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Vaccines are arguably the most powerful medical intervention in the fight against infectious
diseases. The enormity of the global human immunodeficiency virus type 1 (HIV)/acquired
immunodeficiency syndrome (AIDS) pandemic makes the development of an AIDS vaccine
a scientific and humanitarian priority. Research on vaccines that induce T-cell immunity has
dominated much of the recent development effort, mostly because of disappointing efforts to
induce neutralizing antibodies through vaccination. Whereas T cells are known to limit HIV
and other virus infections after infection, their role in protection against initial infection is
much less clear. In this article, we will review the rationale behind a T-cell-based vaccine
approach, provide an overview of the methods and platforms that are being applied, and
discuss the impact of recent vaccine trial results on the future direction of T-cell vaccine
research.

Ongoing efforts to develop effective vaccines
against HIVare partly based on the princi-

ple that the specific antiviral CD8 T lymphocyte
(CTL) response is crucial for immune control of
viral replication. This certainly applies to many
chronic persistent infections with viruses such
as hepatitis B virus (HBV), hepatitis C virus
(HCV), cytomegalovirus (CMV), and Epstein-
Barr virus (EBV). The same appears to be the
case for HIV infection, with a substantial body
of evidence suggesting that HIV-specific CD8
T-cell responses suppress HIV replication in
vivo. Aside from the temporal association of
an increase in CD8 T-cell responses with a
decrease in viral load in acute infection (Borrow
et al. 1994; Koup et al. 1994), the targeting of
particular epitopes restricted by certain human

leukocyte antigen (HLA) alleles, such as HLA-
B�5701, is consistently associated with low
levels of virus load (Goulder and Watkins
2008; Hunt and Carrington 2008). In addition,
CD8 T-cell depletion in simian immunodefi-
ciency virus (SIV)-infected macaques is associ-
ated with an increase in viral load that is likely
because of loss of SIV-specific T-cell responses
(Jin et al. 1999; Schmitz et al. 1999). However,
whereas the majority of T-cell-based vaccines
tested in the macaque model have resulted in
variably reduced viral load after SIV challenge
(Shiver et al. 2002; Liu et al. 2009), the SIV-
specific T-cell responses they elicit are insuffi-
cient in terms of frequency alone to define
outcome (Casimiro et al. 2005; Moniuszko
et al. 2005). Furthermore, it is not apparent
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what distinguishes the immunity afforded by a
macaque CMV-based vaccine that profoundly
controls SIV replication from those that merely
blunt viral load (Hansen et al. 2009; Hansen
et al. 2011). What is clear is that simple quanti-
tative correlates of virus control have proved elu-
sive (Ogg et al. 1998; Betts et al. 2001; Edwards
et al. 2002; Addo et al. 2003), whereas qualitative
aspects of the HIV-specific CD8 T-cell response
seem to play a critical role in the efficacy of anti-
viral control (Betts et al. 2006).

T-CELL CHARACTERISTICS ASSOCIATED
WITH VIRUS CONTROL

Qualitative aspects of immune control have
generally been gleaned from observational
studies in long-term nonprogressors, elite con-
trollers, and HIV-2-infected nonprogressors,
and have revealed a multitude of characteris-
tics, which all appear to contribute to virus
control (Fig. 1). First, it is likely that CD4 T cells
will need to play an important role as effector
cells per se, or in giving help to CD8 T cells
(Rosenberg et al. 1997). Parenthetically, one
should bear in mind that CD4 T-cell help is
likely critical to the development of Env-spe-
cific high-affinity neutralizing antibodies. The

phenotypes of CD8þ T cells that correlate
with lower viral loads in chronic HIV infection
are either central memory cells (Burgers et al.
2009) or effector memory cells (Hess et al.
2004; Addo et al. 2007) that do not express
exhaustion markers such as PD-1 (Day et al.
2006; Petrovas et al. 2006; Trautmann et al.
2006). In terms of functional capacity, virus
control has been associated with so-called
polyfunctional CD8 T cells that secrete multi-
ple cytokines (a property that is related to the
sensitivity of antigen recognition) (Betts et al.
2006) as well as proliferative capacity (Day
et al. 2007) and the ability to kill HIV-infected
target cells (Yang et al. 1996; Migueles et al.
2008; Hersperger et al. 2010) or suppress HIV
replication in vitro (Blackbourn et al. 1996;
Yang et al. 1997; Spentzou et al. 2010). However,
the qualitative properties of CD8þ T-cell popu-
lations are also clearly impacted on by viral
replication itself, thus rendering it difficult to
disentangle cause from effect when interpreting
associations between low viral load and partic-
ular phenotypic or functional profiles. Never-
theless, the rationale for what a T-cell-based
vaccine should look like has been largely driven
by data from individuals chronically infected
with HIV.
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of memory
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affinity maturation
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Neutralizing antibodies
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Figure 1. Attributes of CD8 T cells associated with virus control in infected individuals. These characteristics are
thought important to emulate in the response elicited by a vaccine. The role of CD8 T cells should be viewed in
the light of the roles of CD4 T cells and B cells.
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It should be noted that different vaccine
modalities are available that can induce dif-
ferent patterns of CD4, CD8, and antibody
responses (Table 1). Despite the availability of
such an armamentarium with which to tailor
the character of the vaccine-induced immune
response, a pragmatic approach has dominated
the T-cell vaccine field, which has concentrated
on vaccines to stimulate CD8 T cells. The origin
of this bias is partially historical, and partially
based on the general knowledge that CD8 T
cells are efficient mediators of viral clearance,
and would therefore be an appropriate com-
ponent of a T-cell-based vaccine designed to
lower viral load, if not clear HIV infection after
challenge. It is for this reason that much of
the subsequent discussion of actual vaccine ap-
proaches in this article will focus on methods
that have been used to stimulate CD8, rather
than CD4, T-cell responses through vaccination.

DNA VACCINES

Induction of major histocompatibility complex
(MHC)-I-restricted CD8 T-cell responses is best
accomplished when the vaccine antigen is pro-
duced endogenously in which presentation
of peptides to major histocompatability class
one molecules is more efficient than occurs
via cross-presentation of exogenous proteins.
In vivo injection of plasmid DNA is one of
the most direct, although arguably not the
most efficient, methods for accomplishing

endogenous expression of foreign proteins.
Whereas early studies in mice demonstrated
the potential of unmodified plasmid DNA as
a vaccine modality (Fynan et al. 1993; Ulmer
et al. 1993), early clinical trials in humans
showed a general lack of potency of this
approach, especially in stimulating class-I-
restricted responses. This probably relates to
the fact that after intramuscular injection, most
DNA was being taken up and expressed by
muscle cells, and that directing the uptake to
professional antigen-presenting cells was re-
quired to improve immunogenicity (Wolff
et al. 1990; Dupuis et al. 2000). Despite these
early disappointing results, further refinements
in the composition (promoter and codon use),
manufacture, and purification (maintaining
supercoiled structures) of plasmid DNA led
to improvements in overall immunogenicity
(Gao et al. 2003; Barouch et al. 2005; Pillai
et al. 2008; Cai et al. 2009). Despite these im-
provements even the best preparations required
several immunizations to achieve reasonable
levels of immunity.

Multiple efforts have been made to fur-
ther improve the immunogenicity of plasmid
DNA. Among these have been attempts to
improve delivery by use of needle-free delivery
systems or incorporation of the DNA into
various particle, metal, or lipid formulations
in hopes of improving uptake into antigen-pre-
senting cells (Klavinskis et al. 1997; Catanzaro
et al. 2007; Helson et al. 2008). Although these
approaches have been somewhat successful,
another approach that has gained popularity
lately is the application of pulsed electrical cur-
rents to the region of immunization, termed in
vivo electroporation (Luxembourg et al. 2007).
A number of devices have been developed and
tested that differ in their degrees of complexity,
ease of use, and comfort to the vaccinee. Gener-
ally the devices have been shown to improve the
immunogenicity of plasmid DNA, and could
help to make plasmid DNA a viable platform
for routine vaccination, either by decreasing
the number of inoculations or the dose of a
vaccine that is required to generate protection.
Because neither DNA nor these devices have
yet been licensed, their development would

Table 1. Vaccine modalities and the immunity that
they elicit

Modality

CD4

T cells

CD8

T cells Antibodies

Whole killed HIV þþþ – þþþ
Whole attenuated

HIV
þþ þþ þþ

Live vector viruses þþþ þþþ þþþ
Live bacterial

vectors
þþþ þ þþþ

Pseudovirions þþ – þþþ
Replicons þþ þþ þþ
DNA plasmids þþ þ þ
Viral proteins þþ – þþþ
HIV peptides þþ þþ –
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likely require a combination license application
to the Food and Drug Administration.

Another approach that has been tried to
improve the immunogenicity of DNA vaccines
is to include cytokines or chemokines (often
termed molecular adjuvants), either in trans
during or soon after the vaccination, or in cis
by encoding for them within the plasmid
DNA. The list of molecular adjuvants that
have been evaluated include those designed
to increase inflammation, skew the response
toward Th1 or Th2, lead to proliferation of
responding cells, attract appropriate T cells
and anaphase-promoting complexes to the site
of vaccination, or improve the induction of
long-term memory (Abdulhaqq and Weiner
2008). Although some molecular adjuvants
have shown a modest increase in the frequency
of vaccine-induced T cells, others have shown
a profound effect (notably IL12 and IL15) espe-
cially when combined with electroporation
(Chong et al. 2007; Hirao et al. 2008). In certain
studies the responses induced in conjunction
with molecular adjuvants were shown to im-
prove aspects of protection against retroviral
challenge; in some these were associated with
improvements in T-cell responses whereas in
others the impact appears to have been on
aspects of the antibody response (Lai et al.
2007). A few of these approaches have been or
are planned to be advanced into phase II trials.

Where DNA vaccines probably show the
greatest promise is in prime-boost combination
with other platforms. In the long history of
DNA vaccine testing, it is generally accepted
that DNA acts better as a prime than as a boost
when combined with other modalities. This
may be related to the observation that DNA
immunization tends to stimulate a CD4-biased
response, thereby providing the necessary T-cell
help for an antibody response when proteins
are used as the boost, or CD8 T-cell responses
when viral vectors serve as the boost (Tritel et al.
2003). The only HIV vaccine currently in phase
IIb testing is a DNA prime, recombinant adeno-
virus type 5 boost combination, and several
other earlier phase trials use DNA as a prime
for various different boosts. Even in prime-
boost combination, multiple immunizations

with DNA are often required to achieve a max-
imum boost. In comparison, vector–vector or
vector–protein combinations often require
fewer immunizations to achieve adequate pri-
ming. One must therefore balance the impact
of preexisting immunity and induction of
vector-specific immune responses that are in-
herent to the use of a vector prime, to the pos-
sible increased number of vaccinations that
may be required with DNA priming, when com-
ing up with the optimum regimen for a given
vaccine target. The lack of vector-specific im-
munity to DNA remains a compelling consider-
ation when developing vaccines for worldwide
distribution.

VIRAL VECTORS

Mass and targeted vaccination with vaccinia
virus is responsible for the eradication of small-
pox, making it arguably the most successful
vaccine ever. Because of the extensive clinical
experience with vaccinia, it is not surprising
that this was one of the first viruses to be used
in the development of recombinant vectors ex-
pressing foreign viral antigens as potential vac-
cine platforms. Indeed, the first documented
HIV vaccine trial used a recombinant vac-
cinia virus expressing HIV genes (Zagury et al.
1988). In the subsequent 25 years, innumer-
able pox-based vectors expressing HIVantigens
have been made and tested in human trials with
mixed results (Pantaleo et al. 2010). Initial
attempts used vaccinia, which is a live virus vac-
cine. This led to episodes of local and dissemi-
nated vaccinia infections and deaths when the
vaccine was given (even in a presumably inacti-
vated form) as immunotherapy to individuals
already infected with HIV (Picard et al. 1991;
Zagury 1991). The field then began to search
for more attenuated pox viruses to use as
vectors, and a number of alternatives were
developed, including modified vaccinia ankara
(MVA), fowlpox, ALVAC, and NyVac, most of
which have been tested for efficacy in nonhu-
man primates, and for safety and immuno-
genicity in humans (Pantaleo et al. 2010).
Not surprisingly, there is a general rule that
with increasing attenuation comes decreasing
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immunogenicity, so by a standard measure
of immunogenicity, these attenuated vectors
tended to perform worse than parental vaccinia
vectors, although with a possible increased
margin of safety. Another characteristic of pox
vectors is that unlike some viral vectors that ex-
press only the insert of choice, pox vectors have
a large and complex genome and express many
proteins in addition to the vaccine insert. As a
result, the immunogenicity of the insert is often
diluted by potentially more immunodominant
responses directed to vector-specific antigens
(Smith et al. 2005).

Despite these many potential pitfalls, a
recent trial of an ALVAC-based vaccine in com-
bination with protein boost showed moderate
(31%) efficacy against acquisition of HIV infec-
tion in a low-risk heterosexual cohort in Thai-
land (the RV144 trial, Table 2) (Rerks-Ngarm
et al. 2009). That efficacy may have been higher
in the first 6 months after full vaccination, but
then waned over time. Of interest, virtually no
CD8 T-cell responses were induced by this viral
vector-based vaccine, and only CD4 T-cell and
antibody responses appear to have been gener-
ated. Therefore, despite the use of a viral vector,
the vaccine performed as would be expected of
a protein-based vaccine. Intensive studies are
ongoing to dissect any potential immune corre-
late of protection, but early indicators suggest it
will not be a CD8 response.

Adenoviruses make up the majority of the
other widely tested viral vectors (Lasaro and
Ertl 2009). Adenovirus-based vaccines are easy
to engineer, manufacture, and test. Adenovirus
vectors can be made replication incompetent
while expressing only the vaccine insert of
interest, thereby alleviating the problems of
safety and epitope competition that hamper

pox-vector-based platforms. The fact that only
the insert gene is expressed may be one factor
responsible for the general ability of recombi-
nant Ad vectors to stimulate high-frequency
CD4 and CD8 T-cell responses. Levels of preex-
isting immunity vary among the five major
serogroups of human adenoviruses, and can
greatly influence the immunogenicity of the
vector. The preexisting immunity that appears
to be most important is the level of neutralizing
antibody to the vector, as there is broad cross-
reactivity among T-cell responses to the differ-
ent serogroups. The impact of preexisting
immunity can be at least partially alleviated by
priming with either DNA or a low seroprevalent
adenovirus.

Clinical trials of HIV vaccines based on
adenovirus type 5 (rAd5) alone or in combina-
tion with DNA priming are ongoing (Table 2;
Catanzaro et al. 2006; Koup et al. 2010). The
rAd5 vaccine tested by Merck in the Step and
Phambili trials contained HIV Gag, Pol, and
Nef, but no Env, and therefore represents a
true T-cell vaccine in that it stimulated neither
virion binding nor neutralizing antibodies. Pro-
tection was intended to be afforded by stimula-
tion of CD8 T-cell responses that would contain
viral replication on infection, a contention sup-
ported by preclinical nonhuman primate test-
ing (Shiver et al. 2002). Whereas the vaccine
was shown to stimulate strong T-cell responses,
the vaccine failed either to protect volunteers
from acquisition of infection or to reduce viral
loads after infection. In fact, there was an appa-
rent increased risk of HIV infection in individ-
uals with preexisting immunity to Ad5, raising
the specter that Ad-specific CD4 T cells were
being induced at the mucosa, thereby lead-
ing to enhanced risk of infection (Buchbinder

Table 2. Vaccines tested in human efficacy trials

Product Trial Antigens Immunity Population

VaxGen rgp120 Vax003/Vax004 Env Ab, CD4 MSM and IVDU
Merck rAd5 Step/Phambili Gag/Pol/Nef CD8, CD4 MSM
Sanofi Alvac/rgp120 RV144 Env þ Gag Ab, CD4 General
VRC DNA/rAd5 HVTN505 Env/Gag/Pol/Nef Ab, CD8, CD4 MSM

MSM, men who have sex with men; IVDU, intravenous drug user.
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et al. 2008; McElrath et al. 2008). Subsequent
analyses have failed to bear out this hypothesis.
Efficacy testing of a vaccine developed at the
Vaccine Research Center based on a DNA
prime, rAd5 boost expressing HIV Gag, Pol,
Nef, and Env is in progress (Koup et al. 2010).
In addition, lower seroprevalent Ad-based vac-
cines are in preclinical testing in nonhuman pri-
mates and phase I testing in humans (Liu et al.
2009; Barouch 2010).

In addition to pox and Ad-based vectors,
there is a long list of other viruses that have
been tried as vaccine vectors with varying levels
of success (Robert-Guroff 2007). These include
adeno-associated virus (AAV), vesticular sto-
matitis virus (VSV), lymphocytic chorio-
meningitis virus (LCMV), herpes simplex virus
(HSV), semliki forest virus (SFV), Venezuelan
equine encephalitis virus (VEE), and others.
Some of these have been tested for immunoge-
nicity in humans, and have mostly proven to
be less immunogenic than Ad-based platforms.
Some are being reengineered to improve immu-
nogenicity whereas others have been dropped
from development. At this time it is difficult to
predict which, if any, of these alternative vector
designs may ultimately prove highly immuno-
genic and move forward in clinical development.

All of the viral vectors described so far are
either replication incompetent or highly attenu-
ated. However, some vaccine efforts are relying
on the development of fully replication-
competent viral vectors. The two most promi-
nent in this class are replication-competent
adenovirus and CMV. The goal with these ap-
proaches is to induce sustained effector mem-
ory T-cell responses that may prove more
effective at blocking or controlling HIV infec-
tion than the central memory responses that
are induced by most replication-defective vec-
tors (Peng et al. 2005). Of note is the fact that
preclinical testing of a rhesus-based CMV vec-
tor in nonhuman primates has shown about
30%–50% efficacy in rapid and profound con-
trol of SIV infection in monkeys (Hansen et al.
2009, 2011). This efficacy is correlated with
effector memory CD8 T cells and not with
antibody responses. Although the exact mecha-
nism of protection is far from defined in these

studies, and a variety of safety issues still need
to be addressed, the ability to achieve profound
control of SIV infection in the absence of anti-
bodies warrants further investigation and devel-
opment of this platform.

OTHER APPROACHES

DNA and viral vectors offer the advantage of
having the vaccine antigen expressed within
the host cell, essentially assuring some antigen
processing and MHC class I expression leading
to the induction of CD8 T-cell responses. How-
ever, other vaccine strategies have been used to
specifically target HIV antigens to MHC class I
molecules. One way has been to combine solu-
ble antigens with adjuvants that directly target
and/or activate dendritic cells (DCs). There
are many subsets of DCs, each with their own
unique features and locations, but all of which
are intimately involved in the stimulation of
adaptive immune responses, and many of which
have the unique capacity for efficient cross-
presentation of soluble antigens to the class I
pathway (Steinman 2008; Ueno et al. 2011). By
understanding the location and expression of
surface antigens and toll-like receptors (TLRs)
on each subset, vaccine strategies can be tailored
to stimulate the response of choice. Of impor-
tance in these strategies is an understanding of
the movement of DCs after targeting by the vac-
cine antigen. Linkage of the antigen to the TLR
ligand may be necessary because, once stimu-
lated, DCs will migrate away from the depot of
antigen to regional draining lymph nodes where
T-cell responses will be induced.

Many combinations of protein and TLR
ligand have undergone preclinical testing
with varying effects on CD4 and CD8 T-cell re-
sponses, and one DC targeting approach has
advanced to a phase I clinical trial. This involves
linking HIV Gag antigen to an antibody to
DEC205 (a surface marker on DCs) combined
with TLR stimulation of DCs using synthetic
double-stranded RNA poly:IC (Cheong et al.
2010; Nchinda et al. 2010; Tewari et al. 2010).
Even with the combination of DEC205 target-
ing and TLR stimulation of DCs, the majority
of the T-cell response stimulated in response
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to the Gag antigen is mediated by CD4 rather
than CD8 T cells. Avariety of other DC targeting
strategies are undergoing preclinical evaluation.

Bacteria have also been proposed as vectors
capable of stimulating CD8 T-cell responses.
Among the candidates are bacteria that repli-
cate inside monocytes or macrophages (lis-
teria moncytogenes, Bacillus Calmette-Guerin
[BCG]) and those that are easily engineered to
secrete proteins via the type III pathway (Salmo-
nella, Shigella) (Garmory et al. 2003). Among
these, BCG has the obvious advantage of a
long history of use as a clinical vaccine in
humans, and is certainly the furthest along in
clinical development. Still, recombinant BCG
and other mycobacterial vectors are probably
still years away from clinical testing in humans.

Probably the simplest approach to inducing
a class-I-restricted response is to vaccinate with
peptides that can bind directly to class I mole-
cules, thereby bypassing the need for intracel-
lular processing and presentation. Different
peptide preparations have been tested exten-
sively, and various attempts have been made
to improve the in vivo immunogenicity of this
approach. Despite these efforts, standard vac-
cine delivery of peptides appears to have limited
utility in stimulating CD8 T-cell responses, with
the exception of one approach. Intravenous
infusion of peripheral blood mononuclear cells
coated ex vivo with peptides has shown great
potency in preclinical animal studies (De Rose
et al. 2008). Whether this approach will prove
useful in human testing, especially considering
the impracticality of such an approach for
mass vaccination efforts, remains to be seen.

ANTIGENS

HIV expresses nine structural (Gag, Env) and
nonstructural (Pol, Nef, Tat, Rev, Vpr, Vpu,
Vif ) proteins, some of which (Gag, Pol, Env)
are further processed by viral or host proteases
into more proteins. Several different criteria
can be applied to decide which of these proteins
to include in a T-cell-based vaccine: Sequence
conservation, level of protein expression, and
timing of protein expression are three obvious
ones. The polymerase polyprotein (inclusive of

protease, reverse transcriptase, and integrase) is
certainly the most conserved across HIV strains
and would therefore seem like a natural choice
(Korber et al. 2007). The problem lies in the
fact that these proteins are transcribed from a
long Gag/Pol RNA through an inefficient frame
shift mechanism, which leads to very low pro-
tein expression in infected cells. The efficiency
with which CTL targeting these antigens can
recognize and kill HIV-infected cells has there-
fore been called into question (Chen et al. 2009).

From the standpoint of the level of immune
recognition, Gag and Env are the clear winners.
Gag is reasonably well conserved across HIV
strains, whereas Env has a mixture of highly
conserved and highly variable regions, the latter
being mostly the result of immune pressure
from antibodies. In addition, both are struc-
tural proteins so they are expressed to high levels
at the same time during the viral life cycle. The
rest of the HIV proteins are produced from mul-
tiply spliced RNA species (Nef, Tat, Rev, Vpr,
Vpu, Vif ), are therefore expressed at lower levels
than the structural proteins. Although these
would therefore appear to be poor vaccine tar-
gets, the potential for low-level constitutive
expression, or very early expression during the
viral life cycle, has led to the inclusion of some
of them within various T-cell vaccines.

Some have evaluated T-cell responses dur-
ing chronic infection as an indicator of which
antigens to include in a vaccine. From a pure
frequency standpoint, Gag, Pol, and Env are
among the dominant responses, followed by
Nef and then the other nonstructural proteins
(Betts et al. 2001). This hierarchy may be some-
what different during acute infection (Goulder
et al. 2001; Lichterfeld et al. 2004). As another
strategy, some have assessed associations be-
tween CTL responses and HIV plasma RNA dur-
ing chronic infection as an indicator of what
antigens to include in a vaccine. When these
types of evaluations are performed, it is clear
that CTL responses to Gag are most strongly
associated with virus control during chronic
infection (Zuniga et al. 2006; Rolland et al.
2008). These types of analyses are probably
measuring a complex combination of factors
encompassing the efficiency of antiviral activity
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to an antigen and ease with which it can escape
from that immune response (among other
things). How this might predict protection in
a prophylactic vaccine setting, in which the
response would be present before virus infec-
tion, is not clear. In fact, at least one HIV anti-
gen (Env) that ranks very poorly in this type
of assessment was clearly the antigen that was
responsible for protection in the only human
trial of an HIV vaccine to show efficacy (Rerks-
Ngarm et al. 2009). One must therefore be
careful when using data from chronic infections
in deciding what antigens to include in a pro-
phylactic vaccine.

Rather than relying on antigens known to
be encoded by HIV, some are investigating
unconventional antigens. It is known that there
are cryptic start sites in the HIV genome that
could lead to protein production from alterna-
tive reading frames. Recent evidence suggests
that HIV-infected individuals and SIV-infected
monkeys often make T-cell responses to some of
these cryptic epitopes, raising the question of
whether they should or could be included in a
vaccine (Bansal et al. 2010; Maness et al.
2010a,b). Even less conventional antigens have
also been considered. Evidence suggests that
transcriptional control of human endogenous
retroviruses (HERV) is compromised in HIV
infection, leading to protein production and
the induction of T-cell responses to endogenous
retroviral antigens (Garrison et al. 2007). Be-
cause these HERV proteins are very conserved,
a vaccine approach based on expression of
HERV antigens has been proposed.

LOCATION

The mucosal surfaces are not only the major
route of transmission of HIV infection in both
men and women but also the anatomical site
of the greatest depletion of CD4 T cells during
the course of the disease owing to the high avail-
ability of CCR5þ CD4þ T cells for viral replica-
tion (Kotler et al. 1984; Guadalupe et al. 2003;
Brenchley et al. 2004; Mehandru et al. 2004; Li
et al. 2005; Mattapallil et al. 2005). The deple-
tion of gastrointestinal CD4 T cells and the
structural disruption of these mucosal surfaces

are both massive and rapid, and therefore an
effective HIV vaccine must interfere with virus
replication during the narrow temporal window
between the moment of mucosal transmission
and the establishment of disseminated infec-
tion (Douek et al. 2006; Haase 2011). Recent
data suggest that the majority of HIV infec-
tions among men who have sex with men and
heterosexual HIV infections in women occur
through a transmission event in which a single
viral variant is responsible for establishing
the initial disseminated infection (Keele et al.
2008; Abrahams et al. 2009; Haaland et al.
2009; Li et al. 2010). Thus, suppression of the
initial transmission event is theoretically sim-
ple but the targeting of that suppression event
presents a considerable problem of localiza-
tion. This may require a high frequency of HIV-
specific immunity in a very localized region,
at the site of exposure, rather than systemic im-
munity. Although systemic immunization may
elicit antigen-specific responses at mucosal
surfaces (Belyakov et al. 1998; Baig et al. 2002;
Pal et al. 2006) such approaches have not
been overwhelmingly successful in significantly
blocking or attenuating infection after muco-
sal challenge. However, the targeting of the
mucosal surface itself with local immunization
may elicit high-frequency local responses that
can confer protection against mucosal virus
challenge (Belyakov et al. 1998; Barnett et al.
2008). In this light, it is important to note
that recent studies suggest that the ratio of SIV-
specific CD8 T cells to SIV-infected CD4 T cells
at the site of primary infection is critical in
determining the degree of control of viral repli-
cation (Li et al. 2009). Thus, these data highlight
a narrow window of opportunity when preexist-
ing virus-specific memory T-cell populations
may endow the vaccinated host with a height-
ened ability to attenuate local virus replication
at the mucosal surfaces.

BREADTH, EPITOPE ESCAPE, AND THE
IMPACT OF THE HOST RESPONSE

In terms of the number of epitopes targeted,
there is some debate over the optimal breadth
of recognition that is required for virus control
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in vaccinated individuals. Studies from HIV-
infected people in Africa and from vaccinated
rhesus macaques suggest that the more epitopes
targeted, in Gag rather than Env, the better
(Zuniga et al. 2006; Kiepiela et al. 2007; Rolland
et al. 2008). However, it would be clearly ad-
vantageous to target epitopes that are both con-
served across different HIV subtypes (Goulder
et al. 1996; Turnbull et al. 2006) and also
sequence limited by viral fitness constraints
(Martinez-Picado et al. 2006; Schneidewind
et al. 2007). As mentioned above, the striking
association between the expression of particular
MHC alleles and virologic outcome speaks to a
role for CD8 T cells in the control of viral repli-
cation (Kaslow et al. 1996; Hendel et al. 1999;
Migueles et al. 2000; Gao et al. 2001), but the
mechanisms underlying such protective effects
remain poorly understood save for the presen-
tation by particular MHC alleles of particular
epitopes that are conserved owing to fitness
constraints (Wang et al. 2009) and diversity in
the T-cell receptor repertoire that targets such
epitopes (Simons et al. 2008; Geldmacher
et al. 2009). Although TCR diversity may seem
an obvious advantage when targeting a virus
that undergoes mutational epitope escape,
studies in SIV-infected rhesus macaques have
shown that the beneficial virologic outcome
conferred by expression of the MHC allele
Mamu A�01 may be mediated by the use of
particular TCRs that target an immunodomi-
nant epitope (Price et al. 2009). Such TCRs
are termed public because they are common
to the epitope-specific response of more than
one infected animal and as such represent an
example of extreme bias in TCR usage.

However, the associations described above
are far from clear-cut and still raise the question
of whether responses of considerably greater
magnitude than those elicited by current vac-
cine modalities would beneficially affect out-
come. Furthermore, viral escape from the
immune response by mutation presents a sig-
nificant problem for any vaccine strategy.
Indeed, studies in acute HIV infection suggest
that CD8 T-cell responses to immunodominant
epitopes are associated with control of viral rep-
lication but only during the acute phase. As the

infected host enters the chronic phase, these
epitopes are found to have escaped and the
emerging HIV-specific CD8 T cells, which tar-
get a new set of epitopes, may not be as effective
in the control of virus (Goulder et al. 2001;
Leslie et al. 2004; Goonetilleke et al. 2009).

How does one increase the breadth of a vac-
cine to cover strain diversity? Historically this
has been accomplished by including multiple
strains of a virus in a vaccine. The seasonal influ-
enza vaccine and polio vaccine are two classic
examples. This approach is also being applied
to HIV in which vaccines based on three or
more strains of HIV are being tested. This
approach clearly increases the likelihood that
the T-cell response will recognize more than
one strain of HIV (Seaman et al. 2005), however,
the cost and complexity of a vaccine increases
significantly with each new strain that is added,
and it is difficult to determine the impact of
vaccine valency in actual protection in human
clinical trials. HIV sequence alignments and
knowledge of where T-cell epitopes reside
within those alignments have been used to gen-
erate HIV antigens that encompass the most
prevalent HIV strain sequences within just one
or a few constructs. These approaches are based
on linking sequences back to their common
ancestor (center of tree approach), using con-
sensus sequences, or creating mosaics of multi-
ple strains in a single reading frame (Nickle et al.
2003; Mullins et al. 2004; Fischer et al. 2007).
The latter approach (mosaic inserts) has pro-
gressed the furthest, both in terms of theoretical
coverage (Fischer et al. 2007) and breadth of the
T-cell response generated in mouse and nonhu-
man primate testing (Kong et al. 2009; Barouch
et al. 2010; Santra et al. 2010). Although these
approaches increase the breadth of the T-cell
response to a vaccine, their impact on breadth
of protection across multiple strains remains
to be determined.

CONCLUDING REMARKS

T-cell vaccine approaches to HIV have domi-
nated much of the vaccine research agenda
over the last decade. The enthusiasm for a
T-cell approach was driven by the inability to
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stimulate broad neutralizing antibodies through
vaccination combined with a plethora of data
from HIV-infected individuals indicating that
CD8 T cells are instrumental in viral control.
A vaccine representing a pure T-cell approach
(that is, one which contained no envelope anti-
gen) underwent efficacy testing in humans and
failed to protect from acquisition of infection
(STEP Trial) (Buchbinder et al. 2008). More
recently, the RV144 trial in Thailand showed a
moderate efficacy of 31% protection from
acquisition (P ¼ 0.04) with a vaccine that eli-
cited envelope-specific antibodies and CD4 T
cells but no CD8 T-cell responses (Rerks-Ngarm
et al. 2009). Although these results may at first
seem somewhat damning with respect to CD8
T-cell-based vaccines, many approaches remain
to be tested. These newer modalities are
designed to stimulate CD8 T cells, which differ
in quality, quantity, phenotype, breadth, and
location from the vaccines tested previously.
Whether any of these approaches will prove
beneficial remains to be seen.

It is important to look critically at the
concept of a pure T-cell vaccine in the context
of virus-specific adaptive immunity as a whole.
The result of the RV144 trial suggests that the
single-minded pursuit of solely eliciting CD8
T cells as the antiviral effectors may be of scien-
tific interest, but may not be the best approach
in practice. The combination of modalities
that stimulate CD4 and CD8 T cells as well as
antibodies, for which multiple approaches are
available, appears to be the logical direction to
follow. Indeed, it appears that the field is taking
precisely this direction.
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