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There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum
malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers.
This has led to the assessment of a wide variety of approaches to malaria vaccine design and devel-
opment, assisted by the availability of a safe challenge model for small-scale efficacy testing of
vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new
vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of
community vaccination to block malaria transmission. Most current vaccine candidates target a
single stage of the parasite’s life cycle and vaccines against the early pre-erythrocytic stages have
shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites,
and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show
partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a
more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a
multi-component vaccine targeting more than one life cycle stage. The most attractive near-term
approach to develop such a product is to combine existing partially effective pre-erythrocytic
vaccine candidates.
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1. IMPORTANCE OF MALARIA
Malaria is the most important parasitic disease of
humans and efforts to develop effective vaccines span
more than six decades. Studies of inactivated sporo-
zoite immunization reported in 1942 showed an
apparently beneficial effect of combining induction
of cellular and humoral immune responses against
malaria of domestic fowl [1]. Around the same time,
Freund was developing a powerful adjuvant that
showed promising efficacy in malaria studies [2].
However, today, there is still no licenced vaccine
against malaria or any other parasitic disease of
humans and no deployed subunit vaccine for any para-
sitic disease of livestock [3,4]. Nonetheless, the
continuing unacceptable impact of malaria morbidity
and mortality, amounting to over 800 000 deaths and
some 250 million clinical episodes annually [5] has
led to a variety of sustained efforts to develop effective
malaria vaccine candidates. In the last decade in par-
ticular, the development of vaccine candidates for
malaria has accelerated considerably and one candi-
date has recently reached the stage of a large-scale
phase III trial while other potentially complementary
approaches are showing increasing promise. In this
short review, I focus primarily on pre-erythrocytic vac-
cines (figure 1) as they have shown more promise than
vaccines against other stages of the life cycle, but I also
briefly survey a broader range of approaches.
hill@ndm.ox.ac.uk
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2. VACCINES AGAINST PARASITES
Most of the vaccines that are available today belong to
one of three categories—attenuated microbes, killed
microbes or protein subunits. Attenuated viruses that
protect against a cross-reactive pathogen originate
with Jenner’s use of a related poxvirus to prevent small-
pox. Killed microbes were introduced a century later
and several such vaccines, e.g. polio vaccine, are used
widely. More recently, conjugate vaccines against
encapsulated bacterial pathogens have been developed
and have been hugely successful in reducing the inci-
dence of some diseases. However, licenced subunit
vaccines based on a protein are very few and these are
particulate (composed of many copies of the expressed
protein that assemble spontaneously into particles that
are more readily process by immune cells), for example,
the hepatitis B surface antigen and the human papil-
loma virus vaccines. Recombinant proteins that are
not particulate have rarely become effective human vac-
cines. Parasitologists trying to develop vaccines can
hardly ever safely grow and manufacture whole para-
sites in sufficient numbers to induce immunity,
although recently this has been attempted for malaria
[6]. Instead, a large number of antigens have been
expressed, mainly as proteins and less often from
vector systems to try to generate protective immunity
[7]. This has proved difficult but possible in some
murine models of malaria and this has encouraged
many attempts at vaccination against Plasmodium falci-
parum, the major target species for malaria vaccine
development. Parasite vaccines generally face the chal-
lenge of generating immunity with an immunogen
that reflects only a tiny fraction (less than 1%) of the
This journal is q 2011 The Royal Society
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composition of the organism, a challenge that has been
met only rarely in vaccinology. Encouragingly, in at least
one system, vaccination of pigs and cattle against
Taenia, vaccination with a single antigen has prevented
cysticercosis causes by cestode parasites [8].

Although natural immunity to malaria develops in
most residents of endemic areas, this generally takes
some years of exposure and is imperfect. Extensive
immunoepidemiological studies have provided limited
insight into what the best antigens to include in a vac-
cine might be: natural immunity predominantly targets
a wide variety of blood-stage antigens and no one anti-
gen appears to be especially important in providing
protection [9].

Several other difficulties have slowed progress. Most
malaria antigens that have been selected as vaccine
candidates are the targets of natural immunity and
exhibit significant genetic polymorphism, and a key
blood-stage antigen, P. falciparum erythrocyte mem-
brane protein-1 (PfEMP1), even shows temporal
switching of variant expression. There is substantial
stage-specificity of antigen expression by Plasmodium
parasites so that candidate vaccines for one stage of
the life cycle (figure 1) are unlikely to impact on
another stage. Finally, malaria vaccine developers are
faced with target species P. falciparum and Plasmodium
vivax that will not infect small animals or old world
macaques, so excluding the most widely used animal
models for straightforward vaccine evaluation. There
are many other malaria parasites that infect these
species but these differ substantially from human
parasites.
3. A SHORT HISTORY OF MALARIA VACCINE
DEVELOPMENT
Modern malaria vaccine development stems from
immunization studies of mice with irradiated sporo-
zoites, conducted in the 1960s [10], and subsequent
analyses of the mechanisms of immunity in this model
[11]. Key challenge studies by Clyde in humans [12]
demonstrated that a high level of protection could
be induced in volunteers but required large numbers
of bites by irradiated infectious mosquitoes. The identi-
fication of the circumsporozoite protein as the major
component of the sporozoite coat led to the cloning
and sequencing of this gene in the early 1980s and
optimistic predictions that a sporozoite vaccine was
within reach [13]. About this time, excellent progress
was made in identifying and expressing a range of
blood-stage antigens also raising hopes for a blood-
stage vaccine. However, initial clinical trials revealed
only modest immunogenicity of candidate antigens
and no statistically significant efficacy on sporozoite
challenge [14]. The emergence of a peptide-based
candidate vaccine from Colombia, called SPf66, with
apparent efficacy in new world monkeys and humans
[15] generated enormous interest and controversy but
eventually disappointment as successive, independent
field efficacy trials in Africa and Asia failed to demon-
strate protection. However, these studies with SPf66
led to the development of the field technologies used
subsequently to evaluate other vaccines.
Phil. Trans. R. Soc. B (2011)
At about the same time, a new formulation of the
P. falciparum CS protein, called RTS,S, in a novel adju-
vant was showing exciting evidence of efficacy in
sporozoite challenge studies [16] and this moved onto
field testing in West Africa [17]. By then, the impor-
tance of cellular immunity in providing protection
against the liver-stage of the parasite had been con-
firmed in animal models of irradiated sporozoite
immunization [18]. This led to efforts to induce signifi-
cant cellular immunity using a new approach—plasmid
DNA immunization. The low potency of first gener-
ation DNA vaccines [19] led to the development of
heterologous prime-boost immunization approaches
with non-replicating viral vectors that showed some
efficacy that could not be attributed to antibody-
dependent immunity [20]. Over the last 10 years, the
RTS,S candidate has led the way, showing efficacy in
progressively younger subjects and in a variety of
epidemiological settings culminating in an ongoing
licensure trial [21]. Most recently, the old approach of
whole parasite vaccination has been revived, aiming to
induce considerably higher levels of efficacy than
RTS,S despite substantial challenges in product devel-
opment [6]. Blood-stage vaccine candidates continue
to struggle with adjuvant formulations and limited
immunogenicity while calls for efforts at malaria
eradication have led to a revival of enthusiasm for the
near-dormant field of transmission-blocking vaccine
development [22].
4. A DIVERSITY OF APPROACHES
The difficulty of developing a highly effective malaria
vaccine has led to the design and assessment of a
very wide range of new approaches, arguably unparal-
leled in any other area of infectious disease
vaccinology. This not only includes a diversity of
approaches to control malaria infection and disease,
as outlined in box 1, but also includes early assessment
of a wide range of new vaccine technologies. The use
of malaria as a testing ground for innovative new vac-
cine technologies has been helped by the ability to
undertake ethical, small-scale challenge studies with
either sporozoites delivered by mosquito bites or care-
fully qualified blood-stage inocula to assess vaccine
efficacy [23]. Some of the firsts that the malaria vac-
cine community can point to are illustrated in box 2.
5. THE LEADING VACCINE CANDIDATE: RTS,S
The most effective malaria vaccine tested to date is
RTS,S, a hybrid protein particle, formulated in a
multi-component adjuvant named AS01. RTS,S
results from a collaboration, commenced in the
1980s, between the Walter Reed Army Institute of
Research in the USA and GSK Biologicals, then
SmithKline Beecham [21]. Initial vaccine constructs
of the tandem repeat region of the circumsporozoite
protein, mainly copies of the four amino acid sequence
NANP, showed very low-level efficacy [14] but expres-
sing the central repeat (‘R’) fused to the C-terminal
region known to contain T cell epitopes (hence ‘T’)
fused in turn to the hepatitis B surface antigen (‘S’)
yielded a yeast-expressed protein RTS [16]. However,
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Figure 1. Life cycle of the malaria parasite illustrating the various stages that are relevant to vaccine design. These are (1) the
anopheline mosquito vector, used in experimental protocols to immunize with irradiated sporozoites administered by mosquito
bite; (2) the sporozoite, the target of several vaccines, including RTS,S; (3) the liver-stage, usually targeted by vectored vac-
cines; (4) the blood-stage, usually targeted by protein in adjuvant vaccine candidates. Merozoite antigens have been most often

included in blood-stage vaccines; (5) the gametocyte which along with the ookinete, formed after fertilization in the mosquito
midgut, is the source of parasite antigens used in sexual-stage transmission-blocking vaccines. Pre-erythrocytic vaccines, which
target the sporozoite and the liver-stage parasite are intended to prevent infection as well as disease while blood-stage vaccines
are intended to prevent clinical illness and death.

Box 2. Malaria vaccines: some pioneering advances.

Development of novel adjuvant formulations inducing
exceptional levels of antibody: e.g. AS01.

Recombinant particle development: e.g. RTS,S
vaccine.

First reported clinical trial of DNA vaccination.
Large-scale testing of a peptide-based vaccine,

SPf66.
Discovery and clinical development of prime-boost

immunization with vectors.
Demonstration of T-cell-mediated protection with

sub-unit vaccination.
Clinical assessment of recombinant virosome, mul-

tiple antigenic peptide and long peptide vaccines.
Development of the concept of community/

transmission-blocking immunization, with sexual
stage antigens.

Development of a pathogen challenge model widely
used to guide vaccine development.

Development of a regulatory compliant process for
whole parasite vaccine biomanufacture.

Box 1. Twelve approaches to a malaria vaccine.

1. Sporozoite subunit vaccination, especially with the
CS protein: e.g. RTS,S in adjuvant.

2. Irradiated sporozoite or genetically attenuated
sporozoite immunization either by mosquito bite
or using injected purified sporozoites.

3. Immunization with DNA and/or viral vectors to
induce T cells against the liver-stage parasites, or
to target other life cycle stages.

4. Use of whole blood-stage malaria parasites as
immunogens.

5. Use of protein in adjuvant vaccines to reduce the
growth rate of blood-stage parasites.

6. Use of protein (or long peptide) in adjuvant vac-
cines to induce antibody-dependent cellular
inhibition (ADCI) of blood-stage parasites.

7. Use of peptide-based vaccines, mainly against
blood-stage parasites—e.g. SPf66, PEV3a.

8. Development of anti-disease vaccines based on
parasite toxins—e.g. GPI-based.

9. Immunization with parasite adhesion ligands such
as PfEMP1.

10. Use of parasite antigens, such as the Var2 protein,
preferentially expressed in the placenta to prevent
malaria in pregnancy.

11. Immunization with sexual stage parasite antigens
as transmission-blocking vaccines.

12. Use of mosquito antigens as transmission-blocking
vaccines.

2808 A. V. S. Hill Review. Vaccines against malaria
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to generate immunogenic particles, the RTS protein
needed to be co-expressed with large amounts of the
unfused S protein to yield RTS,S. RTS,S was tested
with several adjuvant formulations in a key sporozoite
challenge study in early 1996. The highest protective
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efficacy was observed in volunteers who received the
vaccine with an adjuvant containing the immunostimu-
lants, mono-phosphoryl lipid A (MPL, a toll-like
receptor 4 agonist) and QS21 (a derivative of Quill A)
[16]. When combined with this adjuvant, known as
AS02, or the related adjuvant AS01, which contains
liposomes, RTS,S has shown sterile efficacy of
30–50% across a series of sporozoite challenge studies
in healthy volunteers. In addition, a further 20 per
cent of those challenged show non-sterile efficacy mani-
fest as a 2 day delay in the time to the appearance of
parasites in the blood, an indication of substantial
killing of parasites during or before the liver stage of
the infection [24]. In sporozoite challenge studies
if most, but not all, parasites are killed before the
blood-stage of infection, the appearance of parasites at
microscopically detectable levels will occur, but this
will be delayed, and the extent of the delay allows the
proportion of parasites killed to be estimated [25].

Immunological analysis has demonstrated the
remarkable ability of this vaccine to induce a very
high concentration of antibodies, often of hundreds
of micrograms per millilitre, that target the conserved
central repeat region of the circumsporozoite protein
and in several, but not all, settings the level of these
antibodies correlates with protection against infection
or disease [26]. In contrast, T cell immunogenity is
modest and suggestions that these low-level responses
might also contribute to protection have, at least thus
far, been unconvincing [27].

The level of efficacy achieved by RTS,S in challenge
studies was a clear breakthrough for the field and has
yet to be exceeded by any sub-unit vaccine candidate.
RTS,S has progressed through a series of phase I and
II clinical trials in several African countries, involving
age de-escalation from adults to infants and various
efficacy assessments. These provide clear evidence
that in many different epidemiological settings,
RTS,S can reduce the rate of acquisition of clinical
malaria by 30–50% [28–31]. The endpoint most
widely accepted as a semi-standardized efficacy
measure is the reduction in clinical cases (or first
episodes) of malaria during the first 12 months of
follow-up, a measure alluded to in the Malaria Vaccine
Technology Roadmap. By this measure, the only
published results with the current AS01 adjuvant for-
mulation is an efficacy of 39 per cent in East African
children [31], a higher level than that observed
previously with AS02.

RTS,S/AS01 is now in a very large phase III efficacy
trial involving approximately 15 000 children at
11 sites in seven African countries, with the aim of
licensure and deployment in about 2015. Some initial
data from this trial, from evaluation in 5–17 month-
old children rather than in younger infants, the
primary vaccine target population, should be available
by the end of 2011. This represents encouraging pro-
gress towards licensing of a first generation malaria
vaccine. However, some important questions remain
about the efficacy and utility of this vaccine for malaria
control, not all of which will be answered by the cur-
rent phase III trial. These include the level of
efficacy against severe malaria, which could be higher
than that against clinical malaria, the duration of
Phil. Trans. R. Soc. B (2011)
protection provided by the vaccine, which was limited
with the AS02 formulation both in phase IIa and phase
IIb studies [29,32], and the cost-effectiveness and
community acceptability of deploying a vaccine with
limited efficacy.
6. WHOLE PARASITE VACCINES
Partly as a response to the limited efficacy achieved by
RTS,S and all other sub-unit vaccine candidates, a
major effort has been made by a US biotech company,
Sanaria, to develop a pre-erythrocytic vaccine com-
prising whole sporozoites [6]. The challenges facing
this approach are considerable but the main driver
has been the appreciation that irradiated sporozoites
delivered by mosquito bite have induced very high
levels of protective efficacy, exceeding 90 per cent,
though the numbers of volunteers in these trials were
small [33]. Irradiated sporozoites can invade liver
cells and develop within them to produce defective
schizonts. These express antigens that can induce a
protective immune response but the defective schi-
zonts cannot rupture to release the merozoites that
would normally invade red blood cells and continue
the infection. By analogy with animal models in
which complete protection is readily obtainable, this
efficacy is likely to be achieved through the activity of
induced CD8þ T cells that clear infected human
liver cells, but this remains to be demonstrated [11].

Because the delivery of about a thousand mosquito
bites (the number required for high-level efficacy using
the irradiated sporozoite approach) is impractical for a
vaccine for public health use, Sanaria set out to estab-
lish a regulatory compliant manufacturing process that
involved aseptic dissection of parasites from thousands
of mosquito salivary glands [6]. The next step was to
purify these parasites, irradiate them and then cryopre-
serve them in liquid nitrogen because the parasites lose
viability at higher temperatures and they must remain
viable to induce protection. Remarkably, both of these
challenges appear to have been largely overcome and
phase I/IIa clinical trials of this vaccine were under-
taken in 2010. However, significant efficacy has yet
to be reported from these studies and it remains
unclear whether a needle and a syringe can substitute
for a mosquito and its salivary gland fluids in generat-
ing adequate immunogenicity and efficacy in humans.

Even if high-level efficacy can be achieved using this
approach, the challenges of cost of manufacture and
distribution of parasite vials in liquid nitrogen tanks
in developing countries suggest that efficacy of this
approach will need to be considerable higher than
that of other malaria vaccines, and possibly other
control methods, for it to be deployed widely.

In parallel with efforts to develop irradiated sporo-
zoite vaccines, considerable progress has been made
in developing genetically attenuated parasites that are
incapable of progressing beyond the liver-stage owing
to loss of key gene(s) [34]. These parasites would
not require irradiation to be used as a vaccine and
might be more efficacious than irradiated parasites if
they were able to progress to a later stage of liver-
stage development than the former [34]. However,
the lack of irradiation raises concerns over safety and
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ensuring a complete absence of break-through infec-
tions with such a vaccine might be difficult, even if
more than one mutation is introduced. In addition, a
delivery modality that retains the immunogenicity of
mosquito-delivered vaccines will be required, as for
the Sanaria approach. Further evidence of the potency
of whole parasites for inducing immunity in humans
has been provided by the demonstration of sterile pro-
tection induced by small numbers of infectious
mosquito bites, about 45 non-irradiated mosquitoes
in total, if these are administered with the anti-malarial
drug chloroquine [35].

A further extension of the whole parasite approach
has been championed by Australian researchers who
have demonstrated the potential efficacy of blood-
stage whole parasite vaccines in both animals and
humans [36]. In a clinical trial, administration of
repeated, very low doses of blood-stage parasites
induced immunity to a subsequent challenge and this
appeared to work in the absence of induced antibodies
[37]. Efforts to develop this approach further are
ongoing but the major question is whether a means of
growing large numbers of parasites in blood or a
blood-substitute can be developed which will be accep-
table to regulatory authorities, given the tiny risk of
unknown infections in any donated human blood.
7. VECTORED VACCINES
The third major approach to inducing pre-erythrocytic
immunity has been to employ vectored vaccines,
aiming mainly to induce cellular immunity against
the liver-stage of P. falciparum. Irradiated sporozoite-
induced immunity in animal models is due to mainly
CD8þ T cells and appears to target multiple antigens
[11]. Several generations of vectored vaccines have
now been assessed clinically in attempts to induce
comparable efficacy [38,39]. However, even in mice,
it has been difficult to generate high-level efficacy
with vectors encoding single antigens, not least
because the levels of T cells required are exceptionally
high [40]. Currently, there are three approaches being
assessed clinically.

The Oxford University programme, now partnered
with the Italian biotech company Okairos, is using
chimpanzee adenoviruses (ChAds) encoding the
thrombospondin-related adhesion protein (TRAP)
pre-erythrocytic antigen to prime an immune response
[38] that is then boosted by another viral vector, modi-
fied vaccinia virus Ankara (MVA) that encodes the
same TRAP insert [41]. This particular prime-boost
approach, first discovered in malaria, leads to much
higher T cell responses than single vector immuniz-
ation, and extensive studies have shown its utility in
pre-clinical models [42]. For example, Reyes-Sandoval
et al. [41] showed enhanced efficacy against murine
malaria using ChAds to prime and MVA to boost
with not only increased efficacy but also better dura-
bility of protection. More recently, detailed analysis
of this model has highlighted the importance for pro-
tection of effector CD8þ T cells that can reach the
liver [43]. In the last year, very encouraging clinical
efficacy results have been achieved using this approach
in phase IIa sporozoite challenge trials, even against a
Phil. Trans. R. Soc. B (2011)
parasite that encodes a different strain of P. falciparum
TRAP [44]. This promising approach has now pro-
gressed to phase Ib safety and immunogenicity
studies in African adults and children as part of the
activities of a European and Developing Countries
Clinical Trials Partnership (EDCTP-supported
malaria-vectored vaccine consortium [45]. In an
extension of this approach, further antigens are being
tested in the same viral vectors including circumspor-
ozoite protein (CSP) and the blood-stage antigens
apical membrane antigen-1 (AMA1) and merozoite
surface protein-1 (MSP1) (S. J. Draper, S. Sheehy &
A. V. S. Hill 2010, unpublished data).

A related prime-boost approach is being developed
by the US Naval Medical Research Centre, but here
the priming vector is plasmid DNA, and a human ade-
novirus, Ad5, is used to boost the immune response
[39]. As in the Oxford programme, several antigenic
inserts from both pre-erythrocytic stage and blood
stages are under assessment with some encouraging
efficacy data in a recent challenge trial (T. Richie
2011, personal communication). Finally, the vaccine
company Crucell has focused on using different ade-
noviral vectors such as Ad35 and Ad 26 [46] which,
like chimpanzee vectors, may be less susceptible to
impairment by naturally acquired immunity to
common human adenoviral infections.
8. BLOOD-STAGE VACCINES
In contrast to major progress in several areas of
pre-erythrocytic vaccine development, results with
blood-stage vaccines have been more mixed and
progress has generally been slower [47]. A number of
candidate vaccines have progressed to clinical testing
but none has yet achieved good evidence of protective
efficacy against clinical malaria. Many of these vac-
cine candidates are based on just a few antigens,
MSP1 and AMA1 in particular, although there are
hundreds or perhaps thousands of antigens expressed
by blood-stage parasites that might be used in vaccine
development. Almost all of these candidate vaccines
have been a protein given with an adjuvant designed
to induce protective antibodies. Some approaches
have focused on inducing antibodies that impair para-
site growth, as can be demonstrated in in vitro assays
[48], whereas others have aimed to induce antibodies
which achieve their effect in collaboration with effector
cells and which can be measured, with greater difficulty,
in a functional assay of ADCI of parasite growth [49].

There have been three particular challenges for the
development of blood-stage vaccines. One is difficulty
in expressing conformationally correct large antigens
and scaling up the methods needed to do this to the
extent that would allow large-scale manufacture.
A second challenge has been the only modest antibody
responses achieved even with a range of new adjuvants.
In some cases, clear induction of antibodies with
activity in impairing parasite growth in a standardized
growth inhibitory assay has been achieved [48] but
that has not been associated with significant vaccine
efficacy. A telling comparator may be that strong
adjuvants have generally induced antibody levels com-
parable to those seen in semi-immune adults living in
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endemic areas. Such adults have significant protective
immunity from natural exposure because they have
antibody responses to very large numbers of antigens
not just one or two as in vaccinees. In contrast, anti-
body levels induced to CSP by RTS,S or T cells to
TRAP induced by prime-boost vaccination are over a
100-fold higher than levels induced by natural
exposure. The third difficulty has been posed by the
extensive polymorphism of many leading candidate
blood-stage antigens [50]: some vaccine candidates
include more than one allele to try to overcome this
but it remains to be seen how successful this approach
will be.

A few hints of efficacy have been reported: switching
of the parasite strain causing malaria away from the vac-
cine strain in a phase II trial of a blood-stage vaccine
containing mono-allelic MSP2 in Papua New Guinea
[51]; a possible reduction in parasite densities in a
sporozoite challenge trial with AMA1/AS02 in US vol-
unteers [52]; and one vaccinee showing a substantial
delay in time to patency with the PEV3A virosomal vac-
cine candidate [53]. Vectored approaches to delivering
blood-stage antigens are only beginning to be explored
clinically and this approach should allow for evaluation
of candidate antigens that have been impossible to
express adequately as proteins. Perhaps, the best hope
for a really effective blood-stage vaccine component
may lie with identification of better target antigens to
use in a vaccine: there are still many under-explored
and unexplored candidates.
9. MOSQUITO STAGE VACCINES
Few aspects of malaria vaccine development are more
fascinating than the concept of vaccination to prevent
transmission at the mosquito stage of infection. The
idea of using gametocyte or sexual stage parasite anti-
gens to immunize individuals who might derive no
direct benefit but protect their neighbours from becom-
ing infected [54] has been described as altruistic
vaccination. But this is a misnomer as such vaccines
would be deployed in such a manner that the whole
community would benefit and hence the term ‘commu-
nity vaccine’ is becoming more popular. Recently,
the broader term ‘vaccines that interrupt malaria
transmission’ (VIMTs) has been introduced as any
pre-erythrocytic or blood-stage vaccine that was highly
efficacious could have an effect on transmission [22].

The principle that immunization with gametocyte or
ookinete antigens could reduce or ablate oocyst devel-
opment in the mosquito has been established for
decades [54]. Efforts have been made to standardize
membrane-feeding assays that allow sera from vacci-
nated animals or humans to be evaluated for their
ability to reduce or prevent transmission. Recently,
this approach has been supplemented by the in vivo
use of transgenic parasites to assess the efficacy of anti-
bodies induced by P. falciparum and P. vivax antigens
[55] in preventing transmission of rodent parasites.
These systems provide a means of rapidly assessing
the likely efficacy of sera from vaccinees participating
in phase I trials of mosquito-stage vaccines, a major
advantage of this approach to malaria vaccine develop-
ment. Indeed, in the only reported clinical trial a
Phil. Trans. R. Soc. B (2011)
sexual-stage, Pfs25-based, P. falciparum vaccine gener-
ated significant transmission-blocking activity in some
vaccinees, even though the trial was not finished owing
to safety issues with the protein–adjuvant formulation
employed [56].

In view of the potential of this approach to the pre-
vention of malaria, it is surprising that it has been so
little supported until recently. The main hurdle has
been the concern that deployment of such a trans-
mission-blocking vaccine would prove impractical.
Because adults and older children can transmit malaria
as well as infants and young children, the target popu-
lation has to be all residents of an area where
transmission reduction is the aim. This type of mass
vaccination has been undertaken on occasion for
other diseases but may prove logistically challenging.

However, in the last few years, two developments
have greatly increased interest in this type of vaccine.
The first has been renewed interest in malaria elimin-
ation and eradication. This has focused attention on
the potential value of a transmission-blocking mos-
quito-stage vaccine in the final stages of malaria
eradication [22]. Although this is likely still several
decades away, development of a licensable stand-alone
mosquito-stage vaccine might require that time-frame.
The second development has been the demonstration
that antigens from the Anopheles midgut wall, particu-
larly the aminopeptidase APN1 that appears to be a
receptor for ookinetes, may act as suitable trans-
mission-blocking vaccine components [57]. This true
mosquito-stage vaccine (the term is generally used to
encompass parasite sexual-stage antigens and mosquito
antigens) has the particular advantage that it may be
effective against more than one species of malaria, a fea-
ture unlikely to be shared by any other type of vaccine
candidate. With this encouragement, there is renewed
interest in development of several mosquito-stage
vaccine candidates, although some of these may be
developed as components of a multi-stage vaccine
rather than as stand-alone candidates.
10. COMBINATION VACCINES
Many textbook descriptions of malaria vaccine develop-
ment conclude with the suggestion that the first highly
effective vaccines are likely to include antigens from
more than one stage of the parasite’s life cycle. This
would appear a logical conclusion given the difficulty
so far in developing highly effective vaccines based
on any single life cycle stage. However, some practical
considerations argue against multi-stage vaccines, par-
ticularly the associated increased manufacturing cost
of a multi-stage vaccine comprising several components
unless these can be encompassed by a single delivery
technology, such as a poxviral vector [58,59].

However, there is an important argument for com-
bining two particular types of subunit vaccine in the
near-term to try and achieve higher level vaccine effi-
cacy in humans [38]. As described above, the two
subunit vaccine strategies that have achieved most effi-
cacy in humans are a protein/adjuvant vaccine,
specifically RTS,S, that induces antibodies that clear
sporozoites before they can enter the liver, and vectored
vaccines that clear infected liver cells. In a murine
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Plasmodium berghei model, analogous antibody-indu-
cing and T cell-inducing vaccines each provided 30–
35% sterile efficacy when administered alone. However,
when administered as a simple mixture, the two vac-
cines provided 90 per cent sterile efficacy [60]. This
more than additive efficacy of the combination is not
difficult to understand: when anti-sporozoite antibodies
substantially reduce the number of parasites that can
enter the liver, it should be easier for the vector-induced
T cells to clear the smaller number of remaining
parasite-infected hepatocytes.

Interestingly, there are fairly good estimates of how
effective RTS,S and leading vectored vaccines are at
reducing the number of parasites reaching blood-stage
infection (i.e. leaving the liver) in human sporozoite
challenge studies [25]. RTS,S reduces parasite numbers
by over 95 per cent and vectored vaccines by over 90 per
cent. Viewed in this way, there appears to be a compel-
ling case for testing combinations of leading sporozoite
antibody-inducing and liver-stage T cell-inducing
vaccines in humans in the near future. This could
considerably accelerate the identification of a highly
effective deployable malaria vaccine using components
that are already in clinical development.
11. PROSPECTS
In recent years, there has been progress in developing
anti-parasite vaccines for humans. The first is almost
certainly going to be a malaria vaccine and it is likely
that a variety of different types of malaria vaccine will
be licensed in the next 5–15 years. A Malaria Vaccine
Technology Roadmap was published in 2006 after a
series of consultations with many different groups of
stakeholders [61]. Two clear targets were identified:
a first generation vaccine with efficacy of at least
50 per cent lasting 1 year by 2015, and a second gen-
eration vaccine with efficacy of at least 80 per cent
lasting 4 years by 2025. It now looks as if RTS,S/
AS01 will come close to, or meet, the 2015 efficacy
goal and a variety of approaches outlined above,
particularly multi-component protein plus vector com-
binations, look as if they could make the more difficult
2025 efficacy goal achievable.

In addition, new efforts are being accelerated to
create two further types of malaria vaccine. The first
is a transmission-blocking vaccine useful for reducing
transmission further in low transmission areas, particu-
larly as part of efforts at malaria eradication [22]. This
could be a stand-alone mosquito-stage vaccine or, more
likely, a multi-component vaccine adding a mosquito-
stage component to the partial transmission-blocking
activity of a pre-erythrocytic vaccine. The second
target, that is now receiving much overdue attention,
is the development of a vaccine against P. vivax [62].
This is geographically the most widespread human
malaria and the first efficacy studies of P. vivax vaccines
were being undertaken in 2010 assessing a CSP-based
candidate.

Development of an effective malaria vaccine has
been a great challenge for medical science but findings
and approaches pioneered in efforts to develop a
malaria vaccine are proving useful in developing a
whole range of vaccines against other difficult diseases.
Phil. Trans. R. Soc. B (2011)
The story continues into the second decade of this mil-
lennium but that period will almost certainly see the
licensure of at least one vaccine against this great
scourge of humanity.
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