p � P for all � � [0,1). Therefore, in this case where r 
 �0, for
any � � [0,1) in Eq. 6, �E � 0 for all Q � P if and only if P �
p*. Thus, the Nash equilibrium P* is the unique solution of the
equation �P* � r.

Convergent Stability. Given relative risk r, let P* denote the
associated Nash equilibrium. Suppose a proportion � of the
population plays a strategy P (not necessarily equal to P*) while
the remainder play Q � P. We must show, for � 

 1, that if Q 

P � P* or P* � P 
 Q, then individuals playing P obtain a higher
payoff than those playing Q, i.e., �E � 0 in Eq. 6. In fact, this
is true for any � � [0,1) and follows immediately because �p
decreases with p and �P* � r. If Q 
 P � P*, then ��P�(1��)Q �
r � 0, whereas if P* � P 
 Q, then ��P�(1��)Q � r 
 0. Hence,
in either case, �E � 0 in Eq. 6.
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Fig. 3. Analysis of public education programs to counteract vaccine scares:
payoff gain, �E, and change in vaccine uptake, �P, after a shift in risk
perception from r � �0 to r. As in Fig. 2, � � 0 here. The results are independent
of r (because the CSNE is always P � 0 when r � � 0). The shapes of the curves
are qualitatively similar for other values of �, but the maximum of �E goes to
zero as � increases to 1.
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